Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

2

,"Natural Gas Plant Field Production: Natural Gas Liquids "  

U.S. Energy Information Administration (EIA) Indexed Site

Field Production: Natural Gas Liquids " Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas Plant Field Production: Natural Gas Liquids ",16,"Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_a_epl0_fpf_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_a_epl0_fpf_mbbl_m.htm" ,"Source:","Energy Information Administration"

3

Closed-field capacitive liquid level sensor  

DOE Patents (OSTI)

A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

Kronberg, J.W.

1995-01-01T23:59:59.000Z

4

Natural gas liquids consumption, production, and reserves  

Science Conference Proceedings (OSTI)

Natural gas liquids are condensates that occur during production and liquids recovered during processing, and they are classified as lease condensate or natural gas plant liquids (NGPL). There has been a decline in total domestic production, but an increase in ethane and liquefied petroleum gas (LPG) during the past decade. Statistical tables illustrate trends in the production of NGPLs and liquefied refinery gases (LRG), imports and exports, and marketing and sales. World production data show that, while the US now produces close to 41% of world output, the production trends in other areas are increasing as ours decline. 10 tables. (DCK)

Sala, D.

1983-03-28T23:59:59.000Z

5

Molecular mean field theory for liquid water  

E-Print Network (OSTI)

Attractive bonding interactions between molecules typically have inherent conservation laws which influence the statistical properties of such systems in terms of corresponding sum rules. We considered lattice water as an example and enunciated the consequences of the sum rule through a general computational procedure called "Molecular mean field" theory. Fluctuations about mean field are computed and many of the liquid properties have been deduced and compared with Monte Carlo simulation, molecular dynamics and experimental results. Large correlation lengths are seen to be a consequence of the sum rule in liquid phase. Long range Coulomb interactions are shown to have minor effects on our results.

Jampa Maruthi Pradeep Kanth; Ramesh Anishetty

2010-04-09T23:59:59.000Z

6

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels per Day)

7

Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Illinois Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

8

Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

9

Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

10

Florida Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

11

Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

12

Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

13

Montana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

14

Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Annual Energy Outlook 2012 (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

15

Utah Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

16

Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

17

Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

18

West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

19

Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

20

NETL: Coal & Coal Biomass to Liquids - Alternate Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal and CoalBiomass to Liquids Alternate Hydrogen Production In the Alternate Production technology pathway, clean syngas from coal is converted to high-hydrogen-content liquid...

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Natural Gas Plant Liquids Production  

Gasoline and Diesel Fuel Update (EIA)

Production Production (Million Barrels) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009 2010 2011 View History U.S. 629 650 667 714 745 784 1979-2011 Alabama 3 2 7 5 6 6 1979-2011 Alaska 14 13 13 13 11 11 1979-2011 Arkansas 0 0 0 0 0 0 1979-2011 California 11 11 11 11 10 10 1979-2011 Coastal Region Onshore 1 1 1 1 1 1 1979-2011 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2011 San Joaquin Basin Onshore 10 10 10 10 9 9 1979-2011 State Offshore 0 0 0 0 0 0 1979-2011 Colorado 26 27 38 48 58 63 1979-2011 Florida 0 0 0 0 0 0 1979-2011 Kansas 18 18 18 16 16 16 1979-2011 Kentucky 3 3 3 4 5 4 1979-2011 Louisiana

22

EIA - International Energy Outlook 2007-Liquids Production Projections  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production Projection Tables (1990-2030) Liquids Production Projection Tables (1990-2030) International Energy Outlook 2007 Liquids Production Projections Tables (1990-2030) Formats Data Table Titles (1 to 19 complete) Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800. Table G2 World Conventional Liquids Production by Region and Country, Reference Case Table G2. World Conventional Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

23

U.S. Natural Gas Plant Liquids Reserves, Estimated Production...  

Gasoline and Diesel Fuel Update (EIA)

Liquids Reserves, Estimated Production (Million Barrels) U.S. Natural Gas Plant Liquids Reserves, Estimated Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

24

Liquid phase low temperature method for production of methanol ...  

Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor United States Patent

25

Table 18. Natural gas plant liquids proved reserves and production...  

Gasoline and Diesel Fuel Update (EIA)

: Natural gas plant liquids proved reserves and production, 2009 - 2011 (excludes Lease Condensate) million barrels Reserves Production State and Subdivision 2009 2010 2011 2009...

26

Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

27

Biological production of liquid fuels from biomass  

DOE Green Energy (OSTI)

A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

Not Available

28

Production Hydraulic Packer Field Test  

Science Conference Proceedings (OSTI)

In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

Schneller, Tricia; Salas, Jose

2000-06-30T23:59:59.000Z

29

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

30

U.S. Gas Plant Production of Natural Gas Liquids and Liquid ...  

U.S. Energy Information Administration (EIA)

U.S. Gas Plant Production of Natural Gas Liquids and Liquid Refinery Gases (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

31

,"North Dakota Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

32

,"Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet)",1,"Annual",2012...

33

,"U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Liquids Production, Gaseous Equivalent (Bcf)",1,"Monthly","92013" ,"Release...

34

ANNUAL REPORT OF THE ORIGIN OF NATURAL GAS LIQUIDS PRODUCTION  

U.S. Energy Information Administration (EIA)

Form Approved XXXXXX XXXX ANNUAL REPORT OF THE ORIGIN OF NATURAL GAS LIQUIDS PRODUCTION FORM EIA-64A . REPORT YEAR 2012 . This report is . mandatory

35

,"New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

36

,"Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

37

,"Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

38

,"Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

39

,"West Virginia Natural Gas Plant Liquids Production, Gaseous...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release...

40

Figure 51. World production of liquids from biomass, coal ...  

U.S. Energy Information Administration (EIA)

Title: Figure 51. World production of liquids from biomass, coal, and natural gas in three cases, 2011 and 2040 (million barrels per day) Subject

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gulf of Mexico Federal Offshore Natural Gas Liquids Production...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

42

High magnetic field processing of liquid crystalline polymers  

DOE Patents (OSTI)

A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

1998-11-24T23:59:59.000Z

43

High magnetic field processing of liquid crystalline polymers  

DOE Patents (OSTI)

A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

Smith, Mark E. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Douglas, Elliot P. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

44

Tokamak with liquid metal for inducing toroidal electrical field  

DOE Patents (OSTI)

A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

Ohkawa, Tihiro (La Jolla, CA)

1981-01-01T23:59:59.000Z

45

Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

46

New Mexico Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

47

Louisiana--North Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

48

Wyoming Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

49

Colorado Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

50

Kentucky Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

51

Kansas Natural Gas Plant Liquids, Reserves Based Production ...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Kansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

52

Utah Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

53

Florida Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Florida Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

54

Montana Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

55

North Dakota Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

56

Oklahoma Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

57

Michigan Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

58

Utah Natural Gas Liquids Lease Condensate, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

59

Arkansas Natural Gas Plant Liquids, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

60

Polymer-disordered liquid crystals: Susceptibility to electric field  

E-Print Network (OSTI)

When nematic liquid crystals are embedded in random polymer networks, the disordered environment disrupts the long-range order, producing a glassy state. If an electric field is applied, it induces large and fairly temperature-independent orientational order. To understand the experiments, we simulate a liquid crystal in a disordered polymer network, visualize the domain structure, and calculate the response to a field. Furthermore, using an Imry-Ma-like approach we predict the domain size and estimate the field-induced order. The simulations and analytic results agree with each other, and suggest how the materials can be optimized for electro-optic applications.

Lena M. Lopatina; Jonathan V. Selinger

2013-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gulf of Mexico Federal Offshore Natural Gas Liquids Production...  

Gasoline and Diesel Fuel Update (EIA)

Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

62

Gulf of Mexico Federal Offshore Natural Gas Liquids Production...  

Annual Energy Outlook 2012 (EIA)

(Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

63

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Southern Research Institute Project Number: FE0010231 Project Description Fischer-Tropsch (FT) process converts a mixture of carbon monoxide and hydrogen, called syngas, into liquid hydrocarbons. It is a leading technology for converting syngas derived from gasification of coal and coal-biomass mixtures to hydrocarbons in coal to liquids (CTL) and coal-biomass to liquids (CBTL) processes. However, conventional FTS catalysts produce undesirable waxes (C21+) that need to be upgraded to liquids (C5-C20) by hydrotreating. This adds significantly to the cost of FTS. The objectives of this project are (i) to demonstrate potential for CBTL cost reduction by maximizing the production of C5-C20 hydrocarbon liquids using a selective FTS catalyst and (ii) to evaluate the impacts of the addition of biomass to coal on product characteristics, carbon foot print, and economics.

64

Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 121 116 93 1970's 79 55 70 71 75 68 61 45 64 49 1980's 41 29 40 55 61 145 234 318 272 254 1990's 300 395 604 513 513 582 603 734 732 879 2000's 586 691 566 647 634 700 794 859 1,008 1,295 2010's 4,578 8,931 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent Pennsylvania Natural Gas Plant Processing

65

From insulator to quantum Hall liquid at low magnetic fields  

E-Print Network (OSTI)

We have performed low-temperature transport measurements on a GaAs twodimensional electron system at low magnetic fields. Multiple temperatureindependent points and accompanying oscillations are observed in the longitudinal resistivity between the low-field insulator and the quantum Hall liquid. The amplitudes of these oscillations can be well described by conventional Shubnikov-de Haas theory, and our experimental results therefore support the existence of an intermediate metallic regime between the low-field insulator and quantum Hall liquid. 1 Two-dimensional (2D) phase transitions have attracted a great deal of interest recently [1–11]. To date, despite many existing experimental and theoretical studies on 2D phase transitions, there are still some interesting but unresolved issues. In particular, it is still under debate whether a direct transition from an insulator (I) to a high Landau level filling factor (? ? 3) quantum Hall (QH) state at low magnetic fields B is a genuine phase transition. Experimentally, a single approximately temperature (T)-independent point in

Tsai-yu Huanga; C. -t. Lianga; Gil-ho Kimb; C. F. Huangc; Chao-ping Huanga

2006-01-01T23:59:59.000Z

66

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Blinne, Alexander

2013-01-01T23:59:59.000Z

67

Pair Production in Rotating Electric Fields  

E-Print Network (OSTI)

We explore Schwinger pair production in rotating time-dependent electric fields using the real-time DHW formalism. We determine the time evolution of the Wigner function as well as asymptotic particle distributions neglecting back-reactions on the electric field. Whereas qualitative features can be understood in terms of effective Keldysh parameters, the field rotation leaves characteristic imprints in the momentum distribution that can be interpreted in terms of interference and multiphoton effects. These phenomena may seed characteristic features of QED cascades created in the antinodes of a high-intensity standing wave laser field.

Alexander Blinne; Holger Gies

2013-11-07T23:59:59.000Z

68

Production of jet fuel from coal-derived liquids  

DOE Green Energy (OSTI)

Amoco and Lummus Crest are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high density (JP-8X) jet fuels from the by-product liquids. In addition to the maximum jet fuel schemes, conceptual designs have also been formulated for maximizing profits from refining of the Great Plains by-products. Conceptual processing schemes for profitable production of JP-4, JP-8, and JP-8X have been developed, as has a maximum profit'' case. All four of these additional cases have now been transferred to Lummus for design and integration studies. Development of these schemes required the use of linear programming technology. This technology includes not only conventional refining processes which have been adapted for use with coal-derived liquids (e.g. hydrotreating, hydrocracking), but also processes which may be uniquely suited to the Great Plains by-products such as cresylic acid extraction, hydordealkylation, and needle coking. 6 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1987-01-01T23:59:59.000Z

69

Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

70

Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Arkansas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,499 3,667 3,475 1970's 3,235 2,563 1,197 1,118 952 899 823 674 883 1,308 1980's 1,351 1,327 1,287 1,258 1,200 1,141 1,318 1,275 1,061 849 1990's 800 290 413 507 553 488 479 554 451 431 2000's 377 408 395 320 254 231 212 162 139 168 2010's 213 268 424 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: NGPL Production, Gaseous Equivalent

71

Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908 152,862 152,724 124,955 133,434 103,381 105,236 110,745 94,785 95,359 2010's 102,448 95,630 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

72

Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,351 3,244 2,705 1970's 2,330 2,013 1,912 1,581 1,921 2,879 6,665 11,494 14,641 15,686 1980's 15,933 14,540 14,182 13,537 12,829 11,129 11,644 10,876 10,483 9,886 1990's 8,317 8,103 8,093 7,012 6,371 6,328 6,399 6,147 5,938 5,945 2000's 5,322 4,502 4,230 3,838 4,199 3,708 3,277 3,094 3,921 2,334 2010's 2,943 2,465 2,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

73

California Natural Gas Plant Liquids Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) California Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,803 32,639 30,334 1970's 29,901 27,585 24,156 17,498 17,201 15,221 14,125 13,567 13,288 10,720 1980's 8,583 7,278 14,113 14,943 15,442 16,973 16,203 15,002 14,892 13,376 1990's 12,424 11,786 12,385 12,053 11,250 11,509 12,169 11,600 10,242 10,762 2000's 11,063 11,060 12,982 13,971 14,061 13,748 14,056 13,521 13,972 13,722 2010's 13,244 12,095 12,755 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

74

Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014

75

North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381 14,182 26,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

76

Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 433,684 457,117 447,325 1970's 466,016 448,288 470,105 466,143 448,993 435,571 428,635 421,110 393,819 352,650 1980's 350,312 345,262 356,406 375,849 393,873 383,719 384,693 364,477 357,756 343,233 1990's 342,186 353,737 374,126 385,063 381,020 381,712 398,442 391,174 388,011 372,566 2000's 380,535 355,860 360,535 332,405 360,110 355,589 373,350 387,349 401,503 424,042 2010's 433,622 481,308 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

77

New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,149 48,635 50,484 1970's 52,647 53,810 54,157 55,782 54,986 56,109 61,778 72,484 77,653 62,107 1980's 59,457 60,544 56,857 56,304 58,580 53,953 51,295 65,156 63,355 61,594 1990's 66,626 70,463 75,520 83,193 86,607 85,668 108,341 109,046 106,665 107,850 2000's 110,411 108,958 110,036 111,292 105,412 101,064 99,971 96,250 92,579 94,840 2010's 91,963 90,291 84,562 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

78

Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Colorado Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,126 4,546 4,058 1970's 3,405 4,152 4,114 4,674 6,210 9,620 11,944 13,507 13,094 12,606 1980's 12,651 13,427 12,962 11,314 10,771 11,913 10,441 10,195 11,589 13,340 1990's 13,178 15,822 18,149 18,658 19,612 25,225 23,362 28,851 24,365 26,423 2000's 29,105 29,195 31,952 33,650 35,821 34,782 36,317 38,180 53,590 67,607 2010's 82,637 90,801 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

79

Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (Million Cubic Feet) Liquids Production, Gaseous Equivalent (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

80

Liquid fuels production in Middle Eastern and North African ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 have also been produced and shipped to the US Air Force for further testing. Lummus-Crest Inc. is now completing a preliminary process design for the profitable production of JP-8 and has made recommendations for a production run to produce larger quantities of JP-8. 2 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1989-01-01T23:59:59.000Z

82

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels, for maximizing profits, and for profitable production of each of the three jet fuels from the by-product liquids have been developed. Economic analyses of the designs show that jet fuel can be produced from the by-products, but not economically. However, jet fuel production could be subsidized profitably by processing the phenolic and naphtha streams to cresols, phenols, BTX, and other valuable chemical by-products. Uncertainties in the studies are marketability of the chemical by-products, replacement fuel costs, and viable schemes to process the phenol stream, among others. 8 figs., 2 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1990-01-01T23:59:59.000Z

83

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 are nearly completed. Specification of a design basis for profitable production of JP-8 is under way. 5 figs., 4 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

84

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Experimental work to date has shown that the tar oil stream requires substantially more severe processing than the preliminary design estimates indicated. A new design basis is now being tested and samples of JP-4, JP-8, and JP-8X are in production, based on that new, more severe processing scheme. Six barrels of tar oil have been hydrotreated according to the first step of the processing scheme and will be used to produce barrel quantities of JP-8. 2 refs., 2 figs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

85

Production of jet fuels from coal-derived liquids  

Science Conference Proceedings (OSTI)

Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

Knudson, C.L.

1990-06-01T23:59:59.000Z

86

EIA - Appendix G-Projections of Petroleum and Other Liquids Production in  

Gasoline and Diesel Fuel Update (EIA)

Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (2006-2035) Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (2006-2035) International Energy Outlook 2010 Projections of Petroleum and Other Liquids Productions in Three Cases Tables (2006-2035) Formats Data Table Titles (1 to 15 complete) Appendix G. Projections of Petroleum and Other Liquids Production in Three Cases Tables (2006-2035). Need help, contact the National Energy Information Center at 202-586-8800. Appendix G. Projections of Petroleum and Other Liquids Production in Three Cases Tables (2006-2035). Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

87

EIA - Appendix G-Projections of Petroleum and Other Liquids Production in  

Gasoline and Diesel Fuel Update (EIA)

Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) International Energy Outlook 2009 Projections of Petroleum and Other Liquids Productions in Three Cases Tables (1990-2030) Formats Data Table Titles (1 to 15 complete) Projections of Petroleum and Other Liquids Production in Three Cases Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Projections of Petroleum and Other Liquids Production in Three Cases Tables (1990-2030). Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

88

EIA - Appendix G-Projections of Petroleum and Other Liquids Production in  

Gasoline and Diesel Fuel Update (EIA)

Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) International Energy Outlook 2008 Projections of Liquid Fuels and Other Petroleum Production in Five Cases Tables (1990-2030) Formats Data Table Titles (1 to 19 complete) Projections of Petroleum and Other Liquids Production in Five Cases Tables. Need help, contact the National Energy Information Center at 202-586-8800. Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

89

U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries...  

Gasoline and Diesel Fuel Update (EIA)

New Field Discoveries (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

90

On a phase field model for solid-liquid phase transitions  

E-Print Network (OSTI)

distinct phases. This is the case for solid-liquid mix- tures (e.g. ice-water or alloys duringOn a phase field model for solid-liquid phase transitions S. Benzoni-Gavage , L. Chupin , D. Jamet , and J. Vovelle December 3, 2010 Contents 1 Introduction 2 2 Phase field equations 3 2.1 Derivation

91

Fuel gas production by microwave plasma in liquid  

Science Conference Proceedings (OSTI)

We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Shikoku Industry and Technology Promotion Center, 2-5 Marunouchi, Takamatsu, Kagawa 760-0033 (Japan)

2006-06-05T23:59:59.000Z

92

Mixing-Demixing Phase Diagram for Simple Liquids in Non-Uniform Electric Fields  

E-Print Network (OSTI)

We deduce the mixing-demixing phase diagram for binary liquid mixtures in an electric field for various electrode geometries and arbitrary constitutive relation for the dielectric constant. By focusing on the behavior of the liquid-liquid interface, we produce simple analytic expressions for the dependence of the interface location on experimental parameters. We also show that the phase diagram contains regions where liquid separation cannot occur under any applied field. The analytic expression for the boundary "electrostatic binodal" line reveals that the regions' size and shape depend strongly on the dielectric relation between the liquids. Moreover, we predict the existence of an "electrostatic spinodal" line that identifies conditions where the liquids are in a metastable state. We finally construct the phase diagram for closed systems by mapping solutions onto those of an open system via an effective liquid composition. For closed systems at a fixed temperature and mixture composition, liquid separation occurs in a finite "window" of surface potential (or charge density). Larger potentials or charge densities counterintuitively destroy the interface, leading to liquid mixing. These results give valuable guides for experiments by providing easily testable predictions for how liquids behave in non-uniform electric fields.

Jennifer Galanis; Yoav Tsori

2013-07-17T23:59:59.000Z

93

Production of jet fuels from coal derived liquids  

SciTech Connect

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification Plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However, the phenolic and naphtha streams do have the potential to significantly increase (on the order of $10--15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10 percent of the US market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream. 9 refs., 24 figs., 14 tabs.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.; Tatterson, D.F. (Amoco Oil Co., Naperville, IL (USA). Research and Development Dept.); Fornoff, L.L.; Link, M.A.; Stahlnecker, E.; Torster, K. (Lummus Crest, Inc., Bloomfield, NJ (USA))

1988-09-01T23:59:59.000Z

94

Cholesterol and Phytosterol Oxidation ProductsChapter 4 Determination of Cholesterol Oxidation Products by High-Performance Liquid Chromatography  

Science Conference Proceedings (OSTI)

Cholesterol and Phytosterol Oxidation Products Chapter 4 Determination of Cholesterol Oxidation Products by High-Performance Liquid Chromatography Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health -

95

HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS  

DOE Green Energy (OSTI)

As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. • The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. • To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. • Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

Anastasia M Gandrik; Rick A Wood

2010-10-01T23:59:59.000Z

96

U.S. Natural Gas Plant Liquids, Reserves Based Production (Million...  

Gasoline and Diesel Fuel Update (EIA)

Based Production (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

97

New Mexico--East Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

98

New Mexico--West Natural Gas Plant Liquids, Reserves Based Production...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

99

Separating liquid and solid products of liquefaction of coal or like carbonaceous materials  

DOE Patents (OSTI)

Slurryform products of coal liquefaction are treated with caustic soda in presence of H.sub.2 O in an inline static mixer and then the treated product is separated into a solids fraction and liquid fractions, including liquid hydrocarbons, by gravity settling preferably effected in a multiplate settling separator with a plurality of settling spacings.

Malek, John M. (P.O. Box 71, Lomita, CA 90717)

1979-06-26T23:59:59.000Z

100

RMOTC - Field Information - Wells and Production  

NLE Websites -- All DOE Office Websites (Extended Search)

& Production Facilities Wells Pumpjack at RMOTC Partners may test in RMOTC's large inventory of cased, uncased, vertical, high-angle, and horizontal wells. Cased and open-hole...

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Utah Natural Gas Liquids Lease Condensate, Reserves New Field...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 - No Data Reported; -- Not...

102

Effect of Electromagnetic Fields on the Filtration of Liquid Aluminum ...  

Science Conference Proceedings (OSTI)

... Shahin Akbarnejad, Knut Marthinsen, Jon Arne Bakken, Ragnhild Elizabeth Aune ... aluminum alloy (A356) by the support of various magnetic field strengths (up to ... The obtained results were compared with reference gravity experiments.

103

Production of 35S for a Liquid Semiconductor Betavoltaic  

DOE Green Energy (OSTI)

The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductor media.

Meier, David E.; Garnov, A. Y.; Robertson, J. D.; Kwon, J. W.; Wacharasindhu, T.

2009-10-01T23:59:59.000Z

104

Caloric curve for nuclear liquid-gas phase transition in relativistic mean-field hadronic model  

E-Print Network (OSTI)

The main thermodynamical properties of the nuclear liquid-gas phase transition were explored in the framework of the relativistic mean-field hadronic model in three statistical ensembles: canonical, grand canonical and isobaric. We have found that the liquid-gas phase transition, i.e., the first order phase transition which is defined by the plateau in the isotherms, cannot contain the plateau in the caloric curves in the canonical and microcanonical ensembles. The plateau in the isotherms is incompatible with the plateau in the caloric curves at fixed baryon density. Moreover, for the nuclear liquid-gas phase transition the caloric curve has a plateau only at fixed pressure or chemical potential. The results of the statistical multifragmentation models for the nuclear liquid-gas phase transition were reanalyzed. It was revealed that one class of statistical multifragmentation models do indeed predict the nuclear liquid-gas phase transition for the nuclear multifragmentation. However, there is another class o...

Parvan, A S

2011-01-01T23:59:59.000Z

105

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

I. Solvent Refined Coal II. Catalysts III. Purpose andSondreal, E.A. , "Viscosity of Coal Liquids - The Effect ofAnthraxylon - Kinetics of Coal Hydrogenation," Ind. and Eng.

Tanner, K.I.

2010-01-01T23:59:59.000Z

106

,"Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

107

,"Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sks_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sks_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

108

,"Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

109

,"California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sca_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sca_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

110

,"Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sok_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sok_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

111

,"Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_soh_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_soh_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

112

,"Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sut_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sut_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

113

,"Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sla_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sla_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

114

,"Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

115

,"Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

116

,"South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

117

,"Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

118

,"Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

119

,"Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production, Gaseous Equivalent (MMcf)" Plant Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sin_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sin_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

120

,"Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,"Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

122

,"Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_sms_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_sms_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

123

,"Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Production, Gaseous Equivalent (MMcf)" Liquids Production, Gaseous Equivalent (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production, Gaseous Equivalent (MMcf)",1,"Annual",2011 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1150_stx_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1150_stx_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

124

ANNUAL REPORT OF THE ORIGIN OF NATURAL GAS LIQUIDS PRODUCTION FORM ...  

U.S. Energy Information Administration (EIA)

REPORT YEAR 2013 (A) (B) (C) No. Months covered by this report: ... PO Box 279 U. S. Department of Energy, EIA. Area of Origin Code Natural Gas Liquids Production

125

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

126

RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi  

DOE Patents (OSTI)

Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

Wiswall, R.H.

1960-05-10T23:59:59.000Z

127

Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products  

DOE Patents (OSTI)

Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.

Nataraj, Shankar (Allentown, PA); Russek, Steven Lee (Allentown, PA); Dyer, Paul Nigel (Allentown, PA)

2000-01-01T23:59:59.000Z

128

Matrix Product States for Lattice Field Theories  

E-Print Network (OSTI)

The term Tensor Network States (TNS) refers to a number of families of states that represent different ans\\"atze for the efficient description of the state of a quantum many-body system. Matrix Product States (MPS) are one particular case of TNS, and have become the most precise tool for the numerical study of one dimensional quantum many-body systems, as the basis of the Density Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian version, offer a challenging scenario for these techniques. While the dimensions and sizes of the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT tools, Tensor Networks can be readily used for problems which more standard techniques, such as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the performance of Matrix Product States in the case of the Schwinger model, as a widely used ...

Bañuls, Mari Carmen; Cirac, J Ignacio; Jansen, Karl; Saito, Hana

2013-01-01T23:59:59.000Z

129

Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels  

Science Conference Proceedings (OSTI)

The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

Wang, Yong (Richland, WA), Liu; Wei (Richland, WA)

2012-01-24T23:59:59.000Z

130

Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium  

SciTech Connect

We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R{sub m}{approx}30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.

Monchaux, R.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Gasquet, C.; Marie, L.; Ravelet, F. [Service de Physique de l'Etat Condense, Direction des Sciences de la Matiere, CEA-Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette cedex (France); Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F. [Laboratoire de Physique Statistique de l'Ecole Normale Superieure, CNRS UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05 (France); Bourgoin, M.; Moulin, M.; Odier, Ph.; Pinton, J.-F.; Volk, R. [Laboratoire de Physique de l'Ecole Normale Superieure de Lyon, CNRS UMR 5672, 46 allee d'Italie, 69364 Lyon Cedex 07 (France)

2007-01-26T23:59:59.000Z

131

Transport of Magnetic Field by a Turbulent Flow of Liquid Sodium  

SciTech Connect

We study the effect of a turbulent flow of liquid sodium generated in the von Karman geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.

Volk, R.; Odier, Ph.; Pinton, J.-F. [Laboratoire de Physique de l'Ecole Normale Superieure de Lyon, CNRS UMR 5672, 47 allee d'Italie, 69364 Lyon Cedex 07 (France); Ravelet, F.; Monchaux, R.; Chiffaudel, A.; Daviaud, F. [Service de Physique de l'Etat Condense, Direction des Sciences de la Matiere, CEA-Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette cedex (France); Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F. [Laboratoire de Physique Statistique de l'Ecole Normale Superieure, CNRS UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05 (France)

2006-08-18T23:59:59.000Z

132

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 932,350: 908,217: 882,911 ...

133

Oklahoma Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Oklahoma Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 12,139: 12,268: 13,290: 11,905: 13,000: 12,891 ...

134

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly ... Download Data (XLS File) Texas Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981 ...

135

California Field Production of Crude Oil (Thousand Barrels per ...  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 977: 981: 984: 985: 1,007: 1,012 ...

136

Federal Offshore PADD 5 Field Production of Crude Oil (Thousand ...  

U.S. Energy Information Administration (EIA)

Federal Offshore PADD 5 Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 874: 800: 883: 984: 1,586: 1,748 ...

137

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1850's: 2: 1860's: 500: 2,114 ...

138

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 30,297: 27,455: 30,515: 29,540: 31,203: 30,366 ...

139

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 365,370: 373,176 ...

140

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 45,424: 47,271 ...

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

142

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 13,551: 14,571: 14,971 ...

143

Alaska Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 198: 193: 191 ...

144

Montana Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Montana Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 78: 84: 84: 83: 85: 86: 84: 85: 84: 88 ...

145

Colorado Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 81: 81: 82: 83: 81: 82: 81: 80: 82: 89 ...

146

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 30,303: 30,545: 29,050 ...

147

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 32,665: 31,462: 31,736 ...

148

South Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

South Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 973: 1,158: 1,172 ...

149

New Mexico Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

New Mexico Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 6,286: 5,593: 6,105: 5,902: ...

150

ARM - Evaluation Product - MWR Retrievals of Cloud Liquid Water and Water  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsMWR Retrievals of Cloud Liquid Water and ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : MWR Retrievals of Cloud Liquid Water and Water Vapor 2005.02.01 - 2011.04.25 Site(s) FKB GRW HFE NIM PYE SBS General Description A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the 2-channel (23.8 and 31.4 GHz) microwave radiometers (MWRs) deployed at ARM climate research facilities. This algorithm utilizes the "monoRTM" radiative transfer model (http://rtweb.aer.com), a combination of both an advanced statistical and physical-iterative retrieval, and brightness temperature offsets applied before the retrieval is performed. This allows perhaps the

151

A statistical field theory approach applied to the liquid vapor interface  

E-Print Network (OSTI)

Last years, there has been a renewed interest in the utilization of statistical field theory methods for the description of systems at equilibrium both in the vicinity and away from critical points, in particular in the field of liquid state physics. These works deal in general with homogeneous systems, although recently the study of liquids in the vicinity of hard walls has also been considered in this way. On the other hand, effective Hamiltonian pertaining to the $\\phi^4$ theory family have been written and extensively used for the description of inhomogeneous systems either at the simple interface between equilibrium phases or for the description of wetting. In the present work, we focus on a field theoretical description of the liquid vapor interface of simple fluids. We start from the representation of the grand partition function obtained from the Hubbard-Stratonovich transform leading to an exact formulation of the problem, namely neither introducing an effective Hamiltonian nor associating the field to the one-body density of the liquid. Using as a reference system the hard sphere fluid and imposing the coexistence condition, the expansion of the Hamiltonian obtained yields a usual $\\phi^4$ theory without unknown parameter. An important point is that the so-called capillary wave theory appears as an approximation of the one-loop theory in the functional expansion of the Hamiltonian, without any need to an underlying phenomenology.

Vincent Russier; Jean-Michel Caillol

2009-07-16T23:59:59.000Z

152

Biodesulfurization of mild gasification liquid products. Final technical report, 1 September, 1992--31 August, 1993  

Science Conference Proceedings (OSTI)

The mild gasification of coal, as being developed at IGT and elsewhere, is a promising new technology that can convert coal to multiple products: gas, solid, and liquids. Mild gasification liquids can be used as feedstock to make transportation fuels and chemicals. However, the sulfur content and aromaticity of mild gasification liquids limits their usefulness and biodesulfurization can potentially decrease both sulfur content and aromaticity. The objective of this project is to investigate and feasibility of using biodesulfurization to upgrade the quality of mild gasification liquids. During this project, it was shown that the middle distillate (360--440 F) fraction of liquids derived from the mild gasification of coal, and unfractionated liquids can be biodesulfurized. Moreover, it was demonstrated that lysed cell preparations and freeze-dried cells can be used to biodesulfurize mild coal gasification liquids. The importance of the finding that freeze-dried biocatalysts can be used to biodesulfurize mild coal gasification liquids is that freeze-dried cells can be produced at one location, stored indefinitely, and then shipped (at reduced weight, volume, and cost) to another location for coal biodesulfurization. Moreover, freeze-dried biocatalysts can be added directly to mild coal gasification liquids with only minimal additions of water so that reactor volumes can be minimized.

Kilbane, J.J. II [Institute of Gas Technology, Chicago, IL (United States)

1993-12-31T23:59:59.000Z

153

Productivity index and field behavior: a case study  

E-Print Network (OSTI)

This study is an investigation of different factors' phics. influence on the productivity index and its behavior. The objectives of this research are (1) to develop an overview of how different factors influence the productivity index', and (2) to explain the irrational behavior of the productivity index in a case study presented. The problem has its origin in a field in north Africa, where irrational behavior of the productivity index (PI) has made it difficult to forecast the field performance. By irrational behavior we meant that the PI ants the opposite of what is expected. Normally we think PI will increase when the production oil rate of the field increases, at the same pressure drawdown. Or for the same well, PI should be constant over time. In some wells in this particular field we can see the P1 increase as production oil rate decreases and vice versa. Numerical simulation was used to simulate the influence different factors had on the productivity index, and to match wellness PI's with calculated PI's from field data in the case study. An overview of which factors can cause the P1 to go in unexpected directions is presented. Finally the theory obtained about the PI behavior is linked to the case study, and the E6incon-ect'' behavior of the PI is explained. It was shown that transient flow and two-phase flow are the two main reasons for the productivity index to decrease as production oil rate increases. It was also shown that dual porosity, non-Darcy flow, permeability changes, formation compressibility, and skin affect the length of the transient flow period and the magnitude of the difference between transient PI and pseudo steady state (PSS) PI. The behavior of the PI in the field case presented is explained by the transient flow effect and bad test data.

Jensen, Marianne

1998-01-01T23:59:59.000Z

154

Molecular Dynamics Simulation of Tri-n-Butyl-Phophate Liquid: A Force Field Comparative Study  

SciTech Connect

Molecular dynamics (MD) simulations were conducted to compare the performance of four force fields in predicting thermophysical properties of tri-n-butyl-phosphate (TBP) in the liquid phase. The intramolecular force parameters used were from the Assisted Model Building with Energy Refinement (AMBER) force field model. The van der Waals parameters were based on either the AMBER or the Optimized Potential for Liquid Simulation (OPLS) force fields. The atomic partial charges were either assigned by performing quantum chemistry calculations or utilized previously published data, and were scaled to approximate the average experimental value of the electric dipole moment. Canonical ensemble computations based on the aforementioned parameters were performed near the atmospheric pressure and temperature to obtain the electric dipole moment, mass density, and self-diffusion coefficient. In addition, the microscopic structure of the liquid was characterized via pair correlation functions between selected atoms. It has been demonstrated that the electric dipole moment can be approximated within 1% of the average experimental value by virtue of scaled atomic partial charges. The liquid mass density can be predicted within 0.5-1% of its experimentally determined value when using the corresponding charge scaling. However, in all cases the predicted self- diffusion coefficient is significantly smaller than a commonly quoted experimental measurement; this result is qualified by the fact that the uncertainty of the experimental value was not available.

Cui, Shengting [ORNL; de Almeida, Valmor F [ORNL; Hay, Benjamin [ORNL; Ye, Xianggui [ORNL; Khomami, Bamin [ORNL

2012-01-01T23:59:59.000Z

155

NETL: C&CBTL -Laboratory Scale Liquids Production and Assessment...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of two liters per day. Altex Coal Biomass to Drop-In...

156

Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

Grant L. Hawkes; Michael G. McKellar

2009-11-01T23:59:59.000Z

157

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

158

Characterization of Field Leachates at Coal Combustion Product Management Sites  

Science Conference Proceedings (OSTI)

A large amount of laboratory-generated leachate data has been produced over the last two decades to estimatecoal combustion product (CCP) leachate concentrations, and a variety of leaching methods have been used. No one method, however, has been shown to accurately represent field leaching conditions. In fact, little work has been performed to systematically evaluate field-generated leachates representative of a range of coal types, combustion systems, and management methods, and only limited work has be...

2006-12-14T23:59:59.000Z

159

New Zealand Energy Data: Liquid Biofuels Production (2007 - 2009...  

Open Energy Info (EERE)

energy. Included here are the annual estimates of total production of biodiesel and bioethanol (2007 - 2009).
2011-01-25T23:42:06Z 2011-01-27T19:24:54Z http:www.med.govt.nz...

160

Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments  

Science Conference Proceedings (OSTI)

The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Task 1 of the work, in which processes to produce each of the three jet fuels, JP-4, JP-8, and JP-8X, were designed, has been completed. The formal Task 1 report should issue next quarter. Task 2 work was initiated this quarter. In Task 2, process conditions for producing jet fuel from the Great Plains tar oil stream will be verified and samples of each of the three jet fuels will be produced. Experimental work shows that the hydrotreating conditions specified in Task 1 will not convert sufficient aromatics in the tar oil to produce jet fuel. Alternative schemes have been proposed and are being tested in the laboratories at Amoco Research Center. The simplest of these schemes, in which the heavy ends from the hydrotreater are recycled to extinction, was tested and proved infeasible. A second stage, fixed bed hydrotreater will be added to the process along with the expanded bed, first-stage hydrotreater and the hydrocracker specified in the Task 1 design. Future work will include additional experiments to specify the best process configuration and production of samples of each of the three grades of jet fuel. 6 figs., 7 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1988-01-01T23:59:59.000Z

162

Utah Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Utah Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,150: 2,170: 2,150: 2,160: 2,150: 2,160: 2,150 ...

163

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,600: 2,593: 2,604: 2,578: 2,577: 2,568 ...

164

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 3,787: 3,493: 3,790: 3,805: 3,974: 3,839 ...

165

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 1,148: 1,036: 1,148: 1,111: 1,148: 1,111: 1,148 ...

166

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,506: 2,255: 2,527: 2,478: 2,498: 2,445: 2,523 ...

167

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1920: 34,008: 33,193: 36,171: 34,945: 36,622: 36,663 ...

168

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,827: 2,493: 2,807: 2,720: 2,763: 2,682: 2,779 ...

169

Comparison of Permian basin giant oil fields with giant oil fields of other U. S. productive areas  

SciTech Connect

Covering over 40 million ac, the Permian basin is the fourth largest of the 28 productive areas containing giant fields. The 56 giant fields in the basin compare with the total of 264 giant oil fields in 27 other productive areas. Cumulative production figures of 18 billion bbl from the giant fields in the Permian basin are the largest cumulative production figures from giant fields in any of the productive areas. An estimated 1.9 billion bbl of remaining reserves in giant fields rank the basin third among these areas and the 19.9 billion bbl total reserves in giant fields in the basin are the largest total reserves in giant fields in any of the productive areas. The 1990 production figures from giant fields place the basin second in production among areas with giant fields. However, converting these figures to by-basin averages for the giant fields places the Permian basin 12th in field size among the areas with giant fields. Based on average reserves per well, the basin ranks 18th. Average 1990 production per giant field place the basin seventh and the average 1990 production per well in giant fields place the Permian basin 14th among the areas with giant fields.

Haeberle, F.R. (Consultant Geologist, Dallas, TX (United States))

1992-04-01T23:59:59.000Z

170

Annual report of the origin of natural gas liquids production form EIA-64A  

SciTech Connect

The collection of basic, verifiable information on the Nation`s reserves and production of natural gas liquids (NGL) is mandated by the Federal Energy Administration Act of 1974 (FEAA) (Public Law 93-275) and the Department of Energy Organization Act of 1977 (Public Law 95-91). Gas shrinkage volumes reported on Form EIA-64A by natural gas processing plant operators are used with natural gas data collected on a {open_quotes}wet after lease separation{close_quotes} basis on Form EIA-23, Annual Survey of Domestic Oil and Gas Reserves, to estimate {open_quotes}dry{close_quotes} natural gas reserves and production volumes regionally and nationally. The shrinkage data are also used, along with the plant liquids production data reported on Form EIA-64A, and lease condensate data reported on Form EIA-23, to estimate regional and national gas liquids reserves and production volumes. This information is the only comprehensive source of credible natural gas liquids data, and is required by DOE to assist in the formulation of national energy policies.

1995-12-31T23:59:59.000Z

171

Production of jet fuels from coal derived liquids  

Science Conference Proceedings (OSTI)

Amoco Oil Company has conducted bench- and pilot plant-scale experiments to produce jet fuels from the tar oil from the Great Plains Coal Gasification Plant in Beulah, North Dakota. Experiments show that the hydroprocessing conditions recommended in Task 1 are not severe enough to saturate the aromatics in the tar oil to meet jet fuel specifications. Alternatives were investigated. Jet fuel specifications can be achieved when the tar oil is: hydrotreated in an expanded-bed hydrotreater to lower aromatics and heteroatom content; the effluent is then hydrotreated in a second, fixed bed hydrotreater; and, finally, the 550{degree}F boiling fraction from the two hydrotreaters is hydrocracked to extinction. The process was verified by pilot-plant production of 2 barrels of JP-8 turbine fuel, which met all but the flash point specification for JP-8. In addition, small samples of JP-4, JP-8, and high-density fuel were produced as a part of Task 2. 13 figs., 21 tabs.

Furlong, M.; Fox, J.; Masin, J.

1989-06-01T23:59:59.000Z

172

Electric Field Induced Rotation of Polymer Cholesteric Liquid Crystal Flakes: Mechanisms and Applications  

DOE Green Energy (OSTI)

Electric fields can induce motion of polymer cholesteric liquid crystal (pCLC) flakes suspended in a fluid medium. The platelet-shaped pCLC flakes with a Grandjean texture show strong selective reflection when lying flat in the plane of a conventional cell. As their orientation with respect to normally incident light changes, their selective reflection color shifts toward the blue and diminishes until the flakes are no longer easily visible beyond 7-12{sup o} of rotation. Reproducibility and control of motion has been observed in moderately conductive host fluid. Flakes in such hosts do not respond to a DC electric field, but they rotate 90{sup o} in an AC field within a given frequency band. The response times and frequency regions for motion depend partially on the field magnitude, the dielectric properties of the host fluid and the flake geometry. We observe flakes reorienting in less than 500 ms in an electric field of 0.17 Vrms/mm, while subsecond reorientation is seen in fields as low as 5 x 10-2 Vrms/mm. This response time is comparable with typical electronic-paper applications, but with a significantly lower electric field. Displays using pCLC flakes would not require backlighting, sheet polarizers, color filters or alignment layers. Numerous additional applications for pCLC flakes are envisioned, including filters, polarizers, and spatial light modulators.

Kosc, T. Z.; Marshall, K. L.; Jacobs, S. D.; Lambropoulous, J. C.

2002-12-31T23:59:59.000Z

173

Holographic Photon Production with Magnetic Field in Anisotropic Plasmas  

E-Print Network (OSTI)

We investigate the thermal photon production from constant magnetic field in a strongly coupled and anisotropic plasma via the gauge/gravity duality. The dual geometry with pressure anisotropy is generated from the axion-dilaton gravity action introduced by Mateos and Trancancelli and the magnetic field is coupled to fundamental matters(quarks) through the D3/D7 embeddings. We find that the photon spectra with different quark mass are enhanced at large frequency when the photons are emitted parallel to the anisotropic direction with larger pressure or perpendicular to the magnetic field. However, in the opposite conditions for the emitted directions, the spectra approximately saturate isotropic results in the absence of magnetic field. On the other hand, a resonance emerges at moderate frequency for the photon spectrum with heavy quarks when the photons move perpendicular to the magnetic field. The resonance is more robust when the photons are polarized along the magnetic field. On the contrary, in the presence of pressure anisotropy, the resonance will be suppressed. There exist competing effects of magnetic field and pressure anisotropy on meson melting in the strongly coupled super Yang-Mills plasma, while we argue that the suppression led by anisotropy may not be applied to the quark gluon plasma.

Shang-Yu Wu; Di-Lun Yang

2013-05-23T23:59:59.000Z

174

ARM - PI Product - MWR Retrievals of Cloud Liquid Water and Water Vapor  

NLE Websites -- All DOE Office Websites (Extended Search)

govDataPI Data ProductsMWR Retrievals of Cloud Liquid Water and Water govDataPI Data ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : MWR Retrievals of Cloud Liquid Water and Water Vapor 2005.02.01 - 2011.04.25 Site(s) FKB GRW HFE NIM PYE SBS General Description A new algorithm is being developed for the ARM Program to derive liquid water path (LWP) and precipitable water vapor (PWV) from the 2-channel (23.8 and 31.4 GHz) microwave radiometers (MWRs) deployed at ARM climate research facilities. This algorithm utilizes the "monoRTM" radiative transfer model (http://rtweb.aer.com), a combination of both an advanced statistical and physical-iterative retrieval, and brightness temperature offsets applied before the retrieval is performed. This allows perhaps the

175

Status of Process Development for Pyrolysis of Biomass for Liquid Fuels and Chemicals Production.  

Science Conference Proceedings (OSTI)

Pyrolysis is one of several thermochemical conversion strategies to produce useful fuels from biomass material . The goal of fast pyrolysis is to maximize liquid product yield. Fast pyrolysis is accomplished by the thermal treatment of the biomass in an air-free environment. Very short heat up and cool-down is a requirement for fast pyrolysis. The typical residence time in the pyrolysis reactor is 1 second. In order to accomplish the fast heatup, grinding the biomass to a small particle size in the range of 1 mm is typical and pre-drying of the biomass to less than 10 weight percent moisture is considered the standard. Recovery of the product liquid, called bio-oil, is accomplished by a variety of methods all of which require a quick quench of the product vapor. A definition of fast pyrolysis bio-oil is provided for the CAS # RN 1207435-39-9 recently issued by ChemAbstracts Services.

Elliott, Douglas C.

2010-06-01T23:59:59.000Z

176

Trident pair production in a constant crossed field  

E-Print Network (OSTI)

For the trident process in a constant crossed field, we isolate the one-step mechanism involving a virtual intermediate photon from the two-step mechanism involving a real photon. The one-step process is found to be measurable combining currently-available electron beams with few-cycle laser pulses. The two-step process differs appreciably in magnitude and dynamics from integrating the product of sub-steps over photon lightfront momentum, challenging numerical simulation efforts.

King, B

2013-01-01T23:59:59.000Z

177

Optimizing the efficiency of cylindrical cyclone gas/liquid separators for field applications  

E-Print Network (OSTI)

Problems associated with the use of compact cylindrical cyclone gas/liquid (CCGL) separators can be attributed to two physical phenomena: gas carry-under and liquid carryover (LCO). Inadequate understanding of the complex multiphase hydrodynamic flow pattern inside the cylindrical separator has inhibited complete confidence in its design and use, hence the need for more research. While many works have been done with a fixed inlet slot to predict the operational efficiency of the cyclone separator, very little is known about how separator performance can be influenced due to changes in fluid properties. During the operations of the CCGL separator the complex flow situations arising from severe foaming within the separator has not been addressed. Also the effects of emulsion formation under three phase flow conditions on the properties of cyclone separators are yet to be studied. An understanding of liquid holdup and hydrodynamic nature of flow in a compact separator under zero net liquid flow (ZNLF) and zero net gas flow (ZNGF) conditions is necessary in many field applications, especially for the prediction of LCO and in the design of the CCGL separators. Also, ZNLF holdup is an important parameter in predicting bottom-hole pressures in pumping oil wells. This research investigated the effects of fluid properties such as density, foam and emulsion formation on ZNLF, zero net gas flow ZNGF, and LCO in compact cyclone separators; this was achieved by replacing water, which is the conventional fluid used as the liquid medium in many previous research efforts with a foamy oil while maintaining air as the gas phase. Variable-inlet-slots that regulate the artificial gravity environment created by the separator were used to check for improved separator performance. Also experiments to check separator response to a range of water-cut in three-phase flow were performed. All experiments were carried out under low constant separator pressures. The ZNLF holdup is observed to decrease as the density of the fluid medium decreases. Varying the inlet slot configurations and recombination points does not have any effect on the ZNLF holdup when changes in density of the liquid phase occur. Comparisons with previous work show that there exists a wide variation in the LCO operational envelope when severe foaming occurs in the CCGL separator. At high watercut (greater than 30%), the separator LCO performance was observed to be normal. However, at water-cut below 30%, LCO was initiated much earlier; this is attributed to severe foaming in the CCGL separator.

Adebare, Adedeji

2006-08-01T23:59:59.000Z

178

METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS  

DOE Patents (OSTI)

A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.

Hoffman, J.D.; Ballou, J.K.

1957-11-19T23:59:59.000Z

179

Steamflood production mechanism in an edge pattern Duri field, Indonesia  

E-Print Network (OSTI)

The Duri field, located in Riau Province in Central Sumatra, Indonesia, is currently the site of the largest steamflood project in the world. Roughly half of the field is being flooded in eight project areas. Low oil rate has been encountered in the edge pattern in Duri field. The source of the problem is believed to be the poor steamflood efficiency due to water coning and steam possibly injected into water zone. Evidences for poor steamflood efficiency are a high Steam-oil Ratio and low wellhead temperature. A reservoir simulation study was performed to model the production mechanism in a typical edge pattern of Duri field. A history-match model was developed using a three- dimensional, black-oil, thermal reservoir simulator. A simple pattern-element, layer-cake model was used. Reservoir properties, except permeability and porosity, from the previous model were used and an excellent match of six years of historical performance was obtained by making minor changes in the water relative permeability data. From the result, it can be explained that there are two mechanisms happening to the steam flow in the reservoir. Gravity segregation tends to move steam upward, and least-resistance-flow-path (LRFP) tends to move steam downward due to water cone formed by the producers. LRFP is dominant in the beginning of the steamflood. Water temperature is lower than that of steam, causing even more flow downward to the water zone. Once temperature equilibrium is reached in the OWC, gravity override starts to take over the role. A horizontal well seems to be a good choice to improve the sweep efficiency, because of better contact between wellborn and pay-zone, resulting in lower pressure drawdown for the same production rate. Sensitivity analysis shows the best horizontal section is perpendicular to the reservoir dip. An experimental design using two-level factorial design was performed to find out what variables are influencing the cumulative production, discounted cumulative production and project life for drilling horizontal well in the situation as in Duri field. Correlations to estimate those quantities were developed using linear regression method. It is no surprise that the oil volume and discount factor are the variables that determine those quantities.

Yuwono, Ipung Punto

1999-01-01T23:59:59.000Z

180

Flow fields and heat transfer of liquid falling film on horizontal cylinders.  

E-Print Network (OSTI)

??A liquid film flowing over horizontal cylinders is of great importance as a high rate of heat transfer exists between the falling liquid film and… (more)

Jafar, Farial A

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Analysis of the dynamics of saturation and pressure close to the wellbore for condensate reservoirs as a tool to optimize liquid production  

E-Print Network (OSTI)

Gas condensate reservoirs often exhibit a rapid decline in production with depletion. During early production, liquid dropout accumulates in the near wellbore area and this liquid dropout reduces the effective permeability to gas and thereby the well and field productivity. Our primary goal in this research is to understand the dynamics of condensate banking in the near well region of retrograde gases. We propose a relationship that can be used in determining gas oil ratios and near the wellbore saturation. The tasks accomplished in this study of gas condensate reservoir behavior include: Development of a generalized relationship, that allows us to estimate the gas-oil- ratio (GOR) and the effect condensate banking close to production wells. This simple relationship allows us to estimate GOR and condensate banking at any time by using basic data such as saturation pressure, field pressure, gas injection rates, and gas production rates. We recognize and acknowledge that further work is required in testing and improving this relation. We suggest the addition of molecular weights (or specific gravity) of the reservoir fluid to improve the correlative relationship. Comparison of field performance under a variety of production scenarios including natural depletion, gas cycling, water injection, and, the injection of different gases (methane, nitrogen and carbon dioxide). We provide a discussion of the effects of different production schemes upon saturation profiles and saturation histories, as well as the influence of various production-injection schemes on well and field productivity. We also include an analysis of the compositional changes driven by injection and the influence of these changes on reservoir performance.

Guerra Camargo, Andrea M

2001-01-01T23:59:59.000Z

182

Use of earth field spin echo NMR to search for liquid minerals  

DOE Patents (OSTI)

An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

Stoeffl, Wolfgang (Livermore, CA)

2001-01-01T23:59:59.000Z

183

Optimizing the heat pipe for operation in a magnetic field when liquid-metal working fluids are used  

SciTech Connect

A novel method for reducing the magnetohydrodynamic (MHD) pressure drops in the liquid metal flow in a heat pipe wick is described. By flattening the heat pipe, the eddy current return path in the metallic heat pipe wall is inreased significantly, thereby increasing the effective wall resistance. This, in turn, reduces the magnitude of the MHD pressure drop. The same principle can also be applied to flows of liquid metal coolants in a magnetic field.

Werner, R.W.; Hoffman, M.A.

1981-05-18T23:59:59.000Z

184

Caloric curve for nuclear liquid-gas phase transition in relativistic mean-field hadronic model  

E-Print Network (OSTI)

The main thermodynamical properties of the first order phase transition of the relativistic mean-field (RMF) hadronic model were explored in the isobaric, the canonical and the grand canonical ensembles on the basis of the method of the thermodynamical potentials and their first derivatives. It was proved that the first order phase transition of the RMF model is the liquid-gas type one associated with the Gibbs free energy $G$. The thermodynamical potential $G$ is the piecewise smooth function and its first order partial derivatives with respect to variables of state are the piecewise continuous functions. We have found that the energy in the caloric curve is discontinuous in the isobaric and the grand canonical ensembles at fixed values of the pressure and the chemical potential, respectively, and it is continuous, i.e. it has no plateau, in the canonical and microcanonical ensembles at fixed values of baryon density, while the baryon density in the isotherms is discontinuous in the isobaric and the canonical ensembles at fixed values of the temperature. The general criterion for the nuclear liquid-gas phase transition in the canonical ensemble was identified.

A. S. Parvan

2011-11-26T23:59:59.000Z

185

Biological production of liquid fuels from biomass. Annual report, September 1, 1978-August 31, 1979  

DOE Green Energy (OSTI)

The production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper were studied. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The process is aimed at achieving total raw material utilization and maximization of high value by-product recovery. Specific goals of the investigation are the demonstration of the process technical feasibility and economic practicality and its optimization for maximum economic yield and efficiency. The construction of a pilot apparatus for solvent delignifying 150g samples of lignocellulosic feeds has been completed. Also, an analysis method for characterizing the delignified product has been selected and tested. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis.

Pye, E.K.; Humphrey, A.E.

1979-01-01T23:59:59.000Z

186

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

DOE Green Energy (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

187

Distributions of Liquid, Vapor, and Ice in an Orographic Cloud from Field Observations  

Science Conference Proceedings (OSTI)

The phase distribution of the water mass of a cold orographic cloud into vapor, liquid, and ice is calculated from measurements made from an instrumented aircraft. The vapor values are calculated from thermodynamic measurements, and the liquid is ...

Taneil Uttal; Robert M. Rauber; Lewis O. Grant

1988-04-01T23:59:59.000Z

188

CO sub 2 sources for microalgae-based liquid fuel production  

DOE Green Energy (OSTI)

Researchers in the Aquatic Species Program at the Solar Energy Research Institute are developing species of microalgae that have high percentages of lipids, or oils. These lipids can be extracted and converted to diesel fuel substitutes. Because microalgae need carbon dioxide (CO{sub 2}) as a nutrient, optimal microalgae growth occurs in CO{sub 2}-saturated solutions. For this reason, the authors of this study sought to identify possible large-scale sources of CO{sub 2} for microalgae-based liquid fuels production. The authors concluded that several such promising sources exist. 42 refs., 14 figs., 10 tabs.

Feinberg, D.; Karpuk, M.

1990-08-01T23:59:59.000Z

189

Liquid phase methanol reactor staging process for the production of methanol  

DOE Patents (OSTI)

The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

Bonnell, Leo W. (Macungie, PA); Perka, Alan T. (Macungie, PA); Roberts, George W. (Emmaus, PA)

1988-01-01T23:59:59.000Z

190

Measurement of Temperature and Velocity Fields in a Heater Unit by Liquid Crystal Thermometry and Particle Image Velocimetry  

Science Conference Proceedings (OSTI)

Temperature and velocity fields in a heating unit for automobiles are measured through a model experiment in water tunnel using flow visualizations and image analysis to investigate the mixing mechanism of the flow that has passed through the heater ... Keywords: flow measurement, flow visualization, heater unit, liquid crystal, particle image velocimetry, temperature measurement

N. Fujisawa; H. Ikeda; R. Saito; M. Yokota

2000-08-01T23:59:59.000Z

191

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

DOE Green Energy (OSTI)

Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

Gerald P. Huffman

2006-03-30T23:59:59.000Z

192

C1 CHEMISTRY FOR THE PRODUCTION OF CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this program in its third year, as briefly summarized below. (1) Nanoscale iron-based catalysts containing molybdenum, palladium, or nickel and supported on alumina have been developed that are very effective for the dehydrogenation of methane and ethane to produce pure hydrogen and carbon nanotubes, a potentially valuable byproduct. Some of the nanotube structures are being investigated as a safe storage medium for hydrogen. Dehydrogenation of higher hydrocarbons, including several liquids that are compatible with vehicular transportation under fuel cell power, is currently under investigation. (2) Operation of Fischer-Tropsch (FT) synthesis under supercritical fluid (SCF) solvent conditions increases liquid fuel yields and improves the selectivity of the process to produce desired products. (3) Small additions ({approx}1%) of organic probe molecules with carbon-carbon triple bonds to the FT reaction markedly shift the molecular weight distribution and increase the oxygenate content of the products. The goal is to develop better technology for producing cleaner burning diesel fuel and other fuels. (4) Several different types of catalyst are under investigation to develop better control of FT fuel product distributions. (5) C1 processes have been developed for producing ethylene and propylene, two high-value products, from methanol. Novel silicoaluminophosphate (SAPO) catalysts containing nickel and other metals are used. (6) Binary tungsten-cobalt carbide catalysts have been found to have excellent activities and lifetimes for reforming of methane into synthesis gas using carbon dioxide. This type of catalyst is being further investigated for synthesis gas reactions relevant to the goal of producing hydrogen from coal.

Gerald P. Huffman

2002-09-30T23:59:59.000Z

193

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

Gerald P. Huffman

2004-09-30T23:59:59.000Z

194

Excess water production diagnosis in oil fields using ensemble classifiers.  

E-Print Network (OSTI)

??In hydrocarbon production, more often than not, oil is produced commingled with water. As long as the water production rate is below the economic level… (more)

Rabiei, Minou

2011-01-01T23:59:59.000Z

195

Supported liquid membrane electrochemical separators  

DOE Patents (OSTI)

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

196

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Application of Low Field and Solid-State NMR Spectroscopy to Study the Liquid/Liquid Interface in Porous Space of Clay Minerals and Shales  

E-Print Network (OSTI)

In petroleum research understanding displacement, redistribution, and adsorption of oil and water plays an important role. To study complex multi-component systems such as liquid/liquid/mineral interactions in the porous space of clays and shales we applied low field (2 – 15 MHz) and high resolution (300 MHz) NMR spectroscopy. The detailed NMR analysis shows that the results from low field NMR measurements are in good correlation with the solid-state data. Consequently the process of liquid/liquid displacement can be characterised by considering the relaxation times, signal amplitudes and chemical shifts together.

Artem Borysenko; Ben Clennell; Iko Burgar; David Dewhurst; Rossen Sedev; John Ralston

2008-01-01T23:59:59.000Z

197

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2005-03-31T23:59:59.000Z

198

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2004-03-31T23:59:59.000Z

199

Production of copper and brass nanoparticles upon laser ablation in liquids  

SciTech Connect

The production of nanoparticles upon ablation of copper and brass by pulsed radiation from Nd:YAG and copper lasers in water, ethanol, and acetone is studied. The nanoparticles were investigated by the methods of X-ray diffractometry, optical spectroscopy, and transmission electron microscopy. The produced copper and brass nanoparticles were shown to exhibit a plasmon resonance lying in the visible spectral range near 580 and 510 nm. The brass nanoparticles produced by ablation in ethanol have a shell approximately 10-nm thick for an average dimension of 20-30 nm. A chemical modification of ethanol was observed, which manifested itself in the appearance of intense UV absorption bands. Upon laser irradiation of brass nanoparticles in a liquid their absorption spectrum gradually transformed into the spectrum of copper nanoparticles. (interaction of laser radiation with matter)

Kazakevich, Pavel V; Simakin, Aleksandr V; Shafeev, Georgii A [Scientific Center for Wave Studies, A.M.Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Voronov, Valerii V [Laser Materials and Technology Research Center, A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2004-10-31T23:59:59.000Z

200

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

DOE Green Energy (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

Gerald P. Huffman

2003-09-30T23:59:59.000Z

202

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

203

Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields  

E-Print Network (OSTI)

Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\

Kleinert, Hagen; Xue, She-Sheng

2008-01-01T23:59:59.000Z

204

Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields  

E-Print Network (OSTI)

Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\

Hagen Kleinert; Remo Ruffini; She-Sheng Xue

2008-07-06T23:59:59.000Z

205

U.S. Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Field Production of Crude Oil (Thousand Barrels per Day) ... Crude Oil Supply and Disposition;

206

Production of Materials with Superior Properties Utilizing High Magnetic Field  

Processing materials in a magnetic field is an innovative and revolutionary means to change materials and structural properties by tailoring the ...

207

Characterization and utilization of hydrotreated products produced from the Whiterocks (Utah) tar sand bitumen-derived liquid  

SciTech Connect

The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the mined and crushed ore from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor. The purpose was to determine the extent of upgrading as a function of process operating variable. A sulfided nickel-molybendum on alumina hydrodenitrogenation catalyst was used in all experiments. Moderately severe operating conditions were employed; that is, high reaction temperature (617--680 K) high reactor pressure (11.0--17.1 MPa) and low liquid feed rate (0.18--0.77 HSV); to achieve the desired reduction in heteroatom content. Detailed chemical structures of the bitumen-derived liquid feedstock and the hydrotreated total liquid products were determined by high resolution gas chromatography - mass spectrometry analyses. The compounds identified in the native bitumen included isoprenoids; bicyclic, tricycle, and tetracyclic terpenoids; steranes; hopanes; and perhydro-{beta}-carotenes. In addition, normal and branched alkanes and alkenes and partially dehydrogenated hydroaromatics were identified in the bitumen-derived liquid. The dominant pyrolysis reactions were: (1) the dealkylation of long alkyl side chains to form {alpha} - and isoolefins; and (2) the cleavage of alkyl chains linking aromatic and hydroaromatic clusters. Olefinic bonds were not observed in the hydrotreated product and monoaromatic hydrocarbons were the predominant aromatic species. The properties of the jet fuel fractions from the hydrotreated products met most of the jet fuel specifications. The cetane indices indicated these fractions would be suitable for use as diesel fuels.

Tsai, C.H.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.

1991-12-31T23:59:59.000Z

208

Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field  

E-Print Network (OSTI)

Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea, and North Field in Qatar. The main focus of this thesis is to evaluate condensate blockage problems in the North Field, Qatar, and then propose solutions to increase well productivity in these gas condensate wells. The first step of the study involved gathering North Field reservoir data from previously published papers. A commercial simulator was then used to carry out numerical reservoir simulation of fluid flow in the North Field. Once an accurate model was obtained, the following three solutions to increasing productivity in the North Field are presented; namely wettability alteration, horizontal wells, and reduced Non Darcy flow. Results of this study show that wettability alteration can increase well productivity in the North Field by adding significant value to a single well. Horizontal wells can successfully increase well productivity in the North Field because they have a smaller pressure drawdown (compared to vertical wells). Horizontal wells delay condensate formation, and increase the well productivity index by reducing condensate blockage in the near wellbore region. Non Darcy flow effects were found to be negligible in multilateral wells due to a decrease in fluid velocity. Therefore, drilling multilateral wells decreases gas velocity around the wellbore, decreases Non Darcy flow effects to a negligible level, and increases well productivity in the North Field.

Miller, Nathan

2009-12-01T23:59:59.000Z

209

Understanding Thermal Drift in Liquid Nitrogen Loads Used for Radiometric Calibration in the Field  

Science Conference Proceedings (OSTI)

An absorbing load in a liquid nitrogen bath is commonly used as a radiance standard for calibrating radiometers operating at microwave to infrared wavelengths. It is generally assumed that the physical temperature of the load is stable and equal ...

Scott N. Paine; David D. Turner; Nils Küchler

210

MULTIVARIATE PRODUCTION OPTIMIZATION OF A NATURAL GAS FIELD.  

E-Print Network (OSTI)

??Any production well is drilled and completed for the extraction of oil or gas from itsoriginal location in the reservoir to the stock tank or… (more)

Nago, Annick

2009-01-01T23:59:59.000Z

211

Elucidating the solid, liquid and gaseous products from batch pyrolysis of cotton-gin trash.  

E-Print Network (OSTI)

Cotton-gin trash (CGT) was pyrolyzed at different temperatures and reaction times using an externally-heated batch reactor. The average yields of output products (solid/char, liquid/bio-oil, and gaseous) were determined. The heating value (HV) of CGT was measured to be around 15-16 MJ kg- 1 (6500-7000 Btu lb-1). In the first set of tests, CGT was pyrolyzed at 600, 700, and 800°C and at 30, 45, and 60 min reaction period. The maximum char yield of 40% by weight (wt.%) was determined at 600°C and 30 min settings, however, the HV of char was low and almost similar to the HV of CGT. A maximum gas yield of 40 wt.% was measured at 800°C and 60 min and the highest liquid yield of 30 wt.% was determined at 800°C and 30 min. In the modified pyrolysis test, the effects of temperature (500, 600, 700, and 800°C) on the product yield and other properties were investigated. The experiment was performed using the same reactor purged with nitrogen at a rate of 1000 cm3 min-1. Gas yield increased as temperature was increased while the effect was opposite on char yield. The maximum char yield of 38 wt.% was determined at 500°C and 30 min. The char had the largest fraction in the energy output (70-83%) followed by gas (10-20%) and bio-oil (7- 9%). Maximum gas yield of 35 wt.% was determined at 800°C. The average yield of CO, H2 and total hydrocarbons (THC) generally increased with increased temperature but CO2 production decreased. Methane, ethane, and propane dominated the THC. The bio-oil yield at 600°C was the highest at about 30 wt.% among the temperature settings. The HV of bio-oil was low (2-5 MJ kg-1) due to minimal non-HC compounds and high moisture content (MC). A simple energy balance of the process was performed. The process was considered energy intensive due to the high amount of energy input (6100 kJ) while generating a maximum energy output of only 10%. After disregarding the energy used for preparation and pyrolysis, the energy losses ranged from 30-46% while the energy of the output represent between 55-70% of the input energy from CGT.

Aquino, Froilan Ludana

2007-12-01T23:59:59.000Z

212

Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products  

DOE Patents (OSTI)

A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

Barney, Gary S. (Richland, WA); Brownell, Lloyd E. (Richland, WA)

1977-01-01T23:59:59.000Z

213

Field Evidence Supporting Quantitative Predictions of Secondary Ice Production Rates  

Science Conference Proceedings (OSTI)

Field observations from three different areas in the United States are used to determine the rates of appearance of ice particles in cumulus clouds. Those rates are compared to predictions obtained using the laboratory studies of the Hallett-...

Raymond L. Harris-Hobbs; William A. Cooper

1987-04-01T23:59:59.000Z

214

Non-commutative Field Theory, Translational Invariant Products and Ultraviolet/Infrared Mixing  

E-Print Network (OSTI)

We review the Moyal and Wick-Voros products, and more in general the translation invariant non-commutative products, and apply them to classical and quantum field theory. We investigate phi^4 field theories calculating their Green's functions up to one-loop for the two- and four-point cases. We also review the connections of these theories with Drinfeld twists.

Galluccio, Salvatore

2010-01-01T23:59:59.000Z

215

Field evaluation of sampling methods for pressurized geothermal liquids, gases, and suspended solids  

DOE Green Energy (OSTI)

Many different sampling methods were tested and compared for collecting samples for measurement of brine chemistry, gases, and suspended solids from pressurized geothermal systems. The tests were conducted on the 6-2 wellhead and a test loop at the Department of Energy's Geothermal Test Facility at East Mesa, California. The recommended methods for single-phase liquid or single-phase steam (with gases) are presented, together with detailed procedures. The results of testing methods for sampling two phase liquid-steam systems showed significant errors can result. It was recommended that two-phase flowing wells be directed to a full flow separator and the single-phase liquid and single-phase steam sampled separately using the recommended methods.

Shannon, D.W.; Cole, M.W.; DeMonia, D.D.; Divine, J.R.; Jensen, G.A.; Kindle, C.H.; Koski, O.H.; Smith, R.P.; Woodruff, E.M.

1980-01-01T23:59:59.000Z

216

A study of production/injection data from slim holes and production wells at the Oguni Geothermal Field, Japan  

DOE Green Energy (OSTI)

Production and injection data from slim holes and large-diameter wells at the Oguni Geothermal Field, Japan, were examined in an effort to establish relationships (1) between productivity of large-diameter wells and slim holes, (2) between injectivity and productivity indices and (3) between productivity index and borehole diameter. The production data from Oguni boreholes imply that the mass production from large-diameter wells may be estimated based on data from slim holes. Test data from both large- and small-diameter boreholes indicate that to first order the productivity and the injectivity indices are equal. Somewhat surprisingly, the productivity index was found to be a strong function of borehole diameter; the cause for this phenomenon is not understood at this time.

Garg, S.K.; Combs, J.; Abe, M.

1996-03-01T23:59:59.000Z

217

Reservoir enhancement on the impermeable margins of productive geothermal fields  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos national Laboratory (LANL). The overall goal of the project was to evaluate the performance of Los Alamos technology in selected geothermal fields, to adapt the technology to the existing industry infrastructure where necessary, and to facilitate its application through demonstration and communication. The primary specific objective was to identify, collaborate, and partner with geothermal energy- producing companies in an evaluation of the application of Los Alamos microseismic mapping technology for locating fracture permeability in producing geothermal fields.

Goff, S.; Gardner, J.; Dreesen, D.; Whitney, E.

1997-01-01T23:59:59.000Z

218

Liquid-gas phase transition in hot asymmetric nuclear matter with density-dependent relativistic mean-field models  

E-Print Network (OSTI)

The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.

Guang-Hua Zhang; Wei-Zhou Jiang

2012-03-17T23:59:59.000Z

219

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

DOE Green Energy (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

220

A study of production/injection data from slim holes and large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan  

DOE Green Energy (OSTI)

Production and injection data from nine slim holes and sixteen large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan were analyzed in order to establish relationships (1) between injectivity and productivity indices, (2) between productivity/injectivity index and borehole diameter, and (3) between discharge capacity of slim holes and large-diameter wells. Results are compared with those from the Oguni and Sumikawa fields. A numerical simulator (WELBOR) was used to model the available discharge rate from Takigami boreholes. The results of numerical modeling indicate that the flow rate of large-diameter geothermal production wells with liquid feedzones can be predicted using data from slim holes. These results also indicate the importance of proper well design.

Garg, S.K. [Maxwell Federal Div., Inc., San Diego, CA (United States)] [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos Hills, CA (United States)] [Geo-Hills Associates, Los Altos Hills, CA (United States); Azawa, Fumio [Idemitsu Kosan Co. Ltd., Tokyo (Japan)] [Idemitsu Kosan Co. Ltd., Tokyo (Japan); Gotoh, Hiroki [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)] [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas Liquids 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 Pentanes Plus 9,772 10,464 10,689 11,270 11,542 11,167 1981-2013 Liquefied Petroleum Gases 64,284 66,268 64,249 67,770 70,834 70,029 1981-2013 Ethane 27,647 28,274 26,311 27,829 30,063 30,015 1981-2013 Propane 23,332 24,191 24,157 25,425 25,974 25,545 1981-2013 Normal Butane 5,876 6,383 6,543 6,399 6,508 6,893 1981-2013 Isobutane 7,429 7,420 7,238 8,117 8,289 7,576 1981-2013 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

222

U.S. Natural Gas Plant Field Production  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Natural Gas Liquids 650,794 652,822 697,124 757,019 808,865 881,306 1981-2012 Pentanes Plus 95,899 96,530 98,904 101,155 106,284 116,002 1981-2012 Liquefied Petroleum Gases 554,895 556,292 598,220 655,864 702,581 765,304 1981-2012 Ethane 258,682 256,713 280,590 317,180 337,972 356,592 1981-2012 Propane 185,099 187,340 199,398 213,782 230,227 260,704 1981-2012 Normal Butane 46,833 48,976 49,528 56,655 57,399 65,555 1981-2012 Isobutane 64,281 63,263 68,704 68,247 76,983 82,453 1981-2012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions, Sources, and Notes link above for more information on this table.

223

Top 100 Oil and Gas Fields  

U.S. Energy Information Administration (EIA)

Appendix B Top 100 Oil and Gas Fields This appendix presents estimates of the proved reserves and production of the top 100 liquids or gas fields by reserves or by ...

224

Available Technologies: Sugar Extraction and Ionic Liquid ...  

APPLICATIONS OF TECHNOLOGY: Biomass pretreatment for biofuel production; Recovery of products using biphasic liquid-liquid extraction; Recovery and ...

225

NETL: News Release - DOE Project Revives Oil Production in Abandoned Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

4 , 2006 4 , 2006 DOE Project Revives Oil Production in Abandoned Fields on Osage Tribal Lands Novel Oil Recovery Technique Developed Under DOE's Native American Initiative WASHINGTON, DC - A technology developed with U.S. Department of Energy funding has revived oil production in two abandoned oilfields on Osage Indian tribal lands in northeastern Oklahoma, and demonstrated a technology that could add billions of barrels of additional domestic oil production in declining fields. Production has jumped from zero to more than 100 barrels of oil per day in the two Osage County, Okla., fields, one of which is more than 100 years old. The technology was successfully pilot-tested in the century-old field, and using the knowledge gained, the technology was applied to a neighboring field with comparable success. This suggests that such approaches could revitalize thousands of other seemingly depleted oilfields across America's Midcontinent region.

226

Nonperturbative enhancement of heavy quark-pair production in a strong SU(2) color field  

Science Conference Proceedings (OSTI)

Nonperturbative charm and bottom quark-pair production is investigated in the early stage of heavy-ion collisions. The time-dependent study is based on a kinetic description of fermion-pair production in strong non-Abelian fields. We introduce a time-dependent chromo-electric external field with a pulselike time evolution to simulate the overlap of two colliding heavy ions. The calculations is performed in a SU(2) color model with finite current quark masses. Yields of heavy quark pairs are compared to the ones of light and strange quark pairs. We show that the small inverse duration time of the field pulse determines the efficiency of the quark-pair production. The expected suppression for heavy quark production, as follows from the Schwinger formula for a constant field, is not seen, but rather an enhanced heavy quark production appears at ultrarelativistic energies.

Levai, Peter; Skokov, Vladimir [KFKI RMKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, Budapest 1525 (Hungary); Gesellschaft fuer Schwerionenforschung mbH, Planckstr. 1, D-64291 Darmstadt (Germany)

2010-10-01T23:59:59.000Z

227

Exploitation of olive mill wastewater and liquid cow manure for biogas production  

SciTech Connect

Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {sup o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.

Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina; Zafiri, Constantina [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., GR 26500 Patras (Greece); Kornaros, Michael, E-mail: kornaros@chemeng.upatras.g [Department of Chemical Engineering, University of Patras, 1 Karatheodori St., GR 26500 Patras (Greece)

2010-10-15T23:59:59.000Z

228

Fermion production by a dependent of time electric field in de Sitter universe  

E-Print Network (OSTI)

Fermion production by the electric field of a charge on de Sitter expanding universe is analyzed. The amplitude and probability of pair production are computed. We obtain from our calculations that the modulus of the momentum is no longer conserved and that there are probabilities for production processes where the helicity is no longer conserved. The rate of pair production in an electric field is found to be important in the early universe when the expansion factor was large comparatively with the particle mass.

Cosmin Crucean

2013-02-06T23:59:59.000Z

229

Phi-Meson Production at RHIC, Strong Color Fields and Intrinsic Transverse Momenta  

E-Print Network (OSTI)

We investigate the effects of strong color fields and of the associated enhanced intrinsic transverse momenta on the phi-meson production in ultrarelativistic heavy ion collisions at RHIC. The observed consequences include a change of the spectral slopes, varying particle ratios, and also modified mean transverse momenta. In particular, the composition of the production processes of phi mesons, that is, direct production vs. coalescence-like production, depends strongly on the strength of the color fields and intrinsic transverse momenta and thus represents a sensitive probe for their measurement.

Sven Soff; Srikumar Kesavan; Jorgen Randrup; Horst Stocker; Nu Xu

2004-04-02T23:59:59.000Z

230

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review  

NLE Websites -- All DOE Office Websites (Extended Search)

& Hydrogen Production Technical Team Research Review Agenda for Tuesday, November 6, 2007 Location: BCS Incorporated, 8929 Stephens Road, Laurel, MD. 20723 410-997-7778 8:30 - 9:00 Continental Breakfast 9:00 DOE Targets, Tools and Technology o Bio-Derived Liquids to Hydrogen Distributed Reforming Targets DOE, Arlene Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen Distributed Reforming Cost Analysis DTI, Brian James 10:00 Research Review o Low-Cost Hydrogen Distributed Production Systems, H2Gen, Sandy Thomas o Integrated Short Contact Time Hydrogen Generator, GE Global Research, Wei Wei o Distributed Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar

231

Liquid-liquid reaction of hydrogen peroxide and sodium hypochlorite for the production of singlet oxygen in a centrifugal flow singlet oxygen generator  

SciTech Connect

An attempt is made to produce gas-phase singlet oxygen O{sub 2}(a{sup 1{Delta}}{sub g}) in a liquid-liquid reaction between acidic hydrogen peroxide (AHP) and sodium hypochlorite (NaOCl). The attempt arises from the fact that basic hydrogen peroxide (BHP) has long been the prime source for producing singlet delta oxygen through its reaction with chlorine. However, BHP suffers from the defect of being unstable during storage. Exploratory experiments were performed in a centrifugal flow singlet oxygen generator (CF-SOG) with two streams of solutions, AHP and NaOCl, mixed in a slit nozzle and then injected into the arc-shaped concavity in the CF-SOG to form a rotating liquid flow with a remarkable centrifugal force. With the help of this centrifugal force, the product of the O{sub 2}({sup 1{Delta}}) reaction was quickly separated from the liquid phase. The gas-phase O{sub 2}({sup 1{Delta}}) was detected via the spectrum of O{sub 2}({sup 1{Delta}}) cooperative dimolecular emission with a CCD spectrograph. Experimental results show that it is feasible to produce gas-phase O{sub 2}({sup 1{Delta}}) from the AHP + NaOCl reaction, and the stronger the acidity, the more efficient the O{sub 2}({sup 1{Delta}}) production. However, since in the AHP + NaOCl reaction, Cl{sub 2} unavoidably appears as a byproduct, its catalytic action on the decomposition of H{sub 2}O{sub 2} into ground-state O{sub 2} remains a major obstacle to utilising the AHP + NaOCl reaction in producing gas-phase O{sub 2}({sup 1{Delta}}). Qualitative interpretation shows that the AHP + NaOCl reaction is virtually the reaction of interaction of molecular H{sub 2}O{sub 2} with molecular HOCl, its mechanism being analogous to that of reaction of BHP with Cl{sub 2}, where HOOCl is the key intermediate. It is difficult to form the intermediate HOOCl via the H{sub 2}O{sub 2} + NaOCl reaction in a basic medium, thus gas-phase O{sub 2}({sup 1{Delta}}) cannot be obtained in appreciable quantities. (active media)

Cui Rongrong; Deng Liezheng; Shi Wenbo; Yang Heping; Sha Guohe; Zhang Cunhao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (China)

2011-02-28T23:59:59.000Z

232

Federal Offshore--Gulf of Mexico Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

233

Federal Offshore--Gulf of Mexico Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 22,166: 20,084: 22,467 ...

234

Bubble point suppression in unconventional liquids rich reservoirs and its impact on oil production.  

E-Print Network (OSTI)

??The average pore size in producing unconventional, liquids-rich reservoirs is estimated to be less than 100 nm. At this nano-pore scale, capillary and surface disjoining… (more)

Firincioglu, Tuba

2013-01-01T23:59:59.000Z

235

Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful deployment of MOE hinges upon the existence of an inert anode capable of ...

Wang, Dihua

236

Liquid fuels production from biomass. Progress report No. 6, 1 October-31 December 1978  

DOE Green Energy (OSTI)

The current program to convert biomass into liquid hydrocarbon fuels is an extension of the previous program to ferment marine algae to acetic acid. In that study, it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation both by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe Electrolysis, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids. The primary task in this regard is methane suppression; (2) modify the current 300 liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process. The primary task in this regard is to reduce the working potential required for the electrolysis while maintaining an adequate current density; and (5) scale the entire process up to match the output of the 300 liter fermenter. The accomplishments in this program are on schedule. Experimental results show that the electrolysis of organic acids produced by fermentation to liquid hydrocarbon fuels already have a favorable energy balance of 6/1 based on the applied potential and over 10/1 based on the working potential.

Sanderson, J.E.; Wise, D.L.

1978-01-01T23:59:59.000Z

237

Peak production in an oil depletion model with triangular field profiles  

E-Print Network (OSTI)

Peak production in an oil depletion model with triangular field profiles Dudley Stark School;1 Introduction M. King Hubbert [5] used curve fitting to predict that the peak of oil produc- tion in the U.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been

Stark, Dudley

238

Predicting the performance of system for the co-production of Fischer-Tropsch synthetic liquid and power from coal  

SciTech Connect

A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. A correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.

Wang, X.; Xiao, Y.; Xu, S.; Guo, Z. [Chinese Academy of Science, Beijing (China). Inst. of Engineering Thermophysics

2008-01-15T23:59:59.000Z

239

Liquid fuels production from biomass. Progress report No. 7, January 1-March 31, 1979  

DOE Green Energy (OSTI)

The current program to convert biomass into liquid hydrocarbon fuels is an extension of the previous program to ferment marine algae to acetic acid. In that study, it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe Electrolysis, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids. The primary task in this regard is methane suppression; (2) modify the current 300 liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process. The primary task in this regard is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the ouput of the 300 liter fermenter. The accomplishments in this program are on schedule. Experimental results have shown that the electrolysis of organic acids produced by fermentation to liquid hydrocarbon fuels is already operating with a favorable energy balance of 6/1 based on the applied potential and over 10/1 based on the working potential. 2-Bromoethanesulfonic acid, a coenzyme M analogue, has been shown to be an effective methane suppressor, and the program is being rapidly expanded to include biomass substrates other than marine algae. In addition, considerable effort has been directed toward refining the process design and economic analysis presented previously.

Sanderson, J.E.; Garcia-Martinez, D.V.; George, G.S.; Dillon, J.J.; Wise, D.L.

1979-01-01T23:59:59.000Z

240

Ionic Liquid and Supercritical Fluid Hyphenated Techniques for Dissolution and Separation of Lanthanides, Actinides, and Fission Products  

SciTech Connect

This project is investigating techniques involving ionic liquids (IL) and supercritical (SC) fluids for dissolution and separation of lanthanides, actinides, and fission products. The research project consists of the following tasks: Study direct dissolution of lanthanide oxides, uranium dioxide and other actinide oxides in [bmin][Tf{sub 2}N] with TBP(HNO{sub 3}){sub 1.8}(H{sub 2}O){sub 0.6} and similar types of Lewis acid-Lewis base complexing agents; Measure distributions of dissolved metal species between the IL and the sc-CO{sub 2} phases under various temperature and pressure conditions; Investigate the chemistry of the dissolved metal species in both IL and sc-CO{sub 2} phases using spectroscopic and chemical methods; Evaluate potential applications of the new extraction techniques for nuclear waste management and for other projects. Supercritical carbon dioxide (sc-CO{sub 2}) and ionic liquids are considered green solvents for chemical reactions and separations. Above the critical point, CO{sub 2} has both gas- and liquid-like properties, making it capable of penetrating small pores of solids and dissolving organic compounds in the solid matrix. One application of sc-CO{sub 2} extraction technology is nuclear waste management. Ionic liquids are low-melting salts composed of an organic cation and an anion of various forms, with unique properties making them attractive replacements for the volatile organic solvents traditionally used in liquid-liquid extraction processes. One type of room temperature ionic liquid (RTIL) based on the 1-alkyl-3-methylimidazolium cation [bmin] with bis(trifluoromethylsulfonyl)imide anion [Tf{sub 2}N] is of particular interest for extraction of metal ions due to its water stability, relative low viscosity, high conductivity, and good electrochemical and thermal stability. Recent studies indicate that a coupled IL sc-CO{sub 2} extraction system can effectively transfer trivalent lanthanide and uranyl ions from nitric acid solutions. Advantages of this technique include operation at ambient temperature and pressure, selective extraction due to tunable sc-CO{sub 2} solvation strength, no IL loss during back-extraction, and no organic solvent introduced into the IL phase.

Wai, Chien M. [Univ. of Idaho, Moscow, ID (United States); Bruce Mincher

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Liquid fuels production from biomass. Progress report No. 8, July 1-September 30, 1979  

DOE Green Energy (OSTI)

It was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe electrolysis, which may be used as a diesel fuel. A coenzyme M analogue, 2-bromoethanesulfonic acid has been shown to be an effective suppressor of methane in nonsterile anaerobic fermentation of cellulosic substrates. A tapered auger device has been designed and built which has been demonstrated on the bench to be effective for adding substrate and removing residue in a continuous manner from a fixed packed bed fermenter. A solvent extracter system using kerosene as the nonaqueous phase has been constructed and is currently in operation in series with the 300 liter fixed packed bed fermenter. The electrolytic oxidation of organic acids produced in the 300 liter fixed packed bed fermenter is operating with a favorable energy balance of 6/1 based on the applied potential. As stated earlier the liquid-liquid extractor system is operating in line with the 300 liter fixed packed bed fermentor. The other components of an integrated continuous system, the continuous feed device and the Kolbe electrolysis cell are operating satisfactorily out of line on a scale compatible with the 300 liter fixed packed bed fermentor. An economic analysis for a 1000 ton per day plant has been performed and has been improved and updated based on additional experimental results. Currently a cost based on utility financing including a reasonable return on investment of $5.48/million Btu is estimated, making the process fully competitive with the most favorable estimates from other processes for producing liquid fuels from renewable resources.

Sanderson, J.E.; Wise, D.L.; Levy, P.F.; Molyneaux, M.S.

1979-10-15T23:59:59.000Z

242

Liquid fuels production from biomass. Progress report No. 8, April 1-June 30, 1979  

DOE Green Energy (OSTI)

The current program to convert biomass into liquid hydrocarbon fuels is an extension of the previous program to ferment marine algae to acetic acid. In that study, it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation both by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids to aliphatic hydrocarbons via Kolbe Electrolysis, which may be used as a diesel fuel. The accompishments in this program for the first year of work are as follows: a coenzyme M anologue, 2-bromoethanesulfonic acid has been shown to be an effective suppressor of methane in nonsterile anaerobic fermentation of cellulosic substrates; a tapered auger device has been designed and built which has been demonstrated on the bench to be effective for adding substrate and removing residue in a continuous manner from a fixed packed bed fermenter; a solvent extracter system using kerosene as the nonaqueous phase has been constructed and is currently in operation in series with the 300 liter fixed packed bed fermenter; although additional work is required to optimize the electrolysis process the electrolytic oxidation of organic acids produced in the 300 liter fixed packed bed fermenter is operating with a favorable energy balance of 6/1 based on the applied potential; the liquid-liquid extractor system is operating in line with 300 liter fixed packed bed fermentor; the other components of an integrated continuous system, the continuous feed device and the Kolbe electrolysis cell are operating satisfactorily out of line on a scale compatible with the 300 liter fixed packed bed fermentor; and an economic analysis for a 1000 ton per day plant has been performed and has been improved and updated based on additional experimental results.

Sanderson, J.E.; Garcia-Martinez, D.V.; George, G.S.; Dillon, J.J.; Molyneaux, M.S.; Barnard, G.W.; Wise, D.L.

1979-07-23T23:59:59.000Z

243

Assessment of Air Emissions at the U S Liquids Exploration and Production Land Treatment Facility  

SciTech Connect

This project was initiated to make the first set of measurements documenting the potential for emissions of pollutants from exploration and production (E&P) waste disposal facilities at Bourg, Louisiana and Bateman Island, Louisiana. The objective of the project was to quantify the emissions and to determine whether the measured emissions were potentially harmful to human health of workers and the adjacent community. The study, funded by the Department of Energy (DOE) is designed to complement additional studies funded by Louisiana Department of Natural Resources (LADNR) and the American Petroleum Institute. The distinguishing feature of this study is that actual, independent field measurements of emissions were used to assess the potential problems of this disposal technology. Initial measurements were made at the Bourg, LA facility, adjacent to the community of Grand Bois in late 1998-early 1999. Emission measurements were performed using aluminum chambers placed over the surface of the landfarm cells. Air was pulled through the chambers and the concentration of the contaminants in the air exiting the chambers was measured. The contaminants of interest were the ''BTEX'' compounds (benzene, toluene, ethylbenzene and xylene), commonly found in E&P wastes and hydrogen sulfide, a noxious gas present naturally in many E&P wastes and crude oils. Measurements indicated that emissions were measurable using the techniques developed for the study. However, when the air concentrations of these contaminants that developed above the landfarm cells were compared with standards for workers from the Occupational and Safety and Health Association (''OSHA'') and for communities (Louisiana's ambient air standards), levels were not of concern. Since amounts of wastes being processed by the Bourg facility were considerably lower than normal, a decision was made to continue the study at the Bateman Island facility near Morgan City, LA. This facility was receiving more normal loadings of E&P wastes. Additional emission measurements were made at the Bateman Island facility within cells over a range of ''ages'', from those most recently loaded with E&P wastes to cells that have not received wastes for 9 months or more. As expected the greatest chance for emissions when the cell is most recently loaded. Again, measured fluxes did not produce air concentrations that were of concern. As expected, the highest fluxes were observed in the cells that had recently received wastes and older cells had very low emissions. Measurements of emissions of hydrogen sulfide (H{sub 2}S) were also conducted at these two facilities. Levels of emissions were similar to the xange observed in the literature for natural salt marshes that surround these facilities. Production of sulfide within the cells was also measured by the most sensitive techniques available and measured sulfide production rates were low in the samples tested. The only potential concern at the facility with regards to sulfide was the levels of sulfide emitted from the sumps. The facility logbook at Bourg was analyzed to determine a time sequence of activities over 1998-1999. The Louisiana Department of Environmental Quality conducted a time-series of air concentrations for hazardous air pollutants during this period at the fenceline of the Bourg facility. These data were characterized by periods of static concentrations interspersed with peaks. A series of peaks were analyzed and compared with logbook records for the activities occurring at the time. In reverse fashion, a set of activities documented by the logbook was examined and the concentrations of benzene that developed from these activities were documented. No direct correlation could be made with the observed peaks and any activities suggesting that concentrations of benzene at the fenceline may be the result of a complex suite of activities including onsite activities not documented in the logbook (loading of the cells by truck haulers) and offsite activities (automobile traffic). Based on these results several recomme

John H. Pardue; K.T. Valsaraj

2000-12-01T23:59:59.000Z

244

FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-09-12T23:59:59.000Z

245

High-power liquid-lithium jet target for neutron production  

E-Print Network (OSTI)

A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of > 4 kW/cm2 and volume power density of ~ 2 MW/cm3 at a lithium flow of ~4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91- 2.5 MeV, 1-2 mA) at SARAF.

S. Halfon; A. Arenshtam; D. Kijel; M. Paul; D. Berkovits; I. Eliyahu; G. Feinberg; M. Friedman; N. Hazenshprung; I. Mardor; A. Nagler; G. Shimel; M. Tessler; I. Silverman

2013-11-13T23:59:59.000Z

246

Electron-Positron Pair Production in Structured Pulses of Electric Fields  

E-Print Network (OSTI)

The non-perturbative electron-positron pair production in time-dependent electric fields is investigated. The quantum kinetic formalism is employed in order to calculate the electron density for various field configurations. The corresponding set of first order, ordinary differential equations is analyzed and numerically solved. The focus of this study lies on the dynamically assisted Schwinger effect in pulsed electric fields with at least two different time scales. Furthermore, interference effects arising in setups with multiple pulses are examined and first results for an optimization of the particle number yield by pulse-shaping are given.

Christian Kohlfürst

2012-12-04T23:59:59.000Z

247

METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT  

DOE Patents (OSTI)

An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

Dole, M.

1959-09-22T23:59:59.000Z

248

Liquid metal cooled solar central receiver feasibility study and heliostat field analysis. Final report, Part II  

DOE Green Energy (OSTI)

Four studies are presented, the first two of which are based on a specific design for a water/steam commercial 100 MW/sub e/ Solar Tower System. The first of these uses the RCELL computer program, which provides a cellwise method for the economic optimization of central receiver systems, to compare performance for several latitudes, field slopes, tower heights, heliostat costs, land costs, and input figures of merit. Using the systems design studies for the 100 MW/sub e/ unit, the second study performs a detailed net energy analysis on capital energy required to build the thermal collection component, including 6 hours of storage. Also determined is the Energy Amplification Factor, which measures the number of times the energy incorporated in the plant can be replicated during its lifetime. The third study provides a means for calculating the sun's position as a function of time. The fundamental reference frames for observing celestial objects are defined, and basic notions of orbits and time reckoning are explained. Series solutions for the equation of time and for the equation of the center are given. Phenomena affecting the sun's position and the errors which result when their effects are disregarded are summarized. A computer program to accurately locate the sun was written. The effects that two different sun tracker programs have on insolation prediction are compared. The fourth study describes and models the sodium heat engine, a continuous isothermal expansion engine for sodium vapor. The heart of the machine is beta''-alumina, a refractory material remarkable for its high conductivity of sodium ions. (LEW)

Not Available

1978-05-01T23:59:59.000Z

249

Production of liquid fuels with a high-temperature gas-cooled reactor  

DOE Green Energy (OSTI)

Recent events by OPEC have sharply increased interest in the United States for synfuels, and there are plans for several types of synfuel demonstration plants. The early timing of these plants will probably preclude their use of a nuclear heat source, but their operation will be a necessary step to the eventual integration of a nuclear heat source. The applications using coal liquids that are considered active candidates for nuclear process heat, the reference heat source design, and nuclear and non-nuclear methods for coal liquefaction are described.

Quade, R.N.; Vrable, D.L.; Green, L. Jr.

1979-12-01T23:59:59.000Z

250

Syngas production from heavy liquid fuel reforming in inert porous media  

E-Print Network (OSTI)

with the low H2 density is the movement: the power required to pump hydrogen is around 4.5 times higher than for natural gas per unit of delivered energy [17]. Hydrogen can be stored on-board a vehicle as a compressed gas, as a liquid in cryogenic containers... and the transportation system are mainly based on the combustion of fossil fuels, generally defined as oil, coal and natural gas, as shown in Fig. 1.1. There are several issues to be considered about fossil fuel consumption. First of all, the greenhouse gas emission, due...

Pastore, Andrea

2010-11-16T23:59:59.000Z

251

Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the  

E-Print Network (OSTI)

fuel production Fischer-Tropsch or methanol synthesis . Moreover, under the reaction conditions hydrocarbons through the Fischer-Tropsch process. To do this, it is necessary to partially oxidize the CH4 production Fischer- Tropsch . Moreover, under the reaction conditions explored, no CO2 was detected, i

Grossmann, Ignacio E.

252

Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation  

E-Print Network (OSTI)

The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL provides middle distillates to an unsaturated global market and offers opportunities to generate power for commercial purposes from waste by-product streams, which normally are associated with increased expenses incurred from additional handling cost. The key concept investigated in this work is the possibility of integrating the GTL process with power generation using conventional waste by-product steam streams. Simulation of the integrated process was conducted with the aim of identifying the critical operating conditions for successful integration of the GTL and power generation processes. About 500 MW of electric power can be generated from 70% of the exit steam streams, with around 20 to 25% steam plant thermal efficiency. A detailed economic analysis on the LNG, stand-alone GTL, and Integrated GTL Power-Generation plants indicates that the integrated system is more profitable than the other options considered. Justifying the technology and economics involved in the use of the by-product streams to generate power could increase the net revenue and overall profitability of GTL projects. This technology may be transferable to GTL projects in the world, wherever a market for generated power exists.

Adegoke, Adesola Ayodeji

2006-08-01T23:59:59.000Z

253

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

254

Production of jet fuels from coal-derived liquids. Volume 6. Preliminary analysis of upgrading alternatives for the Great Plains liquid by-production streams. Interim report, March 1987-February 1988  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However the phenolic and naptha streams do have the potential to significantly increase (on the order of $10-15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10% of the U.S. market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.

1988-09-01T23:59:59.000Z

255

Green functions and dimensional reduction of quantum fields on product manifolds  

E-Print Network (OSTI)

We discuss Euclidean Green functions on product manifolds P=NxM. We show that if M is compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R^{D-1}xS^{beta}, where S^{beta} is a circle of radius beta, then the result reduces to the well-known approximation of the D dimensional finite temperature quantum field theory to D-1 dimensional one in the high temperature limit. Analytic continuation of Euclidean fields is discussed briefly.

Haba, Z

2007-01-01T23:59:59.000Z

256

Characterization of gas condensate reservoirs using pressure transient and production data - Santa Barbara Field, Monagas, Venezuela  

E-Print Network (OSTI)

This thesis presents a field case history of the integrated analysis and interpretation developed using all of the available petrophysical, production, and well test data from the condensate zone of Block A, Santa Barbara Field (Monagas, Venezuela). The reservoir units in Santa Barbara Field present substantial structural and fluid complexity, which, in turn, presents broad challenges for assessment and optimization of well performance behavior. Approximately 60 well tests have been performed in the gas condensate sections within Santa Barbara Field, and the analysis and interpretation of this data suggests the existence of condensate banking and layered reservoir behavior, as well as "well interference" effects. We demonstrate and discuss analysis and interpretation techniques that can be utilized for wells that exhibit condensate banking, layered reservoir behavior, and well interference effects (where all of these phenomena are observed in the well performance data taken from Block A in Santa Barbara Field). We have established that the layered reservoir model (no crossflow), coupled with the model for a two-zone radial composite reservoir, is an appropriate reservoir model for the analysis and interpretation of well performance data (i.e., well test and production data) taken from wells in Santa Barbara Field. It is of particular importance to note our success in using the "well interference" approach to analyze and interpret well test data taken from several wells in Santa Barbara Field. While it is premature to make broad conclusions, it can be noted that well interference effects (interference between production wells) could be (and probably is) a major influence on the production performance of Santa Barbara Field. In addition, our well test analysis approach corroborates the use of the Correa and Ramey (variable rate) plotting function for the analysis of drillstem test (DST) data. In summary, we are able to use our integrated analysis developed for Block A (Santa Barbara Field) estimate areal distributions of "flow" properties (porosity, effective permeability, and skin factor), as well as "volumetric" properties (original gas-in-place, gas reserves, and reservoir drainage area (all on a "per-well" basis)).

Medina Tarrazzi, Trina Mercedes

2003-01-01T23:59:59.000Z

257

Particle production in strong electromagnetic fields in relativistic heavy-ion collisions  

E-Print Network (OSTI)

I review the origin and properties of electromagnetic fields produced in heavy ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches eB\\sim(m_\\pi)^2 at RHIC and eB\\sim10 (m_\\pi)^2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma exists as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/Psi dissociation via Lorentz ionization mechanism and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

Kirill Tuchin

2013-01-01T23:59:59.000Z

258

Production of liquid fuels and chemicals by microalgae. Final subcontract report  

DOE Green Energy (OSTI)

An overall objective of the project was to conceptually determine if simple open pond systems have application for the production of fuels from microalgae. To demonstrate the overall objective, work concentrated on showing the potential microalgal yields that are possible from an open pond system on a sustained basis. Furthermore, problems associated with this experimental system were documented and reported so that future endeavors shall benefit. Finally, operational costs were documented to permit preliminary economic analysis of the system. The major conclusions of this project can be summarized as follows: (1) Using two wildtype species in northern California a yearly average productivity of 15 gm/m/sup 2//day, or 24 tons/acre/yr can be obtained in water with TDS = 4 to 8 ppt. (2) This can probably be increased to 20 to 25 gm/m/sup 2//day or 32 to 40 tons/acre/y in southern California. (3) Productivity can probably be further increased by using competitive strains screened for low respiration rates, tolerances to high levels of dissolved oxygen, broad temperature optima, and resistance to photoinhibition. (4) In systems with randomized, turbulent mixing, productivity is independent of channel velocity at least for productivities up to 25 to 30 gm/m/sup 2//day and velocities from 1 to 30 cm/sec. (5) Storage product induction requires one to three days of growth in batch mode under n-depleted conditions. (6) Critical cost centers include CO/sub 2/ input, harvesting and system capital cost. (7) Media recycling, necessary for water conservation, has no adverse effects, at least in the short term for strains which do not excrete organics, and when the harvesting method is at least moderately effective for all algal forms which may be present. 8 refs., 28 figs., 56 tabs.

Weissman, J.C.; Goebel, R.P.

1985-03-01T23:59:59.000Z

259

New Acid Stimulation Treatment to Sustain Production - Los Angeles Downtown Oil Field  

Science Conference Proceedings (OSTI)

Hydrochloric acid stimulation was successfully used on several wells in the Los Angeles Downtown Field, in the past. The decline rates after stimulation were relatively high and generally within six months to a year, production rates have returned to their prestimulation rates. The wells in Los Angeles Downtown Field have strong scale producing tendencies and many wells are treated for scale control. Four wells were carefully selected that are representative of wells that had a tendency to form calcium carbonate scale and had shown substantial decline over the last few years.

Russell, Richard C.

2003-03-10T23:59:59.000Z

260

Isospin and symmetry energy effects on nuclear fragment production in liquid-gas type phase transition region  

E-Print Network (OSTI)

We have demonstrated that the isospin of nuclei influences the fragment production during the nuclear liquid-gas phase transition. Calculations for Au197, Sn124, La124 and Kr78 at various excitation energies were carried out on the basis of the statistical multifragmentation model (SMM). We analyzed the behavior of the critical exponent tau with the excitation energy and its dependence on the critical temperature. Relative yields of fragments were classified with respect to the mass number of the fragments in the transition region. In this way, we have demonstrated that nuclear multifragmentation exhibits a 'bimodality' behavior. We have also shown that the symmetry energy has a small influence on fragment mass distribution, however, its effect is more pronounced in the isotope distributions of produced fragments.

N. Buyukcizmeci; R. Ogul; A. S. Botvina

2005-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Isospin and symmetry energy effects on nuclear fragment production in liquid-gas type phase transition region  

E-Print Network (OSTI)

We have demonstrated that the isospin of nuclei influences the fragment production during the nuclear liquid-gas phase transition. Calculations for Au197, Sn124, La124 and Kr78 at various excitation energies were carried out on the basis of the statistical multifragmentation model (SMM). We analyzed the behavior of the critical exponent tau with the excitation energy and its dependence on the critical temperature. Relative yields of fragments were classified with respect to the mass number of the fragments in the transition region. In this way, we have demonstrated that nuclear multifragmentation exhibits a 'bimodality' behavior. We have also shown that the symmetry energy has a small influence on fragment mass distribution, however, its effect is more pronounced in the isotope distributions of produced fragments.

N. Buyukcizmeci; R. Ogul; A. S. Botvina

2004-12-31T23:59:59.000Z

262

Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen  

Science Conference Proceedings (OSTI)

Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

None

2010-07-15T23:59:59.000Z

263

Development of geothermally assisted process for production of liquid fuels and chemicals from wheat straw  

SciTech Connect

The effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw are investigated. Both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose are considered. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge were also investigated. A brief study was made of the effects of two major parameters, substrate concentration and enzyme/substrate ratio, on the sugar yield from enzymatic hydrolysis of optimally pretreated straw. The efficiency with which these sugars could be fermented to ethanol was studied. In most cases experiments were carried out using distilled water; however, the effects of direct use of geothermal water were determined for each of the major steps in the process. An appendix to the body of the report describes the results of a preliminary economic evaluation of a plant designed to produce 25 x 10/sup 6/ gallons of ethanol per year from wheat straw using the best process conditions determined in the above work. Also appended are the results from a preliminary investigation of the applicability of autohydrolysis technology to the production of fermentable sugars from corn stover.

Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

1981-06-01T23:59:59.000Z

264

Analysis and optimization of gas pipeline networks and surface production facilities for the Waskom Field--Harrison County, Texas  

E-Print Network (OSTI)

This research has developed a computer simulation of the production facilities model of the Waskom Field in order to analyze existing and future production methods. The Waskom Field, located in East Texas, is a redeveloped reservoir sequence that produces primarily natural gas with minor amounts of oil and gas-condensate from the Upper and Lower Cotton Valley Sands as well as Sands in the Travis Peak sequence. The present gas production at Waskom Field averages about 12,000 Mcf/D. We have used data and the current production history to create a model of the surface production facilities, and we will simulate field performance by using a computer simulation package. In particular, all of the field facilities as well as the production history are included in these simulation Surface facilities for the Waskom field include pipelines of varying, sizes, separators, compressors, valves, and production manifolds. After creating and verifying the field model, we determined that the field possesses greater compressor capabilities than it requires. A simulation was performed where by the rental compressor in the Reuben Pierce lease was removed. The computer simulation showed that we can lower the last line pressure to 200 psig from 450 psig (which the operator was eventually able to negotiate) and the remaining compressors can sufficiently compress all of the gas currently produced in the field. Our few additional recommendations are to clean the separators, remove dual separator layouts, and remove several constricting valves that were identified from the simulation.

Pang, Jason Ui-Yong

1995-01-01T23:59:59.000Z

265

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

266

Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids  

SciTech Connect

The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

Ted Oyama, Foster Agblevor, Francine Battaglia, Michael Klein

2013-01-18T23:59:59.000Z

267

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations  

Science Conference Proceedings (OSTI)

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-01-01T23:59:59.000Z

268

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

269

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

270

Seasonal Production and Emission of Methane from Rice Fields, Final Report  

DOE Green Energy (OSTI)

B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

Khalil, M. Aslam K.; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

271

Extreme Chromatography: Faster, Hotter, SmallerChapter 7 Recent Advances in Comprehensive Two-Dimensional Liquid Chromatography for the Analysis of Natural Products  

Science Conference Proceedings (OSTI)

Extreme Chromatography: Faster, Hotter, Smaller Chapter 7 Recent Advances in Comprehensive Two-Dimensional Liquid Chromatography for the Analysis of Natural Products Methods and Analyses eChapters Methods - Analyses Books F7E3E452FCB43F6D

272

SELECTION AND TREATMENT OF STRIPPER GAS WELLS FOR PRODUCTION ENHANCEMENT, MOCANE-LAVERNE FIELD, OKLAHOMA  

Science Conference Proceedings (OSTI)

In 1996, Advanced Resources International (ARI) began performing R&D targeted at enhancing production and reserves from natural gas fields. The impetus for the effort was a series of field R&D projects in the early-to-mid 1990's, in eastern coalbed methane and gas shales plays, where well remediation and production enhancement had been successfully demonstrated. As a first step in the R&D effort, an assessment was made of the potential for restimulation to provide meaningful reserve additions to the U.S. gas resource base, and what technologies were needed to do so. That work concluded that: (1) A significant resource base did exist via restimulation (multiples of Tcf). (2) The greatest opportunities existed in non-conventional plays where completion practices were (relatively) complex and technology advancement was rapid. (3) Accurate candidate selection is the greatest single factor that contributes to a successful restimulation program. With these findings, a field-oriented program targeted at tight sand formations was initiated to develop and demonstrate successful candidate recognition technology. In that program, which concluded in 2001, nine wells were restimulated in the Green River, Piceance and East Texas basins, which in total added 2.9 Bcf of reserves at an average cost of $0.26/Mcf. In addition, it was found that in complex and heterogeneous reservoirs (such as tight sand formations), candidate selection procedures should involve a combination of fundamental engineering and advanced pattern recognition approaches, and that simple statistical methods for identifying candidate wells are not effective. In mid-2000, the U.S. Department of Energy (DOE) awarded ARI an R&D contract to determine if the methods employed in that project could also be applied to stripper gas wells. In addition, the ability of those approaches to identify more general production enhancement opportunities (beyond only restimulation), such as via artificial lift and compression, was also sought. A key challenge in this effort was that, whereas the earlier work suggested that better (producing) wells tended to make better restimulation candidates, stripper wells are by definition low-volume producers (either due to low pressure, low permeability, or both). Nevertheless, the potential application of this technology was believed to hold promise for enhancing production for the thousands of stripper gas wells that exist in the U.S. today. The overall procedure for the project was to select a field test site, apply the candidate recognition methodology to select wells for remediation, remediate them, and gauge project success based on the field results. This report summarizes the activities and results of that project.

Scott Reeves; Buckley Walsh

2003-08-01T23:59:59.000Z

273

Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design  

Science Conference Proceedings (OSTI)

A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

Kia, Kaveh Kazemi [Department of Electrical and Computer Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of); Bonabi, Fahimeh [Department of Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of)

2012-12-15T23:59:59.000Z

274

Hydrogen production from liquid hydrocarbons demonstration program. Final report, 26 August 1985-1 September 1986  

SciTech Connect

The Air Force now uses diesel-engine generators as sources of heat and electricity at selected remotes sites. Simultaneously, it has investigated alternative cogeneration candidates that offer improved reliability, maintain ability, and economics. One system that shows high potential is a phosphoric acid fuel cell (PAFC) power plant consisting of a fuel conditioner to convert logistic fuels such as DEF-2, DF-a and JP-4 to a hydrogen-rich gas, and a power conditioner to convert the direct-current power to alternating current. The objective of the project work was to define, and demonstrate, a fuel conditioner to meet performance criteria established for the Air Force Remote Site Fuel Cell Power Plant program. Key criteria included high fuel-to-hydrogen conversion efficiency, rapid startup and load-following capability, and minimum water consumption during operations. A process configuration which has the potential to produce a minimum of 0.365 pound of hydrogen per pound of feed diesel consumed is described. The hydrogen-containing product is a suitable fuel for phosphoric-acid fuel-cell power plant. A 2 mole per hour (hydrogen) demonstration plant was designed, constructed and started up. Results are summarized.

O'Hara, J.B.; Chow, T.K.; Ling, J.K.

1986-09-01T23:59:59.000Z

275

Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3  

Science Conference Proceedings (OSTI)

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

276

Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3  

Science Conference Proceedings (OSTI)

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

277

Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3  

SciTech Connect

The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

Stephen Bergin

2011-03-30T23:59:59.000Z

278

Polarization Effects In The Charged Lepton Pair Production By A Neutrino (Antineutrino) In A Magnetic Field  

Science Conference Proceedings (OSTI)

The probability of the process of the charged lepton pair production by a neutrino (an antineutrino) with allowance for the longitudinal and transverse polarizations of the charged leptons in a magnetic field is presented. The dependence of the probability of the process on the spin variables of the charged leptons and on the azimuthal and polar angles of the initial and final neutrinos (antineutrinos) are investigated. It is shown that the probability of the process is sensitive to the spin variables of the charged leptons and to the direction of the neutrino (antineutrino) momentum. It is determined that the neutrino (antineutrino) energy and momentum loss through the production of a charged lepton pair happens asymmetrically.

Huseynov, Vali A. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan); Laboratory of Physical Research, Nakhchivan Division of Azerbaijan National Academy of Sciences, AZ 7000, Nakhchivan (Azerbaijan); Ahmad, Ali S. [Department of General and Theoretical Physics, Nakhchivan State University, AZ 7000, Nakhchivan (Azerbaijan)

2007-06-13T23:59:59.000Z

279

Reasons for production decline in the diatomite, Belridge oil field: a rock mechanics view  

SciTech Connect

This work summarized research conducted on diatomite cores from the Belridge oil field in Kern County. The study was undertaken to try to explain the rapid decline in oil production in diatomite wells. Characterization of the rock showed that the rock was composed principally of amorphous opaline silica diatoms with only a trace of crystoballite quartz or chert quartz. Physical properties tests showed the diatomite to be of low strength and plastic. Finally, it was established that long-term creep of diatomite into a propped fracture proceeds at a rate of approximately 6 x 10-5 in./day, a phenomenon which may be a primary cause of rapid production declines. The testing program also revealed a matrix stength for the formation of calculated 1325 PSI, a value to consider when depleting the reservoir. This also may help to explain the phase transformation of opal ct at calculated 2000 to 2500 ft depth.

Strickland, F.G.

1982-01-01T23:59:59.000Z

280

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experimental studies of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production in the San Ardo field  

E-Print Network (OSTI)

A 16��16��5.6 in. scaled, three-dimensional, physical model of a quarter of a 9-spot pattern was constructed to study the application of two processes designed to improve the efficiency of steam injection. The first process to be tested is the use of propane as a steam additive with the purpose of increasing recovery and accelerating oil production. The second process involves the use of a novel production configuration that makes use of a vertical injector and a smart horizontal producer in an attempt to mitigate the effects of steam override. The experimental model was scaled using the conditions in the San Ardo field in California and crude oil from the same field was used for the tests. Superheated steam at 190 â�� 200�ºC was injected at 48 cm3/min (cold water equivalent) while maintaining the flowing pressures in the production wells at 50 psig. Liquid samples from each producer in the model were collected and treated to break emulsion and analyzed to determine water and oil volumes. Two different production configurations were tested: (1) a vertical well system with a vertical injector and three vertical producers and (2) a vertical injector-smart horizontal well system that consisted of a vertical injector and a smart horizontal producer divided into three sections. Runs were conducted using pure steam injection and steam-propane injection in the two well configurations. Experimental results indicated the following. First, for the vertical configuration, the addition of propane accelerated oil production by 53% and increased ultimate recovery by an additional 7% of the original oil in place when compared to pure steam injection. Second, the implementation of the smart horizontal system increased ultimate oil recovery when compared to the recovery obtained by employing the conventional vertical well system (49% versus 42% of the OOIP).

Rivero Diaz, Jose Antonio

2003-05-01T23:59:59.000Z

282

The Influence of Stratification and Nonlocal Turbulent Production on Estuarine Turbulence: An Assessment of Turbulence Closure with Field Observations  

Science Conference Proceedings (OSTI)

Field observations of turbulent kinetic energy (TKE), dissipation rate ?, and turbulent length scale demonstrate the impact of both density stratification and nonlocal turbulent production on turbulent momentum flux. The data were collected in a ...

Malcolm E. Scully; W. Rocky Geyer; John H. Trowbridge

2011-01-01T23:59:59.000Z

283

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field, Colombia. Experimental and simulation studies were conducted to achieve these objectives. The experimental study consisted of injecting reconstituted gas into a cell containing sand and "live" San Francisco oil. Experimental runs were made with injection of (i) the two field gases and their 50-50 mixture, (ii) the two field gases enriched with propane, and (iii) WAG with the two field gases enriched with propane. Produced oil volume, density, and viscosity; and produced gas volume and composition were measured and analyzed. A 1D 7-component compositional simulation model of the laboratory injection cell and its contents was developed. After a satisfactory history-match of the results of a WAG run, the prediction runs were made using the gas that gave the highest oil recovery in the experiments, (5:100 mass ratio of propane:Balcon gas). Oil production results from simulation were obtained for a range of WAG cycles and gas injection rate. The main results of the study may be summarized as follows. For all cases studied, the lowest oil recovery is obtained with injection of San Francisco gas, (60% of original oil-in-place OOIP), and the highest oil recovery (84% OOIP) is obtained with a WAG 7.5-7.5 (cycle of 7.5 minutes water injection followed by 7.5 minutes of gas injection at 872 ml/min). This approximately corresponds to WAG 20-20 in the field (20 days water injection followed by 20 days gas injection at 6.8 MMSCF/D). Results clearly indicate increase in oil recovery with volume of the gas injected. Lastly, of the three injection schemes studied, WAG injection with propane-enriched gas gives the highest oil recovery. This study is based on the one-dimensional displacement of oil. The three-dimensional aspects and other reservoir complexities that adversely affect oil recovery in reality have not been considered. A 3D reservoir simulation study is therefore recommended together with an economic evaluation of the cases before any decision can be made to implement any of the gas or WAG injection schemes.

Rueda Silva, Carlos Fernando

2003-01-01T23:59:59.000Z

284

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

1994-07-08T23:59:59.000Z

285

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

1998-03-01T23:59:59.000Z

286

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

287

http://www.ogj.com/articles/print/volume-111/issue-9/drilling-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study  

E-Print Network (OSTI)

-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study determines full-field reserves, production forecast John shale integrates engineering, geology, and economics into a numerical model that allows f or scenario

Patzek, Tadeusz W.

288

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

289

Electric field Induced Patterns in Soft Visco-elastic films: From Long Waves of Viscous Liquids to Short Waves of Elastic Solids  

E-Print Network (OSTI)

We show that the electric field driven surface instability of visco-elastic films has two distinct regimes: (1) The visco-elastic films behaving like a liquid display long wavelengths governed by applied voltage and surface tension, independent of its elastic storage and viscous loss moduli, and (2) the films behaving like a solid require a threshold voltage for the instability whose wavelength always scales as ~ 4 x film thickness, independent of its surface tension, applied voltage, loss and storage moduli. Wavelength in a narrow transition zone between these regimes depends on the storage modulus.

N. Arun; Ashutosh Sharma; Partho S. G. Pattader; Indrani Banerjee; Hemant M. Dixit; K. S. Narayan

2009-06-02T23:59:59.000Z

290

Infrared Spectroscopy and Hydrogen-Bond Dynamics of Liquid Water from Centroid Molecular Dynamics with an Ab Initio-Based Force Field  

DOE Green Energy (OSTI)

A molecular-level description of the unique properties of hydrogen-bond networks is critical for understanding many fundamental physico-chemical processes in aqueous environments. In this article a novel simulation approach, combining an ab-initio based force field for water with a quantum treatment of the nuclear motion, is applied to investigate hydrogen-bond dynamics in liquid water with a specific focus on the relationship of these dynamics to vibrational spectroscopy. Linear and nonlinear infrared (IR) spectra are calculated for liquid water, HOD in D2O and HOD in H2O and discussed in the context of the results obtained using other approaches that have been employed in studies of water dynamics. A comparison between the calculated spectra and the available experimental data yields an overall good agreement, indicating the accuracy of the present simulation approach in describing the properties of liquid water at ambient conditions. Possible improvements on the representation of the underlying water interactions as well as the treatment of the molecular motion at the quantum-mechanical level are also discussed. This research was supported by the Division of Chemical Sciences, Biosciences and Geosciences, US Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the US Department of Energy.

Paesani, Francesco; Xantheas, Sotiris S.; Voth, Gregory A.

2009-10-01T23:59:59.000Z

291

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013","1/15/1981" Monthly","9/2013","1/15/1981" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

292

,"U.S. Natural Gas Plant Field Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012,"6/30/1981" Annual",2012,"6/30/1981" ,"Release Date:","9/27/2013" ,"Next Release Date:","9/26/2014" ,"Excel File Name:","pet_pnp_gp_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_gp_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"11/25/2013 11:17:57 AM" "Back to Contents","Data 1: U.S. Natural Gas Plant Field Production" "Sourcekey","MNGFPUS1","MPPFPUS1","MLPFPUS1","METFPUS1","MPRFPUS1","MBNFPUS1","MBIFPUS1"

293

Rapid field testing of low-emittance coated glazings for product verification  

Science Conference Proceedings (OSTI)

This paper analyzes prospects for developing a test device suitable for field verification of the types of low-emittance (low-e) coatings present on high-performance window products. Test devices are currently available that can simply detect the presence of low-e coatings and that can measure other important characteristics of high-performance windows, such as the thickness of glazing layers or the gap in dual glazings. However, no devices have yet been developed that can measure gas concentrations or distinguish among types of coatings. This paper presents two optical methods for verification of low-e coatings. The first method uses a portable, fiber-optic spectrometer to characterize spectral reflectances from 650 to 1,100 nm for selected surfaces within an insulated glazing unit (IGU). The second method uses an infrared-light-emitting diode and a phototransistor to evaluate the aggregate normal reflectance of an IGU at 940 nm. Both methods measure reflectance in the near (solar) infrared spectrum and are useful for distinguishing between regular and spectrally selective low-e coatings. The infrared-diode/phototransistor method appears promising for use in a low-cost, hand-held field test device.

Griffith, Brent; Kohler, Christian; Goudey, Howdy; Turler, Daniel; Arasteh, Dariush

1998-02-01T23:59:59.000Z

294

Reservoir characterization helping to sustain oil production in Thailand's Sirikit Field  

SciTech Connect

Sirikit field is located in the Phitsanulok basin of Thailand's north-central plains. The main reservoir sequence is some 400 m thick and comprises thin interbedded fluvio-lacustrine clay and sandstones. Initial oil volumes after exploration and appraisal drilling in 1981-1984 were estimated at some 180 million bbl. However, further development/appraisal drilling and the following up of new opportunities allowed a better delineation of the reservoirs, resulting in an increased STOIIP and recovery. Total in-place oil volumes were increased to 791 million bbl and the expectation of ultimate recovery to 133 million bbl. To date, 131 wells have been drilled, 65 MMstb have been produced, and production stands at 23,000 bbl/day. Extensive reservoir studies were among the techniques and methods used to assess whether water injection would be a viable further development option. A reservoir geological model was set up through (1) core studies, (2) a detailed sand correlation, and (3) reservoir quality mapping. This model showed that despite considerable heterogeneity most sands are continuous. Reservoir simulation indicated that water injection is viable in the north-central part of the field and that it will increase the Sirikit field reserves by 12 million; this is now part of Thai Shell's reserves portfolio. Injection will start in 1994. New up-to-date seismic and mapping techniques (still) using the old 3-D seismic data acquired in 1983 are being used for further reservoir delineation. This work is expected to result in a further reserve increase.

Shaafsma, C.E.; Phuthithammakul, S. (Thai Shell Exploration and Production Co. Ltd., Bangkok (Thailand))

1994-07-01T23:59:59.000Z

295

Reasons for production decline in the diatomite, Belridge oil field: a rock mechanics view  

Science Conference Proceedings (OSTI)

This paper summarizes research conducted on diatomite cores from the Belridge oil field in Kern County, CA. The study was undertaken to explain the rapid decline in oil production in diatomite wells by investigating three of six possible reasons. Characterization of the rock indicated that the rock was composed of principally amorphous opaline silica diatoms with only a trace of crystoballite quartz or chert quartz. Physical properties tests showed the diatomite to be of very low strength and plastic. It was established that longterm creep of diatomite into a propped fracture proceeds at a rate of approximately 1.5 microns/D (1.5 ..mu..m/d), a phenomenon that may contribute to rapid production declines. Also revealed was a matrix strength for the formation of about 1,325 psi (9136 kPa), a critical value to consider when depleting the reservoir. This also may help to explain the phase transformation to Opal CT around 2,000to 2,500-ft (610- to 762-m) depth.

Strickland, F.G.

1985-03-01T23:59:59.000Z

296

MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)  

SciTech Connect

This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

Gaustad, KL; Turner, DD; McFarlane, SA

2011-07-25T23:59:59.000Z

297

EIA - International Energy Outlook 2009-Liquid Fuels Graphic...  

Gasoline and Diesel Fuel Update (EIA)

26. World Liquids Supply in three Cases, 2006 and 2030 Figure 27. World Production of Unconventional Liquid Fuels, 2006-2030 Figure 28. World Liquids Consumption by Sector,...

298

Electrically Deformable Liquid Marbles  

E-Print Network (OSTI)

Liquid marbles, which are droplets coated with a hydrophobic powder, were exposed to a uniform electric field. It was established that a threshold value of the electric field, 15 cgse, should be surmounted for deformation of liquid marbles. The shape of the marbles was described as a prolate spheroid. The semi-quantitative theory describing deformation of liquid marbles in a uniform electric field is presented. The scaling law relating the radius of the contact area of the marble to the applied electric field shows a satisfactory agreement with the experimental data.

Edward Bormashenko; Roman Pogreb; Tamir Stein; Gene Whyman; Marcelo Schiffer; Doron Aurbach

2011-02-17T23:59:59.000Z

299

EIAs Proposed Definitions for Natural Gas Liquids  

Gasoline and Diesel Fuel Update (EIA)

Definitions for Natural Gas Liquids 1 Definitions for Natural Gas Liquids 1 June 14, 2013 EIA's Proposed Definitions for Natural Gas Liquids Term Current Definition Proposed Definition Note Lease condensate Condensate (lease condensate): A natural gas liquid recovered from associated and non associated gas wells from lease separators or field facilities, reported in barrels of 42 U.S. gallons at atmospheric pressure and 60 degrees Fahrenheit. Lease condensate: Light liquid hydrocarbons recovered from lease separators or field facilities at associated and non-associated natural gas wells. Mostly pentanes and heavier hydrocarbons. Normally enters the crude oil stream after production. Includes lease condensate as part of the crude oil stream, not an NGL. Plant condensate Plant condensate: One of the

300

Enhanced thermal photon and dilepton production in strongly coupled N=4 SYM plasma in strong magnetic field  

E-Print Network (OSTI)

We calculate the DC conductivity tensor of strongly coupled N=4 super-Yang-Mills (SYM) plasma in a presence of a strong external magnetic field B>>T^2 by using its gravity dual and employing both the RG flow approach and membrane paradigm which give the same results. We find that, since the magnetic field B induces anisotropy in the plasma, different components of the DC conductivity tensor have different magnitudes depending on whether its components are in the direction of the magnetic field B. In particular, we find that a component of the DC conductivity tensor in the direction of the magnetic field B increases linearly with B while the other components (which are not in the direction of the magnetic field B) are independent of it. These results are consistent with the lattice computations of the DC conductivity tensor of the QCD plasma in an external magnetic field B. Using the DC conductivity tensor, we calculate the soft or low-frequency thermal photon and dilepton production rates of the strongly coupled N=4 SYM plasma in the presence of the strong external magnetic field B>>T^2. We find that the strong magnetic field B enhances both the thermal photon and dilepton production rates of the strongly coupled N=4 SYM plasma in a qualitative agreement with the experimentally observed enhancements at the heavy-ion collision experiments.

Kiminad A. Mamo

2012-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

302

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

303

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

304

Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring  

Science Conference Proceedings (OSTI)

The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil.

Plum, M.

1995-05-01T23:59:59.000Z

305

Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Liquids Lease Condensate, Reserves Based Production (Million Barrels) Utah and Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade...

306

High energy neutrino absorption by W production in a strong magnetic field  

E-Print Network (OSTI)

An influence of a strong external magnetic field on the neutrino self-energy operator is investigated. The width of the neutrino decay into the electron and W boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated. A kind of energy cutoff for neutrinos propagating in a strong field is defined.

Kuznetsov, A V; Serghienko, A V

2010-01-01T23:59:59.000Z

307

High energy neutrino absorption by W production in a strong magnetic field  

E-Print Network (OSTI)

An influence of a strong external magnetic field on the neutrino self-energy operator is investigated. The width of the neutrino decay into the electron and W boson, and the mean free path of an ultra-high energy neutrino in a strong magnetic field are calculated. A kind of energy cutoff for neutrinos propagating in a strong field is defined.

A. V. Kuznetsov; N. V. Mikheev; A. V. Serghienko

2010-02-19T23:59:59.000Z

308

A Seismic Attribute Study to Assess Well Productivity in the Ninilchik Field, Cook Inlet Basin, Alaska.  

E-Print Network (OSTI)

??Coal bed methane which has formed in the Tertiary Kenai Group strata has been produced from the Ninilchik field of Cook Inlet, Alaska since 2001.… (more)

Sampson, Andrew

2011-01-01T23:59:59.000Z

309

Seismic response to fluid injection and production in two Salton Trough geothermal fields, southern California  

E-Print Network (OSTI)

of the Salton Sea Geothermal Field, California.Journal of Volcanology and Geothermal Research, 12: 221-258patterns in hydrocarbon and geothermal reservoirs: Six case

Lajoie, Lia Joyce

2012-01-01T23:59:59.000Z

310

Liquid-Liquid Extraction Processes  

E-Print Network (OSTI)

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between the two liquid phases, separation will result. This is the principle upon which separation by liquid-liquid extraction is based, and there are a number of important applications of this concept in industrial processes. This paper will review the basic concepts and applications as well as present future directions for the liquid-liquid extraction process.

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

311

Experimental research of temperature and velocity fields in high-temperature flow of liquid heavy metal coolant  

Science Conference Proceedings (OSTI)

Presented are the results of experimental research of temperature and velocity fields for lead and lead-bismuth coolant flows in channels having circular and annular cross sections under varying oxygen content in the coolant and varying characteristics of insulating coatings. Tests are performed under the following operating conditions: (1) lead-bismuth eutectic-temperature T = 400-520 Degree-Sign C, thermodynamic oxygen activity a = 10{sup -5}-10{sup 0}, average flow velocity of the coolant w = 0.12-1.84 m/s, value of magnetic induction B = 0-0.85 T, Reynolds number Re = (0.24-3.5) Multiplication-Sign 10{sup 5}, Hartmann number Ha = 0-500, and Peclet number Pe = 320-4600; (2) lead coolant-T = 400-550 Degree-Sign C, a = 10{sup -5}-10{sup 0}, w = 0.1-1.5 m/s, Re = (2.36-2.99) Multiplication-Sign 10{sup 5}, and Pe = 500-7000.

Besnosov, A. V., E-mail: ats@nntu.nnov.ru; Savinov, S. Yu., E-mail: Savinov.S@mail.ru; Novozhilova, O. O.; Antonenkov, M. A. [Nizhni Novgorod State Technical University (Russian Federation)

2011-12-15T23:59:59.000Z

312

Analyse de faisabilité, conception et simulation de la distillation réactive liquide-liquide-vapeur. Application et validation expérimentale sur la production de l'acétate de n-propyle.  

E-Print Network (OSTI)

??Ces travaux de thèse apportent une contribution à la problématique de la conception de procédés de distillation réactive pour les systèmes liquide-liquide-vapeur réactifs. Ce type… (more)

Brehelin, Mathias

2006-01-01T23:59:59.000Z

313

Measuring Devices: Liquefied Petroleum Gas Liquid ...  

Science Conference Proceedings (OSTI)

Liquefied Petroleum Gas Liquid-Measuring Devices. Intro about it. EPOs, Field Manual, Training Materials & Presentaions, Newsletter Articles, Other ...

2010-10-05T23:59:59.000Z

314

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

DOE Green Energy (OSTI)

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

315

Supporting Meteorological Field Experiment Missions and Postmission Analysis with Satellite Digital Data and Products  

Science Conference Proceedings (OSTI)

Atmospheric and oceanographic field experiments are an important part of research programs aimed at enhancing observational analyses of meteorological and oceanic phenomena, validating new datasets, and/or supporting hypotheses. The Bulletin of the ...

Jeffrey Hawkins; Christopher Velden

2011-08-01T23:59:59.000Z

316

Production of field-reversed mirror plasma with a coaxial plasma gun  

SciTech Connect

The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

Hartman, Charles W. (Alamo, CA); Shearer, James W. (Livermore, CA)

1982-01-01T23:59:59.000Z

317

Numerical modeling of boiling due to production in a fractured reservoir and its field application  

Science Conference Proceedings (OSTI)

Numerical simulations were carried out to characterize the behaviors of fractured reservoirs under production which causes in-situ boiling. A radial flow model with a single production well, and a two-dimensional geothermal reservoir model with several production and injection wells were used to study the two-phase reservoir behavior. The behavior can be characterized mainly by the parameters such as the fracture spacing and matrix permeability. However, heterogeneous distribution of the steam saturation in the fracture and matrix regions brings about another complicated feature to problems of fractured two-phase reservoirs.

Yusaku Yano; Tsuneo Ishido

1995-01-26T23:59:59.000Z

318

Nonconventional Liquid Fuels  

Reports and Publications (EIA)

Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the AEO2006 projections.

Information Center

2006-02-01T23:59:59.000Z

319

Physical Properties of Liquid Precursors  

Science Conference Proceedings (OSTI)

... a carrier gas through the liquid held in ... of decomposition products, dissolved gases, and other ... measure thermal stability, a gas chromatograph/mass ...

2012-10-02T23:59:59.000Z

320

arXiv:hepph/0204040 E ective Field Theoretical Approach to Black Hole Production  

E-Print Network (OSTI)

Institute for Nuclear Research, 141980, Dubna, Russia and c HEPI, Tbilisi State University, University St. 9, 380086, Tbilisi, Georgia A #12;eld theoretical description of mini black hole production at TeV energies

Lunds Universitet,

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants are adjacent to the Black Warrior coalbed methane fairway. This research project was a reservoir simulation study designed to evaluate the potential for CO2 sequestration and enhanced coalbed methane (ECBM) recovery in the Blue Creek Field of Black Warrior basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector and producer. The simulation study was based on a 5-spot well pattern 40-ac well spacing. Injection of 100 percent CO2 in coal seams resulted in average volumes of 0.57 Bcf of sequestered CO2 and average volumes of 0.2 Bcf of enhance methane production for the Mary Lee coal zone only, from an 80-acre 5-spot well pattern. For the entire Blue Creek field of the Black Warrior basin, if 100 percent CO2 is injected in the Pratt, Mary Lee and Black Creek coal zones, enhance methane resources recovered are estimated to be 0.3 Tcf, with a potential CO2sequestration capacity of 0.88 Tcf. The methane recovery factor is estimated to be 68.8 percent, if the three coal zones are completed but produced one by one. Approximately 700 wells may be needed in the field. For multi-layers completed wells, the permeability and pressure are important in determining the breakthrough time, methane produced and CO2 injected. Dewatering and soaking do not benefit the CO2 sequestration process but allow higher injection rates. Permeability anisotropy affects CO2 injection and enhanced methane recovery volumes of the field. I recommend a 5-spot pilot project with the maximum well BHP of 1,000 psi at the injector, minimum well BHP of 500 psi at the producer, maximum injection rate of 70 Mscf/D, and production rate of 35 Mscf/D. These technical results, with further economic evaluation, could generate significant projects for CO2 sequestration and enhance coalbed methane production in Blue Creek field, Black Warrior Basin, Alabama.

He, Ting

2009-12-01T23:59:59.000Z

322

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

Science Conference Proceedings (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

323

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

DOE Green Energy (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburg, Corinne

2009-05-01T23:59:59.000Z

324

Applications of oxygen activation for injection and production profiling in the Kuparuk River field  

SciTech Connect

A new time-dependent method of oxygen-activation logging, now being used in the Kuparuk River field on the North Slope of Alaska, provides critical data for waterflood performance evaluation, assessment of ultimate recovery, and evaluation of potential for infill drilling and EOR projects without the use of radioactive tracer materials.

Pearson, C.M.; Renke, S.M. (Arco Alaska Inc., Anchorage, AK (United States)); McKeon, D.C.; Meisenhelder, J.P. (Schlumberger, Houston, TX (United States)); Scott, H.D.

1993-06-01T23:59:59.000Z

325

Particle production in field theories coupled to strong external sources. II: Generating functions  

E-Print Network (OSTI)

We discuss a method for computing the generating function for the multiplicity distribution in field theories with strong time dependent external sources. At leading order, the computation of the generating function reduces to finding a pair of solutions of the classical equations of motion, with non-standard temporal boundary conditions.

Francois Gelis; Raju Venugopalan

2006-05-23T23:59:59.000Z

326

Evaluation of work product defects during corrective & enhancive software evolution: a field study comparison  

Science Conference Proceedings (OSTI)

Information systems portfolio management assumes that software will evolve to maintain alignment with operational needs, a goal that must be met through effective ongoing maintenance. Thus, a primary goal of software maintainers is to ensure that production ... Keywords: development, documentation, inspections, maintenance, management, measurement, problem diagnosis, reliability, reviews, software engineering, verification

David P. Hale; Joanne E. Hale; Randy K. Smith

2011-02-01T23:59:59.000Z

327

An end user and environment field study for an inclusive design of consumer products  

Science Conference Proceedings (OSTI)

In this paper an approach to improve the design of every day consumer products for inclusive design with a focus on elderly people with mild to medium physical and sensory impairments is presented. As mainstream manufactures do not have a detailed understanding ...

Thomas Fiddian; Chris Bowden; Mark Magennis; Antoinette Fennell; Joshue O'Connor; Pierre T. Kirisci; Yehya Mohamad; Michael Lawo

2011-07-01T23:59:59.000Z

328

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

329

Pion production in nucleon-nucleon collisions in chiral effective field theory with Delta(1232)-degrees of freedom  

E-Print Network (OSTI)

A calculation of the pion-production operator up to next-to-next-to-leading order for s-wave pions is performed within chiral effective field theory. In the previous study [Phys. Rev. C 85, 054001 (2012)] we discussed the contribution of the pion-nucleon loops at the same order. Here we extend that study to include explicit Delta degrees of freedom and the 1/m_N^2 corrections to the pion-production amplitude. Using the power counting scheme where the Delta-nucleon mass difference is of the order of the characteristic momentum scale in the production process, we calculate all tree-level and loop diagrams involving Delta up to next-to-next-to-leading order. The long-range part of the Delta loop contributions is found to be of similar size to that from the pion-nucleon loops which supports the counting scheme. The net effect of pion-nucleon and Delta loops is expected to play a crucial role in understanding of the neutral pion production data.

A. A. Filin; V. Baru; E. Epelbaum; C. Hanhart; H. Krebs; F. Myhrer

2013-07-23T23:59:59.000Z

330

Strong RNAi-inhibition of 4CL expression alters lignification, saccharification potential and productivity of field-grown poplar  

SciTech Connect

RNAi-associated down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been proposed as a means for reducing lignin content in cell walls, and thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplars (Populus) we employed RNAi gene suppression of 4CL to generate 14 transgenic events and compared them to a non-transgenic control. After a two-year field trial we characterized the consequences of 4CL down-regulation on wood biochemistry and tree productivity. Lignin reductions correlated well with 4CL RNA expression, with a sharp decrease in lignin observed for RNA expression levels below ~50%. Lignin reductions greater than ~10% of the control value were associated with reduced productivity, decreased wood S/G (syringyl/guaiacyl) lignin monomer ratios, and increased incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Strongly affected transgenic events were also characterized by patches of brown, discolored wood with about twice the extractive (complex polyphenolic) content of controls. There was no support for the hypothesis that reduced lignin would increase saccharification potential. The data presented suggest that a threshold of lignin reduction exists, beyond which there are large changes in wood chemistry and plant metabolism that affect productivity and potential ethanol yield.

Tuskan, Gerald A [ORNL; Gunter, Lee E [ORNL; Strauss, S [Oregon State University

2007-01-01T23:59:59.000Z

331

Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2  

Science Conference Proceedings (OSTI)

Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

None

2010-08-01T23:59:59.000Z

332

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

333

Long-term Outlook for Oil and Other Liquid Fuels  

U.S. Energy Information Administration (EIA)

Biofuels, natural gas liquids, and crude oil production are key sources of increased domestic liquids supply. Source: EIA, Annual Energy Outlook 2011. Gulf of Mexico.

334

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

Scott Hara

2001-11-01T23:59:59.000Z

335

Preliminary study of discharge characteristics of slim holes compared to production wells in liquid-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

There is current interest in using slim holes for geothermal exploration and reservoir assessment. A major question that must be addressed is whether results from flow or injection testing of slim holes can be scaled to predict large diameter production well performance. This brief report describes a preliminary examination of this question from a purely theoretical point of view. The WELBOR computer program was used to perform a series of calculations of the steady flow of fluid up geothermal boreholes of various diameters at various discharge rates. Starting with prescribed bottomhole conditions (pressure, enthalpy), the WELBOR code integrates the equations expressing conservation of mass, momentum and energy (together with fluid constitutive properties obtained from the steam tables) upwards towards the wellhead using numerical techniques. This results in computed profiles of conditions (pressure, temperature, steam volume fraction, etc.) as functions of depth within the flowing well, and also in a forecast of wellhead conditions (pressure, temperature, enthalpy, etc.). From these results, scaling rules are developed and discussed.

Pritchett, J.W. [S-Cubed, La Jolla, CA (United States)

1993-06-01T23:59:59.000Z

336

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

337

Uniqueness of Herndon’s Georeactor: Energy Source and Production Mechanism for Earth’s Magnetic Field by  

E-Print Network (OSTI)

Abstract: Herndon?s georeactor at the center of Earth is immune to meltdown, which is not the case for recently published copy-cat georeactors, which would necessarily be subject to “hot” nuclear fuel, prevailing high-temperature environments, and high confining pressures. Herndon?s georeactor uniquely is expected to be self-regulating through establishing a balance between heat-production and actinide settling-out. The seventy year old idea of convection in the Earth?s fluid core is refuted because thermal expansion cannot overcome the 23 % higher density at the core?s bottom than at its top. The dimensionless Rayleigh Number is an inappropriate indicator of convection in the Earth?s core and mantle as a consequence of the assumptions under which it was derived. Implications bearing on the origin of the geomagnetic field, the physical impossibility of mantle convection, and the concomitant refutation of plate tectonics theory are briefly described. In 1993 and 1994, Herndon [1, 2] published the concept and applied Fermi?s nuclear reactor theory [3] to demonstrate the feasibility of a naturally occurring nuclear fission at the center of the Earth, now called the georeactor, as the energy source for the geomagnetic field. In 1996, Herndon [4] disclosed the sub-structure of the inner core, describing the two-component

J. Marvin Herndon

2009-01-01T23:59:59.000Z

338

Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

1999-06-25T23:59:59.000Z

339

Inversion of Synthetic Aperture Radar Interferograms for Sources of Production-Related Subsidence at the Dixie Valley Geothermal Field  

DOE Green Energy (OSTI)

We used synthetic aperture radar interferograms to image ground subsidence that occurred over the Dixie Valley geothermal field during different time intervals between 1992 and 1997. Linear elastic inversion of the subsidence that occurred between April, 1996 and March, 1997 revealed that the dominant sources of deformation during this time period were large changes in fluid volumes at shallow depths within the valley fill above the reservoir. The distributions of subsidence and subsurface volume change support a model in which reduction in pressure and volume of hot water discharging into the valley fill from localized upflow along the Stillwater range frontal fault is caused by drawdown within the upflow zone resulting from geothermal production. Our results also suggest that an additional source of fluid volume reduction in the shallow valley fill might be similar drawdown within piedmont fault zones. Shallow groundwater flow in the vicinity of the field appears to be controlled on the NW by a mapped fault and to the SW by a lineament of as yet unknown origin.

Foxall, W; Vasco, D

2003-02-07T23:59:59.000Z

340

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

342

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

343

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

344

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

345

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

346

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

347

Natural Gas Liquids Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

802 827 788 811 831 840 1979-2008 802 827 788 811 831 840 1979-2008 Federal Offshore U.S. 148 155 123 125 127 94 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 120 127 98 102 108 80 1981-2008 Texas 28 28 25 23 19 14 1981-2008 Alaska 18 18 17 14 13 13 1979-2008 Lower 48 States 784 809 771 797 818 827 1979-2008 Alabama 5 4 5 5 4 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 10 10 11 11 11 11 1979-2008 Coastal Region Onshore 1 1 1 1 1 1 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 9 9 10 10 10 10 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 29 32 31 32 33 45 1979-2008 Florida 1 0 0 0 0 0 1979-2008 Kansas 23 22 20 19 19 19 1979-2008

348

Natural Gas Liquids Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

802 827 788 811 831 840 1979-2008 802 827 788 811 831 840 1979-2008 Federal Offshore U.S. 148 155 123 125 127 94 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 120 127 98 102 108 80 1981-2008 Texas 28 28 25 23 19 14 1981-2008 Alaska 18 18 17 14 13 13 1979-2008 Lower 48 States 784 809 771 797 818 827 1979-2008 Alabama 5 4 5 5 4 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 10 10 11 11 11 11 1979-2008 Coastal Region Onshore 1 1 1 1 1 1 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 9 9 10 10 10 10 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 29 32 31 32 33 45 1979-2008 Florida 1 0 0 0 0 0 1979-2008 Kansas 23 22 20 19 19 19 1979-2008

349

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

site and the Okuaizu geothermal field, Japan", Geothermics,at the Cerro Prieto geothermal field, Baja California,and seismicity in the Coso geothermal area, Inyo County,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

350

Conversion of light hydrocarbon gases to metal carbides for production of liquid fuels and chemicals. Quarterly technical status report, April 1--June 30, 1993  

SciTech Connect

Previous work at MIT indicates that essentially stoichiometric, rather than catalytic, reactions with alkaline earth metal oxides offer technical and economic promise as an innovative approach to upgrading natural gas to premium products such as liquid hydrocarbon fuels and chemicals. In this approach, methane would be reacted with relatively low cost and recyclable alkaline earth metal oxides, such as CaO and MgO, at high temperatures (>1500{degrees}C) to achieve very high (i.e. approaching 100%) gas conversions to H{sub 2}, CO and the corresponding alkaline earth metal carbides. These carbides exist stably in solid form at dry ambient conditions and show promise for energy storage and long distance transport. The overall objective of the proposed research is to develop new scientific and engineering knowledge bases for further assessment of the approach by performing laboratory-scale experiments and thermodynamic and thermochemical kinetics calculations. Work on this project will be performed according to two tasks. Under Task 1 (Industrial Chemistry), a laboratory-scale electric arc discharge plasma reactor is being constructed and will be used to assess the technical feasibility of producing Mg{sub 2}C{sub 3} from MgO and methane, and to identify the operating conditions of interest for the commercial production of Mg{sub 2}C{sub 3} and/or CaC{sub 2} from MgO and/or CaO and methane. Under Task 2 (Mechanistic Foundations), preliminary thermodynamic calculations were performed for the Ca-C-H-O and Mg-C-H-O systems using the Chemkin program. A scoping run with CaO in an electrical screen heater reactor under reduced methane pressure was also conducted. No appreciable quantity of acetylene was detected upon hydrolysis of the solid residue. This can be attributed to the very small quantity of methane at the very low pressure coupled with inadequate contacting of whatever methane was present with the CaO powder.

Diaz, A.F.; Modestino, A.J.; Howard, J.B.; Peters, W.A.

1993-08-01T23:59:59.000Z

351

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

DOE Green Energy (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

352

Trapping and Measuring Charged Particles in Liquids  

Using molecular dynamics simulations, the researchers found that particles are trapped in liquid environments when appropriate AC/DC electric fields ...

353

Evaluation of water production in tight gas sands in the Cotton Valley formation in the Caspiana, Elm Grove and Frierson fields  

E-Print Network (OSTI)

Normally in tight gas sands, water production is not a problem but in such low permeability reservoirs it is difficult to produce gas at commercial flow rates. Since water is more viscous than gas, very little water is normally produced in low permeability reservoirs. The production of large volumes of water from tight gas sands, say 50-100 bbls of water per MMcf of gas constitutes a cause for concern. High water production (>200 bbls of water per MMcf of gas) has been observed in the low permeability Cotton Valley sands in the Caspiana, Elm Grove and Frierson fields of North Louisiana. This research evaluates water production in the above tight gas sands using field data provided by Matador Resource, a member of the Crisman Institute in Texas A&M university. The research is aimed at providing realistic reservoir scenarios of excess water production in tight gas sands. Log analysis, property trends and well production profiles have been used in establishing the different scenarios. The reservoir simulation results and the production trends show a possible water source from faults and fractures connecting the Travis Peak/Smackover sands to the Cotton Valley sands. An improved understanding of the reservoir would help in further field development.

Ozobeme, Charles Chinedu

2006-12-01T23:59:59.000Z

354

Guidance Document Cryogenic Liquids  

E-Print Network (OSTI)

liquefies them. Cryogenic liquids are kept in the liquid state at very low temperatures. Cryogenic liquids are liquid nitrogen, liquid argon and liquid helium. The different cryogens become liquids under different. In addition, when they vaporize the liquids expand to enormous volumes. For example, liquid nitrogen

355

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice vs. Liquid Nitrogen Previous Video (Dry Ice vs. Liquid Nitrogen) Frostbite Theater Main Index Next Video (Shattering Pennies) Shattering Pennies Liquid Nitrogen Cooled...

356

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

357

Natural-gas liquids  

SciTech Connect

Casinghead gasoline or natural gasoline, now more suitably known as natural-gas liquids (NGL), was a nuisance when first found, but was developed into a major and profitable commodity. This part of the petroleum industry began at about the turn of the century, and more than 60 yr later the petroleum industry recovers approx. one million bbl of natural-gas liquids a day from 30 billion cu ft of natural gas processed in more than 600 gasoline plants. Although casinghead gasoline first was used for automobile fuel, natural-gas liquids now are used for fuel, industrial solvents, aviation blending stock, synthetic rubber, and many other petrochemical uses. Production from the individual plants is shipped by tank car, tank truck, pipeline, and tankers all over the world. Most of the natural-gas liquids come from wet natural gas which contains a considerable quantity of vapor, ranging from 0.5 to 6 gal/Mcf, and some particularly rich gases contain even more which can be liquefied. Nonassociated gas is generally clean, with a comparatively small quantity of gasoline, 0.1 to 0.5 gas/Mcf. The natural-gas liquids branch of the industry is build around the condensation of vapors in natural gas. Natural-gas liquids are processed either by the compression method or by adsorption processes.

Blackstock, W.B.; McCullough, G.W.; McCutchan, R.C.

1968-01-01T23:59:59.000Z

358

Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field  

Science Conference Proceedings (OSTI)

This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

McWilliams, Michael

2001-12-18T23:59:59.000Z

359

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: HA Site  

Science Conference Proceedings (OSTI)

Typically, utilities comanage some or all of their low-volume wastes with their high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement of coal combustion by-products at a utility-owned impoundment in the midwestern United States (HA site). The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2000-10-30T23:59:59.000Z

360

ADSORPTION SEPARATION PROCESSES FOR IONIC LIQUID CATALYTIC ...  

Presently disclosed are methods and apparatus for separation of reaction products from reaction mixtures in an ionic liquid catalysis process, particularly in ...

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

362

8. Biomass-Derived Liquid Fuels  

U.S. Energy Information Administration (EIA)

8. Biomass-Derived Liquid Fuels B. Fuel Ethanol Production and Market Conditions Ethanol is consumed as fuel in the United States primarily as "gasohol"--a blend ...

363

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

364

Cold Water Model Simulation of Aluminum Liquid Fluctuations ...  

Science Conference Proceedings (OSTI)

Symposium, Electrode Technology for Aluminium Production ... Cold Water Model Simulation of Aluminum Liquid Fluctuations Induced by Anodic Gas in New ...

365

Radiation Chemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids Liquids James F. Wishart, Alison M. Funston, and Tomasz Szreder in "Molten Salts XIV" Mantz, R. A., et al., Eds.; The Electrochemical Society, Pennington, NJ, (2006) pp. 802-813. [Information about the volume (look just above this link)] Abstract: Ionic liquids have potentially important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Successful use of ionic liquids in radiation-filled environments will require an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of ionic liquid radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material

366

Abandoned oil fields in Oklahoma  

SciTech Connect

Data are presented for approximately 165 abandoned oil fields in Oklahoma that have produced 10,000 or more barrels of oil prior to abandonment. The following information is provided for each field: county; DOE field code; field name; AAPG geologic province code; discovery date of field; year of last production, if known; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (ATT)

Chism, J.

1983-08-01T23:59:59.000Z

367

Liquid ventilation  

E-Print Network (OSTI)

For 350 million years, fish have breathed liquid through gills. Mammals evolved lungs to breathe air. Rarely, circumstances can occur when a mammal needs to `turn back the clock' to breathe through a special liquid medium. This is particularly true if surface tension at the air-liquid interface of the lung is increased, as in acute lung injury. In this condition, surface tension increases because the pulmonary surfactant system is damaged, causing alveolar collapse, atelectasis, increased right-to-left shunt and hypoxaemia. 69 The aims of treatment are: (i) to offset increased forces causing lung collapse by applying mechanical ventilation with PEEP; (ii) to decrease alveolar surface tension with exogenous surfactant; (iii) to eliminate the air-liquid interface by filling the lung with a fluid in

U. Kaisers; K. P. Kelly; T. Busch

2003-01-01T23:59:59.000Z

368

Uncertainty Analysis of the TRMM Ground-Validation Radar-Rainfall Products: Application to the TEFLUN-B Field Campaign  

Science Conference Proceedings (OSTI)

Efforts to validate the Tropical Rainfall Measuring Mission (TRMM) space-based rainfall products have encountered many difficulties and challenges. Of particular concern is the quality of the ground-based radar products—the main tool for ...

Emad Habib; Witold F. Krajewski

2002-05-01T23:59:59.000Z

369

Miscellaneous States Natural Gas Plant Liquids, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Miscellaneous States Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

370

Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Oklahoma Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

371

Colorado Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Colorado Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

372

Arkansas Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Arkansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

373

Wyoming Natural Gas Liquids Lease Condensate, Reserves Based...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Wyoming Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

374

Michigan Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Michigan Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

375

Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

376

Louisiana--State Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

377

Federal Offshore--Texas Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

378

Louisiana--State Offshore Natural Gas Plant Liquids, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

379

Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Lower 48 Federal Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

380

California (with State Offshore) Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Federal Offshore--California Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Federal Offshore--California Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

382

California (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) California (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

383

New Mexico--East Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) New Mexico--East Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

384

New Mexico--West Natural Gas Liquids Lease Condensate, Reserves...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico--West Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

385

New Mexico Natural Gas Liquids Lease Condensate, Reserves Based...  

Annual Energy Outlook 2012 (EIA)

Reserves Based Production (Million Barrels) New Mexico Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

386

Texas (with State Offshore) Natural Gas Plant Liquids, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

387

Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--State Offshore Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

388

Texas--RRC District 10 Natural Gas Liquids Lease Condensate,...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas--RRC District 10 Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2...

389

Texas (with State Offshore) Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Reserves Based Production (Million Barrels) Texas (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1...

390

Dynamics of quantum spin liquid and spin solid phases in IPA-CuCl3 under an applied magnetic field studied with neutron scattering  

SciTech Connect

Inelastic and elastic neutron scattering is used to study spin correlations in the quasi-one-dimensional quantum antiferromagnet IPA-CuCl3 in strong applied magnetic fields. A condensation of magnons and commensurate transverse long-range ordering is observe at a critical field Hc=9.5 T. The field dependencies of the energies and polarizations of all magnon branches are investigated both below and above the transition point. Their dispersion is measured across the entire one-dimensional Brillouin zone in magnetic fields up to 14 T. The critical wave vector of magnon spectrum truncation Masuda et al., Phys. Rev. Lett. 96, 047210 2006 is found to shift from hc0,35 at HHC to hc=0.25 for HHC. A drastic reduction of magnon bandwidths in the ordered phase Garlea et al., Phys. Rev. Lett. 98, 167202 2007 is observed and studied in detail. New features of the spectrum, presumably related to this bandwidth collapse, are observed just above the transition field.

Zheludev, Andrey I [ORNL; Garlea, Vasile O [ORNL; Masuda, T. [Yokohama City University, Japan; Manaka, H. [Kagoshima University, Kagoshima JAPAN; Regnault, L.-P. [CEA, Grenoble, France; Ressouche, E. [CEA, Grenoble, France; Grenier, B. [CEA, Grenoble, France; Chung, J.-H. [National Institute of Standards and Technology (NIST); Qiu, Y. [National Institute of Standards and Technology (NIST); Habicht, Klaus [Hahn-Meitner Institut, Berlin, Germany; Kiefer, K. [Hahn-Meitner Institut, Berlin, Germany; Boehm, Martin [Institut Laue-Langevin (ILL)

2007-01-01T23:59:59.000Z

391

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

of a tracer test at Dixie Valley, Nevada”, Proc. 22 ndand footwall faulting at Dixie Valley, Nevada”, Geothermalthe shallow thermal regime at Dixie Valley geothermal field,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

392

VOC and HAP recovery using ionic liquids  

SciTech Connect

During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy(trihexyl)phosphonium dicyanamide as the RTIL. It was determined that it has good absorption properties for methanol and ?-pinene, is thermally stable, and is relatively easy to synthesize. It has a density of 0.89 g/mL at 20°C and a molecular weight of 549.9 g/mol. Trials were conducted with a small absorption system and a larger absorption system. Methanol, formaldehyde, and other HAPs were absorbed well, nearly 100%. Acetaldehyde was difficult to capture. Total VOC capture, while satisfactory on methanol and ?-pinene in a lab system, was less than expected in the field, 60-80%. The inability to capture the broad spectrum of total organics is likely due to difficulties in cleaning them from the ionic liquid rather than the ability of the ionic liquid to absorb. It’s likely that a commercial system could be constructed to remove 90 to 100% of the gas contaminates. Selecting the correct ionic liquid would be key to this. Absorption may not be the main selection criterion, but rather how easily the ionic liquid can be cleaned is very important. The ionic liquid absorption system might work very well in a system with a limited spectrum of pollutants, such as a paint spray line, where there are not very high molecular weight, non volatile, compounds in the exhaust.

Michael R. Milota : Kaichang Li

2007-05-29T23:59:59.000Z

393

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

DOE Green Energy (OSTI)

In December of 2003 a large amount of water from the Santa Rosa wastewater project began being pumped to The Geysers for injection. Millions of dollars are being spent on this injection project in the anticipation that the additional fluid will not only extend the life of The Geysers but also greatly increase the net amount of energy extracted. Optimal use of the injected water, however, will require that the water be injected at the right place, in the right amount and at the proper rate. It has been shown that Microearthquake (MEQ) generation is a direct indicator of the effect of fluid injection at The Geysers (Majer and McEvilly 1979; Eberhart-Phillips and Oppenheimer 1984; Enedy et al. 1992; Stark 1992; Kirkpatrick et al. 1999; Smith et al. 2000). It is one of the few, if not only methods, practical to monitor the volumetric effect of water injection at The Geysers. At the beginning of this project there was not a detailed MEQ response, Geysers-wide, to a large influx of water such as will be the case from the Santa Rosa injection project. New technology in MEQ acquisition and analysis, while used in parts of The Geysers for short periods of time had not been applied reservoir-wide to obtain an integrated analysis of the reservoir. Also needed was a detailed correlation with the production and injection data on a site wide basis. Last but not least, needed was an assurance to the community that the induced seismicity is documented and understood such that if necessary, mitigation actions can be undertaken in a timely manner. This project was necessary not only for optimizing the heat recovery from the resource, but for assuring the community that there is no hazard associated with the increased injection activities. Therefore, the primary purpose of this project was to develop and apply high-resolution micro earthquake methodology for the entire Geysers geothermal field such that at the end of this project a monitoring and process definition methodology will be available to: (1) Optimize the economic development of The Geysers (as well as other areas) by providing improved information on fluid flow and reservoir dynamics. (2) Aid in the mitigation of environmental impacts of increased fluid injection by improving the understanding between fluid injection and seismicity. (3) Provide a cost-effective blueprint such that the technology can be applied on a routine basis in the future.

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-04-26T23:59:59.000Z

394

Integrated High Resolution Microearthquake Analysis and Monitoring for Optimizing Steam Production at The Geysers Geothermal Field, California  

E-Print Network (OSTI)

induced seismicity at The Geysers steam reservoir, NorthernMonitoring for Optimizing Steam Production at The Geysersgas concentrations in steam produced from The Geysers,

Majer, Ernest; Peterson, John; Stark, Mitch; Smith, Bill; Rutqvist, Jonny; Kennedy, Mack

2004-01-01T23:59:59.000Z

395

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers with in-line conversion of by-product liquids to methane. Topical report (Final), December 1985-November 1986  

SciTech Connect

A first-pass conceptual design and screening cost estimate was prepared for a hypothetical plant to convert lignite to methane using Lurgi dry-bottom gasifiers and employing a black box reactor to convert by-product liquids in the gas phase to methane. Results were compared to those from conventional and modified Lurgi-plant designs. The in-line conversion plant can potentially reduce the cost of gas from a Lurgi plant by about 20%. Due to reduced capital investment, over $200 million could be invested in the reactor before the cost of gas from the in-line conversion plant is as high as that of a Lurgi plant.

Smelser, S.C.

1986-11-01T23:59:59.000Z

396

Modeling of liquid-metal corrosion/deposition in a fusion reactor blanket  

Science Conference Proceedings (OSTI)

A model has been developed for the investigation of the liquid-metal corrosion and the corrosion product transport in a liquid-metal-cooled fusion reactor blanket. The model describes the two-dimensional transport of wall material in the liquid-metal flow and is based on the following assumptions: (1) parallel flow in a straight circular tube; (2) transport of wall material perpendicular to the flow direction by diffusion and turbulent exchange; in flow direction by the flow motion only; (3) magnetic field causes uniform velocity profile with thin boundary layer and suppresses turbulent mass exchange; and (4) liquid metal at the interface is saturated with wall material. A computer code based on this model has been used to analyze the corrosion of ferritic steel by lithium lead and the deposition of wall material in the cooler part of a loop. Three cases have been investigated: (1) ANL forced convection corrosion experiment (without magnetic field); (2) corrosion in the MARS liquid-metal-cooled blanket (with magnetic field); and (3) deposition of wall material in the corrosion product cleanup system of the MARS blanket loop.

Malang, S.; Smith, D.L.

1984-04-01T23:59:59.000Z

397

AGING EFFECTS ON THE PROPERTIES OF IMIDAZOLIUM, QUATERNARY AMMONIUM, PYRIDINIUM AND PYRROLIDINIUM-BASED IONIC LIQUIDS USED IN FUEL AND ENERGY PRODUCTION  

Science Conference Proceedings (OSTI)

Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials. Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200?C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.

Fox, E.

2013-08-13T23:59:59.000Z

398

EIA - International Energy Outlook 2008-Liquid Fuels  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Chapter 2 - Liquid Fuels World liquids consumption increases from 84 million barrels per day in 2005 to 99 million barrels per day in 2030 in the IEO2008 high price case. In the reference case, which reflects a price path that departs significantly from prices prevailing in the first 8 months of 2008, liquids use rises to 113 million barrels per day in 2030. Figure 26. World Liquids Production in the Reference Case, 1990-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800.

399

Modeling of CBM production, CO{sub 2} injection, and tracer movement at a field CO{sub 2} sequestration site  

SciTech Connect

Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO{sub 2}) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injected CO{sub 2} can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO{sub 2} stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO{sub 2} injection. In addition to reservoir modeling of methane production and CO{sub 2} injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO{sub 2}. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO{sub 2}. Geologic and geometric details of the field site, numerical modeling details of methane production, CO{sub 2} injection, and tracer injection are presented in this paper. Moreover, the numerical predictions of the tracer arrival times were compared with the measured field data. Results show that tracer modeling is useful in investigating movement of injected CO{sub 2} into the coal seam at the field site. Also, such new modeling techniques can be utilized to determine potential leakage pathways, and to investigate reservoir anisotropy and heterogeneity.

Siriwardane, Hema J.; Bowes, Benjamin D.; Bromhal, Grant S.; Gondle, Raj K.; Wells, Arthur W.; Strazisar, Brian R.

2012-07-01T23:59:59.000Z

400

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: FC Site  

Science Conference Proceedings (OSTI)

Utilities typically comanage some or all of their low-volume wastes with high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement practices at an impoundment at a power plant located in the south-central United States. The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2002-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High Volume Coal Combustion By-Products: AP Site  

Science Conference Proceedings (OSTI)

Power companies typically comanage some or all of their low-volume wastes with high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement practices at an impoundment at a power plant located in the southwestern United States. The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2001-12-06T23:59:59.000Z

402

Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: CL Site  

Science Conference Proceedings (OSTI)

This report presents the results of a field study of comanagement of coal combustion by-products at a utility disposal impoundment in the southeastern United States. The study was part of a multiyear effort by the Electric Power Research Institute (EPRI), in cooperation with the Utility Solid Waste Activities Group (USWAG) and individual utility companies, to characterize utility comanagement practices and collect and analyze a comprehensive set of data pertinent to the environmental effects of those pra...

1997-12-09T23:59:59.000Z

403

Development and field application of a mathematical model for predicting the kinematic viscosity of crude oil/diluter mixture under continuous production conditions  

SciTech Connect

Experience producing medium to heavy oil areas has demonstrated that most conventional artificial production systems are inefficient. This situation has been improved by mixing diluter fluids or light crude oil with medium to heavy crude oil downhole. The mixing increases production efficiency, crude oil selling value, and conditions crude to meet minimum selling conditions. An analytical model has been developed to analyze the behavior of crude oil/diluter mixtures under continuous production conditions. The model developed for this study has practical application in field operations. The most important applications are: to select the proper diluter fluid to be used in a specific area; to calculate the exact amount of diluter to be mixed with crude oil to obtain a specific viscosity; to forecast the amount of diluter fluid required for normal and continuous oilfield operations; to predict crude oil-diluter mixture kinematic viscosity under any proportion of the components for economic evaluation; and to calculate API gravities of the produced mixture under continuous operation. The crude oils used in this study have a gravity between 8.6/sup 0/API and 14.3/sup 0/API. The diluters used have a gravity between 31.4/sup 0/API and 63/sup 0/API. The paper presents the analytical model and one application to Venezuelan field in the Orinoco Petroleum Belt, one of the largest oil reserves in the world. Each well in the field has a different viscosity and different production rate. The production rate was considered continuous and under exponential decline.

Alcocer, C.F.; Menzie, D.E.

1986-01-01T23:59:59.000Z

404

Horizontal Wells to Enhance Production in the Bottle Rock Field - Final Report - 09/30/2000 - 02/01/2001  

DOE Green Energy (OSTI)

This report describes the work that was done to prepare the Phase II proposal for an enhanced geothermal system based on the use of horizontal well to increase production of reservoir fluids from geothermal wells.

Cohen, J. H.

2001-02-26T23:59:59.000Z

405

Method and apparatus for the removal of bioconversion of constituents of organic liquids  

SciTech Connect

A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.

Scott, Timothy (Knoxville, TN); Scott, Charles D. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

406

Method and apparatus for the removal or bioconversion of constituents of organic liquids  

DOE Patents (OSTI)

A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.

Scott, T.; Scott, C.D.

1994-10-25T23:59:59.000Z

407

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, September 30, 1993--September 30, 1994  

SciTech Connect

The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment, sandstones deposited in fluvial-dominated deltas; and carbonates and some interbedded sandstones of the lower Wasatch transition deposited in mud flats. Bluebell project personnel are studying ways to improve completion techniques used in the field to increase primary production in both new wells and recompletions. The study includes detailed petrographic examination of the different lithologic reservoir types in both the outcrop and core. Outcrop, core, and geophysical logs are being used to identify and map important depositional cycles. Petrographic detail will be used to improve log calculation methods which are currently highly questionable due to varying water chemistry and clay content in the Green River and Wasatch Formations. Field mapping of fractures and their relationship to basin tectonics helps predict the orientation of open fractures in the subsurface. The project includes acquiring bore-hole imaging logs from new wells in the Bluebell field thereby obtaining detailed subsurface fracture data previously not available. Reservoir simulation models are being constructed to improve the understanding of pressure and fluid flow within the reservoir. A detailed database of well completion histories has been compiled and will be studied to determine which were the most and the least effective methods used in the past.

Allison, M.

1995-07-01T23:59:59.000Z

408

ELECTRONS IN NONPOLAR LIQUIDS.  

Science Conference Proceedings (OSTI)

Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

HOLROYD,R.A.

2002-10-22T23:59:59.000Z

409

Liquid electrode  

DOE Patents (OSTI)

A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

Ekechukwu, Amy A. (Augusta, GA)

1994-01-01T23:59:59.000Z

410

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume By-Products: CY Site  

Science Conference Proceedings (OSTI)

This report documents an investigation into the effects of comanagement of low-volume wastes with high-volume coal combustion by-products at the CY site. This is one of 14 sites investigated by EPRI to provide background information to the United States Environmental Protection Agency (EPA) for the 2000 Regulatory Determination on comanagement under the Resource Conservation and Recovery Act (RCRA).

2005-09-19T23:59:59.000Z

411

Thai gas production now underway  

SciTech Connect

Encouraged by the prospect of reducing crude imports by 20%, the Thai government is investing heavily in a national gas development project that will tap at least two and possibly four gas fields in the Gulf of Thailand by the mid-1980's. The installation of the B wellhead platform on Union Oil Co. of Thailand's A-structure field marked the first completed construction in the project. Gas reserves in the A structure - a 15-mile-long faulted anticline in the southern Pattani trough - could be between 1 and 2 trillion CF; production will peak at 250 million CF/day of gas and 6000 bbl/day of condensate. Pairs of production-processing platforms will handle production, liquids-separation, and dehydration functions. The gas will then flow to a central processing platform for sendout to shore via a 264-mile (425-km) 34-in. pipeline. Production from the A field is scheduled to start in July 1980. Meanwhile, Texas Pacific Oil Co., Inc., has a 1983 production target for development of the more southerly B field, estimated to contain 5.8 TCF.

1980-02-01T23:59:59.000Z

412

Leaching of Inorganic Constituents From Coal Combustion By-Products Under Field and Laboratory Conditions: Volume 1  

Science Conference Proceedings (OSTI)

Over the last two decades, EPRI has sponsored research to develop technical insights into leaching and attenuation processes and the migration of inorganic waste constituents under actual disposal conditions. This report provides an in-depth analysis of leaching data collected from several EPRI field and laboratory studies. These studies can help utilities accurately assess risks from leachate release and migration and determine the need for engineering controls to protect the environment in the vicinity...

1998-12-01T23:59:59.000Z

413

SRS - Programs - Liquid Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

414

Liquid electrode  

DOE Patents (OSTI)

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

415

Gullfaks development provides challenges; Part 2: Sand control combines with various EOR techniques to increase plateau production -- further developments will extend field life  

Science Conference Proceedings (OSTI)

The introductory article presented last month described Gullfaks field's history, and how it was discovered and appraised in Norway's North Sea Block 34/10 in the early 1980s. The field's complex geology and Statoil's strategy for developing various productive zones were explained. This concluding article describes evolution and status of well completion methods the operator uses in Gullfaks. A new monobore completion configuration for 5 1/2 and 7-in. tubing is described. Then major discussions cover: (1) sand control-gravel packing, stimulation, producing below bubble point techniques, and chemical methods; and (2) state-of-the-art techniques for improving oil recovery, including Water-Alternating-Gas (WAG) injection, thin polymer gel injection and surfactant flooding. Future needs and possible new methods are also covered.

Tollefsen, S.; Graue, E.; Svinndal, S.

1994-05-01T23:59:59.000Z

416

U.S. Natural Gas Plant Liquids, New Reservoir Discoveries in...  

Gasoline and Diesel Fuel Update (EIA)

Liquids, New Reservoir Discoveries in Old Fields (Million Barrels) U.S. Natural Gas Plant Liquids, New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0 Year-1...

417

Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields  

SciTech Connect

In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

2011-07-01T23:59:59.000Z

418

Liquid fossil fuel technology  

Science Conference Proceedings (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

419

Ethane prices trail other natural gas liquids - Today in Energy ...  

U.S. Energy Information Administration (EIA)

... shift their drilling programs to the more liquids-rich portions of natural gas fields to take advantage of considerable price premiums over dry natural gas. ...

420

Development history of the Tiwi geothermal field, Philippines  

SciTech Connect

Commercial production of electricity from the Tiwi geothermal system began in 1979. In 1982, Tiwi became the world`s first water-dominated system to produce more than 160 MWe. Today the field supplies about 11% of Luzon`s electricity. Initially, the reservoir was single-phase liquid with a small, shallow steam zone on the east side. Temperature reversals in the first wells showed the east to be an outflow zone. As production began, reservoir pressure declined, two-phase conditions developed, and groundwater entered the reservoir from the east. As many productions wells cooled, brine production increased and generation decreased from about 280 MWe in 1983 to about 190 MWe in 1986. Improvements to surface facilities and new wells drilled farther west raised generation to about 280 MWe by mid-1993. Separated brine was first injected into the reservoir, but this lowered steam production; injection is now outside the field.

Gambill, D.T.; Beraquit, D.B. [Philippine Geothermal, Inc., Makati (Philippines)] [Philippine Geothermal, Inc., Makati (Philippines)

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996  

SciTech Connect

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

NONE

1997-09-01T23:59:59.000Z

422

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, March 1, 1992--May 31, 1992  

DOE Green Energy (OSTI)

The first step in the envisioned integrated, multi-product approach for utilizing Illinois coal is the production of ultra low-ash coal. Subsequent steps would convert low-ash coal to high-value products through mild gasification, char activation, and oxidation reactions. Approximately eight pounds of low-ash coal has been obtained from the crude reactor slurry produced for us at the University of North Dakota Energy and Environmental Research Center (UNDEERC). After treatment to remove the remaining meta-cresol, this material will be subjected to mild gasification. Low-ash mild gasification char will be activated and a catalyst surface will be added by oxidation. A 20% coal: 80% diesel fuel slurry was tested in cylinder two of a two-cylinder, diesel engine after the necessary modifications in the engine`s fuel injection system were made. Four tests indicated that the coal successfully substitutes for diesel fuel in the slurry. The fuel burns in the cylinder, with slightly improved thermal and combustion efficiency. The tests were performed at 1800 rpm and 2200 rpm and 75% load. The change in the surface properties of Calgon F-400 commercial activated carbon caused by several treatments were examined by X-ray Photoelectron Spectroscopy (XPS).

Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis, D.N.; Syrimis, M. [Illinois Univ., Urbana, IL (United States); Fatemi, S.M. [Amoco Research Center, Naperville, IL (United States)

1992-10-01T23:59:59.000Z

423

Crude oil and condensate production rises at Bakken and other ...  

U.S. Energy Information Administration (EIA)

Liquids production (crude oil and condensate) is rising significantly at several shale plays in the United States as operators increasingly target the liquids-bearing ...

424

Recovering associated gas from marginal fields  

SciTech Connect

To enable production from offshore gasfields too small to justify a pipeline, LGA Gastechnik G.m.b.H. has designed for a capacity of 30-90 million cu ft/day a system comprising a floating production unit on a catamaran barge complete with its own powerplant and personnel quarters plus a 15,000 cu m LNG/LPG/NGL tanker in the form of a catamaran holding two long cylindrical tanks. The catamaran barge production unit has a standard breadth of 27.5 m and depth of 6.5 m, with the length varying from 90 m to 120 m according to production and storage needs. There are ten cargo tanks located below decks in the two hulls. The tanker draft is either 7.7 m with LNG or 9.0 m with LPG. Tankers can be designed to match the actual production slate of a field. A possible third component of the system is a floating or a shore-based storage installation with capacity for 27,000 cu m LNG, 15,000 cu m LPG, and 7000 cu m natural gas liquids. At the beginning of 1978, Liquid Gas International G.m.b.H. was given an order for the preconstruction planning of a gas production and transport system such as described above.

1978-02-01T23:59:59.000Z

425

NETL: Coal & Coal Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Biomass to Liquids Hydrogen-from-Coal RD&D ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES QUALITY GUIDELINES NETL-RUA About NETL-RUA...

426

Future of Liquid Biofuels for APEC Economies  

DOE Green Energy (OSTI)

This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

Milbrandt, A.; Overend, R. P.

2008-05-01T23:59:59.000Z

427

Using Cable Suspended Submersible Pumps to Reduce Production Costs to Increase Ultimate Recovery in the Red Mountain Field of the San Juan Basin Region  

Science Conference Proceedings (OSTI)

A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells, installing cable suspended submersible pumps ( Phase I ) and operating the oil field for approximately one year ( Phase II ). Upon the completion of Phases I and II ( Budget Period I ), Enerdyne LLC commenced work on Phase III which required additional drilling in an attempt to improve field economics ( Budget Period II ). The project was funded through a cooperative 50% cost sharing agreement between Enerdyne LLC and the National Energy Technology Laboratory (NETL), United States Department of Energy, executed on April 16, 2003. The total estimated cost for the two Budget Periods, of the Agreement, was $1,205,008.00 as detailed in Phase I, II & III Authorization for Expenditures (AFE). This report describes tasks performed and results experienced by Enerdyne LLC during the three phases of the cooperative agreement.

Don L. Hanosh

2006-08-15T23:59:59.000Z

428

Electrokinetic Power Generation from Liquid Water Microjets  

DOE Green Energy (OSTI)

Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

Duffin, Andrew M.; Saykally, Richard J.

2008-02-15T23:59:59.000Z

429

Liquid foams of graphene  

E-Print Network (OSTI)

Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

Alcazar Jorba, Daniel

2012-01-01T23:59:59.000Z

430

Glossary Term - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Lepton Previous Term (Lepton) Glossary Main Index Next Term (Mercury) Mercury Liquid Nitrogen Liquid nitrogen boils in a frying pan on a desk. The liquid state of the element...

431

Fuel Cell Technologies Office: Bio-Derived Liquids to Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

on October 24, 2006 Review of Working Group Charter & DOE RD&D Targets for Hydrogen Production from Renewable Liquid Fuels, Arlene Anderson, DOE Fuel Cell Technologies...

432

Fuel Cell Technologies Office: Bio-Derived Liquids to Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

by reforming bio-liquids such as sugars, ethanol, or bio-oils or through gasification or pyrolysis of biomass feedstocks. In the near term, distributed hydrogen production...

433

Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...  

Annual Energy Outlook 2012 (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters Deep...

434

Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...  

Gasoline and Diesel Fuel Update (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Production from Greater than 200 Meters Deep (Percent) Decade...

435

Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters Deep (Million Barrels)...

436

Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Less than 200 Meters Deep (Million Barrels) Decade...

437

Liquid membrane purification of biogas  

SciTech Connect

Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Chemistry and Chemical Engineering)

1991-03-01T23:59:59.000Z

438

Natural Gas Liquids New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

35 26 32 16 30 65 1979-2008 35 26 32 16 30 65 1979-2008 Federal Offshore U.S. 25 7 21 6 24 22 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 25 7 21 6 13 22 1981-2008 Texas 0 0 0 0 11 0 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 35 26 32 16 30 65 1979-2008 Alabama 0 0 0 0 0 0 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 0 0 0 0 0 0 1979-2008 Coastal Region Onshore 0 0 0 0 0 0 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 0 0 0 0 0 0 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 0 4 1 0 0 0 1979-2008 Florida 0 0 0 0 0 0 1979-2008 Kansas 0 0 0 0 0 0 1979-2008 Kentucky 0 0 1 0 0 0 1979-2008 Louisiana 0 0 0 1 0 3 1981-2008

439

Natural Gas Liquids New Field Discoveries  

Gasoline and Diesel Fuel Update (EIA)

35 26 32 16 30 65 1979-2008 35 26 32 16 30 65 1979-2008 Federal Offshore U.S. 25 7 21 6 24 22 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 25 7 21 6 13 22 1981-2008 Texas 0 0 0 0 11 0 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 35 26 32 16 30 65 1979-2008 Alabama 0 0 0 0 0 0 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 0 0 0 0 0 0 1979-2008 Coastal Region Onshore 0 0 0 0 0 0 1979-2008 Los Angeles Basin Onshore 0 0 0 0 0 0 1979-2008 San Joaquin Basin Onshore 0 0 0 0 0 0 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 0 4 1 0 0 0 1979-2008 Florida 0 0 0 0 0 0 1979-2008 Kansas 0 0 0 0 0 0 1979-2008 Kentucky 0 0 1 0 0 0 1979-2008 Louisiana 0 0 0 1 0 3 1981-2008

440

Method of foaming a liquid metal  

SciTech Connect

A method for promoting the formation of a foam and for improving bubble retention and foam lifetimes in liquid metal NaK or sodium used to generate power in two-phase liquid metal MHD generators is described. In a two-phase liquid metal MHD generator, a compressed, hot, inert gas is used as the thermodynamic working fluid to electrically drive a conductive liquid metal such as NaK, sodium or tin through the generator channel. The gas and liquid are mixed together just as the mixture enters the generator channel so that the expansion of the gas drives the conductive liquid across the magnetic field, generating electrical power. The two phases are then separated and returned to the mixer through different loops.

Fischer, A.K.; Johnson, C.E.

1978-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "liquids field production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Decision matrix for liquid loading in gas wells for cost/benefit analyses of lifting options  

E-Print Network (OSTI)

Field-proven solutions already exist to reduce the loss of gas production when liquid loading begins to occur. However, the choice of remedial technique, its feasibility, and its cost, vary considerably depending on a field's location, size export route, and the individual operator's experience. The selection of the best remedial technique and the timeframe within which the remedial action is undertaken are critical to a project's profitability. Although there are literature reviews available regarding solutions to liquid loading problems in gas wells, a tool capable of helping an operator select the best remedial option for a specific field case still does not exist. This thesis proposes a newly developed decision matrix to screen the possible remedial options available to the operator. The matrix can not only provide a critical evaluation of potential solutions to the problem of liquid loading in gas wells vis-a?-vis the existing technical and economic constraints, but can also serve as a reference to operators for investment decisions and as a quick screening tool for the selection of production optimisation strategies. Under its current status of development, this new tool consists of a decision algorithm built around a decision tree. Unlike other data mining techniques, decision trees quickly allow for subdividing large initial datasets into successively smaller sets by a series of decision rules. The rules are based on information available in the public domain. The effectiveness of the matrix is now ready to be tested against real field datasets.

Park, Han-Young

2008-05-01T23:59:59.000Z

442

Abandoned oil fields in Kansas and Nebraska  

SciTech Connect

Data on approximately 400 abandoned oil fields in Kansas and 90 abandoned oil fields in Nebraska are presented. The following information is obtained on each field: county; DOE field code; field name; AAPG geologic province code; discovery date; year of last production; discovery well operator; proven acreage; formation thickness; depth of field; API gravity; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (DMC)

Not Available

1982-12-01T23:59:59.000Z

443

Production of solar grade (SoG) silicon by refining liquid metallurgical grade (MG) silicon: Annual Report: June 10 1998--October 19, 1999  

DOE Green Energy (OSTI)

Pyro-metallurgical refining techniques are being developed for use with molten metallurgical-grade (MG) silicon so that directionally solidified refined MG silicon can be used as solar-grade (SoG) silicon feedstock for photovoltaic applications. The most problematic impurity elements are B and P because of their high segregation coefficients. Refining processes such as evacuation, formation of impurity complexes, oxidation of impurities, and slagging have been effective in removal of impurities from MG silicon. Charge sizes have been scaled up to 60 kg. Impurity analysis of 60-kg charges after refining and directional solidification has shown reduction of most impurities to <1 ppma and B and P to the 10-ppma level. It has been demonstrated that B and P, as well as other impurities, can be reduced from MG silicon. Further reduction of impurities will be necessary for use as SoG silicon. The procedures developed are simple and scaleable to larger charge sizes and carried out in a foundry or MG silicon production plant. Therefore, SoG silicon production using these procedures should be at low cost.

Khattak, C.P.; Joyce, D.B.; Schmid, F.

1999-12-13T23:59:59.000Z

444

Breathing liquid oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

question is interesting though because it would be desirable to breath liquid instead of gas under certain conditions. Special liquids are being designed to carry dissolved...

445

Liquid Nitrogen Ice Cream  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Ice Cream If you have access to liquid nitrogen and the proper safety equipment and training, try this in place of your normal cryogenics demonstration Download...

446

Integrated production/use of ultra low-ash coal, premium liquids and clean char. Final technical report, September 1, 1991--August 31, 1992  

SciTech Connect

The objective of this research is to invert the conventional scale of values for products of coal utilization processes by making coal chars (carbons) that, because of their unique properties, are the most valuable materials in the product slate. A unique type of coal-derived carbon studied in this project is oxidized activated coal char having both adsorptive and catalyst properties. Major program elements were (a) preparation and characterization of materials (b) characterization of carbons and catalyst testing (c) completion of diesel engine testing of low-ash coal and (d) initiation of a two-year adsorption study. Materials prepared were (a) two low-ash coal samples one via ChemCoal processing of IBC-109 and the other by acid dissolution of IBC-109`s mineral matter, (b) coal char (MG char), (c) activated low-ash carbon (AC), (d) oxidized activated carbon (OAC). Amoco continued its support with state-of-the art analytical capabilities and development of catalyst testing procedures. Diesel engine tests were made with low ash coal dispersed in diesel fuel at solid loadings of 20% and 35%. The slurry was successfully burned in cylinder 2 of a two-cylinder diesel engine, after modifications of the engine`s fuel injection system. The higher speed proved to be more favorable but the slurry burned with a slightly improved thermal and combustion efficiency at both speeds with respect to diesel fuel alone. Adsorption studies included preparation of seven base-line carbon samples and their characterization, including their N{sub 2} BET surface areas and apparent densities. Paranitrophenol (PNP) adsorption isotherms were determined for the six controls. Oxidation of carbon with nitric acid decreases activated carbon`s PNP adsorption capacity while air oxidation increases adsorption capacity.

Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis; Syrimis, M. [Illinois Univ., Urbana (United States); Fatemi, S.M. [Amoco, Naperville, IL (United States)

1992-12-31T23:59:59.000Z

447

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

Science Conference Proceedings (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

448

High magnetic shear gain in a liquid sodium stable couette flow experiment A prelude to an alpha - omega dynamo  

Science Conference Proceedings (OSTI)

The {Omega}-phase of the liquid sodium {alpha}-{Omega} dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, B{sub {phi}} {approx_equal} 8 x B{sub r} from the radial component of an applied poloidal magnetic field, B{sub r}. This enhanced toroidal field is produced by rotational shear in stable Couette Row within liquid sodium at Rm {approx_equal} 120. The small turbulence in stable Taylor-Couette Row is caused by Ekman Row where ({delta}v/v){sup 2} {approx} 10{sup -3}. This high {Omega}-gain in low turbulence flow contrasts with a smaller {Omega}-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays a diffusive role that enables magnetic flux linkage.

Colgate, Stirling [Los Alamos National Laboratory; Li, Jui [Los Alamos National Laboratory; Finn, John [Los Alamos National Laboratory; Pariev, Vladimir [Los Alamos National Laboratory; Beckley, Howard [NM INSTIT. OF MINING AND TECH; Si, Jiahe [NM INSTIT. OF MINING AND TECH.; Martinic, Joe [NM INSTIT. OF MINING AND TECH.; Westpfahl, David [NM INSTIT. OF TECH.; Slutz, James [NM INSTIT. OF MINING AND TECH.; Westrom, Zeb [NM INSTIT. OF TECH.; Klein, Brianna [NM INSTIT. OF MINING AND TECH.

2010-11-08T23:59:59.000Z

449

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

450

Production analysis of Marcellus Shale.  

E-Print Network (OSTI)

??The purpose of this thesis was to analyze the production potential of Marcellus shale using actual field data. By using real field production data for… (more)

Belyadi, Hossein.

2011-01-01T23:59:59.000Z

451

Variability for Biomass Production and Plant Composition in Sericea Lespedeza Germplasm. Final report on a Field and Laboratory Research Program, September 30, 1990--December 31, 1991  

DOE Green Energy (OSTI)

Sericea lespedeza [Lespedeza cuneata] is a deep-rooted legume that can be established successfully on eroded and depleted croplands. It is tolerant of drought, high levels of aluminum, and low soil fertility; environmental conditions found throughout the southeastern region of the USA. Sericea lespedeza is capable of improving soil by increasing its organic matter and nitrogen content rapidly. A field with a four year stand of sericea lespedeza grown for soil conservation or biomass production may have over 7 Mg ha{sup {minus}1} of residues on the surface. Once established, sericea lespedeza maintenance costs are relatively small compared to other plants. While most herbaceous plants require nitrogen fertilization, sericea lespedeza fixes its own. Compared to most other crops, relatively few diseases and insect problems are associated with sericea lespedeza. A field experiment aimed at measuring biomass yield of 81 genotypes of sericea lespedeza over time and variation in biomass composition was conducted. Genotype R194-79-290-9 had the highest mean biomass yield and, consistently, ranked among the top four during the years that this study was conducted. Other genotypes that also had a good performance over the four years are the cultivar Serala and the breeding line 75-2-3. No significant differences were found among genotypes for percentage of crude protein content. There were significant differences among genotypes for neutral detergent fiber, hemicellulose, and holocellulose content. There were not significant differences among genotypes for acid detergent fiber, lignin and cellulose content. Further testing of the best genotypes should be conducted at several locations to determine the genotype to be released for the specific purpose of biomass production. Screening of accessions from the Plant Introduction System should be conducted to determine their variability for lignin and crude protein content.

Mosjidis, J.A. [Auburn Univ., AL (United States). Dept. of Agronomy and Soils

1993-05-01T23:59:59.000Z

452

Conversion of light hydrocarbon gases to metal carbides for production of liquid fuels and chemicals. Quarterly technical progress report, January 1--March 31, 1995  

DOE Green Energy (OSTI)

The methane plasma stabilization problem was resolved with the reconfiguration of the DC power supply to give a higher open circuit voltage to enable operation of the arc at higher voltage levels and with the installation of a solenoid around the plasma reactor to magnetically rotate the are. Cathode