National Library of Energy BETA

Sample records for liquids steam generator

  1. Steam generator for liquid metal fast breeder reactor

    DOE Patents [OSTI]

    Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.

    1985-01-01

    Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

  2. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  3. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  4. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  5. Trends in packaged steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  6. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOE Patents [OSTI]

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  7. Fast fluidized bed steam generator

    DOE Patents [OSTI]

    Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  8. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  9. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  10. Customizing pays off in steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1995-01-01

    Packaged steam generators are the workhorses of chemical process plants, power plants and cogeneration systems. They are available as oil- or gas-fired models, and are used to generate either high-pressure superheated steam (400 to 1,200 psig, at 500 to 900 F) or saturated steam at low pressures (100 to 300 psig). In today's emission- and efficiency- conscious environment, steam generators have to be custom designed. Gone are the days when a boiler supplier--or for that matter an end user--could look up a model number from a list of standard sizes and select one for a particular need. Thus, before selecting a system, it is desirable to know the features of oil- and gas-fired steam generators, and the important variables that influence their selection, design and performance. It is imperative that all of these data are supplied to the boiler supplier so that the engineers may come up with the right design. Some of the parameters which are discussed in this paper are: duty, steam temperature, steam purity, emissions, and furnace design. Superheaters, economizers, and overall performance are also discussed.

  11. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  12. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #15 PDF icon Benchmark the Fuel Cost of Steam Generation (January 2012) More Documents & Publications Use Feedwater Economizers for Waste Heat Recovery Consider Installing a Condensing Economizer How to Calculate the True

  13. Revised evaluation of steam generator testing alternatives

    SciTech Connect (OSTI)

    1981-01-01

    A scoping evaluation was made of various facility alternatives for test of LMFBR prototype steam generators and models. Recommendations are given for modifications to EBR-II and SCTI (Sodium Components Test Installation) for prototype SG testing, and for few-tube model testing. (DLC)

  14. Laser removal of sludge from steam generators

    DOE Patents [OSTI]

    Nachbar, Henry D.

    1990-01-01

    A method of removing unwanted chemical deposits known as sludge from the metal surfaces of steam generators with laser energy is provided. Laser energy of a certain power density, of a critical wavelength and frequency, is intermittently focused on the sludge deposits to vaporize them so that the surfaces are cleaned without affecting the metal surface (sludge substrate). Fiberoptic tubes are utilized for laser beam transmission and beam direction. Fiberoptics are also utilized to monitor laser operation and sludge removal.

  15. Benchmark the Fuel Cost of Steam Generation, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This cost is dependent upon fuel type, unit fuel cost, boiler effciency, feedwater ... steam and serves as a tracking device to allow for boiler performance monitoring. ...

  16. Simulation of a main steam line break with steam generator tube rupture using trace

    SciTech Connect (OSTI)

    Gallardo, S.; Querol, A.; Verdu, G.

    2012-07-01

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

  17. Vapor generator steam drum spray head

    DOE Patents [OSTI]

    Fasnacht, Jr., Floyd A.

    1978-07-18

    A typical embodiment of the invention provides a combination feedwater and "cooldown" water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure.

  18. Automated Diagnosis and Classification of Steam Generator Tube Defects

    SciTech Connect (OSTI)

    Dr. Gabe V. Garcia

    2004-10-01

    A major cause of failure in nuclear steam generators is tube degradation. Tube defects are divided into seven categories, one of which is intergranular attack/stress corrosion cracking (IGA/SCC). Defects of this type usually begin on the outer surface of the tubes and propagate both inward and laterally. In many cases these defects occur at or near the tube support plates. Several different methods exist for the nondestructive evaluation of nuclear steam generator tubes for defect characterization.

  19. Low chemical concentrating steam generating cycle

    DOE Patents [OSTI]

    Mangus, James D. (Greensburg, PA)

    1983-01-01

    A steam cycle for a nuclear power plant having two optional modes of operation. A once-through mode of operation uses direct feed of coolant water to an evaporator avoiding excessive chemical concentration buildup. A recirculation mode of operation uses a recirculation loop to direct a portion of flow from the evaporator back through the evaporator to effectively increase evaporator flow.

  20. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect (OSTI)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  1. Potential failure of steam generator tubes following a station blackout

    SciTech Connect (OSTI)

    Ward, L.W.; Palmrose, D.E.

    1994-12-31

    The U.S. Nuclear Regulatory Commission is considering changes to pressurized water reactor (PWR) requirements relating to steam generator tube plugging and repair criteria, including leakage monitoring. The proposed changes are known as the alternate tube plugging criteria (APC) and are intended to permit PWRs to operate with through-wall cracks in steam generator tubes subject to meeting a specified limit on predicted primary to secondary leakage under accident conditions. To assess the consequences of the alternate plugging criteria, analyses were performed for a station blackout sequence in which the reactor core melts while the reactor coolant system (RCS) remains at high pressure. Evaluations were conducted to investigate the potential for tube failure with and without secondary system depressurization. The excessive heat coupled with the high-pressure differentials across the steam generator tubes could result in creep rupture failure of the tubes during a severe accident, which could lead to a radiological release directly to the environment. In order to assess the safety significance of the APC, it is important to identify the level of steam generator tube leakage that can occur without challenging the previous study conclusions that steam generator creep failure will not occur prior to a surge line or hot-leg failure. To assess the effect of leakage on steam generator tube integrity during a core melt sequence with the RCS at high pressure and the secondary side of the steam generators pressurized and depressurized, an analysis was performed for a core melt event resulting from an unmitigated station blackout to identify the total steamenerator and tube leakage flow rates that could induce tube ruptures prior to other RCS boudary faliures that could depressurize the RCS.

  2. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOE Patents [OSTI]

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  3. Downhole steam generator using low pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  4. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 07_anl_high_pressure_steam_ethanol_reforming.pdf More Documents & Publications High Pressure Ethanol Reforming for Distributed Hydrogen Production Bio-Derived

  5. Overview of steam generator tube degradation and integrity issues

    SciTech Connect (OSTI)

    Diercks, D.R.; Shack, W.J.; Muscara, J.

    1996-10-01

    The degradation of steam generator tubes in pressurized water nuclear reactors continues to be a serious problem. Primary water stress corrosion cracking is commonly observed at the roll transition zone at U-bends, at tube denting locations, and occasionally in plugs and sleeves. Outer-diameter stress corrosion cracking and intergranular attack commonly occur near the tube support plate crevice, near the tube sheet in crevices or under sludge piles, and occasionally in the free span. A particularly troubling recent trend has been the increasing occurrence of circumferential cracking at the RTZ on both the primary and secondary sides. Segmented axial cracking at the tubes support plate crevices is also becoming more common. Despite recent advances in in-service inspection technology, a clear need still exists for quantifying and improving the reliability of in- service inspection methods with respect to the probability of detection of the various types of flaws and their accurate sizing. Improved inspection technology and the increasing occurrence of such degradation modes as circumferential cracking, intergranular attack, and discontinuous axial cracking have led to the formulation of a new performance-based steam generator rule. This new rule would require the development and implementation of a steam generator management program that monitors tube condition against accepted performance criteria to ensure that the tubes perform the required safety function over the next operating cycle. The new steam generator rule will also be applied to severe accident conditions to determine the continued serviceability of a steam generator with degraded tubes in the event of a severe accident. Preliminary analyses are being performed for a hypothetical severe accident scenario to determine whether failure will occur first in the steam generator tubes, which would lead to containment bypass, or instead in the hot leg nozzle or surge line, which would not.

  6. Downhole steam generator with improved preheating/cooling features

    DOE Patents [OSTI]

    Donaldson, A. Burl; Hoke, Donald E.; Mulac, Anthony J.

    1983-01-01

    An apparatus for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  7. Downhole steam generator with improved preheating, combustion and protection features

    DOE Patents [OSTI]

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.

  8. Status of the CRBRP steam-generator design

    SciTech Connect (OSTI)

    Schmidt, J.E.; Martinez, R.S.; Murdock, J.F.

    1981-06-01

    Fabrication of the Prototype Unit is near completion and will be delivered to the test site in August, 1981. The Plant Unit design is presently at an advanced stage and will result in steam generator units fully capable of meeting all the requiments of the CRBRP Power Plant.

  9. Downhole steam generator with improved preheating, combustion, and protection features

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

  10. Experimental fretting-wear studies of steam generator materials

    SciTech Connect (OSTI)

    Fisher, N.J.; Chow, A.B.; Weckwerth, M.K.

    1995-11-01

    Flow-induced vibration of steam generator tubes results in fretting-wear damage due to impacting and rubbing of the tubes against their supports. This damage can be predicted by computing tube response to flow-induced excitation forces using analytical techniques, and then relating this response to resultant wear damage using experimentally derived wear coefficients. Fretting-wear of steam generator materials has been studied experimentally at Chalk River Laboratories for two decades. Tests are conducted in machines that simulate steam generator environmental conditions and tube-to-support dynamic interactions. Different tube and support materials, tube-to-support clearances, and tube support geometries have been studied. The effect of environmental conditions, such as temperature, oxygen content, pH and chemistry control additive, have been investigated as well. Early studies showed that damage was related to contact force as long as other parameters, such as geometry and motion, were held constant. Later studies have shown that damage is related to a parameter called work-rate, which combines both contact force and sliding distance. Results of short and long-term fretting-wear tests for CANDU steam generator materials at realistic environmental conditions are presented. These results demonstrate that work-rate is an appropriate correlating parameter for impact-sliding interaction.

  11. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  12. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  13. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, Ronald L.

    1983-01-01

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  14. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  15. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  16. Investigation of thermal storage and steam generator issues

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  17. Selection of materials for sodium fast reactor steam generators

    SciTech Connect (OSTI)

    Dubiez-Le Goff, S.; Garnier, S.; Gelineau, O.; Dalle, F.; Blat-Yrieix, M.; Augem, J. M.

    2012-07-01

    Sodium Fast Reactor (SFR) is considered in France as the most mature technology of the different Generation IV systems. In the short-term the designing work is focused on the identification of the potential tracks to demonstrate licensing capability, availability, in-service inspection capability and economical performance. In that frame materials selection for the major components, as the steam generator, is a particularly key point managed within a French Research and Development program launched by AREVA, CEA and EDF. The choice of the material for the steam generator is indeed complex because various aspects shall be considered like mechanical and thermal properties at high temperature, interaction with sodium on one side and water and steam on the other side, resistance to wastage, procurement, fabrication, weldability and ability for inspection and in-situ intervention. The following relevant options are evaluated: the modified 9Cr1Mo ferritic-martensitic grade and the Alloy 800 austenitic grade. The objective of this paper is to assess for both candidates their abilities to reach the current SFR needs regarding material design data, from AFCEN RCC-MRx Code in particular, compatibility with environments and manufacturability. (authors)

  18. Heat recovery steam generator outlet temperature control system for a combined cycle power plant

    SciTech Connect (OSTI)

    Martens, A.; Myers, G.A.; McCarty, W.L.; Wescott, K.R.

    1986-04-01

    This patent describes a command cycle electrical power plant including: a steam turbine and at least one set comprising a gas turbine, an afterburner and a heat recovery steam generator having an attemperator for supplying from an outlet thereof to the steam turbine superheated steam under steam turbine operating conditions requiring predetermined superheated steam temperature, flow and pressure; with the gas turbine and steam turbine each generating megawatts in accordance with a plant load demand; master control means being provided for controlling the steam turbine and the heat recovery steam generator so as to establish the steam operating conditions; the combination of: first control means responsive to the gas inlet temperature of the heat recovery steam generator and to the plant load demand for controlling the firing of the afterburner; second control means responsive to the superheated steam predetermined temperature and to superheated steam temperature from the outlet for controlling the attemperator between a closed and an open position; the first and second control means being operated concurrently to maintain the superheated steam outlet temperature while controlling the load of the gas turbine independently of the steam turbine operating conditions.

  19. Benchmark the Fuel Cost of Steam Generation - Steam Tip Sheet #15

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  20. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  1. Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors

    SciTech Connect (OSTI)

    Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

    2011-08-01

    A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

  2. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    SciTech Connect (OSTI)

    Woo, H.H.; Lu, S.C.

    1981-09-15

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design.

  3. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, Douglas E.; Corletti, Michael M.

    1993-01-01

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.

  4. Locating hot and cold-legs in a nuclear powered steam generation system

    DOE Patents [OSTI]

    Ekeroth, D.E.; Corletti, M.M.

    1993-11-16

    A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.

  5. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, D.J.; Schrader, K.J.; Schulz, T.L.

    1994-05-03

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  6. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    DOE Patents [OSTI]

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  7. Electroslag Strip Cladding of Steam Generators With Alloy 690

    SciTech Connect (OSTI)

    Consonni, M.; Maggioni, F.; Brioschi, F.

    2006-07-01

    The present paper details the results of electroslag cladding and tube-to-tubesheet welding qualification tests conducted by Ansaldo-Camozzi ESC with Alloy 690 (Alloy 52 filler metal) on steel for nuclear power stations' steam generators shell, tubesheet and head; the possibility of submerged arc cladding on first layer was also considered. Test results, in terms of chemical analysis, mechanical properties and microstructure are reproducible and confidently applicable to production cladding and show that electroslag process can be used for Alloy 52 cladding with exceptionally stable and regular operation and high productivity. The application of submerged arc cladding process to the first layer leads to a higher base metal dilution, which should be avoided. Moreover, though the heat affected zone is deeper with electroslag cladding, in both cases no coarsened grain zone is found due to recrystallization effect of second cladding layer. Finally, the application of electroslag process to cladding of Alloy 52 with modified chemical composition, was proved to be highly beneficial as it strongly reduces hot cracking sensitivity, which is typical of submerged arc cladded Alloy 52, both during tube-to-tubesheet welding and first re-welding. (authors)

  8. Steam generator materials performance in high temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760/sup 0/C and produce superheated steam at 538/sup 0/C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10/sup 6/ MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc.

  9. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

  10. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOE Patents [OSTI]

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  11. Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts

    SciTech Connect (OSTI)

    Pettit, F. S.; Meier, G. H.

    1983-08-01

    Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

  12. Studies of the steam generator degraded tubes behavior on BRUTUS test loop

    SciTech Connect (OSTI)

    Chedeau, C.; Rassineux, B.

    1997-04-01

    Studies for the evaluation of steam generator tube bundle cracks in PWR power plants are described. Global tests of crack leak rates and numerical calculations of crack opening area are discussed in some detail. A brief overview of thermohydraulic studies and the development of a mechanical probabilistic design code is also given. The COMPROMIS computer code was used in the studies to quantify the influence of in-service inspections and maintenance work on the risk of a steam generator tube rupture.

  13. Downhole steam generator using low-pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  14. Evaluation of anticipatory signal to steam generator pressure control program for 700 MWe Indian pressurized heavy water reactor

    SciTech Connect (OSTI)

    Pahari, S.; Hajela, S.; Rammohan, H. P.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is horizontal channel type reactor with partial boiling at channel outlet. Due to boiling, it has a large volume of vapor present in the primary loops. It has two primary loops connected with the help of pressurizer surge line. The pressurizer has a large capacity and is partly filled by liquid and partly by vapor. Large vapor volume improves compressibility of the system. During turbine trip or load rejection, pressure builds up in Steam Generator (SG). This leads to pressurization of Primary Heat Transport System (PHTS). To control pressurization of SG and PHTS, around 70% of the steam generated in SG is dumped into the condenser by opening Condenser Steam Dump Valves (CSDVs) and rest of the steam is released to the atmosphere by opening Atmospheric Steam Discharge Valves (ASDVs) immediately after sensing the event. This is accomplished by adding anticipatory signal to the output of SG pressure controller. Anticipatory signal is proportional to the thermal power of reactor and the proportionality constant is set so that SG pressure controller's output jacks up to ASDV opening range when operating at 100% FP. To simulate this behavior for 700 MWe IPHWR, Primary and secondary heat transport system is modeled. SG pressure control and other process control program have also been modeled to capture overall plant dynamics. Analysis has been carried out with 3-D neutron kinetics coupled thermal hydraulic computer code ATMIKA.T to evaluate the effect of the anticipatory signal on PHT pressure and over all plant dynamics during turbine trip in 700 MWe IPHWR. This paper brings out the results of the analysis with and without considering anticipatory signal in SG pressure control program during turbine trip. (authors)

  15. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  16. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents.

    SciTech Connect (OSTI)

    Majumdar, S.; Diercks, D. R.; Shack, W. J.; Energy Technology

    2002-05-01

    This report summarizes analytical evaluation of crack-opening areas and leak rates of superheated steam through flaws in steam generator tubes and erosion of neighboring tubes due to jet impingement of superheated steam with entrained particles from core debris created during severe accidents. An analytical model for calculating crack-opening area as a function of time and temperature was validated with tests on tubes with machined flaws. A three-dimensional computational fluid dynamics code was used to calculate the jet velocity impinging on neighboring tubes as a function of tube spacing and crack-opening area. Erosion tests were conducted in a high-temperature, high-velocity erosion rig at the University of Cincinnati, using micrometer-sized nickel particles mixed in with high-temperature gas from a burner. The erosion results, together with analytical models, were used to estimate the erosive effects of superheated steam with entrained aerosols from the core during severe accidents.

  17. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOE Patents [OSTI]

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  18. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    SciTech Connect (OSTI)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC`s mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied.

  19. Reactance simulation for the defects in steam generator tube with outside ferrite sludge

    SciTech Connect (OSTI)

    Ryu, Kwon-sang; Kima, Yong-il; Son, Derac; Park, Duck-gun; Jung, Jae-kap

    2009-04-01

    A magnetic sludge is partly produced around the tube sheet outside a steam generator due to stress and heat. The sludge with magnetite is one of the important factors affecting eddy current signals. It causes trouble for the safety of the steam generator tubes and is difficult to detect by conventional eddy current methods. A new type of probe is needed to detect the signals for the magnetic sludge. We designed a new U-type yoke which has two kinds of coils--a magnetizing coil and the other a detecting coil--and we simulated the signal induced by the ferromagnetic sludge in the Inconel 600 tube.

  20. Downhole steam generator with improved preheating/cooling features. [Patent application

    DOE Patents [OSTI]

    Donaldson, A.B.; Hoke, D.E.; Mulac, A.J.

    1980-10-10

    An apparatus is described for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  1. Corrosion test qualification for in situ stress relief of recirculating steam generators' U-bends

    SciTech Connect (OSTI)

    Monter, J.V.; Miglin, B.P.; Lauer, J.A.

    1989-02-01

    Highly stressed alloy 600 is susceptible to intergranular stress corrosion cracking (IGSCC) in high-purity water at nuclear steam generator (NSG) operating temperatures. Two regions in recirculating steam generators (RSG) are particularly prone to primary-side-initiated SCC: tube expansion transitions of the tube in the tubesheet and tight radii tube bends. One remedial measure to improve IGSCC in these regions is to heat the tubes and thus relieve the residual stresses that contribute significantly to the cracking problem. This article describes a corrosion test program using the accelerated SCC environments of sodium tetrathionate and sodium hydroxide to qualify an in situ stress-relief process for the most SCC-susceptible U-bends in an RSG.

  2. Initial operating results of coal-fired steam generators converted to 100% refuse-derived fuel

    SciTech Connect (OSTI)

    Barsin, J.A. ); Graika, P.K. ); Gonyeau, J.A. ); Bloomer, T.M. )

    1988-01-01

    The conversion of Northern States Power Company's (NSP) Red Wing and Wilmarth steam generators to fire refuse-derived fuel (RDF) is discussed. The use of the existing plant with the necessary modifications to the boilers has allowed NSP to effectively incinerate the fuel as required by Washington and Ramsey Counties. This paper covers the six-month start-up of Red Wing No. 1, commencing in May 1987, and the operating results since the plant went commercial in July 1987.

  3. Steam Technical Brief: Steam Pressure Reduction: Opportunities and Issues

    SciTech Connect (OSTI)

    2010-06-25

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  4. Proceedings: 1983 Workshop on Secondary-Side Stress Corrosion Cracking and Intergranular Corrosion of PWR Steam Generator Tubing

    SciTech Connect (OSTI)

    1986-03-01

    Participants in this international workshop discussed research investigating mechanisms and propagation rates of intergranular corrosion in PWR steam generators. Laboratory test results, which have been consistent with power plant experience, permitted preliminary definition of corrosion rates in alloy 600 tubing.

  5. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  6. In-situ stress relief of expanded Alloy 600 steam generator tubing

    SciTech Connect (OSTI)

    Woodward, J.; van Rooyen, D.; McIlree, A.R.

    1984-01-01

    Stress corrosion cracking is the most common cause of defects in steam generator tubing. Methods of averting tubing damage are constantly under review. This paper concentrates on the problem of intergranular stress corrosion cracking, initiated on the primary side, in the expansion transition region of roller expanded Alloy 600 tubing. In general it is believed that residual stresses, arising from the expansion process, are the cause of the problem. The work reported here discusses the identification and implementation of an optimal, in-situ stress relief treatment.

  7. CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS

    SciTech Connect (OSTI)

    J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

    2012-10-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  8. MELCOR Analysis of Steam Generator Tube Creep Rupture in Station Blackout Severe Accident

    SciTech Connect (OSTI)

    Liao, Y.; Vierow, K. [Purdue University (United States)

    2005-12-15

    A pressurized water reactor steam generator tube rupture (SGTR) is of concern because it represents a bypass of the containment for radioactive materials to the environment. In a station blackout accident, tube integrity could be threatened by creep rupture, particularly if cracks are present in the tube walls. Methods are developed herein to improve assessment capabilities for SGTR by using the severe-accident code MELCOR. Best-estimate assumptions based on recent research and computational fluid dynamics calculations are applied in the MELCOR analysis to simulate two-dimensional natural circulation and to determine the relative creep-rupture timing in the reactor coolant pressure boundary components. A new method is developed to estimate the steam generator (SG) hottest tube wall temperature and the tube critical crack size for the SG tubes to fail first. The critical crack size for SG tubes to fail first is estimated to be 20% of the wall thickness larger than by a previous analysis. Sensitivity studies show that the failure sequence would change if some assumptions are modified. In particular, the uncertainty in the countercurrent flow limit model could reverse the failure sequence of the SG tubes and surge line.

  9. Economizer recirculation for low-load stability in heat recovery steam generator

    SciTech Connect (OSTI)

    Cuscino, R.T.; Shade, R.L. Jr.

    1986-04-15

    An economizer system is described for heating feedwater in a heat recovery steam generator which consists of: at least first and second economizer tube planes; each of the economizer tube planes including a plurality of generally parallel tubes; the tubes being generally vertically disposed; each of the economizer tube planes including a top header and a bottom header; all of the plurality of tubes in each economizer tube plane being connected in parallel to their top and bottom headers whereby parallel feedwater flow through the plurality of tubes between the top and bottom headers is enabled; one of the top and bottom headers being an inlet header; a second of the top and bottom headers being an outlet header; a boiler feed pump; the boiler feed pump being effective for applying a flow of feedwater to the inlet header; means for serially interconnecting the economizer tube planes; the means for serially interconnecting including means for flowing the feedwater upward and downward in tubes of alternating ones of the economizer tube planes between the inlet header and the outlet header; means for conveying heated feedwater from the outlet header to a using process; means for recirculating at least a portion of the heated feedwater from the outlet header to an inlet of the boiler feed pump; and the means for recirculating including means for relating the portion to a steam load in the using process whereby an increased flow is produced through all of the economizer tube planes at values of the steam load below a predetermined value and a condition permitting initiation of reverse flow in any of the tubes is substantially reduced.

  10. Control Scheme Modifications Increase Efficiency of Steam Generation System at Exxon Mobil Gas Plant

    SciTech Connect (OSTI)

    2002-01-01

    This case study highlights control scheme modifications made to the steam system at ExxonMobil's Mary Ann Gas Plant in Mobile, Alabama, which improved steam flow efficiency and reduced energy costs.

  11. Use of Liquid Electrodes for Magnetohydrodynamic Power Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | Princeton Plasma Physics Lab Use of Liquid Electrodes for Magnetohydrodynamic Power Generation Applications The use of liquid electrodes in magnetohydrodynamic (MHD) power generation applications is proposed as a means of extending the lifetime of the electrodes in these systems. Previous studies utilized various metals, metal alloys and ceramic materials as electrodes but all suffered from erosion processes in the harsh gas stream used in MHD power generation. This invention

  12. Recovery of tritium dissolved in sodium at the steam generator of fast breeder reactor

    SciTech Connect (OSTI)

    Oya, Y.; Oda, T.; Tanaka, S.; Okuno, K.

    2008-07-15

    The tritium recovery technique in steam generators for fast breeder reactors using the double pipe concept was proposed. The experimental system for developing an effective tritium recovery technique was developed and tritium recovery experiments using Ar gas or Ar gas with 10-10000 ppm oxygen gas were performed using D{sub 2} gas instead of tritium gas. It was found that deuterium permeation through two membranes decreased by installing the double pipe concept with Ar gas. By introducing Ar gas with 10000 ppm oxygen gas, the concentration of deuterium permeation through two membranes decreased by more than 1/200, compared with the one pipe concept, indicating that most of the deuterium was scavenged by Ar gas or reacted with oxygen to form a hydroxide. However, most of the hydroxide was trapped at the surface of the membranes because of the short duration of the experiment. (authors)

  13. Primary water stress corrosion crack growth rates in Alloy 600 steam generator tubing

    SciTech Connect (OSTI)

    Lott, R.G.; Jacko, R.J.; Gold, R.E.

    1992-12-31

    Direct measurements of SCC crack growth rates have been used to determine the effects of changes in PWR primary water chemistry on the stress corrosion cracking behavior of Alloy 600 steam generator tubing. Reversing current DC potential measurement techniques have been adapted for use on thin walled tubing containing through-wall circumferential cracks. These techniques have been used to monitor crack rates in Alloy 600 tubing exposed to typical PWR primary water chemistries at 330{degrees}C. Crack growth rate studies, conducted under well defined stress intensity conditions, provide a sensitivity in the assessment of stress corrosion cracking susceptibility that is not possible using more traditional techniques. Preliminary studies have been conducted to determine the effects of B and Li concentrations on the stress corrosion crack growth rate of Alloy 600 tubing.

  14. Observations and insights into Pb-assisted stress corrosion cracking of alloy 600 steam generator tubes

    SciTech Connect (OSTI)

    Thomas, L.; Bruemmer, Stephen M.

    2005-08-15

    Pb-assisted stress-corrosion cracking (PbSCC) of Alloy 600 steam-generator tubing in high-temperature-water service and laboratory tests were studied by analytical transmission electron microscopy of cross-sectioned samples. Examinations of pulled tubes from many pressurized water reactors revealed lead in cracks from 11 of 17 samples. Comparisons of the degraded intergranular structures with ones produced in simple laboratory tests with PbO in near-neutral AVT water showed that the PbSCC characteristics in service tubing could be reproduced without complex chemistries and heat-flow conditions that can occur during plant operation. Observations of intergranular and transgranular cracks promoted by Pb in the test samples also provided new insights into the mechanisms of PbSCC in mill-annealed and thermally treated Alloy 600.

  15. Performance demonstration tests for eddy current inspection of steam generator tubing

    SciTech Connect (OSTI)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

  16. A Review of Some Degradation Mechanisms in CANDU Steam Generator Tubing

    SciTech Connect (OSTI)

    Ogundele, G.; Clark, M.; Goszczynski, G.; Lloyd, A.; Pagan, S.; Sedman, K.; King, P.

    2006-07-01

    The first CANDU (Canadian Deuterium Uranium) pressurized heavy water reactor (PHWR) went into operation in July 1971. Today, there are several units in operation at the Pickering, Bruce, and Darlington sites in Ontario, Canada. The steam generator tubing materials were manufactured from Monel 400, Inconel 600, and Incoloy 800 for the Pickering, Bruce, and Darlington respectively and are subjected to different operating conditions. This paper presents a review of some of the various types of degradation mechanisms that have been observed on these tubing materials over the operating period of the respective plants. The results presented are based on the metallurgical examination of removed tubes. The mechanisms that have been observed include pitting, stress corrosion cracking, intergranular attack, fretting, and erosion corrosion. The nature of the flaws and causative factors (if known) are discussed. (authors)

  17. Stress relief treatment of Alloy 600 steam generator tubing. Final report

    SciTech Connect (OSTI)

    van Rooyen, D.; Cragnolino, C.

    1994-01-01

    The intergranular stress corrosion cracking (IGSCC) of Alloy 600 tubing in the primary side of operating steam generators is the subject of this investigation. The objective of the program was to examine the feasibility of heat treatment to alleviate the IGSCC problem. In addition to this, tests were also performed to examine the IGSCC susceptibility of nuclear grade Alloy 600 tubing obtained from various sources. Examination of temperature-time combinations that may hold potential for improved IGSCC resistance of the transition regions of tubes expanded into tube sheet holes was done. The combinations fall in two categories. One is of short duration and relatively high temperature, where induction is the best method of heating because the treatment only lasts from some tens of seconds to a few minutes. The other is carried out in a lower temperature range and lasts for several hours. This latter combination of temperatures and times is considered for the so-called global heat treatment of entire tube sheet. To assess the effect of these treatments, reverse U-bend testing in high purity deaerated water containing an overpressure of hydrogen was employed and several heats of Alloy 600 were compared in tests at 365{degrees}C, which is well above actual operating temperatures of steam generators, but provides an accelerated test procedure. Results of furnace heating in the range of 550-610{degrees}C indicated improvement in IGSCC resistance, with best performance after a heat treatment at 610{degrees}C for nine hours. In addition to stress relief, carbide precipitation can also occur, and their relative contributions to the improvement is discussed.

  18. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub-micron filter assemblies. There was no aerosol generation for the case of all air, so the plateout, condensate and smoke were all zero. For the case of all steam, there was very little plateout in the superheated regions (several percent) and the rest of the aerosol was collected in the condensate from the condenser. There was no smoke discharge into the filters. For the experiments with intermediate air-steam fractions, there was some aerosol plateout, considerable aerosol in the condensate and aerosol smoke discharged from the condenser with the escaping air.

  19. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    SciTech Connect (OSTI)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  20. Steam Generator Component Model in a Combined Cycle of Power Conversion Unit for Very High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Oh, Chang H; Han, James; Barner, Robert; Sherman, Steven R

    2007-06-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP), Very High Temperature Gas-Cooled Reactor (VHTR) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. A combined cycle is considered as one of the power conversion units to be coupled to the very high-temperature gas-cooled reactor (VHTR). The combined cycle configuration consists of a Brayton top cycle coupled to a Rankine bottoming cycle by means of a steam generator. A detailed sizing and pressure drop model of a steam generator is not available in the HYSYS processes code. Therefore a four region model was developed for implementation into HYSYS. The focus of this study was the validation of a HYSYS steam generator model of two phase flow correlations. The correlations calculated the size and heat exchange of the steam generator. To assess the model, those calculations were input into a RELAP5 model and its results were compared with HYSYS results. The comparison showed many differences in parameters such as the heat transfer coefficients and revealed the different methods used by the codes. Despite differences in approach, the overall results of heat transfer were in good agreement.

  1. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    SciTech Connect (OSTI)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for application in heat exchangers and core internals for the NGNP. The primary candidates are Inconel 617, Haynes 230, Incoloy 800H and Hastelloy XR. Based on the technical maturity, availability in required product forms, experience base, and high temperature mechanical properties all of the vendor pre-conceptual design studies have specified Alloy 617 as the material of choice for heat exchangers. Also a draft code case for Alloy 617 was developed previously. Although action was suspended before the code case was accepted by ASME, this draft code case provides a significant head start for achieving codification of the material. Similarly, Alloy 800H is the material of choice for control rod sleeves. In addition to the above listed considerations, Alloy 800H is already listed in the nuclear section of the ASME Code; although the maximum use temperature and time need to be increased.

  2. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    SciTech Connect (OSTI)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  3. Neutron measurements of the fuel remaining in the TMI II once-through steam generators (OTSG'S)

    SciTech Connect (OSTI)

    Geelhood, B.D.; Abel, K.H.

    1989-02-01

    Polypropylene tubes containing a string of 18 copper rods were inserted into the lower head region and each J-leg of the two once-through steam generators (OTSG) of the unit two reactor at Three Mile Island. The object was to measure the neutron flux present in those regions and estimate the amount of residual fuel remaining in each OTSG. The neutron flux from any residual fuel induces a radioisotope, /sup 64/Cu, in the copper coupons. The /sup 64/Cu activity is detected by coincidence counting the two 511-keV gamma rays produced by the annihilation of the positron emitted in the decay of /sup 64/Cu. The copper coupons were placed between two 6-inch diameter, 6-inch long NaI(Tl) crystals and the electronics produced a coincidence count whenever the two gamma rays were uniquely detected. The net coincidence count is proportional to the amount of /sup 64/Cu activity in the coupon. This document discusses calculation methods, statistical methods, and results of this research. 3 figs., 30 tabs.

  4. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    SciTech Connect (OSTI)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P.; Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  5. Control of alkaline stress corrosion cracking in pressurized-water reactor steam generator tubing

    SciTech Connect (OSTI)

    Hwang, I.S. . Dept. of Nuclear Engineering); Park, I.G. . Div. of Materials Science and Engineering)

    1999-06-01

    Outer-diameter stress corrosion cracking (ODSCC) of alloy 600 (UNS N06600) tubings in steam generators of the Kori-1 pressurized-water reactor (PWR) caused an unscheduled outage in 1994. Failure analysis and remedy development studies were undertaken to avoid a recurrence. Destructive examination of a removed tube indicated axial intergranular cracks developed at the top of sludge caused by a boiling crevice geometry. A high ODSCC propagation rate was attributed to high local pH and increased corrosion potential resulting from oxidized copper presumably formed during the maintenance outage and plant heatup. Remedial measures included: (1) crevice neutralization by crevice flushing with boric acid (H[sub 3]BO[sub 3]) and molar ratio control using ammonium chloride (NH[sub 4]Cl), (2) corrosion potential reduction by hydrazine (H[sub 2]NNH[sub 2]) soaking and suppression of oxygen below 20 ppb to avoid copper oxide formation, (3) titanium dioxide (TiO[sub 2]) inhibitor soaking, and (4) temperature reduction of 5 C. Since application of the remedy program, no significant ODSCC has been observed, which clearly demonstrates the benefit of departing from an oxidizing alkaline environment. In addition, the TiO[sub 2] inhibitor appeared to have a positive effect, warranting further examination.

  6. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators - Steam Tip Sheet #22

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Steam Pressure Reduction: Opportunities and Issues; A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    A BestPractices Technical Brief describing industrial steam generation systems and opportunities for reducing steam system operating pressure.

  8. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 ...

  9. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  10. The influence of dissolved hydrogen on primary water stress corrosion cracking of Alloy 600 at PWR steam generator operating temperatures

    SciTech Connect (OSTI)

    Jacko, R.J.; Economy, G.; Pement, F.W.

    1992-12-31

    PWR primary coolant chemistry uses an intentional dissolved hydrogen concentration of 20 to 50 ml (STP)/kg of water to effect a net suppression of oxygen-producing radiolysis, to minimize corrosion in primary loop materials and to maintain a low redox potential. Speculation has attended a possible influence of dissolved hydrogen on the kinetics of initiation of Primary Water Stress Corrosion Cracking (PWSCC) behavior of Alloy 600 steam generator tubing. Three series of experiments are presented for conditions in which the level of dissolved hydrogen was intentionally varied over the hydrogen and temperature ranges of interest for steam generator operation. No significant effect of dissolved hydrogen was found on PWSCC of Alloy 600.

  11. Analytical TEM Comparisons of Stress-Corrosion-Crack Microstructure in Alloy 600 under Steam-Generator Service and Laboratory Test Conditions

    SciTech Connect (OSTI)

    Thomas, Larry E.; Bruemmer, Stephen M.; Scott, Peter M.

    2002-05-31

    High-resolution analytical transmission electron microscopy (ATEM) been used to characterize stress-corrosion cracks in Alloy 600 steam-generator tubing from tests with caustic and acid-sulfate solutions. The aim of this work was to identify the microstructural and microchemical signatures of intergranular attack and cracking produced under well-controlled test conditions in order to determine the local environments promoting degradation in service. The examinations are part of an experimental program devoted to a study of IGA/IGSCC in steam generator tube alloys supported by the Framatome Owners Group via its Steam Generator Technical Committee.

  12. Process Modeling Results of Bio-Syntrolysis: Converting Biomass to Liquid Fuel with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    G. L. Hawkes; M. G. McKellar; R. Wood; M. M. Plum

    2010-06-01

    A new process called Bio-Syntrolysis is being researched at the Idaho National Laboratory (INL) investigating syngas production from renewable biomass that is assisted with high temperature steam electrolysis (HTSE). The INL is the world leader in researching HTSE and has recently produced hydrogen from high temperature solid oxide cells running in the electrolysis mode setting several world records along the way. A high temperature (~800C) heat source is necessary to heat the steam as it goes into the electrolytic cells. Biomass provides the heat source and the carbon source for this process. Syngas, a mixture of hydrogen and carbon monoxide, can be used for the production of synthetic liquid fuels via Fischer-Tropsch processes. This concept, coupled with fossil-free electricity, provides a possible path to reduced greenhouse gas emissions and increased energy independence, without the major infrastructure shift that would be required for a purely hydrogen-based transportation system. Furthermore, since the carbon source is obtained from recyclable biomass, the entire concept is carbon-neutral

  13. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  14. Effect of steam generator configuration in a loss of the RHR during mid-loop operation at PKL facility

    SciTech Connect (OSTI)

    Villanueva, J. F.; Carlos, S.; Martorell, S.; Sanchez, F.

    2012-07-01

    The loss of the residual heat removal system in mid-loop conditions may occur with a non-negligible contribution to the plant risk, so the analysis of the accidental sequences and the actions to mitigate the accident are of great interest in shutdown conditions. In order to plan the appropriate measures to mitigate the accident is necessary to understand the thermal-hydraulic processes following the loss of the residual heat removal system during shutdown. Thus, transients of this kind have been simulated using best-estimate codes in different integral test facilities and compared with experimental data obtained in different facilities. In PKL (Primaerkreislauf-Versuchsanlage, primary coolant loop test facility) test facility different series of experiments have been undertaken to analyze the plant response in shutdown. In this context, the E3 and F2 series consist of analyzing the loss of the residual heat removal system with a reduced inventory in the primary system. In particular, the experiments were developed to investigate the influence of the steam generators secondary side configuration on the plant response, what involves the consideration of different number of steam generators filled with water and ready for activation, on the heat transfer mechanisms inside the steam generators U-tubes. This work presents the results of such experiments calculated using, RELAP5/Mod 3.3. (authors)

  15. Fuzzy Logic Controller Architecture for Water Level Control in Nuclear Power Plant Steam Generator (SG) Using ANFIS Training Method

    SciTech Connect (OSTI)

    Vosoughi, Naser; Naseri, Zahra

    2002-07-01

    Since suitable control of water level can greatly enhance the operation of a power station, a Fuzzy logic controller architecture is applied to show desired control of the water level in a Nuclear steam generator. with regard to the physics of the system, it is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial member functions will be trained and appropriate functions are generated to control water level inside the steam generators while using the stated rules. The proposed architecture can construct an input output mapping based on both human knowledge (in from of Fuzzy if then rules) and stipulated input output data. In this paper with a simple test it has been shown that the architecture fuzzy logic controller has a reasonable response to one step input at a constant power. Through computer simulation, it is found that Fuzzy logic controller is suitable, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plant. (authors)

  16. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOE Patents [OSTI]

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  17. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  18. Hydrogen chloride in superheated steam and chloride in deep brine at The Geysers geothermal field, California

    SciTech Connect (OSTI)

    Haizlip, J.R.; Truesdell, A.H.

    1988-01-01

    Chloride (Cl) concentrations of 10-120 ppm{sub w} have been measured in superheated steam produced by wells at The Geysers, a vapor-dominated geothermal field in northern California. Corrosion of the well casing and steam-gathering system has been recognized in some parts of The Geysers, and is apparently related to the presence of Cl. Cl in the steam is in a volatile form, generated with the steam at reservoir temperatures, and probably travels to the wellhead as HCl gas. Published experimental data for partial pressures of HCl in steam over aqueous HCl solutions and for dissociation constants of HCl were used to calculate distribution coefficients for HCl. Reservoir liquid Cl concentrations capable of generating steam with the observed Cl concentrations were then calculated as a function of pH and temperatures from 250 to 350 C. Equilibrium mineral/liquid reactions with the K-mica and K-feldspar assemblage found in the wells limit the reservoir liquid pH values at various Cl concentrations to about 5 to 6 (near neutral at 250 to 350 C). Within this pH range, liquid at 250 C could not produce steam containing the high Cl concentrations observed. However, liquid at higher temperatures (300 to 350 C) with chloride concentrations greater than 10,000 ppm{sub w} could generate steam with 10 to over 200 ppm{sub w} Cl. There is a positive correlation between pH and the chloride concentrations required to generate a given Cl concentration in steam. The concentration of Cl in superheated steam constrains not only the reservoir liquid composition, but the temperature at which the steam last equilibrated with liquid.

  19. Improvement design study on steam generator of MHR-50/100 aiming higher safety level after water ingress accident

    SciTech Connect (OSTI)

    Oyama, S.; Minatsuki, I.; Shimizu, K.

    2012-07-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has been studying on MHI original High Temperature Gas cooled Reactor (HTGR), namely MHR-50/100, for commercialization with supported by JAEA. In the heat transfer system, steam generator (SG) is one of the most important components because it should be imposed a function of heat transfer from reactor power to steam turbine system and maintaining a nuclear grade boundary. Then we especially focused an effort of a design study on the SG having robustness against water ingress accident based on our design experience of PWR, FBR and HTGR. In this study, we carried out a sensitivity analysis from the view point of economic and plant efficiency. As a result, the SG design parameter of helium inlet/outlet temperature of 750 deg. C/300 deg. C, a side-by-side layout and one unit of SG attached to a reactor were selected. In the next, a design improvement of SG was carried out from the view point of securing the level of inherent safety without reliance on active steam dump system during water ingress accident considering the situation of the Fukushima nuclear power plant disaster on March 11, 2011. Finally, according to above basic design requirement to SG, we performed a conceptual design on adapting themes of SG structure improvement. (authors)

  20. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  1. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 85 citations and includes a subject term index and title list.)

  2. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 84 citations and includes a subject term index and title list.)

  3. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-03-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains a minimum of 119 citations and includes a subject term index and title list.)

  5. Boiler and steam generator corrosion: Fossil fuel power plants. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-11-01

    The bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. The citations examine hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  7. Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator

    SciTech Connect (OSTI)

    John N. DuPont

    2010-03-01

    The U.S. Department of Energy (DOE) is currently funding research and development of a new high temperature gas cooled reactor (HTGR) that is capable of providing high temperature process heat for industry. The steam generator of the HTGR will consist of an evaporator economizer section in the lower portion and a finishing superheater section in the upper portion. Alloy 800H is expected to be used for the superheater section, and 2.25Cr 1Mo steel is expected to be used for the evaporator economizer section. Dissimilar metal welds (DMW) will be needed to join these two materials. It is well known that failure of DMWs can occur well below the expected creep life of either base metal and well below the design life of the plant. The failure time depends on a wide range of factors related to service conditions, welding parameters, and alloys involved in the DMW. The overall objective of this report is to review factors associated with premature failure of DMWs operating at elevated temperatures and identify methods for extending the life of the 2.25Cr 1Mo steel to alloy 800H welds required in the new HTGR. Information is provided on a variety of topics pertinent to DMW failures, including microstructural evolution, failure mechanisms, creep rupture properties, aging behavior, remaining life estimation techniques, effect of environment on creep rupture properties, best practices, and research in progress to improve DMW performance. The microstructure of DMWs in the as welded condition consists of a sharp chemical concentration gradient across the fusion line that separates the ferritic and austenitic alloys. Upon cooling from the weld thermal cycle, a band of martensite forms within this concentration gradient due to high hardenability and the relatively rapid cooling rates associated with welding. Upon aging, during post weld heat treatment (PWHT), and/or during high temperature service, C diffuses down the chemical potential gradient from the ferritic 2.25Cr 1Mo steel toward the austenitic alloy. This can lead to formation of a soft C denuded zone near the interface on the ferritic steel, and nucleation and growth of carbides on the austenitic side that are associated with very high hardness. These large differences in microstructure and hardness occur over very short distances across the fusion line (~ 50 100 ?m). A band of carbides also forms along the fusion line in the ferritic side of the joint. The difference in hardness across the fusion line increases with increasing aging time due to nucleation and growth of the interfacial carbides. Premature failure of DMWs is generally attributed to several primary factors, including: the sharp change in microstructure and mechanical properties across the fusion line, the large difference in coefficient of thermal expansion (CTE) between the ferritic and austenitic alloys, formation of interfacial carbides that lead to creep cavity formation, and preferential oxidation of the ferritic steel near the fusion line. In general, the large gradient in mechanical properties and CTE serve to significantly concentrate the stress along the fusion where a creep susceptible microstructure has evolved during aging. Presence of an oxide notch can concentrate the stress even further. Details of the failure mechanism and the relative importance of each factor varies.

  8. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  9. A Numerical Model Without Truncation Error for a Steady-State Analysis of a Once-Through Steam Generator

    SciTech Connect (OSTI)

    Sim, Yoon Sub; Kim, Eui Kwang; Eoh, Jae Hyuk [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-06-15

    To overcome the drawbacks of conventional schemes for a numerical analysis of a steam generator (SG), an efficient numerical model has been developed to analyze the steady state of a once-through-type SG where the feedwater is heated to superheated steam. In the developed model, the temperature and enthalpy are defined at the boundary of a calculation cell, and the exact solutions for the temperature distribution in a calculation cell are utilized. This feature of the developed model frees calculation from the undesirable effects of numerical diffusion, and only a small number of nodes are required. Also, the developed model removes the ambiguity from the parameter values at the inlet and exit of a calculation.The BoSupSG-SS computer code was developed by using the analysis model, and it performed well with only three calculation nodes to analyze a superheated SG. The developed model can be effectively used for the cases where a fast one-dimensional calculation is required such as an SG or system design analysis.

  10. Fluid composition in the tube sheet crevices of a nuclear steam generator

    SciTech Connect (OSTI)

    Weres, O.; Tsao, L.

    1985-10-01

    A useful understanding has been gained of the conditions needed for a crevice liquid to exist and what determines how alkaline this liquid will be. We believe that corrosive agents other than hydroxides, silica and organic salts must play a role in crevice corrosion. The presence of organic anions and silica in the condensate argues against a strongly alkaline crevice environment. In many cases, there may be insufficient caustic in the crevice fluid to account for the corrosion observed, and another explanation must be sought. Among the organic compounds, only acetate, formate, and lactate are quantitatively important, and acetate is innocuous. Formate decomposes to produce carbonate, which is corrosive. If formate is an important ion in the condensate or carbonates are found in the crevice, remedial measures should focus on eliminating formate and bicarbonate from the condensate. Hydrazine and other AVT compounds should be screened for ability to reduce carbonate to formate and selected accordingly. The possible corrosiveness of decomposition products of lactate also deserves some attention. In principle, acetic acid or silica might be added to the condensate in order to decrease the alkalinity of the crevice liquid, but this benefit must be balanced against possible harmful effects elsewhere in the system. Adding boric acid to the condensate will cause a sodium borate liquid to form in the crevices, likewise reducing alkalinity but with less likelihood of harmful side effects. The activity of NaOH in a sodium acetate liquid will be controlled by the sodium silicate buffer system in many cases. Therefore, adding silica will always enable the alkalinity of a sodium acetate liquid to be reduced to that of the sodium disilicate - quartz buffer. In the absence of acetate, adding silica will cause the crevice fluid to dry up completely. 8 refs., 5 figs., 5 tabs.

  11. Steam generator behavior during loss-of-feedwater and loss-of-offsite-power ATWS experiments in LOFT

    SciTech Connect (OSTI)

    Koizumi, Y.; Behling, S.R.; Grush, W.H.

    1983-11-01

    Two Anticipated Transient Without Scram (ATWS) experiments, L9-3 and L9-4, were conducted in the Loss-of-Fluid Test (LOFT) facility. The LOFT facility is a volumetrically scaled (1/44) pressurized water reactor (PWR) system with a nuclear core and is designed for integral loss-of-coolant accident/emergency core cooling experiments. Experiment L9-3 simulated a loss-of-feedwater ATWS in a commercial PWR; Experiment L9-4 simulated a loss-of-offsite-power ATWS. The system transient behavior in each experiment was dominated by interaction between the primary-to-secondary heat removal rate in the steam generator and by reactor kinetics in the core. Comparisons of RELAP5/MOD1 calculational results to the measured test data show that the degradation of the primary-to-secondary heat transfer and the transient response of the primary coolant system in both experiments were calculated well.

  12. Investigation of particulate corrosion product transients in the primary coolant of the Winfrith steam generating heavy water reactor

    SciTech Connect (OSTI)

    Means, F.A.; Rodliffe, R.S.; Harding, K.

    1980-03-01

    Equipment for on-line counting and sizing of particles has been used to sample coolant from the primary circuit of a water reactor (the Winfrith steam generating heavy water reactor). The particle size distribution is compared with a determination by electron microscopic examination of a filter sample and is shown to be in good agreement. The technique allows transients in coolant-borne particle concentrations to be sufficiently resolved for analysis in terms of postulated particle deposition and resuspension behavior. The deposition behavior is found to be describable by a first-order rate process with rate constants smaller than those that would be predicted from mass transfer considerations. It is concluded that deposition cannot be limited by mass transfer alone.

  13. Life Estimation of PWR Steam Generator U-Tubes Subjected to Foreign Object-Induced Fretting Wear

    SciTech Connect (OSTI)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2005-10-15

    This paper presents an approach to the remaining life prediction of steam generator (SG) U-tubes, which are intact initially, subjected to fretting-wear degradation due to the interaction between a vibrating tube and a foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from a three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element models of U-tubes to get the natural frequency, corresponding mode shape, and participation factor. The wear rate of a U-tube caused by a foreign object is calculated using the Archard formula, and the remaining life of the tube is predicted. Also discussed in this study are the effects of the tube modal characteristics, external flow velocity, and tube internal pressure on the estimated results of the remaining life of the tube.

  14. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  15. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.

    SciTech Connect (OSTI)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

    2005-06-03

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 ???????????????????????????????? September 2004. ???????????????????????????????· Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. ???????????????????????????????· Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. ???????????????????????????????· Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. ???????????????????????????????· Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. ???????????????????????????????· Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. ???????????????????????????????· Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

  16. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    SciTech Connect (OSTI)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

  17. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  18. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    DOE Patents [OSTI]

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  19. Simulation of the loss of RHR during midloop operations and the role of steam generators in decay heat removal

    SciTech Connect (OSTI)

    Raja, L.L.; Banerjee, S.; Hassan, Y.A. )

    1992-01-01

    Loss of residual heat removal (RHR) during midloop operations was simulated using the RELAP5/MOD3 thermal-hydraulic code for a typical four-loop pressurized water reactor (PWR) under reduced inventory level. Two cases are considered here: one for an intact reactor coolant system with no vents and the other for an open system with a vent in the pressurizer. The effect of air on the transients was studied, unlike the RETRAN analysis of core boiling during midloop operations performed by Fujita and Rice, which did not analyze the presence of air in the system. The steam generators have water in the secondary covering the U-tubes. The system gets pressurized once water starts boiling in the core with higher system pressures for the vent-closed case. Reflux condensation occurs in the U-tubes aiding decay heat removal and preventing complete uncovery of the core. Sudden pressurization of the hot leg and vessel upper head causes the reactor vessel to act as a manometer reducing the core level and raising the downcomer level. Fuel centerline and clad temperatures are below safety limits throughout the transients.

  20. Ukraine Steam Partnership

    SciTech Connect (OSTI)

    Gurvinder Singh

    2000-02-15

    The Ukraine Steam Partnership program is designed to implement energy efficiency improvements in industrial steam systems. These improvements are to be made by the private plants and local government departments responsible for generation and delivery of energy to end-users. One of the activities planned under this program was to provide a two-day training workshop on industrial steam systems focusing on energy efficiency issues related to the generation, distribution, and consumption of steam. The workshop was geared towards plant managers, who are not only technically oriented, but are also key decision makers in their respective companies. The Agency for Rational Energy Use and Ecology (ARENA-ECO), a non-governmental, not-for-profit organization founded to promote energy efficiency and environmental protection in Ukraine, in conjunction with the Alliance staff in Kiev sent out invitations to potential participants in all the regions of Ukraine. The purpose of this report is the describe the proceedings from the workshop and provide recommendations from the workshop's roundtable discussion. The workshop was broken down into two main areas: (1) Energy efficient boiler house steam generation; and Energy efficient steam distribution and consumption. The workshop also covered the following topics: (1) Ukrainian boilers; (2) Water treatment systems; (3) A profile of UKRESCO (Ukrainian Energy Services Company); (4) Turbine expanders and electricity generation; (5) Enterprise energy audit basics; and (6) Experience of steam use in Donetsk oblast.

  1. Prediction of residual stress field in mechanically expanded 0.750 inch diameter steam generator tube plugs. Part 1: 2-D solution

    SciTech Connect (OSTI)

    Williams, D.K.

    1996-12-01

    One of the most formidable classes of problems that arises in the commercial nuclear power industry is the determination of the residual stress field in steam generator tubes. As early as 1983, it was reported that primary water stress corrosion cracking (PWSCC) of Alloy 600 steam generator tubes had occurred at a low frequency. The degradation of steam generator tubing by PWSCC has resulted in unplanned nuclear plant outages and costly repair operations such as tube plugging and eventually steam generator replacement. Although the previous discussion centered around the PWSCC of the Inconel 600 tubes, the repair plugs which are intended to isolate the damaged tubes from the primary system, have also begun to show similar types of cracking in the rolled transitions. Plug severance is highly undesirable in the nuclear plant because the primary-to-secondary barrier would then be voided and radioactive fluid would escape to the non-radioactive feedwater system. At the present time, although the tube problems have been discussed extensively in the literature roll plugs and their associated SCC have yet to be fully addressed. In addition, roll plus present a different set of loads, expansion regions, discontinuities, and displacement boundary conditions to be analyzed. The method of solution to the subject roll expansion problem employs the use of a general purpose finite element program to mathematically simulate the expansion process. The hydraulic expansion simulation is accomplished by matching the final displacements of an installed plug for which field measurements are available. Because of the symmetry which exists in the geometry and loading, this problem is modeled and analyzed as an axisymmetric problem. The resulting stress field throughout the plug, and in particular, in the rolled transition region, is calculated.

  2. Simulation of loss of RHR during midloop operations and the role of steam generators in decay heat removal using the RELAP5/MOD3 code

    SciTech Connect (OSTI)

    Hassan, Y.A.; Raja, L.L. . Dept. of Nuclear Engineering)

    1993-09-01

    Loss of residual heat removal during midloop operations was simulated for a typical four-loop pressurized water reactor operated under reduced inventory level using the RELAP5/MOD3 thermal-hydraulic code. Two cases are considered here: one for an intact reactor coolant system with no vents and the other for an open system with a vent in the pressurizer. The presence of air in the reactor coolant system is modeled, and its effect on the transients is calculated. The steam generators are considered under wet lay up with water in the secondary covering the U-tubes. The system is pressurized once the water starts boiling in the core. Higher system pressures are seen for the closed-vent case when compared with the open-vent case. Reflux condensation occurs in the steam generator U-tubes preventing complete uncovery of the core and aiding in decay heat removal. The total heat removed by the steam generators is one-third of that produced by the core. The hot leg and vessel upper head pressurization cause the reactor vessel to act as a manometer where the core level drops and the downcomer level rises. This phenomenon is seen at different transient times for the two cases. Since it occurs only for a brief period, the rest of the transient is unaffected. Fuel centerline and clad temperatures are observed to be below the accepted safety limits throughout both transients.

  3. Clarification of stress corrosion cracking mechanism on nickel base alloys in steam generators for their long lifetime assurance

    SciTech Connect (OSTI)

    Nagano, Hiroo; Kajimura, Haruhiko

    1995-12-31

    Thermally treated (TT) Alloys 600 (16%Cr-8%Fe-bal.Ni) and 690 (30%Cr-10%Fe-bal.Ni) have been successfully used in the steam generators of operating pressurized water reactors (PWRs). This paper deals with intergranular stress corrosion cracking (IGSCC) mechanisms in Ni-base alloys in various corrosive environments such as deaerated water, air-saturated chloride medium, and caustic solutions at high temperatures with focus on Cr content and Cr carbide precipitation at grain boundaries in the alloys. Nickel base alloys of high purity, or with different Cr, C, and B contents with different heat treatments were put to various corrosion tests. SCC resistance of Alloy 600 is affected differently by water chemistry of environments, while Alloy 690 is almost immune to the environments investigated: (1) Cr depletion at grain boundaries is clearly detrimental to IGSCC resistance of Alloy 600 in air-saturated water containing Cl{sup {minus}} ions at 300 C. (2) High purity Alloy 600 has weaker SCC resistance in deaerated water at 360 C than commercially available Alloy 600. Cr depletion along grain boundaries is detrimental to the IGSCC resistance, however its detrimental effect disappears when Cr carbides precipitate at grain boundaries in semi-continuous or continuous way. The NiCr{sub 2}O{sub 4} film formed on the metal surfaces enhances the IGSCC resistance. Similar relationship between Cr depletion and Cr carbide precipitation is also observed in Alloy 600 in deaerated caustic solutions at high temperatures. (3) Concerning intergranular attack (IGA), which occurs in oxidizing caustic solutions at high temperature, existence of semi-continuous or continuous Cr carbides improves the IGA resistance regardless of Cr depletion. A dual layer corrosion protective film composed of an upper layer of NiO and lower layer of Cr{sub 2}O{sub 3} formed on metal surfaces, of which formation is accelerated by selective Cr carbide dissolution, may be responsible for the IGA resistance.

  4. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect (OSTI)

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  5. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  6. Assessment of RELAP5/MOD3.1 with the LSTF SB-SG-06 experiment simulating a steam generator tube rupture transient

    SciTech Connect (OSTI)

    Seul, K.W.; Bang, Y.S.; Lee, S.; Kim, H.J.

    1996-09-01

    The objective of the present work is to identify the predictability of RELAP5/MOD3.1 regarding thermal-hydraulic behavior during a steam generator tube rupture (SGTR). To evaluate the computed results, LSTF SB-SG-06 test data simulating the SGTR that occurred at the Mihama Unit 2 in 1991 are used. Also, some sensitivity studies of the code change in RELAP5, the break simulation model, and the break valve discharge coefficient are performed. The calculation results indicate that the RELAP5/MOD3.1 code predicted well the sequence of events and the major phenomena during the transient, such as the asymmetric loop behavior, reactor coolant system (RCS) cooldown and heat transfer by natural circulation, the primary and secondary system depressurization by the pressurizer auxiliary spray and the steam dump using the intact loop steam generator (SG) relief valve, and so on. However, there are some differences from the experimental data in the number of the relief valve cycling in the affected SG, and the flow regime of the hot leg with the pressurizer, and the break flow rates. Finally, the calculation also indicates that the coolant in the core could remain in a subcooled state as a result of the heat transfer caused by the natural circulation flow even if the reactor coolant pumps (RCPs) turned off and that the affected SG could be properly isolated to minimize the radiological release after the SGTR.

  7. A Thermo-Mechanical Analysis for a Nozzle Header of a Once-Through Steam Generator Designed for an Integral Reactor

    SciTech Connect (OSTI)

    Kim, YongWan; Kim, Dong Ok; Lee, Jae Seon; Kim, Jong In; Zee, Sung Quun [Korea Atomic Energy Research Institute, PO Box 105, YuSong, Taejon, 305-600 (Korea, Republic of)

    2004-07-01

    Thermo-mechanical behavior of the nozzle header of a steam generator developed for an integral reactor was investigated using experimental and finite element methods. The nozzle feedwater header suffers from severe thermal transient loadings during the operation of the nuclear reactor. The nozzle header is exposed to the low temperature inlet feedwater and the high temperature outlet superheated steam. The other side of the nozzle header is in contacts with the high temperature primary coolant. This temperature gradient results in high thermal stresses in the nozzle header structure. The thermal transient loading has been simulated in the test loop. The thermo-hydraulic parameters of the primary and the secondary system were controlled according to the operation mode programmed in the computer. Strain gauges and thermocouples attached at the highly stressed region monitored the thermo-mechanical behavior of the nozzle header. In parallel to the experimental study, the transient behavior of the nozzle header was simulated utilizing a commercial finite element code. The fluid temperature and the pressure obtained from the test loop were used for the input of the finite element analysis. As a result of this investigation, the thermo-mechanical load carrying capacity of the developed steam generator nozzle header was proved numerically and experimentally. (authors)

  8. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  9. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  10. Superheated steam power plant with steam to steam reheater. [LMFBR

    SciTech Connect (OSTI)

    Silvestri, G.J.

    1981-06-23

    A desuperheater is disposed in a steam supply line supplying superheated steam to a shell and tube reheater.

  11. Boiler and steam generator corrosion: Fossil-fuel power plants. March 1977-December 1989 (A Bibliography from the NTIS data base). Report for March 1977-December 1989

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This bibliography contains citations concerning corrosion effects, mechanisms, detection, and inhibition in fossil fuel fired boilers. Fluidized bed combustors and coal gasification are included in the applications. Hot corrosion, thermal mechanical degradation, and intergranular oxidation corrosion studies performed on the water side and hot gas side of heat exchanger tubes and support structures are presented. Coatings and treatment of material to inhibit corrosion are discussed. Corrosion affecting nuclear powered steam generators is examined in a separate bibliography. (Contains 88 citations fully indexed and including a title list.)

  12. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect (OSTI)

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh/SiO2 and Pt/Al2O3 catalysts.

  13. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  14. Stress relief to prevent stress corrosion in the transition region of expanded Alloy 600 steam-generator tubing. Final report. [PWR

    SciTech Connect (OSTI)

    Woodward, J.; van Rooyen, D.

    1983-05-01

    The feasibility of preventing primary side roll transition cracking has been investigated, using induction heating to attain stress relief of expanded Ni-Cr-Fe Alloy 600 steam generator tubing. Work on rolled tubing and U-bends has shown that temperatures with which stress relief can be obtained range from 700 to 850/sup 0/C, with lower temperatures in this range requiring longer times at temperature to provide the requisite reduction in residual stresses. No work has yet been done outside this range. Preliminary tests, using induction heating, have been carried out on a mock tube sheet assembly, designed to the dimensions of a typical steam generator, and have identified the type of heating/cooling cycle that would occur in the tube sheet during a stress relief operation. Preliminary results show that the times to reach the higher temperatures in the range observed to give stress relief, of the order of 850/sup 0/C, can be as short as 8 seconds, and less with optimum coil design and power control.

  15. Best Management Practice #8: Steam Boiler Systems

    Broader source: Energy.gov [DOE]

    Boilers and steam generators are commonly used in large heating systems, institutional kitchens, or in facilities where large amounts of process steam are used. This equipment consumes varying amounts of water depending on system size, the amount of steam used, and the amount of condensate returned.

  16. Inspect and Repair Steam Traps, Energy Tips: STEAM, Steam Tip...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... There are four basic ways to test steam traps: temperature, sound, visual, and electronic. Recommended Steam Trap Testing Intervals * High-Pressure (150 psig and above): Weekly to ...

  17. Characterization of the liquid sodium spray generated by a pipework hole

    SciTech Connect (OSTI)

    Torsello, G.; Parozzi, F.; Nericcio, L.; Araneo, L.; Cozzi, F.; Carcassi, M.; Mattei, N.

    2012-07-01

    Due to its advantageous thermodynamic characteristics at high temperature (550 deg. C), liquid sodium is the main candidate to be the cooling fluid for Generation TV nuclear reactors SFR (Sodium-cooled Fast Reactors). Now, sodium reacts very violently, both with the water and the oxygen of the air. Only few data were known about the liquid sodium behaviour when spread in the environment through micro defects. These are often present in a cooling circuit in welded or sealed joints and more rarely in the pipes. Micro defects, on the other hand, can be also generated in a cooling circuit because of the vibrations always present in a circuit into which a fluid runs. A new set-up, named LISOF, was built for testing high temperature liquid sodium when passing through micro defects and generating sprays or jets. Sprays and jets were generated by means of nozzles embedding sub milli-metric holes the diameter of which was: 0.2 mm, 0.4 mm, 0.5 mm. Tests were performed by pressurizing liquid sodium (550 deg. C) at: 3, 6 and 9 barg. Normal and high speed cinematography were used for the direct observation of the liquid sodium sprays while Phase Doppler Interferometry was used for the measurement of the droplets characteristics and velocity. Tests concerning the behaviour of the high temperature liquid sodium firing in air or in contact with the cement cover applied to a scaled down core catcher simulacrum were also performed. The paper presents the built set-up and the collected results. (authors)

  18. Characterization of Arc Generated Plasma Interactions with a Liquid Metal Medium

    SciTech Connect (OSTI)

    Hahn, Gregory C.; Martin, Elijah H.; Bourham, Mohamed A.

    2005-05-15

    Plasma interaction with first wall and interior reactor chamber components is an influencing factor in the design of inertial fusion facilities. The concept of a liquid metal wall, in which a circulating lithium curtain would be used, has been considered in many studies. The interaction of plasmas with moving liquid metals is a complex subject due to the influence of hydrodynamics, evaporation and droplet formation, nucleation and agglomeration of condensed particulates. To gain an understanding of some of the specific details of this interaction an experimental setup of an arc-generated plasma interacting with a liquid lead pool has been designed, constructed and operated. This simulation of the plasma-liquid interaction focuses on the particle condensation of the liquid metal after plasma interaction. The experiment generates transient high-density plasma over 50 {mu}s pulse duration. Plasma characteristics are determined by various diagnostics. A set of collection substrates are arranged to collect nucleated particulates condensing from the evolving plume. Particulate size and distribution are analyzed numerically using digital images.

  19. How to Calculate the True Cost of Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam at the point of generation? From which boiler? At what header pressure or at what ... If the plant has only one steam generator (boiler), uses a single fuel, and has a single ...

  20. Achieve Steam System Excellence - Steam Overview | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This fact sheet describes a steam systems approach to help companies operate and maintain their industrial steam plants and thermal manufacturing processes more efficiently. PDF ...

  1. Assessing the impact of energy losses in steam systems

    SciTech Connect (OSTI)

    Fischer, D.W.

    1995-07-10

    This article examines the impact of steam leaks on the efficiency of the process steam system. The topics include steam losses under various operating conditions and orifice sizes, failed drip traps, the significance of small leaks, energy losses and pollutants generated by trap failure, steps to take to conserve steam and energy through repair and maintenance.

  2. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect (OSTI)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  3. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect (OSTI)

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  4. Sum frequency and second harmonic generation from the surface of a liquid microjet

    SciTech Connect (OSTI)

    Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.

    2014-11-14

    The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.

  5. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  6. CFD study of natural convection mixing in a steam generator mock-up: Comparison between full geometry and porous media approaches

    SciTech Connect (OSTI)

    Dehbi, A.; Badreddine, H.

    2012-07-01

    In CFD simulations of flow mixing in a steam generator (SG) during natural circulation, one is faced with the problem of representing the thousands of SG U-tubes. Typically simplifications are made to render the problem computationally tractable. In particular, one or a number of tubes are lumped in one volume which is treated as a single porous medium. This approach dramatically reduces the computational size of the problem and hence simulation time. In this work, we endeavor to investigate the adequacy of this approach by performing two separate simulations of flow in a mock-up with 262 U-tubes, i.e. one in which the porous media model is used for the tube bundle, and another in which the full geometry is represented. In both simulations, the Reynolds Stress (RMS) model of turbulence is used. We show that in steady state conditions, the porous media treatment yields results which are comparable to those of the full geometry representation (temperature distribution, recirculation ratio, hot plume spread, etc). Hence, the porous media approach can be extended with a good degree of confidence to the full scale SG. (authors)

  7. International agreement report: Assessment study of RELAP-5 MOD-2 Cycle 36. 01 based on the DOEL-2 Steam Generator Tube Rupture incident of June 1979

    SciTech Connect (OSTI)

    Stubbe, E J

    1986-10-01

    This report presents a code assessment study based on a real plant transient that occurred at the DOEL 2 power plant in Belgium on June 25th 1979. DOEL 2 is a two-loop WESTINGHOUSE PWR plant of 392 MWe. A steam generator tube rupture occurred at the end of a heat-up phase which initiated a plant transient which required substantial operator involvement and presented many plant phenomena which are of interest for code assessment. While real plant transients are of special importance for code validation because of the elimination of code scaling uncertainties, they introduce however some uncertainties related to the specifications of the exact initial and boundary conditions which must be reconstructed from available on-line plant recordings and on-line computer diagnostics. Best estimate data have been reconstructed for an assessment study by means of the code RELAP5/MOD2/CYCLE 36.01. Because of inherent uncertainties in the plant data, the assessment work is focussed on phenomena whereby the comparison between plant data and computer data is based more on trends than on absolute values. Such approach is able to uncover basic code weaknesses and strengths which can contribute to a better understanding of the code potential.

  8. Steam Digest Volume IV

    SciTech Connect (OSTI)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  9. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  10. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  11. Steam System Survey Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The most appropriate analysis of the economic benefits of operating the steam turbine uses ... Noncondensable gases traveling with the steam will pass through the turbine and enter the ...

  12. Laser-generated cavitation in absorbing liquid induced by acoustic diffraction

    SciTech Connect (OSTI)

    Frenz, M.; Paltauf, G.; Schmidt-Kloiber, H.

    1996-05-01

    Conversion of energy from a heat pulse to acoustic stress is theoretically and experimentally studied in detail. The heat pulse was generated by laser radiation delivered via an optical fiber into an absorbing liquid. The experimental results indicate that tensile stress and cavitation are induced in front of the fiber tip at a distance far below the optical penetration depth of the laser radiation. The occurrence of tensile stress in the acoustic near fieldof a submerged fiber is explained by acoustic diffraction of the thermoelastic expansion wave. Good agreement between experimental results and theoretical calculations based on a three-dimensional model was found. {copyright} {ital 1996 The American Physical Society.}

  13. Internal combustion engine injection superheated steam

    SciTech Connect (OSTI)

    Mahoney, F.G.

    1991-01-22

    This patent describes a method for introducing water vapor to the combustion chambers of an internal combustion engine. It comprises: introducing a metered amount of liquid water into a heat exchanger; contacting the heat exchanger directly with hot exhaust gases emanating from the exhaust manifold; maintaining the water in the heat exchanger for a period sufficient to vaporize the water into steam and superheat same; reducing pressure and increasing temperature to create superheated steam; introducing the superheated steam into the air supply proximate to the air induction system, upstream of any carburetion, of the internal combustion engine.

  14. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOE Patents [OSTI]

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  15. Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Systems Steam Systems Many manufacturing facilities can recapture energy by installing more efficient steam equipment and processes and applying energy management practices. ...

  16. Steam Field | Open Energy Information

    Open Energy Info (EERE)

    Steam Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Steam Field Dictionary.png Steam Field: No definition has been...

  17. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  18. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  19. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W.; Bannister, Ronald L.

    1995-01-01

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  20. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  1. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  2. Steam Digest 2001

    SciTech Connect (OSTI)

    Not Available

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  3. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  4. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  5. Oxidation of advanced steam turbine alloys

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  6. Geothermal Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Steam Power Plant (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants...

  7. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOE Patents [OSTI]

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  8. Downhole steam injector

    DOE Patents [OSTI]

    Donaldson, A. Burl (Albuquerque, NM); Hoke, Donald E. (Albuquerque, NM)

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  9. MHD Generating system

    DOE Patents [OSTI]

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  10. Steam Technical Brief: Industrial Steam System Process-Control Schemes

    SciTech Connect (OSTI)

    2003-07-01

    This BestPractices Steam Technical Brief was developed to provide a basic understanding of the different process-control schemes used in a typical steam system.

  11. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  12. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  13. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  14. Steam reforming catalyst

    DOE Patents [OSTI]

    Kramarz, Kurt W.; Bloom, Ira D.; Kumar, Romesh; Ahmed, Shabbir; Wilkenhoener, Rolf; Krumpelt, Michael

    2001-01-01

    A method of forming a hydrogen rich gas from a source of hydrocarbon fuel. A vapor of the hydrocarbon fuel and steam is brought in contact with a two-part catalyst having a dehydrogenation powder portion and an oxide-ion conducting powder portion at a temperature not less than about 770.degree.C. for a time sufficient to generate the hydrogen rich. The H.sub.2 content of the hydrogen gas is greater than about 70 percent by volume. The dehydrogenation portion of the catalyst includes a group VIII metal, and the oxide-ion conducting portion is selected from a ceramic oxide from the group crystallizing in the fluorite or perovskite structure and mixtures thereof. The oxide-ion conducting portion of the catalyst is a ceramic powder of one or more of ZrO.sub.2, CeO.sub.2, Bi.sub.2 O.sub.3, (BiVO).sub.4, and LaGaO.sub.3.

  15. Steam System Modeler

    Broader source: Energy.gov [DOE]

    The Steam System Modeler allows you to create up to a 3-pressure-header basic model of your current steam system. A second model can then be created by adjusting a series of characteristics simulating technical or input changes. This allows you to see how each component and adjustment impacts the others and what changes may be most beneficial to increasing the overall efficiency and stability of the system. An interactive diagram is provided for each model and includes comprehensive steam properties and operational details for clarity and ease of use.

  16. How to Calculate the True Cost of Steam

    Broader source: Energy.gov [DOE]

    This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements.

  17. Managing steam: An engineering guide to industrial, commercial, and utility systems

    SciTech Connect (OSTI)

    Makansi, J.

    1985-01-01

    This book is a guide to steam production, utilization, handling, transport, system optimization, and condensation and recovery. This book incudes a description of how steam, condensate, and hot water are used in various industrial, commercial, institutional, and utility sectors and explains how steam is generated and distributed. Waste-heat recovery, fluidized-bed boilers, and cogeneration systems and boiler control theory are discussed. The book also describes different types of valves, valve components, regulators, steam traps, and metering devices available for managing steam and condensate and discusses maintaining steam systems for optimum service and longer life.

  18. Steam Turbine Materials and Corrosion

    SciTech Connect (OSTI)

    Holcomb, G.H.; Hsu, D.H.

    2008-07-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760 °C. In prior years this project examined the steamside oxidation of alloys for use in high- and intermediate-pressure USC turbines. This steamside oxidation research is continuing and progress is presented, with emphasis on chromia evaporation.

  19. Steam turbine materials and corrosion

    SciTech Connect (OSTI)

    Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K.; Ziomek-Moroz, M.

    2007-12-01

    Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.

  20. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  1. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOE Patents [OSTI]

    Donaldson, Terrence L.; Wilson, James H.

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  2. Liquid level detector

    DOE Patents [OSTI]

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  3. Liquid level detector

    DOE Patents [OSTI]

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  4. Ultra supercritical turbines--steam oxidation

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, Margaret; Alman, David E.

    2004-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy?s Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538?C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620?C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which would require steam temperatures of up to 760?C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  5. Inspect and Repair Steam Traps - Steam Tip Sheet #1

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on inspecting and repairing steam traps provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect (OSTI)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  7. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  8. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  9. Simplifying steam trap selection

    SciTech Connect (OSTI)

    Debat, R.J. )

    1994-01-01

    In the current economic world order, there is an obligation to eliminate waste and conserve economic and natural resources. One trap blowing 100-lb of steam through a 1/4-in. orifice can cost more than $12,000 a year in wasted energy. Richard J. Debat of Armstrong International, Inc. explains the operating principles of the four basic types of steam traps as the first step in simplifying the selection process so the right trap can be specified for a given application.

  10. Inspect and Repair Steam Traps

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on inspecting and repairing steam traps provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Steam Systems, Retrofit Measure Packages, Hydronic Systems

    Energy Savers [EERE]

    Steam System Survey Guide Steam System Survey Guide This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam

  12. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOE Patents [OSTI]

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  13. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  14. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    SciTech Connect (OSTI)

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core. Still there are problems of containment since many of the proposed vessel materials such as W or Mo have high neutron cross sections making the design of a critical system difficult. There is also the possibility for a GCR to remain in a subcritical state, and by the use of a shockwave mechanism, increase the pressure and temperature inside the core to achieve criticality. This type of GCR is referred to as a shockwave-driven pulsed gas core reactor. These two basic designs were evaluated as advance concepts for space power and propulsion.

  15. Steam generator with integral downdraft dryer

    SciTech Connect (OSTI)

    Hochmuth, F.W.

    1992-02-01

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  16. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect (OSTI)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  17. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  18. Steam separator latch assembly

    DOE Patents [OSTI]

    Challberg, R.C.; Kobsa, I.R.

    1994-02-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof. 12 figures.

  19. Task 1Steam Oxidation (NETL-US)

    SciTech Connect (OSTI)

    G. R. Holcomb

    2010-05-01

    The proposed steam in let temperature in the Advanced Ultra Supercritical (AUSC) steam turbine is high enough (760C) Ihat traditional turbine casing and valve body materials such as ferr;tic/manensitic steels will not suffice due to temperature lim itations of this class of materials. Cast versions of three traditionally wrought Ni-based superalloys (Haynes 263. Haynes 282, and Nimonic 105) were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantia l: 2-5,000 kg each half and on the order of 100 nun thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equi valem microslruclUre . A multi_step homogenization heat treatment was d~ve loped to better disperse the al loy constituents. These castings were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (al 760 and 800 "C).

  20. Steam System Opportunity Assessment for the Pulp and Paper, Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, and Petroleum Refining Industries | Department of Energy Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from

  1. Oxidation of alloys for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  2. Insulate Steam Distribution and Condensate Return Lines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulate Steam Distribution and Condensate Return Lines This tip sheet on insulating steam ... STEAM TIP SHEET 2 PDF icon Insulate Steam Distribution and Condensate Return Lines ...

  3. Steam Technical Brief: Industrial Steam System Heat-Transfer Solutions

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractices Steam Technical Brief provides an overview of considerations for selecting the best heat-transfer solution for various applications.

  4. Return Condensate to the Boiler, Energy Tips: STEAM, Steam Tip...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce operating costs through maximizing the return of hot condensate to the boiler. ... Return Condensate to the Boiler When steam transfers its heat in a manufacturing process, ...

  5. Process for purifying geothermal steam

    DOE Patents [OSTI]

    Li, Charles T.

    1980-01-01

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  6. Process for purifying geothermal steam

    DOE Patents [OSTI]

    Li, C.T.

    Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.

  7. Downhole steam injector. [Patent application

    SciTech Connect (OSTI)

    Donaldson, A.B.; Hoke, E.

    1981-06-03

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  8. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  9. Assessment of superheated steam drying of wood waste

    SciTech Connect (OSTI)

    Woods, B.G.; Nguyen, Y.; Bruce, S.

    1994-12-31

    A 5 MW co-generation facility using wood waste is described which will supply power to Ontario Hydro, steam to the sawmill for process heating, and hot water for district heating customers in the town. The use of superheated steam for drying the wood was investigated to determine the impact on boiler performance, the environmental impact and the economic feasibility. The main benefit with superheated steam drying is the reduction in VOC emissions. The capital cost is currently higher with superheated steam drying, but further investigation is warranted to determine if the cost reductions which could be achieved by manufacturing the major components in North America are sufficient to make the technology cost competitive.

  10. Steam boosted internal combustion engine

    SciTech Connect (OSTI)

    Green, M.A.

    1987-01-20

    A device is described to supplement the power produced by burning fuel in an internal combustion engine with steam, the device comprising: a means for producing a constant flow of water past a boiler means; a means for allowing the water to flow in the direction of the boiler; a boiler means external to the internal combustion engine to convert the water into superheated steam; a means for controlling the pressure of the water such that the water pressure is greater than the pressure of the steam produced by the boiler; and a means for injection of the superheated steam directly into a cylinder of the internal combustion engine, a means for producing a constant flow of water at a pressure greater than the pressure of the superheated steam, wherein the constant flow means at greater pressure comprises a chamber with a gaseous component, with the gaseous component being of constant volume and exerting constant pressure upon water within the chamber.

  11. Steam-system upgrades | Open Energy Information

    Open Energy Info (EERE)

    upgrades Jump to: navigation, search TODO: Add description List of Steam-system upgrades Incentives Retrieved from "http:en.openei.orgwindex.php?titleSteam-systemupgrades&old...

  12. Steam Pressure Reduction: Opportunities and Issues | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Pressure Reduction: Opportunities and Issues This brief details industrial steam ... A Sourcebook for Industry, Second Edition Install an Automatic Blowdown-Control

  13. Steam System Survey Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Steam Pressure Reduction: Opportunities and Issues Install an Automatic Blowdown-Control System Improving Steam System Performance: A Sourcebook for ...

  14. Steam Digest 2001: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  15. Standard Steam Trust LLC | Open Energy Information

    Open Energy Info (EERE)

    (Redirected from Standard Steam Trust) Jump to: navigation, search Name: Standard Steam Trust LLC Place: Denver, Colorado Sector: Geothermal energy Product: Subsidiary of...

  16. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    SciTech Connect (OSTI)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  17. Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation

    SciTech Connect (OSTI)

    Strobel, Calvin J.

    1993-01-28

    The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verification of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.

  18. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect (OSTI)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  19. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  20. STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT

    DOE Patents [OSTI]

    Untermyer, S.

    1960-05-10

    The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.

  1. Method and apparatus for improving the performance of a steam driven power system by steam mixing

    DOE Patents [OSTI]

    Tsiklauri, Georgi V.; Durst, Bruce M.; Prichard, Andrew W.; Reid, Bruce D.; Burritt, James

    1998-01-01

    A method and apparatus for improving the efficiency and performance of a steam driven power plant wherein addition of steam handling equipment to an existing plant results in a surprising increase in plant performance. For Example, a gas turbine electrical generation system with heat recovery boiler may be installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  2. Materials Performance in USC Steam Portland

    SciTech Connect (OSTI)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  3. Wet-steam erosion of steam turbine disks and shafts

    SciTech Connect (OSTI)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-15

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  4. Task 1: Steam Oxidation,

    SciTech Connect (OSTI)

    I. G. Wright and G. R. Holcomb

    2009-03-01

    Need to improve efficiency, decrease emissions (esp. CO2) associated with the continued use of coal for power generation

  5. Reliable steam: To cogenerate or not to cogenerate?

    SciTech Connect (OSTI)

    Jaber, D.; Jones, T.; D'Anna, L.; Vetterick, R.

    1999-07-01

    Leading industrial companies and institutions are forever seeking new and better ways to reduce their expenses, reduce waste, meet environmental standards, and, in general, improve their bottom-line. One approach to achieving all of these goals is a 100 year-old concept, cogeneration. Many industrial and institutional plants need thermal energy, generally as steam, for manufacturing processes and heating. They also need electric power for motors, lighting, compressed air and air conditioning. Traditionally, these fundamental needs are met separately. Steam is produced with industrial boilers and electricity is purchased from a local utility company. However, these needs can be met at the same time with cogeneration, using the same heat source. Cogeneration is the concurrent production of electrical power and thermal energy from the same heat source. Large steam users commonly take advantage of cogeneration by using high pressure steam with a back pressure turbine to generate electricity, and extract lower pressure steam from the turbine exhaust for their process needs. This approach reduces their electric utility bills while still providing thermal energy for industrial processes. The result is also a more efficient process that uses less total heat and discharges less smoke up the stack. Newer technologies are making cogeneration opportunities available to smaller-sized thermal plants, and electric utility deregulation opportunities are causing many CEOs to seriously consider cogeneration in their manufacturing plants. Whether steam is created through cogeneration or separate generation, many opportunities exist to improve productivity in the distribution system, operation, and maintenance. These opportunities are captured by taking a systems approach, which is promoted by programs such as the Department of Energy's Steam Challenge.

  6. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  7. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.

    2005-11-01

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  8. Guide to Orifice Plate Steam Traps

    SciTech Connect (OSTI)

    Oland, C.B.

    2001-01-11

    This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight their capabilities and limitations. Finally, recommendations for using orifice plate steam traps are presented, and possible applications are identified.

  9. Thermostatic steam trap

    SciTech Connect (OSTI)

    Anderson, A.H.; Mac Nicol, A.E.

    1987-03-03

    A thermostatic trap is described for a heating system having a feed pipe connected to a source of steam and a discharge pipe for discharge of condensate and comprising: housing means defining a volume and comprising a bowl shaped body, a removable cover therefor, a housing inlet pipe portion projecting from a side wall portion of the body and adapted for connection to the discharge pipe. A housing outlet pipe portion projects from a bottom wall portion of the body, and an outlet orifice defined by the bottom wall portion and extends between the volume and the outlet pipe portion; a valve body means retained within the volume and comprising an end wall, a side wall and a retaining ring portion that together define a valve chamber. The end wall defines a valve inlet opening communicating with the chamber and an annular valve seat within the chamber and encircling the valve inlet opening. The valve body means comprises a valve outlet pipe that defines a valve outlet opening axially aligned with the valve inlet opening and communicating with the chamber, the outlet pipe being fixed in the outlet orifice; a resilient, annular seal means disposed within the valve chamber and encircling the valve inlet opening; and a bi-metallic disc disposed within the valve chamber between the annular seal means and the outlet opening and having an outer peripheral portion retained by the retaining ring portion of the valve body means.

  10. CalEnergy Generation | Open Energy Information

    Open Energy Info (EERE)

    electric power and steam-producing facilities in the United States and the Philippines. Worldwide, CalEnergy Generation focuses on growth through acquisition and fuel source...

  11. Steam Oxidation and Chromia Evaporation in Ultra-Supercritical Steam Boilers and Turbines

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-01-01

    U.S. Department of Energy’s goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 °C and 340 atm, so-called ultra-supercritical (USC) conditions. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  12. Steam oxidation and chromia evaporation in ultrasupercritical steam boilers and turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2009-07-01

    The U.S. Department of Energy's goals include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 {sup o}C and 340 atm, so-called ultrasupercritical conditions. Evaporation of protective chromia scales is a primary corrosion mechanism. A methodology to calculate Cr evaporation rates from chromia scales was developed and combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles and to predict the time until breakaway oxidation. At the highest temperatures and pressures, the time until breakaway oxidation was quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. Alloy additions such as Ti may allow for a reduction in evaporation rate with time, mitigating the deleterious effects of chromia evaporation.

  13. Materials for advanced ultrasupercritical steam turbines

    SciTech Connect (OSTI)

    Purgert, Robert; Shingledecker, John; Saha, Deepak; Thangirala, Mani; Booras, George; Powers, John; Riley, Colin; Hendrix, Howard

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using traditional sand foundry practices, and a techno-economic study of an A-USC plant including cost estimates for an A-USC turbine which showed A-USC to be economically attractive for partial carbon and capture compared to today’s USC technology. Based on this successful materials research and a review with U.S. utility stakeholders, a new project to develop a component test facility (ComTest) including the world’s first A-USC turbine has been proposed to continue the technology development.

  14. Inspect and Repair Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Inspect and Repair Steam Traps (January 2012) More Documents & Publications Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Steam Pressure Reduction: ...

  15. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Flash High-Pressure Condensate to Regenerate Low-Pressure Steam Deaerators in Industrial Steam Systems Insulate Steam Distribution and Condensate ...

  16. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam

    Broader source: Energy.gov [DOE]

    This tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  18. How three smart managers control steam costs

    SciTech Connect (OSTI)

    Kendall, R.

    1982-11-01

    Three steam-intensive companies report innovative ways to reduce steam-production costs. Goodyear Tire and Rubber Co. concentrated on regular maintenance, process modifications, and heat recovery, but also has an on-going policy of seeking further cost savings. Future efforts will explore computer-based boiler controls. Zenith Radio Corporation's color picture tube-making process uses 12% less steam after 700 mechanical steam traps were replaced with fixed-orifice traps. Petro-Tex Chemical Corp. reduced steam costs by monitoring and optimizing process units and by making capital investments to improve steam management. (DCK)

  19. Use Steam Jet Ejectors or Thermoscompressors to Reduce Venting of Low-Pressure Steam - Steam Tip Sheet #29

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam jet ejectors and thermocompressors provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  20. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure Steam This tip sheet ...

  1. Utility-led cogen plant meets tight specs on steam supply

    SciTech Connect (OSTI)

    Eckersley, R.

    1995-08-01

    No Purpa machine here, this plant adds low-cost generating capacity while supplying steam with guaranteed reliability to petrochemicals producer. This article examines the design which ensures recovery of export steam load with minimum time and pressure loss. EI DuPont de Nemours and Co needed a new source of reliable, inexpensive steam to replace aging, inefficient boilers at its LaPorte (Tex) plant, where agricultural chemicals and other products are manufactured. At the same time, Houston Lighting and Power Co (HL and P) was exploring new ways to add capacity cost effectively. San Jacinto steam/electric station was the ideal solution that satisfied both needs. Fully operation since last April, the station`s performance has been excellent. Operating with complete reliability, the system has respond smoothly to meet changes in DuPont`s steam demand without upset.

  2. Alternatives to traditional water washing used to remove impurities in superheated geothermal steam

    SciTech Connect (OSTI)

    Fisher, D.W.; Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

    1996-12-31

    The method of water washing impurities from superheated geothermal steam as adopted from traditional steam boiler operations in electric power generation stations has been used for a decade and a half under several pseudonyms, e.g., de-superheating, enthalpy modification, de-scaling, etc. Water washing can be effective, but it is costly. It is not necessarily expensive to implement or operate, but the cost of unrecoverable energy lost due to steam enthalpy reduction can be quite high. Are there other ways to remove these undesirables from superheated geothermal steam? That question is the focus of this paper. Several alternatives to water washing will be proposed including dry scrubbing, oil washing, and hybrid cleaning. A discussion of the advantages and disadvantages of each method will be presented along with the various geothermal steam impurities and their effects on the process and equipment.

  3. Project DEEP STEAM: third meeting of the technical advisory panel, Bakersfield, CA, March 1980

    SciTech Connect (OSTI)

    Fox, R. L.; Johnson, D. R.; Donaldson, A. B.; Mulac, A. J.; Krueger, D. A.

    1981-04-01

    The third meeting of the technical advisory panel for the Deep Steam project was held in March 1980 in Bakersfield, California. The following seven papers were presented: Materials Studies; Insulation/Packer Simulation Test; Enhanced Recovery Packer; High Pressure Downhole Steam Generator; Lower Pressure Downhole Steam Generator; Physical Simulations; and Field Testing. The panel made many recommendations, some of which are: shell calcium silicate insulation should be included in the injection string modification program; for metal packer, consider age hardening alloys, testing with thermal cycling, intentionally flawed casing, and operational temperatures effect on differential expansion, plus long term tests under temperature and corrosive environment; for minimum stress packer, consider testing environment carefully as some elastomers are especially susceptible to oil, oxygen, and combustion gases; for downhole steam generator, quality of water required with new low pressure combustion design needs to be investigated; in field testing, materials coupons, for corrosion monitoring, should be an integral part of field test operations.

  4. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  5. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  6. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  7. Physical Characterization and Steam Chemical Reactivity of Carbon Fiber Composites

    SciTech Connect (OSTI)

    Anderl, Robert Andrew; Pawelko, Robert James; Smolik, Galen Richard

    2001-05-01

    This report documents experiments and analyses that have been done at the Idaho National Engineering and Environmental Laboratory (INEEL) to measure the steam chemical reactivity of two types of carbon fiber composites, NS31 and NB31, proposed for use at the divertor strike points in an ITER-like tokamak. These materials are 3D CFCs constituted by a NOVOLTEX preform and densified by pyrocarbon infiltration and heat treatment. NS31 differs from NB31 in that the final infiltration was done with liquid silicon to reduce the porosity and enhance the thermal conductivity of the CFC. Our approach in this work was twofold: (1) physical characterization measurements of the specimens and (2) measurements of the chemical reactivity of specimens exposed to steam.

  8. Superalloys for ultra supercritical steam turbines--oxidation behavior

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-09-01

    Goals of the U.S. Department of Energys Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, so called ultra-supercritical (USC) steam conditions. One of the important materials performance considerations is steam-side oxidation resistance. Evaporation of protective chromia scales is expected to be a primary corrosion mechanism under USC conditions. A methodology to calculate Cr evaporation rates from chromia scales with cylindrical geometries was developed that allows for the effects of CrO2(OH)2 saturation within the gas phase. This approach was combined with Cr diffusion calculations within the alloy (with a constant flux of Cr leaving the alloy from evaporation) to predict Cr concentration profiles as a function of exposure time and to predict the time until the alloy surface concentration of Cr reaches zero. This time is a rough prediction of the time until breakaway oxidation. A hypothetical superheater tube, steam pipe, and high pressure turbine steam path was examined. At the highest temperatures and pressures, the time until breakaway oxidation was predicted to be quite short for the turbine blade, and of concern within the steam pipe and the higher temperature portions of the superheater tube. The predicted time until breakaway oxidation increases dramatically with decreases in temperature and total pressure. Possible mitigation techniques were discussed, including those used in solid oxide fuel cell metallic interconnects (lowering the activity of Cr in the oxide scale by adding Mn to the alloy), and thermal barrier coating use on high pressure turbine blades for both erosion and chromia evaporation protection.

  9. Hydrogen Production: Biomass-Derived Liquid Reforming | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Others (for example, bio-oils) may be reformed on-site. The process for reforming ... The liquid fuel is reacted with steam at high temperatures in the presence of a catalyst ...

  10. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  11. Steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  12. Nuclear-energy application studied as source of injection steam for heavy-oil recovery

    SciTech Connect (OSTI)

    Perrett, R.J.; Gledhill, P.R.; Dawson, P.; Stephenson, D.J.

    1981-08-03

    This study into the feasibility of adapting a well-proven nuclear reactor as a centralized source of injection steam for the recovery of heavy oil has shown that the reactor modifications are practicable and well within the bounds of current technology. The gas-cooled reactor is capable of meeting the highest steam supply pressure requirement and it possesses a high degree of inherent safety. The injection of steam for the recovery of heavy oil is the most well developed of the available options. At current price levels of oil and uranium, nuclear heat can be generated at a fraction of the running costs of oil fired thermal plant. Taken over a project lifetime of 25 years for the field model used for this assessment, the improved earnings for the nuclear option could amount to as much as /10 billion. The program requirements for a typical development have been examined and the construction times for the gas reactor steam plant, the oil-field development and the upgrading plant are compatible at between five and six years. The economic advantage of steam generation by nuclear energy gives a further recovery breakthrough. It becomes possible to continue the steam drive process up to much more adverse recovery ratios of steam quantity injected for unit oil produced if nuclear energy is employed.

  13. Project DEEP STEAM: fourth meeting of the technical advisory panel, Albuquerque, NM, November 1980

    SciTech Connect (OSTI)

    Fox, R.L.; Donaldson, A.B.; Eisenhawer, S.W.; Hart, C.M.; Johnson, D.R.; Mulac, A.J.; Wayland, J.R.; Weirick, L.J.

    1981-07-01

    The Fourth Project DEEP STEAM Technical Advisory Panel Meeting was held on 5 and 6 November 1980 in Albuquerque, New Mexico, to review the status of project DEEP STEAM. This Proceedings, following the order of the meeting, is divided into five main sections: the injection string modification program, the downhole steam generator program, supporting activities, field testing, and the Advisory Panel recommendations and discussion. Each of the 17 presentations is summarized, and a final Discussion section has been added, when needed, for inclusion of comments and replies related to specific presentations. Finally, the Advisory Panel recommendations and the ensuing discussion are summarized in the closing section.

  14. Annual Steam-Electric Plant Operation and Design Data (EIA-767 data file)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity data files > Form EIA-767 Form EIA-767 historical data files Data Released: November 02, 2006 Next Release: None(discontinued) Annual steam-electric plant operation and design data Historical data files contain annual data from organic-fueled or combustible renewable steam-electric plants with a generator nameplate rating of 10 or more megawatts. The data are derived from the Form EIA-767 "Steam-Electric Plant Operation and Design Report." The files contains data on

  15. Steam System Energy Conservation Measures

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  16. Cast Alloys for Advanced Ultra Supercritical Steam Turbines

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk,

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  17. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 PDF icon Consider Steam Turbine Drives for Rotating Equipment (January 2012) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  18. Water-Efficient Technology Opportunity: Steam Sterilizer Condensate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Kit | Department of Energy Steam Sterilizer Condensate Retrofit Kit Water-Efficient Technology Opportunity: Steam Sterilizer Condensate Retrofit Kit Steam sterilizers are heated by steam that condenses and flows to the trap drain beneath the sterilizer. Steam sterilizers are heated by steam that condenses and flows to the trap drain beneath the sterilizer. The Federal Energy Management Program (FEMP) identified steam sterilizer condensate retrofit kits as a water-saving technology

  19. Significant Silica Solubility in Geothermal Steam

    SciTech Connect (OSTI)

    James, Russell

    1986-01-21

    Although it is widely believed that silica solubility in low pressure (5 to 10 bar) geothermal steam is negligible, when one takes into account steam flows exceeding 10 million tonnes a year--at Wairakei, for instance--it is found that the amount transmitted in the vapor has the potential to give significant deposits on turbine nozzles and blades. A 150 MWe power station, when based on flows from a hot water reservoir at (a) 250 C or (b) 315 C, and with separator pressures of 6 bar, is found to carry about 100 and 200 kg/year respectively in the steam phase. In the case of a similar sized station exploiting a dry steam reservoir such as The Geysers, equivalent silica flows are obtained, dissolved in steam and carried as dust--the latter as solid particles precipitating from the vapor en route from source to turbine, and not preexisting in the formations as is commonly considered. Choking or coating of subterranean rock near such dry steam wells due to exsolving silica, may be the principal cause of declining steam discharge under production. Silica from completely dry or superheated steam can also seal the cap and sides of steam reservoirs when expanding below the criticus temperature (236 C) in a way previously thought possible only by hot water or wet steam.

  20. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  1. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  2. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    SciTech Connect (OSTI)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  3. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    SciTech Connect (OSTI)

    Yang Xiaomeng; Gates, Ian D.

    2009-09-15

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced. However, oil recovery is between 25% and 40% below that of SAGD. Design of successful hybrid steam-oxygen processes must take into account the balance between injected steam and amount of injected oxygen and combustion gas products that dilute injected and in situ-generated steam in the depletion chamber by lowering its partial pressure, and thus its saturation temperature which in turn impacts production rates and recovery.

  4. Visualization and simulation of immiscible displacement in fractured systems using micromodels: Steam injection

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    1995-07-01

    A study of steam and hot water injection processes in micromodel geometries that mimic a matrix-fracture system was undertaken. The followings were observed: Light components existing in the crude oil generated a very high efficient gas-drive at elevated temperatures. This gas generation in conjunction with natural surfactant existing in the crude oil, lead to the formation of a foam in the fracture and to improved displacement in the matrix. We observed that the steam enters the fracture and the matrix depending on whether the steam rate exceeds or not the critical values. The resulting condensed water also moves preferentially into the matrix or the fracture depending on the corresponding capillary number. Since steam is a non-wetting phase as a vapor, but becomes a wetting phase when condensed in a water-wet system, steam injection involves both drainage and imbibition. It was found that all of the oil trapped by the condensed water can be mobilized and recovered when in contact with steam. We also examined hot-water displacement. In comparison with cold-water experiments at the same capillary number, a higher sweep efficiency for both light and heavy oils was observed. It was found that the loam generated in the fracture during hot-water injection, is more stable than in steamflooding. Nonetheless, hot-water injection resulted into less efficient displacement in its absence.

  5. Optical steam quality measurement system and method

    SciTech Connect (OSTI)

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  6. Steam Technical Brief: How to Calculate the True Cost of Steam

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractice Steam Technical Brief helps you calculate the true cost of steam. Knowing the correct cost is important for many reasons and all of them have to do with improving the company's bottom line.

  7. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  8. Application of solar energy for the generation and supply of industrial-process low-to intermediate-pressure steam ranging from 300/sup 0/F-550/sup 0/F (high-temperature steam). Final report, September 30, 1978-June 30, 1979

    SciTech Connect (OSTI)

    Matteo, M.; Kull, J.; Luddy, W.; Youngblood, S.

    1980-12-01

    A detailed design was developed for a solar industrial process heat system to be installed at the ERGON, Inc. Bulk Oil Storage Terminal in Mobile, Alabama. The 1874 m/sup 2/ (20160 ft/sup 2/) solar energy collector field will generate industrial process heat at temperatures ranging from 150 to 290/sup 0/C (300 to 550/sup 0/F). The heat will be used to reduce the viscosity of stored No. 6 fuel oil, making it easier to pump from storage to transport tankers. Heat transfer oil is circulated in a closed system, absorbing heat in the collector field and delivering it through immersed heat exchangers to the stored fuel oil. The solar energy system will provide approximately 44 percent of the process heat required.

  9. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  10. Covered Product Category: Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, which are covered by the ENERGY STAR program.

  11. Warm or Steaming Ground | Open Energy Information

    Open Energy Info (EERE)

    causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles...

  12. Minimize Boiler Blowdown - Steam Tip Sheet #9

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on minimizing boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Industrial Steam System Heat-Transfer Solutions

    Broader source: Energy.gov [DOE]

    This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications.

  14. Greenville Steam Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleGreenvilleSteamBiomassFacility&oldid397532" Feedback Contact needs updating Image needs updating...

  15. " "," ",,," Steam Turbines Supplied by Either Conventional or...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." " "," ",,," Steam Turbines Supplied by Either Conventional or Fluidized Bed Boilers",,,"Conventional Combusion ...

  16. Review of Orifice Plate Steam Traps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... or the steam system will not function prop- erly. A backup of condensate, known as waterlogging or flooding, can adversely affect heat transfer, promote corrosion of carbon ...

  17. Standard Steam Trust LLC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Standard Steam Trust LLC Place: Denver, Colorado Sector: Geothermal energy Product: Subsidiary of Denver-based geothermal project developer, Terra...

  18. POWER GENERATING NEUTRONIC REACTOR SYSTEM

    DOE Patents [OSTI]

    Vernon, H.C.

    1958-03-01

    This patent relates to reactor systems of the type wherein the cooiing medium is a liquid which is converted by the heat of the reaction to steam which is conveyed directly to a pnime mover such as a steam turbine driving a generatore after which it is condensed and returred to the coolant circuit. In this design, the reactor core is disposed within a tank for containing either a slurry type fuel or an aggregation of solid fuel elements such as elongated rods submerged in a liquid moderator such as heavy water. The top of the tank is provided with a nozzle which extends into an expansion chamber connected with the upper end of the tank, the coolant being maintained in the expansion chamber at a level above the nozzle and the steam being formed in the expansion chamber.

  19. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    SciTech Connect (OSTI)

    Hoffer, Saskia

    2002-08-19

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  20. Processing and Disposition of Remote-Handled Transuranic Liquid...

    Office of Scientific and Technical Information (OSTI)

    Liquid Waste Generated at Oak Ridge National Laboratory Citation Details In-Document Search Title: Processing and Disposition of Remote-Handled Transuranic Liquid Waste Generated ...

  1. Designing an ultrasupercritical steam turbine

    SciTech Connect (OSTI)

    Klotz, H.; Davis, K.; Pickering, E.

    2009-07-15

    Carbon emissions produced by the combustion of coal may be collected and stored in the future, but a better approach is to reduce the carbon produced through efficient combustion technologies. Increasing the efficiency of new plants using ultrasupercritical (USC) technology will net less carbon released per megawatt-hour using the world's abundant coal reserves while producing electricity at the lowest possible cost. The article shows how increasing the steam turbine operating conditions for a new USC project in the USA and quantify the potential CO{sub 2} reduction this advanced design makes possible. 7 figs., 3 tabs.

  2. Hanford Generating Project (HGP) Repowering Analysis.

    SciTech Connect (OSTI)

    Fluor Daniel Fernald

    1988-12-01

    The Hanford Generating Project (HGP), owned by the Washington Public Power Supply System, consists of two low pressure steam turbines, generators, and associated equipment located adjacent to the Department of Energy's (DOE) N-Reactor. HGP has been able to produce approximately 800 MWe with low pressure steam supplied by N-Reactor. DOE has placed N-Reactor in cold standby status for an undetermined length of time. This results in the idling of the HGP since no alternative source of steam is available. Bonneville Power Administration contracted with Fluor Daniel, Inc. to investigate the feasibility and cost of constructing a new source of steam for (repowering) one of the HGP turbines. The steam turbine is currently operated with 135 psia steam. The turbines can be rebuilt to operate with 500 psia steam pressure by adding additional stages, buckets, nozzles, and diaphragms. Because of the low pressure design, this turbine can never achieve the efficiencies possible in new high pressure turbines by the presences of existing equipment reduces the capital cost of a new generating resource. Five repowering options were investigated in this study. Three cases utilizing gas turbine combined cycle steam generation equipment, one case utilizing a gas fired boiler, and a case utilizing a coal fired boiler. This report presents Fluor Daniel's analysis of these repowering options.

  3. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  4. Use Vapor Recompression to Recover Low-Pressure Waste Steam ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vapor Recompression to Recover Low-Pressure Waste Steam Use Vapor Recompression to Recover Low-Pressure Waste Steam This tip sheet on recovering low-pressure waste steam provides ...

  5. Review of Orifice Plate Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Orifice Plate Steam Traps Review of Orifice Plate Steam Traps This guide was prepared to serve as a foundation for making informed decisions about when orifice plate steam traps should be considered for use in new or existing steam systems. It presents background information about different types of steam traps and defines their unique functional and operational characteristics. The advantages and disadvantages associated with using orifice plate steam traps are provided to highlight

  6. Process steam production from cotton gin trash

    SciTech Connect (OSTI)

    LePori, W.A.; Carney, D.B.; Lalk, T.R.; Anthony, R.G.

    1981-01-01

    A steam producing system based on fluidized-bed gasification of biomass materials is discussed. Limited experimental results are discussed and show that steam has been produced at rates of 334.3 kg/hr. (737 lbs/hr.) with 2.8 kg of stream produced for each kilogram of cotton gin trash (2.8 lb/lb.). ref.

  7. Deaerators in Industrial Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEAM TIP SHEET 18 PDF icon Deaerators in Industrial Steam Systems (January 2012) More ... Second Edition Consider Installing a Condensing Economizer CIBO Energy Efficiency Handbook

  8. Industrial Steam System Process-Control Schemes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Industrial Steam System Process-Control Schemes (July 2003) More Documents & Publications Compressed Air Storage Strategies Save Energy Now in Your Steam Systems CIBO ...

  9. Water-Efficient Technology Opportunity: Steam Sterilizer Condensate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Sterilizer Condensate Retrofit Kit Water-Efficient Technology Opportunity: Steam ... sterilizer condensate retrofit kits as a water-saving technology that is relevant to the ...

  10. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Energy Savers [EERE]

    Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a ...

  11. Geothermal Steam Act of 1970 | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Steam Act of 1970 Jump to: navigation, search To encourage the development of geothermal energy, the United States government passed the Geothermal Steam Act in 1970...

  12. Fossil superheating in geothermal steam power plants (Technical...

    Office of Scientific and Technical Information (OSTI)

    Fossil superheating in geothermal steam power plants Citation Details In-Document Search Title: Fossil superheating in geothermal steam power plants You are accessing a document ...

  13. Use a Vent Condenser to Recover Flash Steam Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Recover Heat from Boiler Blowdown Deaerators in Industrial Steam Systems Use Steam Jet Ejectors or Thermocompressors to Reduce Venting of Low-Pressure ...

  14. Plasma torch with liquid metal electrodes

    SciTech Connect (OSTI)

    Predtechenskii, M.R.; Tukhto, O.M.

    2006-03-15

    In order to eliminate the negative effect of erosion processes on electrodes in arc plasma generators, a new scheme of arc discharge was proposed in which the surface of a molten metal acts as electrodes. A plasma reactor was designed on the basis of this concept. The electrophysical characteristics of such a discharge in steam and air as plasma gases were studied. Experiments on destruction of toxic polychlorinated biphenyls and steam coal gasification were performed.

  15. Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility

    SciTech Connect (OSTI)

    Alexander, D.J.; Johnson, V.G.

    1993-09-01

    In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

  16. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect (OSTI)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  17. General purpose steam table library : CASL L3:THM.CFD.P7.04 milestone report.

    SciTech Connect (OSTI)

    Carpenter, John H.; Belcourt, Noel; Nourgaliev, Robert

    2013-08-01

    Completion of the CASL L3 milestone THM.CFD.P7.04 provides a general purpose tabular interpolation library for material properties to support, in particular, standardized models for steam properties. The software consists of three parts, implementations of analytic steam models, a code to generate tables from those models, and an interpolation package to interface the tables to CFD codes such as Hydra-TH. Verification of the standard model is maintained through the entire train of routines. The performance of interpolation package exceeds that of freely available analytic implementation of the steam properties by over an order of magnitude.

  18. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  19. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  20. Hartford Steam Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Hartford Steam Co Place: Connecticut Phone Number: 860-725-7005 Website: www.hartfordsteam.com Outage Hotline: 860-725-7005 References: EIA...

  1. Mist/steam cooling in a heated horizontal tube -- Part 1: Experimental system

    SciTech Connect (OSTI)

    Guo, T.; Wang, T.; Gaddis, J.L.

    2000-04-01

    To improve the airfoil cooling significantly for the future generation of advanced turbine systems (ATS), a fundamental experimental program has been developed to study the heat transfer mechanisms of mist/steam cooling under highly superheated wall temperatures. The mist/steam mixture was obtained by blending fine water droplets (3 {approximately} 15 {micro}m in diameter) with the saturated steam at 1.5 bars. Two mist generation systems were tested by using the pressure atomizer and the steam-assisted pneumatic atomizer, respectively. The test section, heated directly by a DC power supply, consisted of a thin-walled ({approximately} 0.9 mm), circular stainless steel tube with an ID of 20 mm and a length of 203 mm. Droplet size and distribution were measured by a phase Doppler particle analyzer (PDPA) system through view ports grafted at the inlet and the outlet of the test section. Mist transportation and droplet dynamics were studied in addition to the heat transfer measurements. The experiment was conducted with steam Reynolds numbers ranging from 10,000 to 35,000, wall superheat up to 300 C, and droplet mass ratios ranging from 1 {approximately} 6%.

  2. Steam generator with integral downdraft dryer. Final project report

    SciTech Connect (OSTI)

    Hochmuth, F.W.

    1992-02-01

    On June 30, 1989, a financial assistance award was granted by the United State Department of Energy, the purpose of which was to study and evaluate the technical aspect, the economic viability, and commercial possibilities of a new furnace design for burning high moisture cellulose type fuels. The new design is an invention by F.W. Hochmuth, P.Eng. and has received United States Patents Nos. 4,480, 557 and 4,502,397. It was conceived as a method to improve the general operation and efficiency of waste wood burning boilers, to avoid the use of stabilizing fuels such as oil or gas, and to reduce objectionable stack emissions. A further objective was to obtain such benefits at relatively low cost by integrating all new material requirements within the furnace itself thereby avoiding the need for costly external equipment. The proposed integral down-draft dryer avoids the use of external dryer systems that are very expensive, have high power consumption, and require a large amount of maintenance. This document provides the details of this invention.

  3. Second Generation PFBC Systems R&D (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; FLUIDIZED BED BOILERS; BURNERS; GAS TURBINES; PILOT PLANTS; STEAM GENERATION; SULFUR; AIR POLLUTION CONTROL; DESIGN Word Cloud More Like This ...

  4. Second-Generation PFBC Systems R&D (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 01 COAL, LIGNITE, AND PEAT; FLUIDIZED BED BOILERS; BURNERS; EFFICIENCY; GAS TURBINES; PILOT PLANTS; STEAM GENERATION; SULFUR; AIR POLLUTION CONTROL; DESIGN Word Cloud More ...

  5. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

    Broader source: Energy.gov [DOE]

    This tip sheet outlines the benefits of high-pressure boilers with backpressure turbine-generators as part of optimized steam systems.

  6. Method of measuring a liquid pool volume

    DOE Patents [OSTI]

    Garcia, Gabe V.; Carlson, Nancy M.; Donaldson, Alan D.

    1991-01-01

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

  7. Industrial Steam System Heat-Transfer SolutionsL: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Technical Brief Industrial Steam System Heat-Transfer Solutions U.S. Department of ... performance Industrial Steam System Heat-Transfer Solutions 1 Introduction This ...

  8. PORST: a computer code to analyze the performance of retrofitted steam turbines

    SciTech Connect (OSTI)

    Lee, C.; Hwang, I.T.

    1980-09-01

    The computer code PORST was developed to analyze the performance of a retrofitted steam turbine that is converted from a single generating to a cogenerating unit for purposes of district heating. Two retrofit schemes are considered: one converts a condensing turbine to a backpressure unit; the other allows the crossover extraction of steam between turbine cylinders. The code can analyze the performance of a turbine operating at: (1) valve-wide-open condition before retrofit, (2) partial load before retrofit, (3) valve-wide-open after retrofit, and (4) partial load after retrofit.

  9. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  10. Hydrogen production from the steam reforming of Dinethyl Ether and Methanol

    SciTech Connect (OSTI)

    Semelsberger, T. A.; Borup, R. L.

    2004-01-01

    This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

  11. VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate system. The aerosol formed a fine white smoke of tungsten-oxide which was visible to the eye as it condensed in the laminar boundary layer of steam which flowed along the surface of the rod. The aerosol continued to flow as a smoke tube downstream of the rod, flowing coaxially along the centerline axis of the quartz glass tube and depositing by impaction along the outside of a bend and at sudden area contractions in the piping. The vaporization rate data from the 17 experiments which exceeded the vaporization threshold temperature are shown in Figure 5 in the form of vaporization rates (g/cm{sup 2} s) vs. inverse temperature (K{sup {minus}1}). Two correlations to the present data are presented and compared to a published correlation by Kilpatrick and Lott. The differences are discussed.

  12. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  13. System and method for coproduction of activated carbon and steam/electricity

    DOE Patents [OSTI]

    Srinivasachar, Srivats; Benson, Steven; Crocker, Charlene; Mackenzie, Jill

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  14. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  15. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  16. Pollution prevention opportunity assessment for the K-25 Site Steam Plant -- Level 3

    SciTech Connect (OSTI)

    1995-09-01

    A Level 3 pollution prevention opportunity assessment (PPOA) was performed for the K-1501 Steam Plant at the K-25 Site. The primary objective was to identify and evaluate pollution prevention (P2) options to reduce the quantities of each waste stream generated by the Steam Plant. For each of the waste streams, P2 options were evaluated to first reduce the quantity of waste generated and second to recycle the waste. This report provides a process description of the facility; identification, evaluation, and recommendations of P2 options; an implementation schedule with funding sources; and conclusions. Largely for economic reasons, only 3 of the 14 P2 options are being recommended for implementation. All are source reduction options. When implemented, these three options are estimated to reduce the annual generation of waste by 658,412 kg and will result in a cost savings of approximately $29,232/year for the K-25 Site. The recommended options are to: install a flue gas return System in Boiler 7; reduce steam loss from traps; and increase lapse time between rinses. The four boilers currently in operation at the Steam Plant use natural gas or fuel oil as fuel sources.

  17. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect (OSTI)

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  18. Integrated vacuum absorption steam cycle gas separation

    DOE Patents [OSTI]

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  19. PREDICTION OF OXIDE SCALE EXFOLIATION IN STEAM TUBES

    SciTech Connect (OSTI)

    Sabau, Adrian S; Wright, Ian G

    2010-01-01

    Numerical simulation results are presented for the prediction of the likelihood of oxide scale exfoliation from superheater tubes. The scenarios considered involved alloys T22, TP347H, and TP347HFG subjected to a simplified operating cycle in a power plant generating supercritical steam. The states of stress and strain of the oxides grown in steam were based solely on modeling the various phenomena experienced by superheater tubes during boiler operation, current understanding of the oxidation behavior of each alloy in steam, and consideration of operating parameters such as heat flux, tube dimensions, and boiler duty cycle. Interpretation of the evolution of strain in these scales, and the approach to conditions where scale failure (hence exfoliation) is expected, makes use of the type of Exfoliation Diagrams that incorporate various cracking and exfoliation criteria appropriate for the system considered. In these diagrams, the strain accumulation with time in an oxide is represented by a strain trajectory derived from the net strain resulting from oxide growth, differences in coefficients of thermal expansion among the components, and relaxation due to creep. It was found that an oxide growing on a tube subjected to routine boiler load cycling conditions attained relatively low values of net strain, indicating that oxide failure would not be expected to occur during normal boiler operation. However, during a boiler shut-down event, strains sufficient to exceed the scale failure criteria were developed after times reasonably in accord with plant experience, with the scales on the ferritic steel failing in tension, and those on the austenitic steels in compression. The results presented illustrate that using this approach to track the state of strain in the oxide scale through all phases of boiler operation, including transitions from full-to-low load and shut-down events, offers the possibility of identifying the phase(s) of boiler operation during which oxide failure is most likely to occur.

  20. Install and Automatic Blowdown Control System - Steam Tip Sheet #23

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Cover Heated, Open Vessels - Steam Tip Sheet #19

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on covering heated, open vessels provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  2. Review of Orifice Plate Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Orifice Plate Steam Traps Review of Orifice Plate Steam Traps This guide was prepared to serve as a foundation for making informed decisions about when orifice plate...

  3. Integrated vacuum absorption steam cycle gas separation (Patent...

    Office of Scientific and Technical Information (OSTI)

    This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the ...

  4. Best Management Practice #8: Steam Boiler Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... This also allows for the production of low pressure steam, which can be returned to the steam system or used in the de-aeration of boiler feed water. Replacement Options The ...

  5. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect (OSTI)

    Lower, Mark D; Christopher, Timothy W; Oland, C Barry

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.

  6. Paducah Package Steam Boilers to Provide Efficiency, Environmental Benefits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Package Steam Boilers to Provide Efficiency, Environmental Benefits Paducah Package Steam Boilers to Provide Efficiency, Environmental Benefits October 29, 2015 - 12:10pm Addthis An aerial view of the package boilers installed into the site’s existing steam system. An aerial view of the package boilers installed into the site's existing steam system. Pipefitters Mike Askren, left, and Ron Parrot install the water inlet on one of the package boilers. Pipefitters

  7. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    SciTech Connect (OSTI)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today’s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

  8. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    Broader source: Energy.gov [DOE]

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  9. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  10. Water spray ejector system for steam injected engine

    SciTech Connect (OSTI)

    Hines, W.R.

    1991-10-08

    This paper describes a method of increasing the power output of a steam injected gas turbine engine. It comprises: a compressor, a combustor having a dome which receives fuel and steam from a dual flow nozzle, and a turbine in series combination with a gas flow path passing therethrough, and a system for injection of superheated steam into the gas flow path, the method comprising spraying water into the steam injection system where the water is evaporated by the superheated steam, mixing the evaporated water with the existing steam in the steam injection system so that the resultant steam is at a temperature of at least 28 degrees celsius (50 degrees fahrenheit) superheat and additional steam is added to the dome from the fuel nozzle to obtain a resultant increased mass flow of superheated steam mixture for injection into the gas flow path, and controlling the amount of water sprayed into the steam injection system to maximize the mass flow of superheated steam without quenching the flame.

  11. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    SciTech Connect (OSTI)

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  12. Y-12 Steam Plant Project Received National Recognition for Project

    National Nuclear Security Administration (NNSA)

    Management Excellence | National Nuclear Security Administration Steam Plant Project Received National Recognition for Project Management Excellence March 23, 2011 Y-12 steam plant project receives national recognition for project management excellence. Y-12's Steam Plant Life Extension Project (SPLE) has received the Secretary of Energy's Project Management Improvement Award. Microsoft Office document icon NR-03-28.doc

  13. Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Consider Steam Turbine Drives for Rotating Equipment - Steam Tip Sheet #21

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  15. Use Low-Grade Waste Steam to Power Absorption Chillers - Steam Tip Sheet #14

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  16. Purchasing Energy-Efficient Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  17. Gas turbine row #1 steam cooled vane

    DOE Patents [OSTI]

    Cunha, Frank J.

    2000-01-01

    A design for a vane segment having a closed-loop steam cooling system is provided. The vane segment comprises an outer shroud, an inner shroud and an airfoil, each component having a target surface on the inside surface of its walls. A plurality of rectangular waffle structures are provided on the target surface to enhance heat transfer between each component and cooling steam. Channel systems are provided in the shrouds to improve the flow of steam through the shrouds. Insert legs located in cavities in the airfoil are also provided. Each insert leg comprises outer channels located on a perimeter of the leg, each outer channel having an outer wall and impingement holes on the outer wall for producing impingement jets of cooling steam to contact the airfoil's target surface. Each insert leg further comprises a plurality of substantially rectangular-shaped ribs located on the outer wall and a plurality of openings located between outer channels of the leg to minimize cross flow degradation.

  18. New developments in aircooled steam condensing

    SciTech Connect (OSTI)

    Bonger, R.; Chandron, R.

    1995-02-01

    The Single Row Condenser (SRC) tube, developed in cooperation with Modine of Racine will prevent many common problems experienced with the operation of aircooled steam condensers, particularly in cold climates. Application of the SRC tube will also bring the Natural Draft Condenser (NDC) in the realm of economic viability.

  19. Natural gas-assisted steam electrolyzer

    DOE Patents [OSTI]

    Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.

    2000-01-01

    An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

  20. Method of removing cesium from steam

    DOE Patents [OSTI]

    Carson, Jr., Neill J.; Noland, Robert A.; Ruther, Westly E.

    1991-01-01

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  1. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  2. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect (OSTI)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  3. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  4. Magnetically focused liquid drop radiator

    DOE Patents [OSTI]

    Botts, Thomas E. (Fairfax, VA); Powell, James R. (Shoreham, NY); Lenard, Roger (Redondo Beach, CA)

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  5. Magnetically focused liquid drop radiator

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  6. Report on Preliminary Engineering Study for Installation of an Air Cooled Steam Condenser at Brawley Geothermal Plant, Unit No. 1

    SciTech Connect (OSTI)

    1982-03-01

    The Brawley Geothermal Project comprises a single 10 MW nominal geothermal steam turbine-generator unit which has been constructed and operated by the Southern California Edison Company (SCE). Geothermal steam for the unit is supplied through contract by Union Oil Company which requires the return of all condensate. Irrigation District (IID) purchases the electric power generated and provides irrigation water for cooling tower make-up to the plant for the first-five years of operation, commencing mid-1980. Because of the unavailability of irrigation water from IID in the future, SCE is investigating the application and installation of air cooled heat exchangers in conjunction with the existing wet (evaporative) cooling tower with make-up based on use of 180 gpm (nominal) of the geothermal condensate which may be made available by the steam supplier.

  7. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    SciTech Connect (OSTI)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs.

  8. LIQUID-LIQUID EXTRACTION COLUMNS

    DOE Patents [OSTI]

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  9. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  10. Propellant actuated nuclear reactor steam depressurization valve

    DOE Patents [OSTI]

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  11. Methods of reducing liquid effluent from the OSU TRIGA MKII Reactor

    SciTech Connect (OSTI)

    Higginbotham, J.F.; Dodd, B.; Pratt, D.S.; Smith, S.; Anderson, T.V.

    1992-07-01

    In 1991, the OSU Radiation Center implemented a program to minimize the liquid effluent generated by the reactor facility. The goal of program is to become a 'zero' release facility with regards to routine liquid discharges. Only two liquid waste streams exist for the OSU reactor facility: discharges resulting from changing resin in the deminerializer and decontamination of equipment, primarily sample loading tubes. This paper describes a system which allows remote resin exchange to performed with the collection of all flush water. This water is then recycled for use as makeup for the primary water system. The service life of the resin is maximized by using a steam distillation unit as the source of makeup water to the deminerializer system instead of water coming directly from the City of Corvallis water supply. The second source of liquid waste water comes from the decontamination of the plastic loading tubes used to encapsulate samples. This process originally involved placing the tubes in a dishwasher and sending the discharge to a hold up tank. If the radionuclide concentrations in the tank were below the maximum permissible concentrations of 10CFR20 then it was released to the sanitary sewerage. This process was replaced in 1991 with a system which involved manual washing and rinsing of the tubes with the liquids being absorbed for disposal as solid waste. This paper will also describe the system which is being built to replace this process. It will use the dishwasher unit again but the liquid discharge will collected for absorption and disposal as solid waste. (author)

  12. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect (OSTI)

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  13. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids

    SciTech Connect (OSTI)

    Santillan, J. M. J.; Videla, F. A.; Schinca, D. C.; Scaffardi, L. B.; Fernandez van Raap, M. B.

    2013-04-07

    We report on the analysis of structure, configuration, and sizing of Cu and Cu oxide nanoparticles (Nps) produced by femtosecond (fs) laser ablation of solid copper target in liquids. Laser pulse energy ranged between 500 {mu}J and 50 {mu}J. Water and acetone were used to produce the colloidal suspensions. The study was performed through optical extinction spectroscopy using Mie theory to fit the full experimental spectra, considering free and bound electrons size dependent contributions to the metal dielectric function. Raman spectroscopy and AFM technique were also used to characterize the sample. Considering the possible oxidation of copper during the fabrication process, two species (Cu and Cu{sub 2}O) arranged in two structures (bare core or core-shell) and in two configuration types (Cu-Cu{sub 2}O or Cu{sub 2}O-Cu) were considered for the fitting depending on the laser pulse energy and the surrounding media. For water at high energy, it can be observed that a Cu-Cu{sub 2}O configuration fits the experimental spectra of the colloidal suspension, while for decreasing energy and below a certain threshold, a Cu{sub 2}O-Cu configuration needs to be included for the optimum fit. Both species coexist for energies below 170 {mu}J for water. On the other hand, for acetone at high energy, optimum fit of the full spectrum suggests the presence a bimodal Cu-Cu{sub 2}O core-shell Nps distribution while for decreasing energy and below a 70 {mu}J threshold energy value, Cu{sub 2}O-Cu core-shell Nps must be included, together with the former configuration, for the fit of the full spectrum. We discuss possible reasons for the changes in the structural configuration of the core-shell Nps.

  14. Chemical recovery process using break up steam control to prevent smelt explosions

    DOE Patents [OSTI]

    Kohl, Arthur L.; Stewart, Albert E.

    1988-08-02

    An improvement in a chemical recovery process in which a hot liquid smelt is introduced into a dissolving tank containing a pool of green liquor. The improvement comprises preventing smelt explosions in the dissolving tank by maintaining a first selected superatmospheric pressure in the tank during normal operation of the furnace; sensing the pressure in the tank; and further impinging a high velocity stream of steam upon the stream of smelt whenever the pressure in the tank decreases below a second selected superatmospheric pressure which is lower than said first pressure.

  15. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  16. Process And Apparatus To Accomplish Autothermal Or Steam Reforming Via A Reciprocating Compression Device

    DOE Patents [OSTI]

    Lyons, K. David; James, Robert; Berry, David A.; Gardner, Todd

    2004-09-21

    The invention provides a method and apparatus for producing a synthesis gas from a variety of hydrocarbons. The apparatus (device) consists of a semi-batch, non-constant volume reactor to generate a synthesis gas. While the apparatus feeds mixtures of air, steam, and hydrocarbons into a cylinder where work is performed on the fluid by a piston to adiabatically raise its temperature without heat transfer from an external source.

  17. MagViz Bottled Liquid Scanner at Albuquerque International Sunport

    ScienceCinema (OSTI)

    Surko, Stephen; Dennis, Steve; Espy, Michelle

    2014-08-12

    The next-generation bottled liquid scanner, MagViz BLS, is demonstrated at the Albuquerque International Sunport, New Mexico

  18. Productivity improvement handbook for fossil steam power plants. Final report

    SciTech Connect (OSTI)

    Armor, A.F.; Wolk, R.H. |

    1998-09-01

    This book is written to help electric generation staff operate their plants more profitably in a competitive environment. Since responsibility for keeping the plant running falls directly on the shoulders of plant personnel, they want to understand what can go wrong, receive information on the current condition of equipment, and fix things when equipment fails or performs poorly. The information in this book is organized so a reader can quickly and easily grasp the current state-of-the-art in maintaining fossil steam units, obtain guidance on specific plant problems, and move ahead with solutions. Many reports and guidelines have been issued on boilers, turbines, generators, heat exchangers, and other plant equipment covering failure modes, causes, fixes, and maintenance practices. Liberal use has been made of these reports to extract the salient recommendations, and the citations and bibliographies acknowledge these sources. The reader is directed to the comprehensive list of reports and papers for further details on specific issues. The scope of this book does not permit a detailed and extensive treatment of each of the hundreds of potential in-plant problems, but does permit the reader to get a first assessment of likely symptoms and modes of failure, and enough information to do something about it. It`s a working handbook for fossil plant staff who are daily faced with protecting the integrity and reliability of the electric generation business.

  19. LIQUID TARGET

    DOE Patents [OSTI]

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  20. Building America Expert Meeting: Multifamily Hydronic and Steam Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls and Distribution Retrofits | Department of Energy Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits Building America Expert Meeting: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits This expert meeting was conducted on July 13, 2011 by the ARIES Collaborative in New York City. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family

  1. Purchasing Energy-Efficient Commercial Steam Cookers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Cookers Purchasing Energy-Efficient Commercial Steam Cookers The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law. FEMP's

  2. Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3

    SciTech Connect (OSTI)

    Not Available

    2002-03-01

    A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

  3. Steam Dryer Segmentation and Packaging at Grand Gulf Nuclear Station - 13577

    SciTech Connect (OSTI)

    Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M.

    2013-07-01

    Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they will be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)

  4. Save Energy Now in Your Steam Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon Save Energy Now in Your Steam Systems (January 2006) More Documents & Publications Save Energy Now in Your Process Heating Systems Install an Automatic Blowdown-Control System

  5. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical ...

  6. Dongfang Steam Turbine Works DFSTW | Open Energy Information

    Open Energy Info (EERE)

    Turbine Works DFSTW Jump to: navigation, search Name: Dongfang Steam Turbine Works (DFSTW) Place: Deyang, Sichuan Province, China Zip: 618000 Sector: Wind energy Product:...

  7. Y-12 Steam Plant Project Received National Recognition for Project...

    National Nuclear Security Administration (NNSA)

    Steam Plant Project Received National Recognition for Project Management Excellence | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission ...

  8. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Once the data collection was complete, the assessment team evaluated the steam ... is a national campaign started in 2005 in response to a rapid rise in energy prices. ...

  9. ,,,"with Any"," Steam Turbines Supplied by Either Conventional...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 8.3;" " Unit: Percents." ,,,"Establishments" ,,,"with Any"," Steam Turbines Supplied by Either Conventional or Fluidized Bed ...

  10. Improving Steam System Performance: A Sourcebook for Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a comprehensive technical guide on improving steam systems, ... a refresher, a brief discussion of the terms, ... The book is a learning tool to teach engineers how to design ...

  11. Consider Installing a Condensing Economizer, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Suggested Actions Determine your boiler capacity, average steam production, ... in-plant uses for heated water, such as boiler makeup water heating, preheating, or ...

  12. Install an Automatic Blowdown-Control System, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dissolved solids in a boiler, water is periodically discharged or blown down. High dissolved solids concentrations can lead to foaming and carryover of boiler water into the steam. ...

  13. Improve Your Boiler's Combustion Efficiency, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Your Boiler's Combustion Efficiency Combustion Efficiency Operating your boiler ... due to the increased fue gas fow-thus lowering the overall boiler fuel-to-steam effciency. ...

  14. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment Steam System Efficiency Optimized After J.R. Simplot Fertilizer Plant Receives Energy Assessment ...

  15. Consider Installing a Condensing Economizer - Steam Tip Sheet #26A

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet is part of a series of tip sheets on how to optimize an industrial steam system.

  16. Return Condensate to the Boiler - Steam Tip Sheet #8

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on returning condensate to boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING...

    Office of Scientific and Technical Information (OSTI)

    are indispensable to design and improve oil recovery processes such as steam, hot ... and equilibrium properties of selected oilCOsub 2water mixtures at pressures up to ...

  18. Improving Steam System Performance: A Sourcebook for Industry

    SciTech Connect (OSTI)

    2004-10-01

    A sourcebook designed to provide steam system users with a reference outlining opportunities to improve system performance and optimize energy efficiency in industrial energy systems.

  19. Liquid metal thermoacoustic engine

    SciTech Connect (OSTI)

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  20. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    SciTech Connect (OSTI)

    LUECK, K.J.

    2001-06-07

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF.

  1. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    SciTech Connect (OSTI)

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  2. Sales lag sparks steam trap diversity

    SciTech Connect (OSTI)

    Crawford, E.

    1980-03-03

    Competing manufacturers have broadened their product range and customer services in an effort to survive a tightened market and the introduction of unconventional devices. Users and vendors agree that rising energy costs now give inspection and maintenance of steam traps top priority. New products on the market are described. Competition has led to some questionable advertising and legal action. Fixed orifice and temperature-actuated valves are among the alternative products offered. Models of the major manufacturers are compared by type, pressure and condensate load range, primary use, and price.

  3. Method of measuring a liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

    1991-03-19

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

  4. An Overview of Nuclear vs. Non-Nuclear Design Code Requirements for a Candidate Steam Supply System for Commercial Applications

    SciTech Connect (OSTI)

    Robert Jetter

    2011-04-01

    The objective is to identify (mostly for industrial end-users) the difference between a Section III nuclear steam generator (classified as Structures, Systems and Components (SSC)) and a Section VIII steam generator in the same general conditions, but used in a conventional application. Specifically, applicable temperature and pressure ranges and a more quantitative description of how materials change, design margins change and required design rigor changes are of interest. This overview focuses on the steam generator pressure boundary but the downstream piping will also be considered. Within the designations of Section III and Section VIII there are subcategories with their specific regions of applicability. Each of these subcategories has evolved their own unique features with respect to design rules and their implementation. A general overview of the various design codes will be provided in sufficient detail to illustrate the major differences; however, a detailed discussion of the various design requirements and their implementation is beyond the scope of this discussion. References (1) and (2) are sources of more detailed information. Also, example wall sizing calculations will be provided to illustrate the application of the relevant design codes under the candidate design conditions. The candidate steam supply Design Conditions are 600C (1112F) and 24MPa (3,480psi). The Operating Conditions or Service Levels will be somewhat lower and the difference shows up in some of the various design methodologies employed.

  5. Effect of reactor conditions on MSIV (main steam isolation valves)-ATWS power level

    SciTech Connect (OSTI)

    Diamond, D.J.

    1987-01-01

    In a boiling water reactor (BWR) when there is closure of the main steam isolation valves (MSIVs), the energy generated in the core will be transferred to the pressure suppression pool (PSP) via steam flows out of the relief valves. The pool has limited capacity as a heat sink and hence, if there is no reactor trip (an ATWS event), there is the possibility that the pool temperature may rise beyond acceptable limits. The present study was undertaken to determine how the initial reactor conditions affect the power during an MSIV-ATWS event. The time of interest is during the 20-30 minute period when it is assumed that the reactor is in a quasi-equilibrium condition with the water level and pressure fixed, natural circulation conditions and no control rod movement or significant boron in the core. The initial conditions of interest are the time during the cycle and the operating state. 4 refs., 2 tabs.

  6. Evaluation of graphite/steam interactions for ITER (International Thermonuclear Experimental Reactor)

    SciTech Connect (OSTI)

    Smolik, G.R.; Merrill, B.J.; Piet, S.J.; Holland, D.F.

    1990-09-01

    In this report we present the results of an experimental/analytical study designed to determine the quantity of hydrogen generated during a coolant inleakage accident in ITER. This hydrogen could represent a potential explosive hazard, provided the proper conditions exist, causing machine damage and release of radioactive material. We have measured graphite/steam reaction rates for several graphites and carbon-based composites at temperatures between 1000 C and 1700 C. The effects of steam flow rate, and partial pressure were also examined. The measured reaction rates correlated well with two Arrhenius type relationships. We have used the relationships for GraphNOL N3M in a thermal model to determine that for ITER the quantity of hydrogen produced would range between 5 and 35 kg, depending upon how the graphite tiles are attached to the first wall. While 5 kg is not a significant concern, 35 kg presents an explosive hazard. 20 refs., 14 figs., 1 tab.

  7. Steam distribution and energy delivery optimization using wireless sensors

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Djouadi, Seddik M; Lake, Joe E

    2011-01-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  8. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  9. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007 ...

  10. Upgrade Boilers with Energy-Efficient Burners - Steam Tip Sheet #24

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Use Low-Grade Waste Steam to Power Absorption Chillers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for CHP Applications, April 2005 Improving Steam System Performance: A Sourcebook for Industry, Second Edition Flash High-Pressure Condensate to Regenerate Low-Pressure Steam...

  12. Flash High-Pressure Condensate to Regenerate Low-Pressure Steam

    Broader source: Energy.gov [DOE]

    This tip sheet outlines optimal conditions for flashing high-pressure condensate to regenerate low-pressure steam in steam systems.

  13. Steam trap maintenance management saves $180,000 annually

    SciTech Connect (OSTI)

    Franks, F.C.; Wickersham, C.

    1985-12-01

    The Reichhold Chemical plant is located in Elizabeth, NJ. At this location, the cost of steam had skyrocketed to $5.30 per million Btu. The plant has 600 steam traps manufactured by ten different companies. Some 17 different models of traps are used with 33 piping configurations. There are five different operating pressures throughout the plant ranging from 15-175 psig, including 30, 65, and 120 psig. Five different applications of steam usage can be broken down as follows: steam tracing (56%); drip (21%); comfort heating (18%); tank coil (4%); and process (1%). In the fall of 1983, the annual yearly inspection of steam traps was supplanted with an independent trap survey service, specializing in detecting the malfunctioning of various types of steam traps. The basic program included location and tagging of all steam traps; survey and inspection of steam trap population; development of a trap map; and full computer analysis of collected data. It was determined that approximately 3919 lb/hr of steam could be saved by repairing the failed open traps and implementing the report's recommendations. There were also benefits from fixing the failed closed traps which were out of service at the time of the survey. These traps do not allow the flow of steam or condensate to pass through the orifice. This condition causes condensate to back up and reduce efficiency. The maintenance management has been pleased with the results and recommendations of the program. It has provided them with a complete inventory and status report of the 600 traps plantwide. It saved $180,000 over the previous year in energy expenditures. This was the most important contribution in lowering the plant energy costs.

  14. SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT

    SciTech Connect (OSTI)

    Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

    2005-07-01

    Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

  15. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  16. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  17. Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model

    SciTech Connect (OSTI)

    Wagner, M. J.; Zhu, G.

    2012-09-01

    This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.

  18. Steam bubble collapse induced water hammer in draining pipes

    SciTech Connect (OSTI)

    Griffith, P.; Silva, R.J.

    1991-08-01

    When hot steam replaces cold condensate in a horizontal or almost horizontal pipe, a steam bubble collapse induced water hammer often results. The effect of condensate drainage velocity and pipe declination on the incidence of steam bubble collapse induced water hammer is investigated experimentally. Declining the pipe more than 2.4{degrees} allows drainage velocities up to 3 ft/sec (1m/s) in a two inch (5 cm) pipe without water hammer. A semi-empirical theory allows extrapolation to other pressures, pipe sizes and inclinations. 4 refs.

  19. Thermo-gasification of steam classified municipal solid waste

    SciTech Connect (OSTI)

    Eley, M.H.; Sebghati, J.M.

    1996-12-31

    Municipal solid waste (MSW) has been processed using a procedure called steam classification. This material has been examined for use as a combustion fuel, feedstock for composting, and cellulytic enzyme hydrolysis. An initial study has been conducted using a prototype plasma arc pyrolysis system to transform the steam classified MSW into a pyrolysis gas and vitrified material. With 136 kg (300 lbs) of the steam classified MSW pyrolysized at a feed rate of 22.7 kg/hour (50 lbs/hour), samples of the gas and grasslike material were captured for analysis. A presentation of the emission data and details on the system used will be presented.

  20. Radiolytic gas generation in crystalline silicotitanate slurries

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-12-15

    This study measured the impact of crystalline silicotitanate (CST) solids on the rate of formation and composition of radiolytically generated gases in simulated Savannah River Site liquid waste.

  1. Ionic Liquids as Multi-Functional Lubricant Additives to Enhance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants Ionic Liquids as Novel Engine ...

  2. Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants

    SciTech Connect (OSTI)

    Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

    1998-07-01

    The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

  3. DYNA3D Finite Element Analysis of Steam Explosion Loads on a Pedestal Wall Design

    SciTech Connect (OSTI)

    Noble, C R

    2007-01-18

    The objective of this brief report is to document the ESBWR pedestal wall finite element analyses that were performed as a quick turnaround effort in July 2005 at Lawrence Livermore National Laboratory and describe the assumptions and failure criteria used for these analyses [Ref 4]. The analyses described within are for the pedestal wall design that included an internal steel liner. The goal of the finite element analyses was to assist in determining the load carrying capacity of the ESBWR pedestal wall subjected to an impulsive pressure generated by a steam explosion.

  4. Industrial Heat Pumps for Steam and Fuel Savings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for ...

  5. Building America Expert Meeting: Multifamily Hydronic and Steam...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the ...

  6. Use Low-Grade Waste Steam to Power Absorption Chillers

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on waste steam to power absorption chillers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  7. Use Steam Jet Ejectors or Thermocompressors to Reduce Venting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery of the latent heat content of low-pressure steam reduces the boiler load, ... For natural gas fuel priced at 8.00 per MMBtu (8.00MMBtu) with a boiler effciency of ...

  8. Steam System Efficiency Optimized After J.R. Simplot Fertilizer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.R. Simplot Don plant in Pocatello, Idaho, repaired boiler feed water pumps such as the one pictured above, and revised boiler operating practices to reduce steam venting by 17 ...

  9. Use Vapor Recompression to Recover Low-Pressure Waste Steam,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a boiler. Example Consider a petrochemical plant that vents 15-psig steam to the atmosphere. At the same time, a process imposes a continuous requirement on the boiler for ...

  10. Consider Steam Turbine Drives for Rotating Equipment, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam turbines are well suited as prime movers for driving boiler feedwater pumps, forced ... Given a natural gas cost of 8.00MMBtu and a boiler effciency of 80%, the fuel-related ...

  11. Insulate Steam Distribution and Condensate Return Lines, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Any surface over 120F should be insulated, including boiler surfaces, steam and ... Total Heat Loss 5,069 MMBtuyr Given a boiler effciency of 80%, the annual cost savings ...

  12. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Recover Heat from Boiler Blowdown - Steam Tip Sheet #10

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering heat from boiler blowdown provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Minimize Boiler Short Cycling Losses - Steam Tip Sheet #16

    SciTech Connect (OSTI)

    2006-01-01

    This revised AMO tip sheet on minimizing boiler short cycling losses provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. C++ Implementation of IAPWS Water/Steam Properties

    SciTech Connect (OSTI)

    Ling Zou; Haihua Zhao; Hongbin Zhang; Qiyue Lu

    2014-02-01

    For the calculations of water-involved systems, such as safety analysis of light water reactors, it is essential to provide accurate water properties. The International Association for the Properties of Water and Steam is an international non-profit association of national organizations concerned with the properties of water and steam. It provides internationally accepted formulations of water/steam properties for scientific and industrial applications. The purpose of this work is to provide a stand-alone software package in C++ programming language to provide accurate and efficient water/steam properties evaluation, based on the latest IAPWS releases. The discussion on related IAPWS releases, code implementations and verifications are provided in details.

  16. Savannah River's Biomass Steam Plant Success with Clean and Renewable...

    Office of Environmental Management (EM)

    Page 1 of 2 Savannah River Site South Carolina Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy Challenge In order to meet the federal energy and ...

  17. Fluorine separation and generation device

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.; Stefan, Constantin I.

    2006-08-15

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  18. Fluorine separation and generation device

    DOE Patents [OSTI]

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  19. Fluorine separation and generation device

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.; Stefan, Constantin I.

    2010-03-02

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  20. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  1. Building America Technology Solutions for New and Existing Homes: Steam

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) | Department of Energy Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet) The Partnership for Advanced Residential Retrofit (PARR), a U.S. Department of Energy Building

  2. Savannah River's Biomass Steam Plant Success with Clean and Renewable

    Energy Savers [EERE]

    Energy | Department of Energy River's Biomass Steam Plant Success with Clean and Renewable Energy Savannah River's Biomass Steam Plant Success with Clean and Renewable Energy In order to meet the federal energy and environmental management requirements in Presidential Executive Order 13423, DOE Order 430.2B, and the Transformational Energy Action Management (TEAM) Initiative, DOE Secretary Samuel Bodman encouraged the DOE federal complex to utilize third party financing options like the

  3. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  4. Firm turns trash to steam, saves $60,500

    SciTech Connect (OSTI)

    Cohn, L.

    1982-05-17

    An incinerator/boiler system that the Ingersoll-Rand Co. uses to burn trash and produce steam for heating and parts cleaning saved the company $60,500 in avoided fuel and trash-disposal costs last year. Replacing a natural gas-fired boiler, the new system reduces the demand for gas by 14%. Heat recovered from the trash burning is transferred to the boiler to make steam. No smoke is emitted. (DCK)

  5. Table A39. Total Expenditures for Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  6. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  7. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, Marvin W.

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  8. Method for increasing steam decomposition in a coal gasification process

    DOE Patents [OSTI]

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  9. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  10. Evaluation of some transport and thermodynamic properties of superheated steam: Effects of steam temperature and pressure

    SciTech Connect (OSTI)

    Devahastin, S.; Mujumdar, A.S.

    2000-05-01

    For machine computation of drying, humidification and dehumidification processes it is necessary to have reliable correlations to predict transport and thermodynamic properties of the drying medium as functions of temperature and pressure. In this paper empirical correlations for specific volume, dynamic viscosity, thermal conductivity as well as specific isobaric heat capacity of superheated steam over the temperature range of 160--500 C and the pressure range of 100--500 kPa are presented. The Prandtl numbers at various temperatures and pressures are also presented. Comments on the properties and the use of these correlations are given.

  11. Closed circuit steam cooled turbine shroud and method for steam cooling turbine shroud

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian; Sexton, Brendan Francis; Kellock, Iain Robertson

    2002-01-01

    A turbine shroud cooling cavity is partitioned to define a plurality of cooling chambers for sequentially receiving cooling steam and impingement cooling of the radially inner wall of the shoud. An impingement baffle is provided in each cooling chamber for receiving the cooling media from a cooling media inlet in the case of the first chamber or from the immediately upstream chamber in the case of the second through fourth chambers and includes a plurality of impingement holes for effecting the impingement cooling of the shroud inner wall.

  12. Single pressure steam bottoming cycle for gas turbines combined cycle

    SciTech Connect (OSTI)

    Zervos, N.

    1990-01-30

    This patent describes a process for recapturing waste heat from the exhaust of a gas turbine to drive a high pressure-high temperature steam turbine and a low pressure steam turbine. It comprises: delivering the exhaust of the gas turbine to the hot side of an economizer-reheater apparatus; delivering a heated stream of feedwater and recycled condensate through the cold side of the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus to elevate the temperature below the pinch point of the boiler; delivering the discharge from the high pressure-high temperature steam turbine through the economizer-reheater apparatus in an indirect heat exchange relationship with the gas turbine exhaust on the hot side of the economizer-reheater apparatus; driving the high pressure-high temperature steam turbine with the discharge stream of feedwater and recycled condensate which is heated to a temperature below the pinch point of the boiler by the economizer-reheater apparatus; and driving the low pressure steam turbine with the discharged stream of the high pressure-high temperature steam turbine reheated below the pinch point of the boiler by the economizer-reheater apparatus.

  13. Heavy oil. upgrading integrated with steam drive

    SciTech Connect (OSTI)

    Van Driesen, R.; Viens, C.H.; Fornoff, L.L.

    1980-01-01

    A study of the upgrading of heavy oil from a representative Venezuelan Jobo crude (9.2/sup 0/API, 4.1% sulfur, and 500 ppm total metals) from the Orinoco area involved 110 computer simulations based on a modified C-E Lummus Refinery Linear Program model on the assumptions of a 125,000 bbl/day refinery built, starting at 1979 prices, for completion by 1986 near the producing field to supply the fuel oil needed to provide oil field steam. All of the upgrading systems were economically attractive; the per cent return-on-investment (ROI) before taxes for the methods studied were: for Lummus LC-Fining, 135.9%; for Exxon's FLEXICOKING, 132.4%; for delayed coking, 119.2%; and for deasphalting, 106.5%. LC-Fining provided the best over-all combination of flexibility, product yield, product quality, and return on investment. The economics favored upgrading to the maximum extent possible; there was a reduction in the ROI for all the upgrading systems when product specifications were lowered from the premium base case (1.2% SO/sub 2/ emitted per million Btu fired). The premium upgraded heavy crude oils should be worth $3.00-$3.50/bbl more than comparable conventional crude oils, could be of up to 27/sup 0/API, and could be substituted, at up to 50%, for conventional crude oils in a typical U.S. refinery.

  14. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  15. TWR Bench-Scale Steam Reforming Demonstration

    SciTech Connect (OSTI)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  16. CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: PROTOTYPE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEVELOPMENT AND FULL-SCALE TESTING | Department of Energy CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: PROTOTYPE DEVELOPMENT AND FULL-SCALE TESTING CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: PROTOTYPE DEVELOPMENT AND FULL-SCALE TESTING Lyondell Chemical Company - Newtown Square, PA An innovative catalytic coating material could significantly reduce surface deposits on ethylene steam cracker furnace coils. As ethylene production is the largest user

  17. The importance of combined cycle generating plants in integrating large levels of wind power generation

    SciTech Connect (OSTI)

    Puga, J. Nicolas

    2010-08-15

    Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

  18. Evaluation of Susquehanna steam electric station emergency procedures related to ATWS

    SciTech Connect (OSTI)

    Hill, P.R.; Refling, J.G.

    1986-01-01

    A number of variations in operator response strategy to a severe anticipated transient without scram (ATWS) event may be considered. Calculations have been performed for the Susquehanna Steam Electric Station, a two-unit 1050-MW(e) boiling water reactor, to compare the relative effectiveness of various level and flow control strategies for ATWS mitigation. The objectives of this evaluation were to determine the critical timing parameters of the various response strategies, their demands for operator action, and their relative effectiveness. The evaluations performed have considered ATWS from full power with no rod insertion for both isolation and nonisolation events. These evaluations have not considered the impact of additional equipment failure such as loss of the high-pressure coolant injection system or the standby liquid control system.

  19. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  20. Shock compression of liquid hydrazine

    SciTech Connect (OSTI)

    Garcia, B.O.; Chavez, D.J.

    1995-01-01

    Liquid hydrazine (N{sub 2}H{sub 4}) is a propellant used by the Air Force and NASA for aerospace propulsion and power systems. Because the propellant modules that contain the hydrazine can be subject to debris impacts during their use, the shock states that can occur in the hydrazine need to be characterized to safely predict its response. Several shock compression experiments have been conducted in an attempt to investigate the detonability of liquid hydrazine; however, the experiments results disagree. Therefore, in this study, we reproduced each experiment numerically to evaluate in detail the shock wave profiles generated in the liquid hydrazine. This paper presents the results of each numerical simulation and compares the results to those obtained in experiment. We also present the methodology of our approach, which includes chemical kinetic experiments, chemical equilibrium calculations, and characterization of the equation of state of liquid hydrazine.

  1. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  2. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  3. Optimization of steam explosion pretreatment. Final report

    SciTech Connect (OSTI)

    Foody, P.

    1980-04-01

    Different operating conditions are required to optimize the yield from each of the various fractions in the substrate. Xylose recovery is maximized at short cooking times whereas maximum lignin recovery requires much longer cooking times. Peak glucose yield and rumen digestibility occur at intermediate times. If process conditions are set for maximum glucose yield we have achieved a yield of 68% of the theoretical, based on an average of a dozen substrates tested. Individual results ranged from 46 to 87%. If the process is optimized for maximum total sugars (i.e. glucose plus xylose) we have obtained an average yield of 60%, with a range of 31 to 75%. With rumen microflora, the average value of the in-vitro cellulose digestibility was 82%, with a range of 41 to 90%. The optimum operating conditions for total sugars are a pressure of 500 to 550 psig with a cooking time of 40 to 50 seconds and 35% starting moisture content. Particle size is not a significant factor, nor is pre-steaming or use of a constricting die in the gun nozzle. High quality lignin can be extracted with 80% yield. The Iotech lignin is very soluble, has a low molecular weight and is reactive. The unique properties of the lignin derive from the explosion at the end of the pretreatment. A lignin formaldehyde resin has been successfully formulated and tested. It represents a high value utilization of the lignin byproduct with immediate market potential. A detailed engineering design of the process gives an estimated operating cost of $7.50/OD ton of biomass. At this low cost, the Iotech process achieves many important pretreatment goals in a single step. The substrate has been sterilized; it has been pulverized into a powder; the cellulose has been accessible; and a highly reactive lignin fraction can be recovered and utilized.

  4. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  5. High-temperature oxidation of Zircaloy in hydrogen-steam mixtures. [PWR; BWR

    SciTech Connect (OSTI)

    Chung, H.M.; Thomas, G.R.

    1982-09-01

    Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700/sup 0/C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate.

  6. Vehicle Technologies Office Merit Review 2014: Ionic Liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Viscosity Fuel-Efficient Engine Lubricants Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity ...

  7. System to inject steam and produce oil from the same wellbore through downhole valve switching. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Through direct contacts with many California Operators, the potential market for this technology and hardware was more closely defined. The largest market might be for re-entry into existing but shut-in wells, equipped with 7{double_prime}OD cemented casings, for which a suitable configuration was designed. For field-testing any prototype Downhole equipment, however, Operators and Service Companies prefer to start with a new well, for better control of the well characteristics. In the relatively shallow reservoirs where Steam injection is currently used with success, the additional drilling cost, in soft formations, is sufficiently small that this became the main design case. Substantial savings were obtained by reducing the number of Downhole valves from two to one and by replacing the twin hydraulically-controlled ball or flapper-type valves with a single sliding sleeve valve, operated by wireline. Laboratory tests conducted at UC-Berkeley confirmed the satisfactory operation of this type of valve with wet steam over extended periods. Low reservoir pressures dictated the use of artificial lift methods, with rod pumps considered the most economical. The availability of live steam downhole at all times is, however, a major advantage which led to the selection of a combined method of artificial lift: (1) steam-lift of the produced fluids up to the kick-off point of the medium curvature drainholes, (2) dumping of the produced fluids into a vertical separator/sump below the kick-off points, (3) vertical rod pumping of the liquid phases from the downhole separator/sump to the surface through a dedicated production tubing.

  8. Steam exit flow design for aft cavities of an airfoil

    DOE Patents [OSTI]

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  9. Bore tube assembly for steam cooling a turbine rotor

    DOE Patents [OSTI]

    DeStefano, Thomas Daniel (Ballston Lake, NY); Wilson, Ian David (Clifton Park, NY)

    2002-01-01

    An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.

  10. Life assessment product catalog for boilers, steam pipes, and steam turbines

    SciTech Connect (OSTI)

    Hoffman, S. , Santa Clara, CA )

    1992-07-01

    Aging fossil power plants, escalating costs of new plant construction, and load growth rate uncertainties are motivating utilities to make the most effective use of critical components in existing power plants. To help meet this need, EPRI has refined existing methods and developed new methods of predicting the remaining life of key fossil plant components with greater accuracy and confidence. This report describes 16 EPRI products (guidelines, computer programs, and other tools) that apply these techniques to boiler tubes, boiler headers, steam lines, and turbine rotors, blades, and casings. Utility personnel, including plant engineers, maintenance supervisor, engineering department staff, plant operating staff, and performance engineers, can use these products to assess remaining component life, as well as to set cost-effective maintenance procedures, inspection schedules, and operating procedures.

  11. Method for cutting steam heat losses during cyclic steam injection of wells. Fourth quarterly report

    SciTech Connect (OSTI)

    1995-02-01

    Effective Gravel-packing of horizontal wells is difficult to achieve, using conventional pre-slotted liners, yet it is generally required in the soft Heavy Oil reservoir rocks of California, where cyclic steam injection has been proven to be the most cost-effective oil recovery method. The proposed method of gravel placement behind a non-perforated liner, which is later perforated {open_quotes}in situ{close_quotes} with a new tool operated by coiled-tubing, is expected to greatly reduce costs resulting from sand production in horizontal wells operated under cyclic steam injection. The detailed configuration of the prototype tool is described. It includes two pairs of cutting wheels at the ends of spring-loaded pivoting arms, which are periodically pressed through the liner wall and shortly thereafter retracted, while the coiled tubing is being pulled-out. For each operating cycle of the hydraulically-operated tool, this results in a set of four narrow slots parallel to the liner axis, in two perpendicular diametral planes. The shape of the edges of each slot facilitates bridging by the gravel particles, for a more effective and compacted gravel-packing. The tool includes a few easily-assembled parts machined from surface-hardened alloy steel presenting great toughness, selected from those used in die making. The operation of the system and potential future improvements are outlined. The method of fabrication, detailed drawings and specifications are given. They will serve as a basis for negotiating subcontracts with qualified machine shops.

  12. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  13. Modeling of coupled heat and mass transfers with phase change in a porous medium: Application to superheated steam drying

    SciTech Connect (OSTI)

    Daurelle, J.V.; Topin, F.; Occelli, R. [IUSTI, Marseille (France)

    1998-01-01

    The physical model is based on balance equations at the representative elementary volume. The considered medium has three phases (liquid, solid, and gas). The gas phase includes two components (air and vapor). The authors use the mass balance equations on air and water (liquid and steam) as well as the heat equation in order to describe the phenomena. The system of equations is closed via classical relations in these media, which leads to a three-equation system with coupled nonlinear partial derivatives. The authors have applied this model to superheated steam drying. A solution model of the coupled nonlinear equation system based on the finite element method in a two-dimensional configuration was developed and validated. This approach allows one to determine all the variables of the problem. It is a complementary tool of analysis that opens access to nonmeasurable variables, such as the phase change rate. This computation model was applied to a configuration studied experimentally. The numerical and experimental results agree in nondimensional time. This double approach has enabled them to point out and evaluate new mechanisms typical of this drying method.

  14. Functional design criteria for Project W-252, Phase II Liquid Effluent Treatment and Disposal: Revision 1

    SciTech Connect (OSTI)

    Hatch, C.E.

    1994-11-10

    This document provides the functional design criteria required for the Phase 2 Liquid Effluent Treatment and Disposal Project, Project W-252. Project W-252 shall provide new facilities and existing facility modifications required to implement Best Available Technology/All Known, Available, and Reasonable Methods of Prevention, Control, and Treatment (BAT/AKART) for the 200 East Phase II Liquid Effluent Streams. The project will also provide a 200 East Area Phase II Effluent Collection System (PTECS) for connection to a disposal system for relevant effluent streams to which BAT/AKART has been applied. Liquid wastestreams generated in the 200 East Area are currently discharged to the soil column. Included in these wastestreams are cooling water, steam condensate, raw water, and sanitary wastewaters. It is the policy of the DOE that the use of soil columns to treat and retain radionuclides and nonradioactive contaminants be discontinued at the earliest practical time in favor of wastewater treatment and waste minimization. In 1989, the DOE entered into an interagency agreement with Ecology and EPA. This agreement is referred to as the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Project W-252 is one of the projects required to achieve the milestones set forth in the Tri-Party Agreement. One of the milestones requires BAT/AKART implementation for Phase II streams by October 1997. This Functional Design Criteria (FDC) document provides the technical baseline required to initiate Project W-252 to meet the Tri-Party Agreement milestone for the application of BAT/AKART to the Phase II effluents.

  15. Steam turbine development for advanced combined cycle power plants

    SciTech Connect (OSTI)

    Oeynhausen, H.; Bergmann, D.; Balling, L.; Termuehlen, H.

    1996-12-31

    For advanced combined cycle power plants, the proper selection of steam turbine models is required to achieve optimal performance. The advancements in gas turbine technology must be followed by advances in the combined cycle steam turbine design. On the other hand, building low-cost gas turbines and steam turbines is desired which, however, can only be justified if no compromise is made in regard to their performance. The standard design concept of two-casing single-flow turbines seems to be the right choice for most of the present and future applications worldwide. Only for very specific applications it might be justified to select another design concept as a more suitable option.

  16. Electrohydrodynamically driven large-area liquid ion sources

    DOE Patents [OSTI]

    Pregenzer, Arian L. (Corrales, NM)

    1988-01-01

    A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.

  17. A simplified model of decontamination by BWR steam suppression pools

    SciTech Connect (OSTI)

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  18. Comparative health and safety assessment of alternative future electrical-generation systems

    SciTech Connect (OSTI)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated.

  19. Okeelanta Cogeneration Project: Electricity and steam from sugar cane

    SciTech Connect (OSTI)

    Schaberg, D.

    1994-12-31

    The Okeelanta Cogeneration Project is a Bagasse- and wood chip-fired cogeneration project with a net electrical output of approximately 70MW, located at the Okeelanta Corporation`s sugar mill in South Bay, Florida. The Project is comprised of three stoker type boilers each capable of producing 440,000 lbs/hr of steam at 1455 psia, 955F, and a single extraction/condensing steam turbine with a gross output of 75 MW. The electrical output will be sold to Florida Power and Light under the terms of an executed power purchase agreement and delivered at 138kV.

  20. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  1. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P.

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  2. Bucket-type steam traps removed in $82K retrofit

    SciTech Connect (OSTI)

    Poplett, J.

    1985-08-19

    A retrofit of 481 mostly failed steam traps at Martin Marietta's Aerospace Division should reduce steam costs by $70,000 and require little or no maintenance. Payback should occur within 14 months. The new traps include orifice, bellow-type thermostatic, and float-type traps that have few or no moving parts. Lack of maintenance was responsible for the poor performance of the bucket traps that were replaced, although manufacturers of the bucket traps disagree that replacement of certain parts is necessary every six months. The author describes the design and operation of each type of trap.

  3. Method of fabrication of supported liquid membranes

    DOE Patents [OSTI]

    Luebke, David R.; Hong, Lei; Myers, Christina R.

    2015-11-17

    Method for the fabrication of a supported liquid membrane having a dense layer in contact with a porous layer, and a membrane liquid layer within the interconnected pores of the porous layer. The dense layer is comprised of a solidified material having an average pore size less than or equal to about 0.1 nanometer, while the porous layer is comprised of a plurality of interconnected pores and has an average pore size greater than 10 nanometers. The supported liquid membrane is fabricated through the preparation of a casting solution of a membrane liquid and a volatile solvent. A pressure difference is established across the dense layer and porous layer, the casting solution is applied to the porous layer, and the low viscosity casting solution is drawn toward the dense layer. The volatile solvent is evaporated and the membrane liquid precipitates, generating a membrane liquid layer in close proximity to the dense layer.

  4. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOE Patents [OSTI]

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  5. New Y-12 Steam Plant On Line | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    Blog Home Field Offices Welcome to the NNSA Production Office NPO News Releases New Y-12 Steam Plant On Line New Y-12 Steam Plant On Line applicationmsword icon R-6-15...

  6. Replace Pressure-Reducing Valves with Backpressure Turbogenerators - Steam Tip Sheet #20

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTDGeothermalSteamLeaseUtahNonTrustLands.pdf Size of this...

  8. File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf | Open Energy...

    Open Energy Info (EERE)

    3UTEGeothermalSteamLeaseUtahTrustLands.pdf Jump to: navigation, search File File history File usage Metadata File:03UTEGeothermalSteamLeaseUtahTrustLands.pdf Size of this preview:...

  9. Use Vapor Recompression to Recover Low-Pressure Waste Steam (Revised0

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    This revised ITP tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  10. Use Vapor Recompression to Recover Low-Pressure Waste - Steam Tip Sheet #11

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on recovering low-pressure waste steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. • The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. • To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. • Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

  12. Method for generating hydrogen for fuel cells

    DOE Patents [OSTI]

    Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael

    2004-03-30

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  13. Liquid level, void fraction, and superheated steam sensor for nuclear reactor cores

    DOE Patents [OSTI]

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01

    An apparatus for detecting nominal phase conditions of coolant in a reactor vessel comprising one or more lengths of tubing each leading from a location being monitored to a closed outer end exterior of the vessel. Temperature is sensed at the open end of each length of tubing. Pressure within the tubing is also sensed. Both measurements are directed to an analyzer which compares the measured temperature to the known saturated temperature of the coolant at the measured pressure. In this manner, the nominal phase conditions of the coolant are constantly monitored.

  14. A method of measuring a molten metal liquid pool volume

    DOE Patents [OSTI]

    Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

    1990-12-12

    A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

  15. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    SciTech Connect (OSTI)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this technology could be used to reduce the cost and improve the efficiency of IGCC plants. The study goes beyond the systems-level analyses and initial lab work that formed the bases of previous studies and includes the following tasks: performing laboratory tests to quantify slurry properties; developing an engineering design of a liquid CO{sub 2} slurry preparation and feed system; conducting a full IGCC plant techno-economic analysis for Powder River Basin (PRB) coal and North Dakota lignite in both water and liquid CO{sub 2} slurries; and identifying a technology development plan to continue the due diligence to conduct a comprehensive evaluation of this technology. The initial task included rheology tests and slurry data analyses that would increase the knowledge and understanding of maximum solids loading capability for both PRB and lignite. Higher coal concentrations have been verified in liquid CO{sub 2} over water slurries, and a coal concentration of 75% by weight in liquid CO{sub 2} has been estimated to be achievable in a commercial application. In addition, lower slurry viscosities have been verified in liquid CO{sub 2} at the same solids loading, where the liquid CO{sub 2}/coal slurry viscosity has been measured to be about a factor of 10 lower than the comparable water slurry and estimated to be less than 100 centipoise in a commercial application. In the following task, an engineering design of a liquid CO{sub 2}/coal slurry preparation and mixing system has been developed for both a batch and continuous system. The capital cost of the design has also been estimated so that it could be used in the economic analysis. An industry search and survey has been conducted to determine if essential components required to construct the feed system are available from commercial sources or if targeted R&D efforts are required. The search and survey concluded that commercial sources are available for selected components that comprise both the batch and continuous type systems. During normal operation, the fuel exits the bottom of the coal silo and is fed to a rod mill for grinding to the desired particle size. From the rod mill, the coal is transported in a dense phase pneumatic transport system to the top of a solids heat exchanger, wherein the ground coal is chilled to a low temperature (in the range of -23.3°C (-10°F)) prior to mixing with liquid CO{sub 2}. This temperature was selected based on evaluating trade-offs between refrigeration work and the cost of the system pressure boundary at various combinations of pressure and temperature that correspond to the gas/liquid phase boundary for CO{sub 2}. Electrical loads to drive the equipment comprising the liquid CO{sub 2} feed system are significantly greater than those for a water slurry system, and this effect has been captured in the technical performance analysis. In the next task, a plant-wide techno-economic analysis has been conducted for PRB coal and lignite in both liquid CO{sub 2} and water slurry feed. The IGCC cases using a liquid CO{sub 2} slurry system show reduced plant output and higher heat rate for PRB coal and for ND lignite at 90% CO{sub 2} capture. Some of these performance differences can be attributed to the higher requirement for steam for the liquid CO{sub 2} slurry cases to drive the water-gas shift reaction, thereby reducing steam turbine power generation. Other factors contributing to the calculated performance differences are the increase in parasitic loads attributable to refrigeration to produce liquid CO{sub 2} and chilled coal and the reduction in enthalpy of the inlet streams to the gasifier associated with the low temperature liquid CO{sub 2} slurry feed. The capital costs for the complete plant are slightly higher for the liquid CO{sub 2} slurry cases for PRB coal but somewhat reduced for ND lignite relative to the corresponding water slurry cases. Differences in dollar/kWe costs are higher for both coals due to the reduction in net output. The cost of electricity computed for the liquid CO{sub 2}/coal slurry cases is greater for both PRB and ND Lignite coals. It does not appear that there is any benefit to using liquid CO{sub 2}/coal slurries for feeding low rank coals to the E-Gas™ gasifier. Any incidental benefits in improved cold gas efficiency are more than compensated for in higher overall plant costs, increased complexity, and reduced power output and efficiency. The results of the study are compared with previous published analyses, and the differences in model assumptions, approach and basis are summarized. It has been concluded that the use of liquid CO{sub 2} may still prove to have a significant advantage in a different type of gasifier, i.e., single-stage entrained flow with radiant quench section, but some key questions remain unanswered that can validate the potential improvement of gasifier performance using liquid CO{sub 2} slurries. In order to provide a path to answering these questions, a technology development roadmap has been developed to resolve fundamental issues and to better define the operation aspects of using liquid CO{sub 2}/coal slurries. The fundamental issues could be resolved by conducting additional laboratory analyses consisting of: • A rheological test program to quantitatively evaluate slurry preparation and handling for liquid CO{sub 2} including experiments to evaluate preparation systems. • An experimental program on CO{sub 2}-assisted gasification in order to obtain the most relevant experimental data from drop tube furnace studies to aid in verifying the potential advantages of direct feed of liquid CO{sub 2}/coal as gasifier feedstocks. Quantifying the operational aspects of liquid CO{sub 2} slurries can best be achieved with: • An experimental program using a flow test loop to evaluate equipment performance and handling properties of liquid CO{sub 2}/coal slurries for gasifier feedstocks on a scale sufficient to predict full scale operating parameters. • Spray atomization studies necessary to evaluate the effect of atomization properties of liquid CO{sub 2}/coal slurries that could be significantly different than those of water/coal slurries.

  16. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  17. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  18. Steam engines. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect (OSTI)

    1995-09-01

    The bibliography contains citations of selected patents concerning steam engines. The patents detail water spray injecter system, internal combustion, reaction chamber, valveless bi-chamber, multicylinder, steam recovery and recompression, sound simulator, oscillating, and rotary steam engines. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect (OSTI)

    Urbaniec, K.; Malczewski, J. [Warsaw Univ. of Technology, Plock (Poland). Dept. of Process Equipment

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  20. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  1. Replacement of alloy 800H superheated steam line

    SciTech Connect (OSTI)

    Barbier, R.A.; Bullock, J.W. [Sterling Chemicals, Texas City, TX (United States)

    1996-07-01

    Sterling Chemicals utilizes alloy 800HT (UNS N08811) piping for superheated steam service in its styrene dehydrogenation unit. An engineering project to replace these lines was recently completed. Material acquisition, shop fabrication, inspection requirements, and field erection will be highlighted in this paper.

  2. Pebble Bed Boiling Water Reactor Concept With Superheated Steam

    SciTech Connect (OSTI)

    Tsiklauri, G.; Newman, D.; Meriwether, G.; Korolev, V. [Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352 (United States)

    2002-07-01

    An Advanced Nuclear Reactor concept is presented which extends Boiling Water Reactor technology with micro-fuel elements (MFE) and produces superheated steam. A nuclear plant with MFE is highly efficient and safe, due to ceramic-clad nuclear fuel. Water is used as both moderator and coolant. The fuel consists of spheres of about 1.5 mm diameter of UO{sub 2} with several external coatings of different carbonaceous materials. The outer coating of the particles is SiC, manufactured with chemical vapor disposition (CVD) technology. Endurance of the integrity of the SiC coating in water, air and steam has been demonstrated experimentally in Germany, Russia and Japan. This paper describes a result of a preliminary design and analysis of 3750 MWt (1500 MWe) plant with standard pressure of 16 MPa, which is widely achieved in the vessel of pressurized-water type reactors. The superheated steam outlet temperature of 550 deg. C elevates the steam cycle to high thermal efficiency of 42%. (authors)

  3. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect (OSTI)

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  4. Optimization of some parameters of atomic steam-gas powerplant

    SciTech Connect (OSTI)

    Ratnikov, Y.F.

    1985-10-21

    Determination of optimum parameters of binary-type atomic steam-gas powerplant is a difficult analytical problem in view of the complicated interdependence of parameters, which characterize the reactor, gas-turbine, and steam-turbine parts of the installation. Conclusions include: 1) Determination of optimum parameters of atomic steam-gas installation is recommended to produce with gas consumption = const and heat output of the reactor = var. since best technical-economic indices of installation correspond to this case. 2) With increase in power of atomic steam-gas installation, together with improvement in economic indices, the optimum pressure ratio descends and optimum temperature of feed water increases. 3) Increase in the fuel component leads to a decrease of optimum pressure ratio and to increase in temperature of feed water. 4) Change of cost of reactor plant over wide limits virtually does not have effect on numerical values of optimum parameters being investigated. 5) In all cases optimum pressure ratio is more, and temperature of feed water is less than outer limits, obtained by thermodynamic calculations.

  5. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  6. High pressure liquid level monitor

    DOE Patents [OSTI]

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  7. Effects of Zircaloy oxidation and steam dissociation on PWR core heat-up under conditions simulating uncovered fuel rods

    SciTech Connect (OSTI)

    Viskanta, R.; Mohanty, A.K.

    1986-04-01

    The studies described in this report identify the regimes of slow transients in a partially uncovered core of a PWR. The threshold height and onset time for oxidation of the cladding of a fuel rod have been evaluated. The effects of oxidation in increasing the decay heat load, component temperature, reduction of cladding thickness and generation of hydrogen have been estimated. The condition for steam starvation has been determined. At high uncovered core heights, typically say 2.8 m for a geometry simulating the TMI-2 type of reactor, the solid and coolant temperatures can reach the limits of steam dissociation. The effects of radiation heat exchange between cladding and coolant, Zircaloy oxidation, steam dissociation, gap conductance between fuel and cladding and system pressure on the heatup of fuel rods have been investigated. The time for uncovering a certain core height is taken as the independent parameter. It is seen that if the uncovering process is allowed to continue beyond 9 minutes corresponding to an uncovered height of 1.9 m, onset of cladding oxidation can be a reality. These values provide a guideline for the response time of the emergency core cooling systems. 10 refs., 22 figs.

  8. Scram signal generator

    DOE Patents [OSTI]

    Johanson, Edward W. (New Lenox, IL); Simms, Richard (Westmont, IL)

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  9. Biomass gasification for liquid fuel production

    SciTech Connect (OSTI)

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  10. Conversion of olefins to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  11. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOE Patents [OSTI]

    Wilson, Ian D.; Wesorick, Ronald R.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  12. The role of SASSYS-1 in LMR (Liquid Metal Reactor) safety analysis

    SciTech Connect (OSTI)

    Dunn, F.E.; Wei, T.Y.C.

    1988-01-01

    The SASSYS-1 liquid metal reactor systems analysis computer code is currently being used as the principal tool for analysis of reactor plant transients in LMR development projects. These include the IFR and EBR-II Projects at Argonne National Laboratory, the FFTF project at Westinghouse-Hanford, the PRISM project at General Electric, the SAFR project at Rockwell International, and the LSPB project at EPRI. The SASSYS-1 code features a multiple-channel thermal-hydraulics core representation coupled with a point kinetics neutronics model with reactivity feedback, all combined with detailed one-dimensional thermal-hydraulic models of the primary and intermediate heat transport systems, including pipes, pumps, plena, valves, heat exchangers and steam generators. In addition, SASSYS-1 contains detailed models for active and passive shutdown and emergency heat rejection systems and a generalized plant control system model. With these models, SASSYS-1 provides the capability to analyze a wide range of transients, including normal operational transients, shutdown heat removal transients, and anticipated transients without scram events. 26 refs., 16 figs.

  13. Next Generation Batteries with Metal Anodes - Joint Center for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 3, 2015, Accomplishments Next Generation Batteries with Metal Anodes Promising electrolytes for the magnesium battery consist of salts dissolved in liquid solvents. Recent ...

  14. Storage, generation, and use of hydrogen

    DOE Patents [OSTI]

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  15. INVESTING IN NEW BASE LOAD GENERATING CAPACITY

    U.S. Energy Information Administration (EIA) Indexed Site

    INVESTING IN NEW BASE LOAD GENERATING CAPACITY Paul L. Joskow April 8, 2008 The views expressed here are my own. They do not reflect the views of the Alfred P. Sloan Foundation, MIT or any other organization with which I am affiliated. THE 25-YEAR VIEW * Significant investment in base-load generating capacity is required over the next 25 years to balance supply and demand efficiently - ~ 200 to 250 Gw (Gross) - Depends on retirements of older steam and peaking units - Depends on demand growth *

  16. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  17. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  18. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  19. Catalysts for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  20. Technical evaluation: 300 Area steam line valve accident

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ``blanked off`` with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed.