Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

California Natural Gas Total Liquids Extracted (Thousand Barrels...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Extracted (Thousand Barrels) California Natural Gas Total Liquids Extracted (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

2

California Onshore Natural Gas Total Liquids Extracted in California...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Liquids Extracted in California (Thousand Barrels) California Onshore Natural Gas Total Liquids Extracted in California (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3...

3

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

4

Liquid chromatographic extraction medium  

DOE Patents [OSTI]

A method and apparatus are disclosed for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water. 1 fig.

Horwitz, E.P.; Dietz, M.L.

1994-09-13T23:59:59.000Z

5

Liquid chromatographic extraction medium  

DOE Patents [OSTI]

A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

1994-01-01T23:59:59.000Z

6

Louisiana Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million...

7

Alabama Offshore Natural Gas Plant Liquids Production Extracted...  

Gasoline and Diesel Fuel Update (EIA)

Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0...

8

California Onshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Plant Liquids Production Extracted in California (Million Cubic Feet) California Onshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade...

9

Haze Formation and Behavior in Liquid-Liquid Extraction Processes  

SciTech Connect (OSTI)

Aqueous haze formation and behavior was studied in the liquid-liquid system tri-n-butyl phosphate in odorless kerosene and 3M nitric acid with uranyl nitrate and cesium nitrate representing the major solute and an impurity, respectively. A pulsed column, mixer-settler and centrifugal contactor were chosen to investigate the effect of different turbulence characteristics on the manifestation of haze since these contactors exhibit distinct mixing phenomena. The dispersive processes of drop coalescence and breakage, and water precipitation in the organic phase were observed to lead to the formation of haze drops of {approx}1 um in diameter. The interaction between the haze and primary drops of the dispersion was critical to the separation efficiency of the liquid-liquid extraction equipment. Conditions of high power input and spatially homogeneous mixing enabled the haze drops to become rapidly assimilated within the dispersion to maximize the scrub performance and separation efficiency of the equipment.

Arm, Stuart T.; Jenkins, J. A.

2006-07-31T23:59:59.000Z

10

Process to upgrade coal liquids by extraction prior to hydrodenitrogenation  

DOE Patents [OSTI]

Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

Schneider, Abraham (Overbrook Hills, PA); Hollstein, Elmer J. (Wilmington, DE); Janoski, Edward J. (Havertown, PA); Scheibel, Edward G. (Media, PA)

1982-01-01T23:59:59.000Z

11

California Offshore Natural Gas Plant Liquids Production Extracted...  

U.S. Energy Information Administration (EIA) Indexed Site

Offshore Natural Gas Plant Liquids Production Extracted in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's NA -...

12

Liquid--liquid equilibria by use of UNIFAC for gasohol extraction systems  

SciTech Connect (OSTI)

A synthetic naphtha cut composed of a mixture of paraffinic, aromatic, and naphthenic hydrocarbons has been studied as a solvent to directly produce gasohol. The equilibria in these highly nonideal liquid mixtures has been estimated by the UNIFAC group contribution method. The process would appear to be simple and direct to produce gasohol by liquid--liquid extraction with this naphtha and could compete with existing azeotropic distillation processes.

Furzer, I.A.

1984-04-01T23:59:59.000Z

13

Liquid-liquid extraction as the means of refining cottonseed oil  

E-Print Network [OSTI]

LIBRARY A 4 AI CvLLEGE OF TEXAS LIOVID-LIQUID EXTRACTION AS THE MEANS OI REFINING CCTTONSEFZ OIL A Thesis By 1'RVUBHAI CHIINIBHAI PATEL a 0 U z A R 0 Submitted to the Graduate School of the Agricultural and Mechanical College of Texas... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Auuust 1996 Major Subject Chemical ineeri LIQUID-LIQUID EXTRACTION AS THE MEANS OF REFINING COTTONSEED OIL A Thesis By MANUBHAI CHUNIBHAI PATEL Approved as to style...

Patel, Manubhai Chunibhai

2012-06-07T23:59:59.000Z

14

Extraction of ethanol from water with liquid propylene  

SciTech Connect (OSTI)

To separate EtOH from water by distillation requires 40 to 50 times the minimum Gibbs free energy of mixing. Also, EtOH forms an azeotrope with water, limiting the EtOH purity to 92%. These considerations have prompted investigations of solvent extraction. This paper describes the use of liquid propylene as solvent. The process application is also described. (DLC)

Victor, J.G.

1983-01-01T23:59:59.000Z

15

Deep liquid-chromatographic purification of uranium extract from technetium  

SciTech Connect (OSTI)

The recycling of uranium in the nuclear fuel cycle requires the removal of a number of radioactive and stable impurities like {sup 99}Tc from spent fuels. In order to improve the grade of uranium extract purification from technetium the method of liquid chromatography and the apparatus for its performance have been developed. Process of technetium extraction and concentrating in aqueous solution containing reducing agent has been studied on simulated solutions (U-Tc-HNO{sub 3}-30% TBP-isoparM). The dynamic tests of the method have been carried out on the laboratory unit. Solution of diformyl-hydrazine in nitric acid was used as a stationary phase. Silica gel with specific surface of 186 m{sup 2}/g was used as a carrier of the stationary phase. It is shown that the volume of purified extract increases as the solution temperature increases, concentration of reducing agent increases and extract flow rate decreases. It is established that the technetium content in uranium by this method could achieve a value below 0.3 ppm. Some variants of overload and composition of the stationary phase containing the extracted technetium have been offered and tested. It is defined that the method provides reduction of processing medium-active wastes by more than 10 times during finish refining process. (authors)

Volk, V.; Dvoeglazov, K; Podrezova, L.; Vidanov, V.; Pavlyukevich, E. [OAO State Research Center - VNIINM, Rogov str., bld. 5, Moscow (Russian Federation)

2013-07-01T23:59:59.000Z

16

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids  

E-Print Network [OSTI]

Extraction of Biofuels and Biofeedstocks from Aqueous Solutions Using Ionic Liquids Luke D. Simoni-Butanol, Extraction, Liquid-Liquid Equilibrium, Excess Gibbs Energy Models, Biofuels #12;1 1. Introduction other organic compounds can be produced biologically, and thus can be considered as biofuel candidates

Stadtherr, Mark A.

17

Synergism by co-assembly at the origin of ion selectivity in liquid-liquid extraction  

SciTech Connect (OSTI)

In liquid-liquid extraction, synergism emerges when for a defined formulation of the solvent phase, there is an increase of distribution coefficients for some cations in a mixture. To characterize the synergistic mechanisms, we determine the free energy of mixed co-assembly in aggregates. Aggregation in any point of a phase diagram can be followed not only structurally by SANS, SAXS, and SLS, but also thermodynamically by determining the concentration of monomers coexisting with reverse aggregates. Using the industrially used couple HDEHP/TOPO forming mixed reverse aggregates, and the representative couple U/Fe, we show that there is no peculiarity in the aggregates microstructure at the maximum of synergism. Nevertheless, the free energy of aggregation necessary to form mixed aggregates containing extracted ions in their polar core is comparable to the transfer free energy difference between target and nontarget ions, as deduced from the synergistic selectivity peak. (authors)

Dourdain, S.; Hofmeister, I.; Dufreche, J.F.; Turgis, R.; Pellet-Rostaing, S.; Zemb, T. [CEA CNRS UM2 ENSCM UMR5257, ICSM LTSM, F-30207 Bagnols Sur Ceze, (France); Pecheur, O.; Leydier, A. [CEA, Nucl Energy Div, RadioChem and Proc Dept, F-30207 Bagnols Sur Ceze, (France); Jestin, J. [CEA Saclay, Lab Leon Brillouin CEA CNRS, F-91191 Gif Sur Yvette, (France); Testard, F. [CEA Saclay, DSM IRAMIS LIONS SIS2M, F-91191 Gif Sur Yvette, (France)

2012-08-15T23:59:59.000Z

18

Process Simulation, Modeling & Design for Soybean Oil Extraction Using Liquid Propane.  

E-Print Network [OSTI]

??This study investigates the use of liquid propane for soybean oil extraction and the use of commercial software for process modeling and simulation. Soybean oil… (more)

Patrachari, Anirudh Ramanujan

2008-01-01T23:59:59.000Z

19

Process Design and Simulation for Extraction of Milk Fat Using Liquid Propane.  

E-Print Network [OSTI]

??Numerous studies have been conducted to increase the utilization of milk by fractionating the fat. This work examines the use of liquid propane for extraction… (more)

Byluppala, Harita

2010-01-01T23:59:59.000Z

20

Teaching Sustainable Development Concepts in the Laboratory: A Solid–Liquid Extraction Experiment  

Science Journals Connector (OSTI)

Teaching Sustainable Development Concepts in the Laboratory: A Solid–Liquid Extraction Experiment ... One of the principles of sustainable development is to replace chemicals traditionally derived from oil with alternative, renewable materials. ...

Juan Carlos Parajó; Herminia Domínguez; Valentín Santos; José Luis Alonso; Gil Garrote

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New methods and materials for solid phase extraction and high performance liquid chromatography  

SciTech Connect (OSTI)

This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.

Dumont, P.J.

1996-04-23T23:59:59.000Z

22

Anion effects in the extraction of lanthanide 2-thenoyltrifluoroacetone complexes into an ionic liquid  

SciTech Connect (OSTI)

The extraction of trivalent lanthanides from an aqueous phase containing 1 M NaClO{sub 4} into the room temperature ionic liquid 1-butyl-3-methylimidazolium nonafluoro-1-butane sulfonate by the beta-diketone extractant 2-thenoyltrifluoroacetone (Htta) was studied. Radiotracer distribution, absorption spectroscopy, time-resolved laser-induced fluorescence spectroscopy, and X-ray absorption fine structure measurements point to the extraction of multiple lanthanide species. At low extractant concentrations, fully hydrated aqua cations of the lanthanides are present in the ionic liquid phase. As the extractant concentration is increased 1:2 and 1:3 lanthanide:tta species are observed. In contrast, 1:4 Ln:tta complexes were observed in the extraction of lanthanides by Htta into 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. (authors)

Jensen, Mark P.; Beitz, James V.; Rickert, Paul G. [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Borkowski, Marian [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Los Alamos Natl Lab, Earth and Environm Sci Div, Carlsbad, NM, (United States); Laszak, Ivan [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Commisariat Energie Atom, DEN DPC SERC LANIE, Gif Sur Yvette, (France); Dietz, Mark L. [Argonne Natl Lab, Chem Sci and Engn Div, Argonne, IL 60439 (United States); Wisconsin-Milwaukee Univ, Department of Chemistry and Biochemistry, Milwaukee, WI, (United States)

2012-07-01T23:59:59.000Z

23

Method for liquid chromatographic extraction of strontium from acid solutions  

DOE Patents [OSTI]

A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

Horwitz, E. Philip (Naperville, IL); Dietz, Mark L. (Evanston, IL)

1992-01-01T23:59:59.000Z

24

Extraction of Uranium from Aqueous Solutions Using Ionic Liquid and Supercritical Carbon Dioxide in Conjunction  

SciTech Connect (OSTI)

Uranyl ions (UO2)2+ in aqueous nitric acid solutions can be extracted into supercritical CO2 (sc-CO2) via an imidazolium-based ionic liquid using tri-n-butylphosphate (TBP) as a complexing agent. The transfer of uranium from the ionic liquid to the supercritical fluid phase was monitored by UV/Vis spectroscopy using a high-pressure fiberoptic cell. The form of the uranyl complex extracted into the supercritical CO2 phase was found to be UO2(NO3)2(TBP)2. The extraction results were confirmed by UV/Vis spectroscopy and by neutron activation analysis. This technique could potentially be used to extract other actinides for applications in the field of nuclear waste management.

Wang, Joanna S.; Sheaff, Chrystal N.; Yoon, Byunghoon; Addleman, Raymond S.; Wai, Chien M.

2009-01-01T23:59:59.000Z

25

Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions  

Science Journals Connector (OSTI)

Abstract Today there are serious regulations to reduce sulfur content of fuels because the \\{SOx\\} produced during the combustion of fuels containing sulfur compounds make the air polluted and have dangerous environmental impacts. With the aim of replacement of the present volatile, flammable and toxic organic solvents or inefficient, corrosive and expensive ionic liquids (ILs), the polyethylene glycol (PEG) was introduced as a green, effective, non-toxic, non-corrosive and also recyclable molecular solvent for extractive desulfurization (EDS) of benzothiophenic compounds from liquid fuel in this work for the first time. PEG shows excellent EDS and it has the higher extraction efficiency for dibenzothiophene (DBT) (76% within 90 s) than those of ILs. Using this extractant, the BDT content was reduced from 512 to 10 ppmw (98%) only within three extraction stages, the minimum number of cycles within shortest time reported up to now, and the deep desulfurization was achieved. Effect of some important parameters including initial concentration of sulfur compound, PEG dosage, time and temperature of extraction on the EDS process was investigated. It was fond that extraction performance of PEG is independent to temperature and initial sulfur content, which is an excellent finding for industrialization. The feasibility of PEG for extraction of different thiophenic compounds was observed in the order of dibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiopene. Finally, the PEG was reused in several cycles and then it was regenerated by adsorption method. The results of the present work hopefully provide useful information for future industrial application of PEG as an efficient green solvent for the EDS of liquid fuels.

Effat Kianpour; Saeid Azizian

2014-01-01T23:59:59.000Z

26

Ionic liquid effects on mass transfer efficiency in extractive distillation of water–ethanol mixtures  

Science Journals Connector (OSTI)

Abstract The relatively high viscosities of ionic liquids could reduce the mass transfer efficiency of the extractive distillation process. The rate-based model was adopted to analyze this phenomenon since it predicted the performance of an extractive distillation pilot plant using ionic liquids as solvent. For the water–ethanol separation, three ionic liquids: 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium dicyanamide and the organic solvent ethylene glycol were used for the analysis. Simulations were conducted for sieve trays and Mellapak® 250Y. The results indicate that relatively high viscosities affect the mass transfer efficiency. However, the improvements in relative volatilities obtained from the ionic liquids help to overcome this effect. However, with high solvent viscosities (>65 mPa s at T = 353.15 K) it was not possible to overcome the reductions. Additionally, at higher distillate rates high relative volatilities yielded negative effects on mass transfer efficiency because of a decrease in vapor velocity.

E. Quijada-Maldonado; G. Wytze Meindersma; André B. de Haan

2014-01-01T23:59:59.000Z

27

Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels  

Science Journals Connector (OSTI)

Abstract Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrothermal liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available experimental results. The system assumed an LEA feed rate of 608 dry metric tons/day and that the feedstock was converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid fuels, mainly alkanes. Performance and cost results demonstrated that HTL and upgrading is effective for converting LEA to liquid fuels. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent (GGE) and the overall energy efficiency on a higher heating value (HHV) basis was estimated to be 69.5%. The variation range of the minimum fuel selling price (MFSP) was estimated to be $2.07 to $7.11/GGE by combining the effects of selected process factors. Key factors affecting the production cost were identified to be the LEA feedstock cost, final products yields, and the upgrading equipment cost. The impact of plant scale on MFSP was also investigated.

Yunhua Zhu; Karl O. Albrecht; Douglas C. Elliott; Richard T. Hallen; Susanne B. Jones

2013-01-01T23:59:59.000Z

28

SOLIEX: A Novel Solid-Liquid Method of Radionuclides Extraction from Radioactive Waste Solutions - 13486  

SciTech Connect (OSTI)

This paper describes recent developments in new solid-liquid extraction method, called SOLIEX, to remove cesium from alkaline solutions. SOLIEX relies on the use of a reversible complexing system comprising a carbon felt bearing molecular traps (calixarenes). This complexing system exhibits a high selectivity for Cs, and is thus expected to be helpful for the treatment of highly diluted cesium wastes even with a high concentration of competing alkali metal cations. As additional advantage, this complexing system can be adapted by molecular engineering to capture other radionuclides, such as Sr, Eu, Am. Finally, this complexing system can be easily and efficiently regenerated by using a cost effective stripping procedure, which limits further generation of waste to meet 'zero liquid' discharge requirements for nuclear facilities. (authors)

Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191Gif sur Yvette (France)] [CEA Saclay, DSM/IRAMIS/SPCSI, 91191Gif sur Yvette (France); Fournel, B.; Barre, Y. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France)] [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Huc, V. [ICMMO - UMR CNRS 8182 - Bat. 420 Universite Paris-Sud (France)] [ICMMO - UMR CNRS 8182 - Bat. 420 Universite Paris-Sud (France)

2013-07-01T23:59:59.000Z

29

Biomass-Derived Platform Chemicals: Thermodynamic Studies on the Extraction of 5-Hydroxymethylfurfural from Ionic Liquids  

Science Journals Connector (OSTI)

Biomass-Derived Platform Chemicals: Thermodynamic Studies on the Extraction of 5-Hydroxymethylfurfural from Ionic Liquids ... Furthermore, the solubility of 5-hydroxymethylfurfural (HMF) in these solutes and the solubility of the solutes in 1-butyl-3-methylimidazolium methanesulfonate ([C4mim][CH3SO3]) was assessed. ... In the past 20 years, a large body of work has been conducted on the condensation of fructose and other carbohydrates to 5-hydroxymethylfurfural (HMF), which, due to its multifunctionality, has been claimed a prime platform chemical derived from biomass (Scheme 1). ...

Annegret Stark; Bernd Ondruschka; Dzmitry H. Zaitsau; Sergey P. Verevkin

2012-10-15T23:59:59.000Z

30

Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides  

SciTech Connect (OSTI)

This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

Rogers, J.D.

1994-08-04T23:59:59.000Z

31

Approximate Bayesian Computations Done Exactly: Towards a Thousand Human Genomes  

E-Print Network [OSTI]

Approximate Bayesian Computations Done Exactly: Towards a Thousand Human Genomes Principal of California, Irvine, USA January 28, 2011 Abstract Currently, 1000 whole human genomes are being sequenced. It is becoming exceedingly difficult to extract critical information from such extensive population-level genomic

Sainudiin, Raazesh

32

Price of Maine Natural Gas Exports (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand Cubic Feet) Price of Maine Natural Gas Exports (Dollars per Thousand Cubic Feet) (Dollars per Thousand...

33

Selective metal ion extraction for multiple ion liquid-liquid exchange reactions. Progress report, DE-AS02-79ER 10406. A001  

SciTech Connect (OSTI)

The first phase of selecting a model binary system to study was completed. The system selected is Cu(II), Fe(III) acid sulfate solutions extracted by ..beta..-alkenyl 8-hydroxy quinoline (Kelex 100) in xylene. Maximum copper extraction occurs in less than 5 minutes at 30 to 50/sup 0/C. Thermodynamic chemical equilibrium studies with the Fe(III) ion indicate that the ionic charge of the extracted ion is +3 over a limited pH and concentration range. A simplified equilibrium model did not fit the experimental data. A chemical equilibrium model for the aqueous phase was developed. Kinetic studies on the liquid jet recycle reactor are underway. The model proposed to analyze simultaneous extraction of Cu(II) and Fe(III) in a stirred tank extractor was reduced to a set of two nonlinear algebraic equations for idealized kinetic expressions.

Tavlarides, L.L.

1980-01-01T23:59:59.000Z

34

Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography  

SciTech Connect (OSTI)

Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 {micro}l injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few {micro}l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

Freeze, R.

1997-10-08T23:59:59.000Z

35

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network [OSTI]

Photosynthesis Biomass Renewable liquid fuel Fuel synthesis #12;Renewable liquid fuel Combustion CO2 separation emissions from all sectors IEA, 2012; CO2 emissions from fuel combustion: Highlights. · Solar · Wind · CO2. R. Soc. A, 368, 3343, 2010 #12;Biological renewable liquid fuel Combustion Water CO2 in air

Homes, Christopher C.

36

Characterization and stability properties of polar extracts derived from a recent shale liquid  

SciTech Connect (OSTI)

A shale fuel of marginal stability has been used as a source of nitrogen-rich polar extracts. Polar compounds were isolated by mild acid extraction followed by silica gel adsorption and were identified by GC/MS. Alkyl substituted pyridines were the prevalent class of compounds present in most extracts. The effects of adding these shale derived fractions as dopants to a stable shale diesel fuel (D-11) were examined in terms of sediment formation and peroxide number under accelerated storage stability test conditions. The activities of the extracts in inducing fuel instability were correlated with their composition.

Mushrush, G.W.; Cooney, J.V.; Beal, E.J.; Hazlett, R.N.

1986-01-01T23:59:59.000Z

37

DOE Sponsored College Night Draws Thousands | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sponsored College Night Draws Thousands Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands September 6, 2013 - 12:00pm Addthis DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands College recruiters from the Golden State to the Peach State gathered in a packed arena for the twentieth annual CSRA College Night in Augusta, Georgia. The event is a cooperative effort among Department of Energy

38

DOE Sponsored College Night Draws Thousands | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands September 6, 2013 - 12:00pm Addthis DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands DOE Sponsored College Night Draws Thousands College recruiters from the Golden State to the Peach State gathered in a packed arena for the twentieth annual CSRA College Night in Augusta, Georgia. The event is a cooperative effort among Department of Energy

39

Selective Solid-Liquid Extraction of Lithium Halide Salts Using a Ditopic Macrobicyclic Receptor  

E-Print Network [OSTI]

pairs. The receptor can transport these salts from an aqueous phase through a liquid organic membrane and membrane transport, almost all reported efforts have focused on the transfer of lithium salts from this by binding the salts as contact ion pairs. Receptor 1 can also transport alkali metal halide salts out

Smith, Bradley D.

40

Complex vibrational correlation functions extracted from the resolved band of liquid acetonitrilem  

E-Print Network [OSTI]

that we choose (or construct) an appropriate theoretical model for the shapes of the constituent bands (often referred to as line shapes) that is based upon two factors. The Ðrst comprises the existing acetonitrile. A new approach for extracting all possible band shape details of highly overlapping spectral

Nerukh, Dmitry

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids  

SciTech Connect (OSTI)

Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States). EMS Energy Institute

2009-09-15T23:59:59.000Z

42

Thousand Springs Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.7452°, -114.828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7452,"lon":-114.828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

FEASIBILITY OF THE AEROSOL-TO-LIQUID PARTICLE EXTRACTION SYSTEM (ALPES) FOR COLLECTION OF VIABLE FRANCISELLA SP.  

SciTech Connect (OSTI)

Several Biowatch monitoring sites in the Houston area have tested positive for Francisella tularensis and there is a need to determine whether natural occurring Francisella-related microorganism(s) may be responsible for these observed positive reactions. The collection, culturing and characterization of Francisella-related natural microorganisms will provide the knowledge base to improve the future selectivity of Biowatch monitoring for Francisella. The aerosol-to-liquid particle extraction system (ALPES) is a high-efficiency, dual mechanism collection system that utilizes a liquid collection medium for capture of airborne microorganisms. Since the viability of microorganisms is preserved better in liquid medium than on air filters, this project was undertaken to determine whether Francisella philomiragia and Francisella tularensis LVS maintain acceptable viability in the continuous liquid recirculation, high direct current voltage and residual ozone concentrations which occur during ALPES operation. Throughout a series of preliminary trial runs with representative gram-negative and gram-positive microorganisms, several design modifications and improvements to the ALPES optimized liquid handling, electrical stability, sampling and overall performance for biological sampling. Initial testing with Francisella philomiragia showed viability was preserved better in PBS buffer than HBSS buffer. Trial runs at starting cell concentrations of 1.8 x 10{sup 6} and 2.5 x 10{sup 4} CFU/L showed less than a 1-log decrease in viability for F. philomiragia after 24 h in the ALPES. Francisella tularensis LVS (live vaccine strain) was used as a surrogate for virulent F. tularensis in ALPES trial runs conducted at starting cell concentrations of 10{sup 4}, 10{sup 5} and 10{sup 6} CFU/L. F. tularensis LVS was slow-growing and required highly selective growth media to prevent overgrowth by collected airborne microorganisms. In addition, one ALPES unit intake was HEPA filtered during the final trial runs with F. tularensis LVS to further reduce the levels of microbial background. Results from trials with F. tularensis LVS showed about a 1-log loss decrease in CFUs after 24 h, but maintained final cell concentrations in the range of 10{sup 3}-10{sup 4} CFU/L. These results indicate that the ALPES maintains acceptable viability of Francisella sp. in PBS buffer for up to 24 h and is a promising technology for the collection of viable airborne Francisella or Francisella-related cultures which may be observed at Biowatch monitoring sites in the Houston area and elsewhere.

Heitkamp, M

2006-08-07T23:59:59.000Z

44

Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2...

45

Price of New Hampshire Natural Gas Exports (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

New Hampshire Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of New Hampshire Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

46

Price of Michigan Natural Gas Exports (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Michigan Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

47

Price of Texas Natural Gas Exports (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Texas Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Texas Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

48

Price of Washington Natural Gas Exports (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Washington Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Washington Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

49

Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

50

Price of California Natural Gas Exports (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

California Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of California Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

51

Price of Montana Natural Gas Exports (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Montana Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Montana Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

52

Price of Arizona Natural Gas Exports (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Arizona Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

53

Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

54

New Jersey Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New Jersey Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

55

Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

56

Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

57

Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

58

Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

59

Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

60

West Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) West Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

62

Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

63

Illinois Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

64

New York Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New York Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

65

Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

66

New Hampshire Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) New Hampshire Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

67

Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

68

Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

69

Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

70

Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

71

Rhode Island Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Rhode Island Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

72

Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

73

Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

74

Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

75

Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

76

Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

77

Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

78

Iowa Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

79

South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

80

Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

82

North Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

83

Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

84

South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

85

Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

86

Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

87

Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

88

Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

89

Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

90

Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

91

North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

92

Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

93

Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

94

California Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

95

Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

96

,"New York Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:18 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

97

,"New York Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:17 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

98

,"Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013...

99

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:02:15 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

100

,"New York Natural Gas Imports Price (Dollars per Thousand Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013 ,"Release...

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"New York Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013...

102

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

103

DELAYED COKING OF SOLVENT EXTRACTED COAL FOR PRODUCTION OF ANODE GRADE COKE: CHARACTERIZATION OF SOLID AND LIQUID PRODUCTS.  

E-Print Network [OSTI]

??This study investigates the feasibility of using high temperature solvent extraction of coal to produce feedstock for the production of anode grade coke through delayed… (more)

Karri, Vamsi

2011-01-01T23:59:59.000Z

104

Separation of actinides from Low Level Liquid Wastes (LLLW) by extraction chromatography using novel DMDOHEMA and TODGA impregnated resins  

Science Journals Connector (OSTI)

The uptake of several actinides [U(VI), Th(IV), Am(III), Cm(III)] and fission products was investigated from nitric acid solutions by two novel extraction chromatographic sorbents containing 2-(2-hexyloxy-ethy...

K. Van Hecke; G. Modolo

2004-08-01T23:59:59.000Z

105

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area (Redirected from Valley Of Ten Thousand Smokes Region Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

106

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska...

107

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Sligar's Thousand Springs Resort Sector Geothermal energy Type Pool and Spa Location Hagerman, Idaho Coordinates 42.8121244°, -114.898669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

108

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

109

Solvent extraction studies of holmium with acidic extractants  

SciTech Connect (OSTI)

Liquid-liquid extraction studies of holmium with 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester, naphthenic, and Versatic 10 acids have been carried out. The nature of the extracted species and the extraction equilibrium constants of these systems have been determined from aqueous nitrate solution. The extraction mechanism and complexation models have been proposed. 11 refs., 8 figs.

Gaikwad, A.G.; Damodaran, A.D. (CSIR, Trivandrum (India))

1993-03-01T23:59:59.000Z

110

Property:Ind rev (thousand $) | Open Energy Information  

Open Energy Info (EERE)

rev (thousand $) rev (thousand $) Jump to: navigation, search This is a property of type Number. Revenue from sales to industrial consumers Pages using the property "Ind rev (thousand $)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 1,350 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 1,445 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 1,337 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 1,345 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 1,219 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 1,337 +

111

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

112

Property:Com rev (thousand $) | Open Energy Information  

Open Energy Info (EERE)

Com rev (thousand $) Com rev (thousand $) Jump to: navigation, search This is a property of type Number. Revenue from sales to commercial consumers Pages using the property "Com rev (thousand $)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 1,765 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 2,643 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 2,031 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 1,765 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 2,044 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 1,764 +

113

THOUSANDS OF PROTEINS LIKELY TO HAVE LONG DISORDERED REGIONS  

E-Print Network [OSTI]

THOUSANDS OF PROTEINS LIKELY TO HAVE LONG DISORDERED REGIONS PEDRO ROMERO, ZORAN OBRADOVIC School of protein disorder using primary sequence information were developed and applied to the Swiss Protein Database. More than 15,000 proteins were predicted to contain disordered regions of at least 40 consecutive

Obradovic, Zoran

114

"2012 Total Electric Industry- Revenue (Thousands Dollars)"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue (Thousands Dollars)" Revenue (Thousands Dollars)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",7418025.1,6137400,3292222.3,37797.4,16885444.6 "Connecticut",2212594.3,1901294.3,451909.7,18679.5,4584477.8 "Maine",656822,467228,241624.4,0,1365674.3 "Massachusetts",3029291.6,2453106,2127180,17162,7626739.5 "New Hampshire",713388.2,598371.1,231041,0,1542800.3 "Rhode Island",449603.6,431951.9,98597.2,1955.9,982108.6 "Vermont",356325.4,285448.7,141870,0,783644.1 "Middle Atlantic",20195109.9,20394744.7,5206283.9,488944,46285082.4

115

"2012 Total Electric Industry- Sales (Thousand Megawatthours)"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Thousand Megawatthours)" Sales (Thousand Megawatthours)" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47207.696,44864.227,27817.984,566.173,120456.08 "Connecticut",12757.633,12976.05,3565.944,192.711,29492.338 "Maine",4480.736,4053.188,3027.135,0,11561.059 "Massachusetts",20313.469,17722.811,16927.205,349.839,55313.324 "New Hampshire",4439.208,4478.42,1952.633,0,10870.261 "Rhode Island",3121.367,3639.866,923.478,23.623,7708.334 "Vermont",2095.283,1993.892,1421.589,0,5510.764 "Middle Atlantic",132230.522,157278.208,69506.519,3910.06,362925.309

116

Thousand Oaks, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thousand Oaks, California: Energy Resources Thousand Oaks, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1705609°, -118.8375937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1705609,"lon":-118.8375937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Louisiana Natural Gas Prices

118

Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.14 1970's 0.15 0.16 0.16 0.18 0.20 0.26 0.48 0.81 0.84 1.41 1980's 1.47 1.97 3.17 3.38 3.43 2.90 2.05 1.76 1.59 1.52 1990's 1.55 1.41 1.37 1.61 1.39 0.95 1.37 2.23 1.90 2.18 2000's 3.67 3.84 2.41 4.54 5.21 7.43 6.12 4.57 6.94 3.21 2010's 3.96 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Colorado Natural Gas Prices

119

Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.14 0.14 0.16 0.17 0.17 0.42 0.48 0.57 0.76 1980's 0.77 0.92 1.51 1.57 1.49 1.27 1.21 1.15 1.36 1.44 1990's 1.56 1.37 1.54 1.80 1.60 1.36 1.92 2.05 1.70 1.80 2000's 3.21 3.66 2.61 4.33 4.94 6.51 5.61 5.69 6.85 3.16 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Kansas Natural Gas Prices

120

Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.26 1970's 0.27 0.26 0.31 0.39 0.50 0.63 0.89 1.01 1.20 1.74 1980's 2.35 2.86 3.19 3.58 3.76 3.60 3.60 3.24 3.18 3.16 1990's 3.00 2.79 2.71 2.38 1.96 1.67 2.21 2.19 1.77 1.77 2000's 2.44 3.47 2.16 4.01 3.85 5.30 NA NA 5.63 3.92 2010's 3.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Michigan Natural Gas Prices

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Kentucky Natural Gas Prices

122

Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Alabama Natural Gas Prices

123

Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Wyoming Natural Gas Prices

124

Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.14 0.15 1970's 0.16 0.16 0.16 0.19 0.28 0.32 0.50 0.79 0.90 1.12 1980's 1.51 1.88 2.74 2.83 2.72 2.47 1.71 1.47 1.55 1.59 1990's 1.57 1.47 1.70 1.88 1.70 1.44 2.21 2.32 1.77 2.05 2000's 3.63 4.03 2.94 4.97 5.52 7.21 6.32 6.24 7.56 3.53 2010's 4.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Oklahoma Natural Gas Prices

125

Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.08 0.09 0.10 1970's 0.10 0.12 0.12 0.24 0.25 0.43 0.45 0.72 0.85 1.21 1980's 1.45 1.91 2.15 2.41 2.46 2.39 2.05 1.80 1.70 1.55 1990's 1.79 1.66 1.62 1.55 1.46 1.36 1.41 1.59 1.53 1.68 2000's 2.84 3.12 2.39 3.73 4.51 6.57 5.53 5.72 7.50 3.16 2010's 3.64 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Montana Natural Gas Prices

126

Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.26 1970's 0.27 0.34 0.39 0.43 0.48 0.71 1.02 1.40 1.57 1.81 1980's 1.98 2.17 2.71 3.24 3.19 3.08 2.84 2.58 2.55 2.55 1990's 2.54 2.38 2.35 2.46 2.43 2.33 2.63 2.70 2.95 2.43 2000's 4.06 4.54 4.52 5.90 6.65 9.03 7.75 7.59 7.88 4.36 2010's 4.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Ohio Natural Gas Prices Natural Gas Wellhead

127

Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.25 0.25 1970's 0.25 0.24 0.15 0.15 0.17 0.30 0.39 0.40 0.52 0.52 1980's 0.73 0.62 0.63 0.73 0.73 0.74 0.50 0.94 1.27 1.36 1990's 1.38 1.48 1.41 1.42 1.27 1.64 1.61 1.82 1.32 1.37 2000's 1.76 1.99 2.13 2.41 3.42 4.75 5.79 5.63 7.39 2.93 2010's 3.17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Alaska Natural Gas Prices

128

Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.16 0.15 1970's 0.15 0.17 0.17 0.19 0.41 0.48 0.50 0.61 0.64 0.72 1980's 1.12 1.10 3.06 3.40 4.08 3.52 2.90 1.88 2.39 1.58 1990's 1.70 1.54 1.63 1.77 1.54 1.15 1.39 1.86 1.73 1.93 2000's 3.28 3.52 1.99 4.11 5.24 7.16 5.49 NA 6.15 3.38 2010's 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Utah Natural Gas Prices Natural Gas Wellhead

129

Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.23 0.24 0.23 1970's 0.24 0.25 0.15 0.14 0.14 0.39 0.52 0.69 0.71 1.05 1980's 1.35 2.08 1.55 2.09 3.38 2.51 1.23 1.71 1.57 1.71 1990's 2.01 1.72 2.01 2.09 1.97 1.90 2.30 2.18 2.09 2.19 2000's 3.51 3.28 3.11 5.41 6.30 9.11 6.01 5.78 7.58 4.05 2010's 4.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Indiana Natural Gas Prices

130

Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.16 0.16 1970's 0.16 0.17 0.17 0.18 0.26 0.35 0.53 0.58 0.75 0.96 1980's 0.70 1.81 2.13 2.29 2.54 2.55 2.51 2.29 1.94 2.41 1990's 2.06 1.92 2.15 2.81 2.65 3.02 3.82 4.03 3.92 4.10 2000's 5.23 4.99 4.43 5.17 5.68 7.26 6.43 6.61 8.72 3.43 2010's 3.84 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Arkansas Natural Gas Prices

131

Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.14 0.14 1970's 0.14 0.16 0.16 0.20 0.31 0.52 0.72 0.90 0.99 1.23 1980's 1.56 1.87 2.17 2.36 2.45 2.33 1.65 1.47 1.51 1.53 1990's 1.57 1.59 1.77 2.09 1.89 1.61 2.29 2.48 2.06 2.31 2000's 3.93 4.12 3.16 5.18 5.83 7.55 6.60 6.98 8.51 3.81 2010's 4.70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Texas Natural Gas Prices Natural Gas Wellhead

132

Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.18 1970's 0.18 0.21 0.27 0.23 0.29 0.50 0.71 0.73 1.15 1.60 1980's 2.32 3.21 3.91 3.78 3.47 3.17 2.13 1.94 1.86 1.97 1990's 1.76 1.66 1.64 1.73 1.49 1.24 1.66 1.73 1.42 1.63 2000's 3.30 3.93 3.06 5.13 5.83 8.54 6.84 6.70 8.80 3.73 2010's 4.17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Mississippi Natural Gas Prices

133

Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.26 0.25 1970's 0.25 0.24 0.21 0.23 0.24 0.27 0.32 0.39 0.61 1.04 1980's 0.46 0.48 0.78 0.55 0.55 0.59 0.65 0.55 0.93 0.85 1990's 1.14 1.55 1.91 2.44 1.37 1.42 2.23 2.60 2.73 2000's 3.75 4.15 5.98 4.50 6.25 7.43 NA NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Maryland Natural Gas Prices Natural Gas Wellhead

134

Temperature-controlled ionic liquid dispersive liquid phase microextraction combined with ultra-high-pressure liquid chromatography for the rapid determination of triclosan, triclocarban and methyl-triclosan in aqueous samples  

Science Journals Connector (OSTI)

As extraction solvents, ionic liquids have green characteristics. In this study, an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL...

JieHong Guo; XingHong Li; XueLi Cao; Lei Qu; DeKun Hou…

2010-12-01T23:59:59.000Z

135

Sorptive extraction using polydimethylsiloxane/metal–organic framework coated stir bars coupled with high performance liquid chromatography-fluorescence detection for the determination of polycyclic aromatic hydrocarbons in environmental water samples  

Science Journals Connector (OSTI)

Abstract In this work, metal–organic frameworks (MOFs, Al-MIL-53-NH2) were synthesized via the hydrothermal method, and novel polydimethylsiloxane/metal–organic framework (PDMS/MOFs, PDMS/Al-MIL-53-NH2)-coated stir bars were prepared by the sol–gel technique. The preparation reproducibility of the PDMS/MOFs-coated stir bar was good, with relative standard deviations (RSDs) ranging from 4.8% to 14.9% (n = 7) within one batch and from 6.2% to 16.9% (n = 6) among different batches. Based on this fact, a new method of PDMS/MOFs-coated stir bar sorptive extraction (SBSE) and ultrasonic-assisted liquid desorption (UALD) coupled with high performance liquid chromatography-fluorescence detection (HPLC-FLD) was developed for the determination of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. To obtain the best extraction performance for PAHs, several parameters affecting SBSE, such as extraction time, stirring rate, and extraction temperature, were investigated. Under optimal experimental conditions, wide linear ranges and good \\{RSDs\\} (n = 7) were obtained. With enrichment factors (EFs) of 16.1- to 88.9-fold (theoretical EF, 142-fold), the limits of detection (LODs, S/N = 3) of the developed method for the target \\{PAHs\\} were found to be in the range of 0.05–2.94 ng/L. The developed method was successfully applied to the analysis of \\{PAHs\\} in Yangtze River and East Lake water samples.

Cong Hu; Man He; Beibei Chen; Cheng Zhong; Bin Hu

2014-01-01T23:59:59.000Z

136

U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

137

U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

138

U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Oil Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

139

U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

140

U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fact #841: October 6, 2014 Vehicles per Thousand People: U.S...  

Broader source: Energy.gov (indexed) [DOE]

41: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions - Dataset Fact 841: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions -...

142

U.S. Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

143

Property:Res rev (thousand $) | Open Energy Information  

Open Energy Info (EERE)

residential customers. residential customers. Pages using the property "Res rev (thousand $)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 3,675 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 5,720 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 5,629 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 5,156 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 6,100 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 4,728 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 6,009 +

144

Property:Oth rev (thousand $) | Open Energy Information  

Open Energy Info (EERE)

other consumers other consumers Pages using the property "Oth rev (thousand $)" Showing 25 pages using this property. (previous 25) (next 25) C Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - April 2008 + 92 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - December 2008 + 78 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2008 + 49 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - February 2009 + 128 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2008 + 52 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - January 2009 + 100 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - June 2008 + 54 + Central Illinois Pub Serv Co (Illinois) EIA Revenue and Sales - March 2008 + 106 +

145

Property:Tot rev (thousand $) | Open Energy Information  

Open Energy Info (EERE)

all consumers all consumers Pages using the property "Tot rev (thousand $)" Showing 25 pages using this property. (previous 25) (next 25) 4 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 + 6,790 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 + 9,808 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - December 2008 + 8,997 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2008 + 8,266 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 + 9,363 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 + 7,829 + 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2009 + 9,432 +

146

Solar Space Heating with Air and Liquid Systems  

Science Journals Connector (OSTI)

...several thousand solar space heating systems...can be supplied by solar energy delivered from flat-plate...liquid collection and storage systems, demand...Annual costs of solar heating equipment...current values of energy savings, but fuel...

1980-01-01T23:59:59.000Z

147

Determination of Selected Herbicides and Phenols in Water and Soils by Solid-Phase Extraction and High-Performance Liquid Chromatography  

Science Journals Connector (OSTI)

......1987). 6. G.E. Batley. Applications of liquid chromatography with electro- chemical detection to the analysis of oil shale process waters. J. Chromatogr. 382: 409416 (1987). 7. H. Farber, K. Nick, and H.F. Scoeler. Determination......

Irena Baranowska; Celina Pieszko

2000-05-01T23:59:59.000Z

148

Towards In situ extraction of fine chemicals and biorenewable fuels from fermentation broths using Ionic liquids and the Intensification of contacting by the application of Electric Fields  

E-Print Network [OSTI]

product separations. For developing environmentally sustainable processes, ionic liquids are touted as greener alternative to organic solvents not only because of their relatively low volatility but also due to the ability to tune their properties...

Gangu, Satya Aravind

2013-05-31T23:59:59.000Z

149

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area  

Open Energy Info (EERE)

Ten Thousand Smokes Region Area Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness not indicated DOE-funding Unknown Notes Statistical analyses of geochemical data. References Lawrence G. Kodosky, Terry E. C. Keith (1993) Factors Controlling The Geochemical Evolution Of Fumarolic Encrustations, Valley Of Ten Thousand Smokes, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Kodosky_%26_Keith,_1993)&oldid=389784"

150

Vehicle Technologies Office: Fact #778: May 6, 2013 Vehicles per Thousand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: May 6, 2013 8: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India to someone by E-mail Share Vehicle Technologies Office: Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India on Facebook Tweet about Vehicle Technologies Office: Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India on Twitter Bookmark Vehicle Technologies Office: Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India on Google Bookmark Vehicle Technologies Office: Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India on Delicious Rank Vehicle Technologies Office: Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India on Digg

151

Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al.,  

Open Energy Info (EERE)

Of Ten Thousand Smokes Region Area (Keith, Et Al., Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Valley_Of_Ten_Thousand_Smokes_Region_Area_(Keith,_Et_Al.,_1992)&oldid=386869" Categories: Exploration Activities DOE Funded Activities

152

CMPO-functionalized C{sub 3}-symmetric tripodal ligands in liquid/liquid extractions : efficient, selective recognition of Pu(IV) with low affinity for 3+ metal ions.  

SciTech Connect (OSTI)

Structural modifications of carbamoylmethylphosphine oxide (CPMO)-functionalized triphenoxymethane platforms are described, and the influence of these changes on the ability of the ligand to extract actinides from simulated acidic nuclear waste streams has been evaluated. The ligand system has been shown to have excellent binding efficiency and a selectivity for An(IV) in comparison to the a simple monomeric CMPO ligand under analogous conditions. Both the extraction efficiency and selectivity are strongly dependent on the flexibility and electronic properties of the ligating units in the triphenoxymethane construct. The Tb(III) and Bi(III) nitrate complexes of tris-CMPO derivatives have been isolated, and their structures were elucidated by NMR, ESI FT-ICR MS, and X-ray analysis, providing information on the interactions between metal ions and the tris-CMPO molecules.

Matloka, K.; Sah, A. K.; Peters, M. W.; Srinivasan, P.; Gelis, A. V.; Regalbuto, M.; Scott, M. J.; Univ. of Florida

2007-12-10T23:59:59.000Z

153

Natural Gas Plant Field Production: Natural Gas Liquids  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Natural Gas Liquids Pentanes Plus Liquefied Petroleum Gases Ethane Propane Normal Butane Isobutane Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 74,056 76,732 74,938 79,040 82,376 81,196 1981-2013 PADD 1 1,525 1,439 2,394 2,918 2,821 2,687 1981-2013 East Coast 1993-2008 Appalachian No. 1 1,525 1,439 2,394 2,918 2,821 2,687 1993-2013 PADD 2 12,892 13,208 13,331 13,524 15,204 15,230 1981-2013 Ind., Ill. and Ky. 1,975 1,690 2,171 1,877 2,630 2,746 1993-2013

154

,"Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_stx_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_stx_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

155

,"Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sor_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sor_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

156

,"Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sms_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sms_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

157

,"Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_smi_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_smi_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

158

,"Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sar_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sar_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

159

,"Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sne_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sne_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

160

,"Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sut_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sut_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sca_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sca_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

162

,"South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

163

,"Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sky_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sky_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

164

,"Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sco_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sco_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

165

,"Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",1997 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_smo_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_smo_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

166

,"Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_spa_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_spa_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

167

,"Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ia3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

168

,"Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sal_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sal_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

169

,"Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_smd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_smd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

170

,"Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sok_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sok_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

171

,"Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035il3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035il3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

172

,"Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sin_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sin_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

173

,"Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sil_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sil_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

174

,"Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_swa_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_swa_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

175

,"Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_spa_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_spa_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

176

,"Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smn_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smn_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

177

,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_saz_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_saz_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

178

,"Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sfl_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sfl_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

179

,"South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_ssd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_ssd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

180

,"Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sms_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sms_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sla_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sla_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

182

,"Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sma_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sma_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

183

,"Wisconsin Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_swi_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_swi_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

184

,"Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sak_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sak_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

185

,"Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_soh_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_soh_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

186

,"California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sca_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sca_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

187

,"Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_swy_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_swy_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

188

,"Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_sks_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_sks_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

189

,"Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_smt_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_smt_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

190

,"Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Wellhead Price (Dollars per Thousand Cubic Feet)" Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1140_stn_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1140_stn_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

191

,"South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_ssc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_ssc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

192

,"Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sla_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sla_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

193

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky &  

Open Energy Info (EERE)

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Soil Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The purpose of this paper is to examine whether statistical analysis of encrustation chemistries, when supplemented with petrologic data, can identify the individual processes that generate and degrade fumarolic encrustations. Knowledge of these specific processes broadens the applications of fumarolic alteration studies. Geochemical data for a

194

Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska  

Open Energy Info (EERE)

Waters In The Valley Of Ten Thousand Smokes Region, Alaska Waters In The Valley Of Ten Thousand Smokes Region, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska Details Activities (3) Areas (1) Regions (0) Abstract: Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the

195

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Mercury Vapor Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

196

Fact #697: October 17, 2011 Comparison of Vehicles per Thousand People in Selected Countries/Regions  

Broader source: Energy.gov [DOE]

The U S. data for vehicles per thousand people are displayed in the line which goes from 1900 to 2009. The points labeled on that line show data for other countries/regions around the world and how...

197

Fact #841: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions  

Broader source: Energy.gov [DOE]

The graphs below show the number of motor vehicles per thousand people for select countries and regions. The data for the United States are displayed in the line which goes from 1900 to 2012. The...

198

,"U.S. Natural Gas Electric Power Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:55:12 PM" "Back to Contents","Data 1: U.S. Natural Gas Electric Power Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045US3"...

199

,"U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9262014 4:20:00 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102US3" "Date","U.S....

200

,"U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

586-8800",,,"9262014 4:19:59 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N9102US3" "Date","U.S....

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fact #745: September 17, 2012 Vehicles per Thousand People: U.S. Compared to Other Countries  

Broader source: Energy.gov [DOE]

The graphs below show the number of motor vehicles per thousand people for various countries. The data for the United States are displayed in the line which goes from 1900 to 2010. The points...

202

Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989)  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Valley Of Ten Thousand Smokes Region Area (Kodosky, 1989) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Soil Sampling Activity Date Usefulness useful DOE-funding Unknown Notes One-hundred twelve samples were collected from relatively unaltered air-fall ejecta along two Novarupta Basin traverse lines (Fig. 5). One hundred eighty-two samples were taken from active/fossil fumaroles in Novarupta Basin (22 sites, Fig. 5), fossil fumaroles (41 sites) and air-fall tephra (2 sites) within and immediately adjacent to the remainder of the VTTS (Fig. 6). In total, 294 samples were collected from 127 sites

203

Solid-Phase Extraction Combined with High-Performance Liquid Chromatography?Atmospheric Pressure Chemical Ionization?Mass Spectrometry Analysis of Pesticides in Water:? Method Performance and Application in a Reconnaissance Survey of Residues in Drinking Water in Greater Cairo, Egypt  

Science Journals Connector (OSTI)

Solid-Phase Extraction Combined with High-Performance Liquid Chromatography?Atmospheric Pressure Chemical Ionization?Mass Spectrometry Analysis of Pesticides in Water:? Method Performance and Application in a Reconnaissance Survey of Residues in Drinking Water in Greater Cairo, Egypt ... Each shipment, which included 24 cartridges, weighed <454 g and cost approximately 200 Egyptian pounds ($40 U.S.). ...

Thomas L. Potter; Mahmoud A. Mohamed; Hannah Ali

2006-12-22T23:59:59.000Z

204

An Investigation of an Interontologia: Comparison of the Thousand-Character Text and Roget’s Thesaurus  

Science Journals Connector (OSTI)

The present study presents the lexical category analysis of the Thousand-Character Text and Roget’s Thesaurus. Through preprocessing, the Thousand-Character Text and Roget’s Thesaurus have been built into databas...

Sang-Rak Kim; Jae-Gun Yang; Jae-Hak J. Bae

2009-01-01T23:59:59.000Z

205

Extraction of fossil fuel with guanadine extracting agent  

SciTech Connect (OSTI)

Subdivided coal, oil shale or tar sands is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula: (R1-)2 N-C(=N-R)-N(-R2)2 Where R, R/sub 1/, and R/sub 2/ are each hydrogen atoms, lower alkyl (C/sub 1/-C/sub 4/) groups, or phenyl groups; provided that the compound has a decomposition temperature higher than the temperature of the extraction, and the extraction temperature is below the softening or decomposition temperature of the material being extracted.

Case, G.D.; Bekowies, P.J.; Panson, A.G.; Stiller, A.H.

1984-09-04T23:59:59.000Z

206

,"Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sut_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sut_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:03 PM"

207

,"U.S. Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_nus_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_nus_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:03 PM"

208

,"Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sin_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sin_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:23 PM"

209

,"Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sco_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sco_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:10 PM"

210

,"Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_sme_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_sme_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:04 PM"

211

,"Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sok_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sok_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:51 PM"

212

,"Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sva_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sva_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:04 PM"

213

,"Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_swy_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_swy_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:09 PM"

214

,"Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sid_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sid_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:20 PM"

215

,"Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_smn_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_smn_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:06 PM"

216

,"Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sar_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sar_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:06 PM"

217

,"Massachusetts Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_sma_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_sma_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:03 PM"

218

,"Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smi_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smi_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:32 PM"

219

Thousands of Americans Innovate for Good on the National Day of Civic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thousands of Americans Innovate for Good on the National Day of Civic Thousands of Americans Innovate for Good on the National Day of Civic Hacking Thousands of Americans Innovate for Good on the National Day of Civic Hacking Submitted by Anonymous on Fri, 06/07/2013 - 12:00am Log in to vote 0 This past weekend, more than 11,000 people in 83 cities across America participated in 95 open data hacking events as part of the National Day of Civic Hacking. This huge turnout is an unmistakable mark of the growing interest and enthusiasm of American innovators in applying their tech skills for social good. At events across the country, participants in Civic Hacking Day were set loose on open government data, building tools, apps, and solutions that can help address challenges faced by communities across America and form the basis of products and companies that contribute to our economy.

220

,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sky_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sky_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:26 PM"

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM"

222

,"Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_smt_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_smt_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:07 PM"

223

,"Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sfl_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sfl_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:15 PM"

224

,"Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_smi_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_smi_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:05 PM"

225

,"Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sga_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sga_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:16 PM"

226

,"Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_saz_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_saz_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:08 PM"

227

,"Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smt_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smt_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:37 PM"

228

,"Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_sla_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_sla_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:02 PM"

229

,"Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_stx_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_stx_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:52:01 PM"

230

,"Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_snv_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_snv_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:47 PM"

231

Thousands of Students Prepare to Compete in the National Science Bowl |  

Broader source: Energy.gov (indexed) [DOE]

Thousands of Students Prepare to Compete in the National Science Thousands of Students Prepare to Compete in the National Science Bowl Thousands of Students Prepare to Compete in the National Science Bowl January 29, 2013 - 5:00pm Addthis Members of the Los Alamos High School team, Los Alamos, New Mexico, concentrates on the answer to a question at the 2012 National Science Bowl in Washington D.C. on April 29, 2012. | Photograph by Dennis Brack, Office of Science Members of the Los Alamos High School team, Los Alamos, New Mexico, concentrates on the answer to a question at the 2012 National Science Bowl in Washington D.C. on April 29, 2012. | Photograph by Dennis Brack, Office of Science Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? To learn more about the individual high school regional

232

,"Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_soh_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_soh_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:50 PM"

233

,"Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_smo_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_smo_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:34 PM"

234

,"Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1274_sid_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1274_sid_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:40:02 PM"

235

,"Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sor_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sor_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:52 PM"

236

Revenue from Retail Sales of Electricity (Thousands Dollars) by State by Provide  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue from Retail Sales of Electricity (Thousands Dollars) by State by Provider, 1990-2012" Revenue from Retail Sales of Electricity (Thousands Dollars) by State by Provider, 1990-2012" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2012,"AK","Total Electric Industry",386304,429152,232325,0,"NA",1047781 2012,"AL","Total Electric Industry",3491380,2318146,2100936,0,"NA",7910462 2012,"AR","Total Electric Industry",1664696,933567,971266,52,"NA",3569581 2012,"AZ","Total Electric Industry",3718357,2829551,813094,0,"NA",7361001 2012,"CA","Total Electric Industry",13821565,16327164,4925482,49095,"NA",35123306

237

Bioscience Connecticut is a forward-thinking plan to create thousands  

E-Print Network [OSTI]

Bioscience Connecticut is a forward- thinking plan to create thousands of construction and related by the Connecticut General Assembly, it is a multifaceted plan that will help to reinvent the state's economy, drawing upon research resources from the University of Connecticut, UConn Health Center, Yale University

Lozano-Robledo, Alvaro

238

Pictures worth a thousand tiles, a geometrical programming language for self-assembly  

E-Print Network [OSTI]

Pictures worth a thousand tiles, a geometrical programming language for self-assembly Florent.becker@ens-lyon.fr February 14, 2008 Abstract We present a novel way to design self-assembling systems using a notion of signals for a given set of shapes, and how to transform these signals into a set of tiles which self-assemble

Paris-Sud XI, Université de

239

Search thousands of travel therapy destinations at: http://www.advanced-medical.net  

E-Print Network [OSTI]

Search thousands of travel therapy destinations at: http://www.advanced-medical.net Why do new grads travel with Advanced Medical? Mentorship: With accomplished mentors, new grad friendly facilities, and robust clinical support, trust Advanced Medical to take your professional growth seriously. Advanced

Weber, David J.

240

PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands of Processors  

E-Print Network [OSTI]

PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands in the material science category. The DFT can be used to calculate the electronic structure, the charge density selfconsistent calculation without atomic relaxation). But there are many problems which either requires much

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Supercritical Fluid Extraction Applications in the Process Industries  

E-Print Network [OSTI]

solutions. Other examples of potential applications for SFE technology are the extraction of tar sands and oil shale [17J; separations of biomolecules such as triglycerides, alkaloids, and olefins [18J; extraction of coal liquids [19J; and the isolation...

Lahiere, R. J.; Fair, J. R.; Humphrey, J. L.

242

Liquid Fossil Fuel Technology. Quarterly technical progress report, July-September 1980  

SciTech Connect (OSTI)

Research activities at BETC are summarized under the headings liquid fossil fuel cycle, extraction (resource assessment, production, enhanced recovery), processing (of liquids such as coal liquids, and crudes, thermodynamics), utilization (energy conversion, combustion), and project integration and technology transfer. (DLC)

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

243

Freezing processes. Hydrate processes. Liquid-liquid extraction  

Science Journals Connector (OSTI)

The ice which separates from brine is almost pure. A salt concentration builds up at the interface of the brine and the ice. In freezing processes, as applied in desalting, many small ice crystals are formed w...

Anthony A. Delyannis; Eurydike A. Delyannis

1974-01-01T23:59:59.000Z

244

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.36 36937,10.07

245

,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035al3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035al3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:53 PM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,9.55 36937,8.54

246

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.75

247

,"Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035co3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035co3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:00 PM" "Back to Contents","Data 1: Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CO3" "Date","Colorado Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.02 35976,2.55 36341,3.08

248

,"Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ct3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ct3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:02 PM" "Back to Contents","Data 1: Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CT3" "Date","Connecticut Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.11

249

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,1.54 35976,1.34 36341,1.25

250

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:08 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,10.05 36937,9.35

251

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.41 35976,3.98 36341,4.12

252

,"California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ca3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ca3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:58 PM" "Back to Contents","Data 1: California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035CA3" "Date","California Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.18 35976,3.75 36341,3.33

253

,"Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ak3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ak3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:23:51 PM" "Back to Contents","Data 1: Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AK3" "Date","Alaska Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,1.57 36937,1.55

254

,"Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035fl3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035fl3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:06 PM" "Back to Contents","Data 1: Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035FL3" "Date","Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,8.27 36937,8.02

255

,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035de3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035de3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:04 PM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.37 36937,4.61

256

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,3.72 35976,3.29

257

NETL: News Release - Ultra-low Cost Well Monitoring Could Save Thousands of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 19, 2005 January 19, 2005 Ultra-low Cost Well Monitoring Could Save Thousands of Marginal Oil Wells DOE-funded Project in California Tested Successfully TULSA, OKLA. - A new, ultra-low cost method for monitoring marginal oil wells promises to help rescue thousands of U.S. wells from an early demise. Developed with funding from the Department of Energy (DOE) and project-managed by DOE's National Energy Technology Laboratory, this novel, inexpensive, monitoring-system prototype helps improve the efficiency of rod-pumped oil wells. The ultimate payoff for such an approach could be the recovery of millions of barrels of oil otherwise permanently lost while the United States watches its oil production continue to slide. MORE INFO Marginal Expense Oil Well Wireless Surveillance MEOWS -Phase II final technical report [PDF-294KB]

258

,"Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035id3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035id3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:13 PM" "Back to Contents","Data 1: Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035ID3" "Date","Idaho Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,2.76 35976,3.09 36341,3.29 36707,4.02

259

,"Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035ga3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035ga3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:07 PM" "Back to Contents","Data 1: Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035GA3" "Date","Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.55 35976,3.92 36341,3.41

260

,"Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035hi3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035hi3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:09 PM" "Back to Contents","Data 1: Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035HI3" "Date","Hawaii Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,11.65 36937,11.84

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sc3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sc3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:02 PM" "Back to Contents","Data 1: South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SC3" "Date","South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

262

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes Region  

Open Energy Info (EERE)

Kodosky & Keith, 1993) Kodosky & Keith, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith, 1993) Exploration Activity Details Location Valley Of Ten Thousand Smokes Region Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes The purpose of this paper is to examine whether statistical analysis of encrustation chemistries, when supplemented with petrologic data, can identify the individual processes that generate and degrade fumarolic encrustations. Knowledge of these specific processes broadens the applications of fumarolic alteration studies. Geochemical data for a 47-element suite were obtained for an air-dried subset of the collected

263

,"South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:25:04 PM" "Back to Contents","Data 1: South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035SD3" "Date","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 35611,4.02 35976,3.28

264

New York Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) New York Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.31 0.30 0.30 1970's 0.30 0.30 0.33 0.35 0.55 0.74 1.13 1.16 1.19 1.27 1980's 1.95 2.67 3.75 3.85 4.00 3.37 3.39 2.00 2.30 2.20 1990's 2.20 2.15 2.25 2.40 2.35 2.30 2.56 2.56 2.16 2000's 3.75 5.00 3.03 5.78 6.98 7.78 7.13 8.85 8.94 4.21 2010's 4.65 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price New York Natural Gas Prices

265

New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) New Mexico Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.14 1970's 0.14 0.15 0.19 0.24 0.31 0.40 0.56 0.81 0.99 1.37 1980's 1.76 2.13 2.47 2.68 2.71 2.62 1.87 1.66 1.70 1.56 1990's 1.69 1.37 1.60 1.79 1.58 1.26 1.67 1.76 1.76 2.11 2000's 3.43 3.89 2.68 4.56 4.97 6.91 6.18 6.88 8.40 4.17 2010's 5.32 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price New Mexico Natural Gas Prices

266

U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Consumer (Thousand Cubic Feet) Industrial Consumer (Thousand Cubic Feet) U.S. Natural Gas Average Consumption per Industrial Consumer (Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 0 0 0 0 0 1980's 39,245 37,530 30,909 29,915 24,309 30,956 29,057 30,423 32,071 30,248 1990's 32,144 33,395 35,908 38,067 40,244 40,973 43,050 36,239 36,785 35,384 2000's 36,968 33,840 36,458 34,793 34,645 31,991 33,597 33,561 29,639 29,705 2010's 35,418 36,947 38,155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Average Natural Gas Consumption per Industrial

267

Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.17 1970's 0.17 0.18 0.19 0.20 0.28 0.37 0.51 0.68 0.73 1.19 1980's 1.56 2.24 3.09 3.11 2.98 2.80 2.18 2.01 1.98 1.81 1990's 1.74 1.62 1.66 1.82 1.64 1.64 2.40 2.36 2.02 1.99 2000's 2.99 3.13 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Texas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

268

Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.23 0.23 1970's 0.23 0.27 0.28 0.30 0.32 0.43 0.53 0.87 1.01 1.37 1980's 1.92 2.33 3.04 3.42 3.28 3.28 2.79 2.64 2.43 2.54 1990's 2.61 2.66 2.83 2.53 2.50 2.03 2.88 2.80 3.20 2.63 2000's 3.41 5.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Ohio Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

269

U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) U.S. Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.21 1970's 0.21 0.22 0.23 0.25 0.30 0.40 0.51 0.77 0.90 1.32 1980's 1.85 2.39 2.97 3.15 3.04 2.92 2.52 2.17 2.10 2.01 1990's 1.95 1.87 2.07 1.97 1.70 1.49 2.27 2.29 2.01 1.88 2000's 2.97 3.55 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use U.S. Natural Gas Prices

270

Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.16 0.17 1970's 0.17 0.19 0.20 0.22 0.26 0.34 0.52 0.73 0.99 1.17 1980's 1.55 1.89 2.50 2.73 2.71 2.83 2.57 2.75 2.01 2.02 1990's 1.52 1.54 1.71 1.25 1.39 1.40 2.37 2.46 2.06 2.16 2000's 3.17 3.60 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Iowa Natural Gas Prices

271

Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.22 1970's 0.22 0.24 0.28 0.34 0.44 0.60 0.72 1.65 1.95 2.45 1980's 3.93 3.95 4.19 3.69 3.55 3.15 2.67 2.08 2.00 2.05 1990's 2.06 1.99 1.89 1.76 1.86 1.78 1.79 1.83 1.67 2.04 2000's 3.52 3.49 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Idaho Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

272

Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Utah Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.21 0.21 1970's 0.21 0.22 0.28 0.29 0.34 0.54 0.67 1.40 1.72 1.88 1980's 2.94 3.17 2.67 2.94 2.99 3.19 2.93 2.66 2.84 2.18 1990's 2.25 2.51 2.25 1.91 1.94 1.57 1.68 2.20 2.05 1.92 2000's 3.19 2.97 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Utah Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

273

TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.  

SciTech Connect (OSTI)

The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

2007-11-30T23:59:59.000Z

274

Application of Ionic Liquids in Liquid Chromatography and Electrodriven Separation  

Science Journals Connector (OSTI)

......processing (5), solvent extraction (6, 7), electrolytes in batteries (8), metal deposition (9, 10) and gas treatment (11...Polymerized ionic liquid sorbents for CO2 separation. Energy and Fuels (2010) 24:5797-5804. 13 Ho T.D. , Canestraro A......

Yi Huang; Shun Yao; Hang Song

2013-08-01T23:59:59.000Z

275

EMSL - liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate...

276

,"Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Egypt (Dollars per Thousand Cubic Feet)" Egypt (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Egypt (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103eg3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103eg3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

277

,"South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_ssc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_ssc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

278

,"North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snc_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snc_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

279

,"New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snh_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snh_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

280

,"North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Dollars per Thousand Cubic Feet)" Nigeria (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Nigeria (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103ng3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103ng3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

282

,"New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_sny_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_sny_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

283

,"Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Indonesia (Dollars per Thousand Cubic Feet)" Indonesia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Indonesia (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103id3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103id3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

284

,"West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_swv_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_swv_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

285

,"New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snm_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snm_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

286

,"Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Malaysia (Dollars per Thousand Cubic Feet)" Malaysia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Malaysia (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103my3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103my3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

287

,"Price of U.S. Liquefied Natural Gas Imports From Australia (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Australia (Dollars per Thousand Cubic Feet)" Australia (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Australia (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103au3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103au3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

288

,"New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_snj_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_snj_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

289

,"Price of U.S. Liquefied Natural Gas Imports From Qatar (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Qatar (Dollars per Thousand Cubic Feet)" Qatar (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Qatar (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103qr3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103qr3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

290

,"Price of U.S. Liquefied Natural Gas Imports From Brunei (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Brunei (Dollars per Thousand Cubic Feet)" Brunei (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Brunei (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103bx3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103bx3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

291

,"Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico (Dollars per Thousand Cubic Feet)" Mexico (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Natural Gas Pipeline Imports From Mexico (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9102mx3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9102mx3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

292

,"Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Oman (Dollars per Thousand Cubic Feet)" Oman (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103mu3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103mu3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

293

,"South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1480_ssd_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1480_ssd_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

294

Liquid fossil fuel technology  

SciTech Connect (OSTI)

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

295

DNA Extraction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DNA Extraction DNA Extraction Being able to extract deoxyribonucleic acid (DNA) is important for a number of reasons. By studying DNA, scientists can identify genetic disorders or diseases, and they can also possibly find cures for them by manipulating or experimenting with this DNA. At the Laboratory, researchers have studied DNA to detect biothreat agents in environmental and forensic samples. Scientists also are studying how human DNA may be destroyed by certain types of electromagnetic waves at certain frequencies. Classroom Activity: This activity is about the extraction of DNA from strawberries. Strawberries are a great fruit to use for this lesson because each student can work on his or her own. Strawberries are recommended because they yield more DNA than any other fruit. Strawberries are octoploid, which means that they have eight copies of each

296

Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization  

E-Print Network [OSTI]

Room temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapor pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. Three ionic liquids with high hydrophobicity were used and their phenol removal efficiency, membrane stability and membrane loss were studied. Besides that, the effects of several parameters, namely feed phase pH, feed concentration, NaOH concentration and stirring speeds on the performance of best ionic liquid membrane were also evaluated. Lastly, an optimization study on bulk ionic liquid membrane was conducted and the maximum phenol removal efficiency was compared with the organic liquid membranes. The preliminary study shows that high phenol extraction and stripping efficiencies of 96.21% and 98.10%, respectively can be achieved by ionic liquid memb...

Ng, Y S; Hashim, M A

2014-01-01T23:59:59.000Z

297

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

298

Dehydration of Bioethanol by Hybrid Process Liquid–Liquid Extraction/Extractive Distillation  

Science Journals Connector (OSTI)

This research project was supported by CONACyT, Redes Promep, Universidad Michoacana de San Nicolás de Hidalgo and Universidad de Guanajuato, Mexico. ...

Adriana Avilés Martínez; Jaime Saucedo-Luna; Juan Gabriel Segovia-Hernandez; Salvador Hernandez; Fernando Israel Gomez-Castro; Agustin Jaime Castro-Montoya

2011-06-21T23:59:59.000Z

299

LNG liquid-liquid immiscibility  

SciTech Connect (OSTI)

Although natural gas species rarely exhibit liquid-liquid immiscibility in binary systems, the presence of additional components can extend the domain of immiscibility in those few binary systems where it already exists or produce immiscibility in binary systems where it had not existed. If the solute has the proper molecular relation to the solvent mixture background, liquid-liquid-vapor (LLV) behavior will occur; such phenomena greatly complicate the design of LNG processing equipment. To aid LNG engineers, researchers mapped the thermodynamic behavior of four ternary LLV systems and examined the effects of the second solvents - ethane, propane, n-butane, and CO/sub 2/ - on the binary methane + n-octane system.

Luks, K.D.; Kohn, J.P.

1981-09-01T23:59:59.000Z

300

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Canada (Dollars per Thousand Cubic Feet)" Canada (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Canada (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_nus-nca_pml_dmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_nus-nca_pml_dmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

302

,"Price of U.S. Liquefied Natural Gas Imports From Norway (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Norway (Dollars per Thousand Cubic Feet)" Norway (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Norway (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_nus-nno_pml_dmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_nus-nno_pml_dmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

303

,"Price of U.S. Liquefied Natural Gas Imports From Yemen (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Yemen (Dollars per Thousand Cubic Feet)" Yemen (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Yemen (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_pml_nus-nye_dmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_pml_nus-nye_dmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

304

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

SciTech Connect (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

305

Time-Dependent Implementation of Argonne’s Model for Universal Solvent Extraction  

Science Journals Connector (OSTI)

Time-Dependent Implementation of Argonne’s Model for Universal Solvent Extraction ... Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States ... Argonne’s Model for Universal Solvent Extraction (AMUSE) simulates multistage counter-current solvent extraction processes for species of interest to spent nuclear fuel reprocessing; it is a model of a liquid–liquid extraction unit operation. ...

Kurt Frey; John F. Krebs; Candido Pereira

2012-09-04T23:59:59.000Z

306

Supercritical Fluid Extraction of Environmental Analytes Using Trifluoromethane  

Science Journals Connector (OSTI)

......addressed. Department of Chemistry, Virginia Polytechnic...Taylor Department of Chemistry, Virginia Polytechnic...0 supports vigorous combustion of flammable liquids...montan wax from a toluene coal tar extract (16...I. Barshad. In: Chemistry of the Soil, F.E......

A.L. Howard; W.J. Yoo; L.T. Taylor; F.K. Schweighardt; A.P. Emery; S.N. Chesler; W.A. MacCrehan

1993-10-01T23:59:59.000Z

307

THE GALEX TIME DOMAIN SURVEY. I. SELECTION AND CLASSIFICATION OF OVER A THOUSAND ULTRAVIOLET VARIABLE SOURCES  

SciTech Connect (OSTI)

We present the selection and classification of over a thousand ultraviolet (UV) variable sources discovered in {approx}40 deg{sup 2} of GALEX Time Domain Survey (TDS) NUV images observed with a cadence of 2 days and a baseline of observations of {approx}3 years. The GALEX TDS fields were designed to be in spatial and temporal coordination with the Pan-STARRS1 Medium Deep Survey, which provides deep optical imaging and simultaneous optical transient detections via image differencing. We characterize the GALEX photometric errors empirically as a function of mean magnitude, and select sources that vary at the 5{sigma} level in at least one epoch. We measure the statistical properties of the UV variability, including the structure function on timescales of days and years. We report classifications for the GALEX TDS sample using a combination of optical host colors and morphology, UV light curve characteristics, and matches to archival X-ray, and spectroscopy catalogs. We classify 62% of the sources as active galaxies (358 quasars and 305 active galactic nuclei), and 10% as variable stars (including 37 RR Lyrae, 53 M dwarf flare stars, and 2 cataclysmic variables). We detect a large-amplitude tail in the UV variability distribution for M-dwarf flare stars and RR Lyrae, reaching up to |{Delta}m| = 4.6 mag and 2.9 mag, respectively. The mean amplitude of the structure function for quasars on year timescales is five times larger than observed at optical wavelengths. The remaining unclassified sources include UV-bright extragalactic transients, two of which have been spectroscopically confirmed to be a young core-collapse supernova and a flare from the tidal disruption of a star by dormant supermassive black hole. We calculate a surface density for variable sources in the UV with NUV < 23 mag and |{Delta}m| > 0.2 mag of {approx}8.0, 7.7, and 1.8 deg{sup -2} for quasars, active galactic nuclei, and RR Lyrae stars, respectively. We also calculate a surface density rate in the UV for transient sources, using the effective survey time at the cadence appropriate to each class, of {approx}15 and 52 deg{sup -2} yr{sup -1} for M dwarfs and extragalactic transients, respectively.

Gezari, S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States)] [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Martin, D. C.; Forster, K.; Neill, J. D.; Morrissey, P.; Wyder, T. K. [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)] [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Huber, M.; Burgett, W. S.; Chambers, K. C.; Kaiser, N.; Magnier, E. A.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)] [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Heckman, T.; Bianchi, L. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)] [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Neff, S. G. [Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)] [Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Seibert, M. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 90095 (United States)] [Observatories of the Carnegie Institute of Washington, Pasadena, CA 90095 (United States); Schiminovich, D. [Department of Astronomy, Columbia University, New York, NY 10027 (United States)] [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Price, P. A., E-mail: suvi@astro.umd.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

2013-03-20T23:59:59.000Z

308

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

309

Liquid electrode  

DOE Patents [OSTI]

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

310

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SC3" "Date","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

311

,"South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sc3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sc3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:09 PM" "Back to Contents","Data 1: South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SC3" "Date","South Carolina Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

312

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sd3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sd3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:11 PM" "Back to Contents","Data 1: South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SD3" "Date","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

313

,"South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3045sd3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045sd3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:26:10 PM" "Back to Contents","Data 1: South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" "Sourcekey","N3045SD3" "Date","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

314

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

MwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES (MwH)","COM_CONS","IND_REV (Thousand $)","IND_SALES (MwH)","IND_CONS","OTH_REV (Thousand $)","OTH_SALES (MwH)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MwH)","TOT_CONS" MwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES (MwH)","COM_CONS","IND_REV (Thousand $)","IND_SALES (MwH)","IND_CONS","OTH_REV (Thousand $)","OTH_SALES (MwH)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MwH)","TOT_CONS" 0,"State Level Adjustment","AK",2006,1,4505,21935,0,6801,28853,0,1284,11667,0,,,0,12590,62454,0 213,"Alaska Electric Light&Power Co","AK",2006,1,1424,13941,13422,961,11573,2086,349,4532,98,0,0,0,2734,30046,15606 219,"Alaska Power Co","AK",2006,1,603,2288,4345,823,3487,1956,0,0,0,0,0,0,1426,5775,6301 599,"Anchorage Municipal Light and Power","AK",2006,1,1643,16217,23865,6649,90110,6112,0,0,0,0,0,0,8292,106327,29977

315

Guidance Document Cryogenic Liquids  

E-Print Network [OSTI]

Guidance Document Cryogenic Liquids [This is a brief and general summary. Read the full MSDS for more details before handling.] Introduction: All cryogenic liquids are gases at normal temperature liquefies them. Cryogenic liquids are kept in the liquid state at very low temperatures. Cryogenic liquids

316

A liquid film motor  

Science Journals Connector (OSTI)

It is well known that electro-hydrodynamical effects in freely suspended liquid films can force liquids to flow. Here, we report a purely electrically driven rotation in water and some other liquid suspended film...

A. Amjadi; R. Shirsavar; N. Hamedani Radja…

2009-05-01T23:59:59.000Z

317

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect (OSTI)

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

318

Liquid-fossil-fuel technology. Quarterly technical progress report, July-September 1982  

SciTech Connect (OSTI)

Progress reports for the quarter ending September 1982 are presented for the following major tasks: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum, coal liquids, thermodynamics, process technology); utilization; project integration and technology transfer. Feature articles for this quarter are: new laboratory enhances BETC capability in mass spectrometry; and BETC tests on diesel particulate extracts indicate potential health risks. (ATT)

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

319

Multisolvent successive extractive refining of coal  

SciTech Connect (OSTI)

A selected group of commercial solvents, namely, anthracene oil (AO), ethylenediamine (EDA), and liquid paraffin (LP), were used for successive extraction of Assam coal. Hot AO provided a wide range of mixed solvents that dissociate chemically and interact favorably with dissociated and undissociated coal macromolecules (like dissolves like). This resulted in the enhancement of the EDA extractability of the AO-pretreated residual coal. EDA is a good swelling solvent and results in physical dissociation of coal molecules. The residual coal obtained after EDA extraction was subjected to extraction with LP, an H-donor, high-boiling (330--360 C) solvent. LP thermally dissociates coal macromolecules and interacts with the coal at its plastic stage at the free radical pockets. The mechanism and molecular dynamics of the multisolvent successive extraction of Assam coal using AO-EDA-LP solvents are discussed. In early attempts, successive extractions did not modify the extraction yield in the single solvent showing the maximum extraction. However, the AO-EDA-LP extraction resulted in the extraction of 70% coal, more than for any of the individual solvents used. Therefore, AO-EDA-LP extraction of coal affords a process yielding a superclean, high-heating value fuel from coal under milder conditions. Several uses of superclean coal have been recommended. Present studies have revealed a new concept concerning the structure of coal having 30% polyaromatic condensed entangled rings and 70% triaromatic-heterocyclic-naphthenic-aliphatic structure. The insolubility of coal is due to the polyfunctional-heterocyclic-condensed structure having a polyaromatic core with intermacromolecular entanglements.

Sharma, D.K.; Singh, S.K. [Indian Inst. of Tech., New Delhi (India)

1996-01-01T23:59:59.000Z

320

,"Price of U.S. Liquefied Natural Gas Imports From Other Countries (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Other Countries (Dollars per Thousand Cubic Feet)" Other Countries (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Other Countries (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103983m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103983m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

,"Price of U.S. Liquefied Natural Gas Imports From Equatorial Guinea (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Equatorial Guinea (Dollars per Thousand Cubic Feet)" Equatorial Guinea (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From Equatorial Guinea (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ngm_epg0_nus-nek_pml_dmcfm.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_nus-nek_pml_dmcfm.htm" ,"Source:","Energy Information Administration"

322

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

323

Colorado-Utah Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

286 3,677 4,194 2011-2013 Total Liquids Extracted (Thousand Barrels) 205 34 2012-2013 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 45...

324

Colorado-Kansas Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

78 151 175 2011-2013 Total Liquids Extracted (Thousand Barrels) 79 8 2012-2013 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 11...

325

New Mexico-Texas Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

32 2,479 8,607 2011-2013 Total Liquids Extracted (Thousand Barrels) 59 614 2012-2013 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 847...

326

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

327

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, Albert P. (Vernon, CT)

1986-01-01T23:59:59.000Z

328

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, A.P.

1984-02-21T23:59:59.000Z

329

Viscosity, specific (for liquids)  

Science Journals Connector (OSTI)

n. The ratio between the viscosity of a liquid and the viscosity of water at the same temperature. Specific viscosity is sometimes used interchangeably with relative viscosity for liquids.

2007-01-01T23:59:59.000Z

330

Liquid Piston Stirling Engines  

Science Journals Connector (OSTI)

The Fluidyne liquid piston engine is a simple free-piston Stirling engine that can be made from nothing more...

Graham Walker Ph. D.; J. R. Senft Ph.D.

1985-01-01T23:59:59.000Z

331

Charge trapping in imidazolium ionic liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

trapping in imidazolium ionic liquids trapping in imidazolium ionic liquids I. A. Shkrob and J. F. Wishart J. Phys. Chem. B 113, 5582-5592 (2009). [Find paper at ACS Publications] or use ACS Articles on Request Abstract: Room-temperature ionic liquids (ILs) are a promising class of solvents for applications ranging from photovoltaics to solvent extractions. Some of these applications involve the exposure of the ILs to ionizing radiation, which stimulates interest in their radiation and photo- chemistry. In the case of ILs consisting of 1,3-dialkylimidazolium cations and hydrophobic anions, ionization, charge transfer and redox reactions yield charge-trapped species thought to be radicals resulting from neutralization of the constituent ions. Using computational chemistry methods and the recent results on electron spin resonance (ESR) and transient absorption

332

,"Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

The United Arab Emirates (Dollars per Thousand Cubic Feet)" The United Arab Emirates (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103ua3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103ua3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

333

Liquid Wall Chambers  

SciTech Connect (OSTI)

The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

Meier, W R

2011-02-24T23:59:59.000Z

334

Sliding Luttinger liquid phases  

Science Journals Connector (OSTI)

We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can stabilize a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature T as T?0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.

Ranjan Mukhopadhyay; C. L. Kane; T. C. Lubensky

2001-07-09T23:59:59.000Z

335

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

SciTech Connect (OSTI)

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

336

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

337

Fission Product Extraction Process  

ScienceCinema (OSTI)

A new INL technology can simultaneously extract cesium and strontium for reuse. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

338

Fission Product Extraction Process  

SciTech Connect (OSTI)

A new INL technology can simultaneously extract cesium and strontium for reuse. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

None

2011-01-01T23:59:59.000Z

339

Simultaneous Extraction of Flavonoids from Chamaecyparis obtusa Using Deep Eutectic Solvents as Additives of Conventional Extractions Solvents  

Science Journals Connector (OSTI)

......complicated synthetic processes (10). Therefore...solvent in the heating process (60C) for 120 min...Extraction of glycerol from biodiesel into a eutectic based...from palm oil-based biodiesel using ionic liquids...Tian M., Row K.H. Evaluation of alcohol-based deep......

Baokun Tang; Ha Eun Park; Kyung Ho Row

2014-09-01T23:59:59.000Z

340

Separation of transplutonium elements by the method of emulsion membrane extraction  

SciTech Connect (OSTI)

A study is made of the kinetics of extraction of transplutonium elements by liquid emulsions of the type water and oil, containing di-2-ethylhexylphosphoric acid as the carrier and span-80 as the emulsifier. Conditions of efficient extraction and separation of three-valence americium, curium, and californium from solutions of diethylenetriaminepentaacetic acid are identified.

Novikov, A.P.; Myasoedov, B.F.

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

Tshishiku, Eugene M. (Augusta, GA)

2011-08-09T23:59:59.000Z

342

Fermilab is America's premier national laboratory for particle physics research, funded by the U.S. Department of Energy. Thousands of  

E-Print Network [OSTI]

at higher energy. Using the cosmos as a laboratory, Fermilab scientists explore dark matter and dark energy.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery. A national laboratory funded by the Office

Quigg, Chris

343

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode  

E-Print Network [OSTI]

46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use% kiln furniture, 6% fiberglass, 4% paint, and 3% rubber; ball clay--25% floor and wall tile, 21 Statistics--United States: 1992 1993 1994 1995 19961 e Production, mine: Kaolin 8,740 8,830 8,770 9,480 9

344

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1997, based on contained zinc recoverable from  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting: 1993 1994 1995 1996 1997e Production: Mine, recoverable 488 570 614 600 6071 Primary slab zinc 240 217

345

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2001, based on contained zinc recoverable from  

E-Print Network [OSTI]

188 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined zinc metal of commercial principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining

346

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2002, based on contained zinc recoverable from  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production% of production. Two primary and 13 large- and medium-sized secondary smelters refined zinc metal of commercial principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining

347

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2000, based on contained zinc recoverable from  

E-Print Network [OSTI]

186 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production three-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined compounds and dust were used principally by the agriculture, chemical, paint, and rubber industries. Major

348

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1999, based on contained zinc recoverable from  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting: 1995 1996 1997 1998 1999e Production: Mine, recoverable1 614 600 605 722 775 Primary slab zinc 232 226

349

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2006, based on contained zinc recoverable from  

E-Print Network [OSTI]

186 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production accounted for about 80% of total U.S. production. Two primary and 12 large- and medium-sized secondary, and rubber industries. Major coproducts of zinc mining and smelting, in order of decreasing tonnage, were

350

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2004, based on contained zinc recoverable from  

E-Print Network [OSTI]

188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters refined zinc metal were used principally by the agriculture, chemical, paint, and rubber industries. Major coproducts

351

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2003, based on contained zinc recoverable from  

E-Print Network [OSTI]

188 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production three-fourths of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber

352

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2005, based on contained zinc recoverable from  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production accounted for 86% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber

353

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1998, based on contained zinc recoverable from  

E-Print Network [OSTI]

192 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining--United States: 1994 1995 1996 1997 1998e Production: Mine, recoverable 570 614 598 605 6551 Primary slab zinc

354

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network [OSTI]

16 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed on published market prices, the value of primary metal production was $3.99 billion. Aluminum consumption

355

UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S  

U.S. Energy Information Administration (EIA) Indexed Site

OTH_REV (Thousand $)","OTH_SALES (MWh)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MWh)","TOT_CONS" OTH_REV (Thousand $)","OTH_SALES (MWh)","OTH_CONS","TOT_REV (Thousand $)","TOT_SALES (MWh)","TOT_CONS" 0,"State Level Adjustment","AK","2007R",1,5766,24179,0,7398,30009,0,1385.504,7829.663,0,,,0,14549.504,62017.663,0 213,"Alaska Electric Light&Power Co","AK","2007R",1,1479,14609,13602,981,11953,2118,390.496,5260.337,99,0,0,0,2850.496,31822.337,15819 219,"Alaska Power Co","AK","2007R",1,605,2282,4456,803,3397,2000,0,0,0,0,0,0,1408,5679,6456 599,"Anchorage Municipal Light and Power","AK","2007R",1,1488,16596,23880,5545,87869,6182,0,0,0,0,0,0,7033,104465,30062 1651,"Bethel Utilities Corp","AK","2007R",1,489,1180,1563,1171,2979,1121,0,0,0,0,0,0,1660,4159,2684

356

Ultrasonic liquid level detector  

DOE Patents [OSTI]

An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

2010-09-28T23:59:59.000Z

357

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1979  

SciTech Connect (OSTI)

The in-house results at Bartlesville Energy Technology Center on the liquid fossil fuel cycle are presented. The cycle covers extraction, processing, utilization, and environmental technology of the liquid fuels derived from petroleum, heavy oils, tar sands, oil shale, and coal.

Linville, B. (ed.)

1980-02-01T23:59:59.000Z

358

Optimization of Supercritical Fluid Extraction of Environmental Pollutants from a Liquid—Solid Extraction Cartridge  

Science Journals Connector (OSTI)

......an excellent review by Steven Hawthorne...Agency (EPA) waste minimization program plans to reduce the...methylene chloride waste disposal are...Materials Standard materials...Agency's Repository for Toxic and...his thorough review, valuable......

James S. Ho; Peter H. Tang

1992-09-01T23:59:59.000Z

359

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

Chaiko, David J. (Woodridge, IL)

1995-01-01T23:59:59.000Z

360

Method for extracting metals from aqueous waste streams for long term storage  

DOE Patents [OSTI]

A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

Chaiko, D.J.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

362

Carbon monoxide absorbing liquid  

SciTech Connect (OSTI)

The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

1981-07-07T23:59:59.000Z

363

Precision liquid level sensor  

DOE Patents [OSTI]

A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

Field, Michael E. (Albuquerque, NM); Sullivan, William H. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

364

Methods for separating medical isotopes using ionic liquids  

SciTech Connect (OSTI)

A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

2014-10-21T23:59:59.000Z

365

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

366

Reading Comprehension - Liquid Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Nitrogen Liquid Nitrogen Nitrogen is the most common substance in Earth's _________ crust oceans atmosphere trees . In the Earth's atmosphere, nitrogen is a gas. The particles of a gas move very quickly. They run around and bounce into everyone and everything. The hotter a gas is, the _________ slower faster hotter colder the particles move. When a gas is _________ cooled warmed heated compressed , its particles slow down. If a gas is cooled enough, it can change from a gas to a liquid. For nitrogen, this happens at a very _________ strange warm low high temperature. If you want to change nitrogen from a gas to a liquid, you have to bring its temperature down to 77 Kelvin. That's 321 degrees below zero _________ Kelvin Celsius Centigrade Fahrenheit ! Liquid nitrogen looks like water, but it acts very differently. It

367

Dekker PMIS Extraction Utility  

Broader source: Energy.gov (indexed) [DOE]

0907. The Extraction Utility is used for retrieving project 0907. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates focused to improve existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation validate any software update prior to its release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

368

Dekker PMIS Extraction Utility  

Broader source: Energy.gov (indexed) [DOE]

1217. The Extraction Utility is used for retrieving project 1217. The Extraction Utility is used for retrieving project management data from a variety of source systems for upload into the Dekker PMIS(tm) (Dekker iPursuit®, Dekker iProgram(tm), or DOE PARSII). This release incorporates a number of new features and updates primarily focused to improve the existing functionality. The quality of each Dekker PMIS(tm) Extraction Utility release is a primary consideration at Dekker, Ltd. Since every customer environment is unique, Dekker strongly recommends that each implementation site validate all software updates prior to release into the production environment. Dekker continually strives to enhance the features and capabilities of the Dekker PMIS(tm) Extraction Utility. We are very excited about this update and look forward to its implementation in your

369

Measurement of actinides in environmental samples by Photo-Electron Rejecting Alpha Liquid Scintillation  

SciTech Connect (OSTI)

This work describes the adaptation of extractive scintillation with a Photo-Electron Rejecting Alpha Liquid Scintillation (PERALS) (ORDELA, Inc.) spectrometer to the analysis of actinides in environmental samples from the Savannah River Site (SRS). Environmental quality assurance standards and actual water samples were treated by one of two methods; either a two step direct extraction, or for more complex samples, pretreatment by an extraction chromatographic separation prior to measurement of the alpha activity by PERALS.

Cadieux, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Clark, S. [Savannah River Ecology Lab., Univ. of Georgia (United States); Fjeld, R.A.; Reboul, S.; Sowder, A. [Clemson Univ., SC (United States). Dept. of Environmental Systems Engineering

1994-05-01T23:59:59.000Z

370

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

371

Sandia National Laboratories: ionic liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquid Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels, Biomass, Energy,...

372

Results of Soil Vapor Extraction of a Chlorinated Solvent Dnapl Waste Site at the Rocky Flats Superfund Site  

Science Journals Connector (OSTI)

A full scale Soil Vapor Extraction (SVE) system was evaluated for remediation of subsurface contamination of the chlorinated Dense Non-Aqueous Phase Liquids (DNAPL) at a waste site at the Rocky Flats Environmenta...

S. Grace; E. Dille

1995-01-01T23:59:59.000Z

373

Liquid sampling system  

DOE Patents [OSTI]

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

374

Liquid sampling system  

DOE Patents [OSTI]

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

Larson, Loren L. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

375

Liquid-level detector  

DOE Patents [OSTI]

Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

Not Available

1981-01-29T23:59:59.000Z

376

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

377

Kinetic factors that affect the extraction separation of americium and curium in the di-2-ethylhexylphosphoric acid-ethylenediaminetetraacetic acid system  

SciTech Connect (OSTI)

The kinetics of mass transfer and the equilibrium distribution of americium(III) and curium(III) in the two-phase D2EHPA, decane-EDTA, water system were studied. The kinetic parameters can be used to increase efficiency of separation in liquid extraction, membrane extraction, and extraction chromatography of these elements in the above system.

Novikov, A.P.; Myasoedov, B.F.; Bunina, T.V.; Bukina, T.I.; Kremlyakova, N.Yu.

1988-11-01T23:59:59.000Z

378

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

379

Renewable Liquid Fuels Reforming  

Broader source: Energy.gov [DOE]

The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used in the mid- and long-term time frames.

380

Le Bail Intensity Extraction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Le Bail Intensity Extraction Le Bail Intensity Extraction Presentation Goal Introduce the concepts behind LeBail fitting; why it is useful and how to perform a Le Bail fit with GSAS. Format: PDF slides or a RealPlayer video of the slides with accompanying audio and a demo video that shows how a Le Bail fit is performed. Presentation Outline What is the Le Bail method? Other approaches Why use the Le Bail method? Parameter fitting with Le Bail intensity extraction Le Bail refinement strategies Avoiding problems with background fitting: BKGEDIT Demo: an example Le Bail fit Links Le Bail lecture Slides (as PDF file) FlashMovie presentation with index (best viewed with 1024x768 or better screen resolution) FlashMovie file (800x600 pixels) Le Bail demo FlashMovie presentation with index (best viewed with 1024x768 or

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Extracting the Eliashberg Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extracting the Eliashberg Extracting the Eliashberg Function Extracting the Eliashberg Function Print Wednesday, 23 February 2005 00:00 A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these violations. By means of high-resolution angle-resolved photoemission at the ALS and theoretical calculations, a multi-institutional collaboration that includes researchers from Oak Ridge National Laboratory, the University of Tennessee, Stanford University, and the ALS has obtained the first high-resolution spectroscopic images of the specific vibrational modes that couple to a given electronic state.

382

Biodiesel from mixed culture algae via a wet lipid extraction procedure  

Science Journals Connector (OSTI)

Microalgae are a source of renewable oil for liquid fuels. However, costs for dewatering/drying, extraction, and processing have limited commercial scale production of biodiesel from algal biomass. A wet lipid extraction procedure was developed that was capable of extracting 79% of transesterifiable lipids from wet algal biomass (84% moisture) via acid and base hydrolysis (90 °C and ambient pressures), and 76% of those extracted lipids were isolated, by further processing, and converted to FAMEs. Furthermore, the procedure was capable of removing chlorophyll contamination of the algal lipid extract through precipitation. In addition, the procedure generated side streams that serve as feedstocks for microbial conversion to additional bioproducts. The capability of the procedure to extract lipids from wet algal biomass, to reduce/remove chlorophyll contamination, to potentially reduce organic solvent demand, and to generate feedstocks for high-value bioproducts presents opportunities to reduce costs of scaling up algal lipid extraction for biodiesel production.

Ashik Sathish; Ronald C. Sims

2012-01-01T23:59:59.000Z

383

Study of freezing-point depression of selected food extracts  

SciTech Connect (OSTI)

The phenomenon of freezing-point depression that accompanies the solute concentration of selected food extracts was investigated to reveal the characteristics of solid-liquid phase equilibrium. The freezing curves of various food extracts did not exhibit ideal solution behavior in the higher concentration range. The experimental data were fitted to new freezing-point depression equations by the method of nonlinear least squares, and the results clearly indicated that the calculated freezing points at various concentrations were in good agreement with the experimental data. Furthermore, by using the determined parameters, the freezing ratio and the activation coefficient were derived.

Tanaka, Fumihiko [Kagoshima Univ. (Japan). Dept. of Agricultural Systems Engineering; Murata, Satoshi; Habara, Kazuhiro; Amaratunga, K.S.P. [Kyushu Univ., Fukuoka (Japan). Dept. of Agricultural Engineering

1996-12-31T23:59:59.000Z

384

Extracting Correlations Yuval Ishai #  

E-Print Network [OSTI]

, an equipment grant from Intel, and an Okawa Research award. Keywords­randomness extractors secure computationExtracting Correlations Yuval Ishai # Computer Science Dept. Technion and UCLA yuvali@cs.technion.ac.il Eyal Kushilevitz + Computer Science Dept. Technion and UCLA eyalk@cs.technion.ac.il Rafail Ostrovsky

Ostrovsky, Rafail

385

Extracting Correlations Yuval Ishai  

E-Print Network [OSTI]

, an equipment grant from Intel, and an Okawa Research award. Keywords-randomness extractors; secure computationExtracting Correlations Yuval Ishai Computer Science Dept. Technion and UCLA yuvali@cs.technion.ac.il Eyal Kushilevitz Computer Science Dept. Technion and UCLA eyalk@cs.technion.ac.il Rafail Ostrovsky CS

Sahai, Amit

386

Frostbite Theater - Liquid Nitrogen Experiments - Dry Ice vs. Liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Egg + Liquid Nitrogen + Time-lapse! Egg + Liquid Nitrogen + Time-lapse! Previous Video (Egg + Liquid Nitrogen + Time-lapse!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Cooled Dry Ice in Water!) Liquid Nitrogen Cooled Dry Ice in Water! Dry Ice vs. Liquid Nitrogen! Dry ice is cold. Liquid nitrogen is cold, too. What happens when the two are mixed together? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Have you ever wondered what happens when you mix dry ice and liquid nitrogen? Steve: Well, we just happen to have a chunk of dry ice left over from when we filmed 'How to Make a Cloud Chamber,' and here at Jefferson Lab, liquid nitrogen flows like water, so we're going to find out!

387

Hydrogen Fluoride Capture by Imidazolium Acetate Ionic Liquid  

E-Print Network [OSTI]

Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, I will evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

Chaban, Vitaly

2015-01-01T23:59:59.000Z

388

Liquid Scintillator Purification  

SciTech Connect (OSTI)

The KamLAND collaboration has studied background requirements and purification methods needed to observe the 7Be neutrino from the sun. First we will discuss the present background situation in KamLAND where it is found that the main background components are 210Pb and 85Kr. It is then described how to purify the liquid scintillator. The present status and results on how to remove 210Pb from the liquid scintillator are discussed. Specifically, the detailed analysis of the effects of distillation and adsorption techniques are presented.

Kishimoto, Y. [Research Center for Neutrino Science, Tohoku University (Japan)

2005-09-08T23:59:59.000Z

389

Extraction Utility Design Specification  

Broader source: Energy.gov (indexed) [DOE]

Extraction Extraction Utility Design Specification May 13, 2013 Document Version 1.10 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version

390

Extracting the Eliashberg Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Extracting the Eliashberg Function Print Extracting the Eliashberg Function Print A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these violations. By means of high-resolution angle-resolved photoemission at the ALS and theoretical calculations, a multi-institutional collaboration that includes researchers from Oak Ridge National Laboratory, the University of Tennessee, Stanford University, and the ALS has obtained the first high-resolution spectroscopic images of the specific vibrational modes that couple to a given electronic state.

391

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen in a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freeze Liquid Nitrogen! Freeze Liquid Nitrogen! Previous Video (Let's Freeze Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Freeze the Rainbow!) Freeze the Rainbow! Liquid Nitrogen in a Microwave! What happens when the world's most beloved cryogenic liquid meets one of the most common household appliances? Find out when we try to microwave liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A little while ago we received an email from Star of the Sea Catholic School in Virginia Beach, Virginia, asking what happens when you place liquid nitrogen in a microwave. Well, I just happen to have some liquid nitrogen! Steve: And I just happen to have a microwave!

392

Lyophilic liquid porosimetry and a new liquid autoporosimeter  

SciTech Connect (OSTI)

Lyophilic liquid porosimetry determines the volumes of different size pores by measuring the amount of liquid in these pores, thus, providing pore volume distribution (PVD) data for porous structures. Any liquid that wets the sample may be used. This opens unique opportunities for porous structure evaluation. It provides realistic PVD analysis when the liquid of interest changes the porous structure. It determines uptake/drainage hysteresis of real liquids. It allows direct measurements of uptake and retention capillary pressures with different amounts of liquid in a sample. Lyophilic liquid porosimetry determines liquid/solid contact angles of different size pores within the sample. It can also be used for PVD analysis of both soft, brittle materials and porous metal materials.

Tyomkin, I. [TRI/Princeton, NJ (United States)

1998-12-31T23:59:59.000Z

393

Information extraction from broadcast news  

Science Journals Connector (OSTI)

...Royal Society and the British Academy Information extraction from broadcast news Yoshihiko...presented: the first represents name class information as a word attribute; the second represents...American broadcast news. Named entity|Information extraction|Language modelling| Information...

2000-01-01T23:59:59.000Z

394

New ion exchangers and solvent extractants for pre-analysis separation of actinides. Annual report, June 1982-May 1983  

SciTech Connect (OSTI)

Prior to radiochemical determination of actinide elements such as uranium, neptunium and plutonium, an ion exchange or solvent extraction method is often employed to separate these from themselves and other interfering elements. In order to improve the separation efficiency and reduce time, cost, and liquid waste of analytical separation methods, new and better ion exchangers and solvent extractants are under evaluation. New microreticular and macroreticular anion exchange resins and bifunctional organophosphorus solvent extractants have been evaluated for uranium, neptunium and plutonium separations. Previous work comparing numerous anion exchange resins has shown the macroreticular Amberlite IRA-938 resin as having the highest actinide capacity and best elution kinetics. Recent studies have confirmed the resin has advantages over others for Pu-U separations. Work at Rocky Flats on bifunctional organophosphorus solvent extractants for the recovery and purification of actinides has led to the identification of several new separation systems applicable for radiochemical analysis. Dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP), its dibutyl analog DBDECMP, and DHDECMP-tributylphosphate (TBP) using liquid-liquid or extraction chromatography techniques are applicable for plutonium-americium and plutonium separations. Both DHDECMP and DBDECMP extract actinides strongly, extract lanthanides, iron, gallium, molybdenum, titanium, vanadium, zirconium partially, and do not extract most other elements from 5 to 7M nitric acid. With the DHDECMP-TBP and DBDECMP-TBP systems, synergistic effects have been observed for both plutonium and americium. The chemistry and application for pre-analysis separations of these solvent extraction systems are described. 11 references, 9 figures, 7 tables.

Navratil, J.D.

1983-06-01T23:59:59.000Z

395

Synthesis of fluorinated malonamides and use in L/L extraction of f-elements  

Science Journals Connector (OSTI)

Abstract Synthesis of new fluorinated tertiary malonamides (F-malonamides) was accomplished, and their liquid/liquid (L/L) extraction properties with f-elements were investigated. These molecules are fluorinated analogues of well known extractants used in several processes designed towards the treatment of nuclear wastes, and the efficient separation of lanthanides from minor actinides; however, the synthesis of F-malonamides deserved a modification of the general synthetic route commonly employed to prepare H-malonamides. Extraction of neodymium from various aqueous media into both fluorous and classical solvents was studied, which revealed an opposite trend between F-malonamides and H-malonamides: L/L extraction ability is very sensitive to the nitrogen atoms substitution pattern, and the most efficient F-malonamide is compound 3 (R1 = Me), whereas the best H-malonamide is compound 5 (R1 = Bu, DMDBTDMA).

Marie-Claire Dul; Damien Bourgeois; Jérôme Maynadié; Daniel Meyer

2013-01-01T23:59:59.000Z

396

Viscosity of Liquids  

Science Journals Connector (OSTI)

6 November 1952 research-article Viscosity of Liquids E. N. da C. Andrade The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. www.jstor.org

1952-01-01T23:59:59.000Z

397

The Viscosity of Liquids  

Science Journals Connector (OSTI)

... of momentum between them. In the case of a gas, Maxwell showed how the viscosity can be derived by considering this momentum as being communicated by molecules transferring themselves bodily ... fulfilment of the conditions postulated in Maxwell's treatment, and the fact that while gas viscosity goes up with temperature liquid ...

E. N. DA C. ANDRADE

1930-04-12T23:59:59.000Z

398

Detonation in Liquid Explosives  

Science Journals Connector (OSTI)

... Laboratory, on the initiative of Dr. A. H. Davis, into the process of detonation in explosives, the programme including a photographic study of the ... in explosives, the programme including a photographic study of the detonation Waves in transparent liquid explosives—the sensitivity of some of which can be varied by ...

D. CRONEY

1948-09-25T23:59:59.000Z

399

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

400

Air Liquide- Biogas & Fuel Cells  

Broader source: Energy.gov [DOE]

Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

402

High temperature liquid level sensor  

DOE Patents [OSTI]

A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

Tokarz, Richard D. (West Richland, WA)

1983-01-01T23:59:59.000Z

403

Ion Distributions Near a Liquid-Liquid Interface  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Distributions Near a Liquid-Liquid Interface Ion Distributions Near a Liquid-Liquid Interface Researchers from the University of Illinois at Chicago; Northern Illinois University; the University of California, Santa Cruz; and ChemMatCARS (sector 15 at the APS) used x-ray reflectivity from ion distributions at the liquid-liquid interface to provide strong evidence that the interfacial structure of a liquid alters the ion distributions near a charged interface, contrary to earlier theories about ions at charged surfaces. Coulomb's Law describes the interaction between two, otherwise isolated, point charges. If many charges are present in the region between these two charges, the net interaction between them is modified. This is commonly found in real systems, such as a plasma gas of electrons and ionized

404

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freeze the Rainbow! Freeze the Rainbow! Previous Video (Freeze the Rainbow!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Fire!) Liquid Nitrogen and Fire! Liquid Nitrogen and Antifreeze! What happens when the freezing power of liquid nitrogen meets the antifreezing power of ethylene glycol? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: What happens when the freezing power of liquid nitrogen... Steve: ...meets the antifreezing power of ethylene glycol! Joanna: While a mix of 70 percent ethylene glycol and 30 percent water doesn't freeze until 60 degrees below zero, it's still no match for liquid nitrogen. At 321 degrees below zero, liquid nitrogen easily freezes

405

Frostbite Theater - Liquid Nitrogen Experiments - Let's Freeze Liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shattering Pennies! Shattering Pennies! Previous Video (Shattering Pennies!) Frostbite Theater Main Index Next Video (Liquid Nitrogen in a Microwave!) Liquid Nitrogen in a Microwave! Let's Freeze Liquid Nitrogen! By removing the hottest molecules, we're able to freeze liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Today, we're going to freeze liquid nitrogen! Joanna and Steve: Yeah! Joanna: The obvious way to do this is to put the liquid nitrogen into something colder. Something that we have lots of around here! Something like... liquid helium! Steve: Yes! Joanna: Yeah, but we're not going to do that. Instead, we're going to freeze the nitrogen by removing the hottest molecules!

406

Fully Automated Laser Ablation Liquid Capture Sample Analysis using NanoElectrospray Ionization Mass Spectrometry  

SciTech Connect (OSTI)

RATIONALE: Laser ablation provides for the possibility of sampling a large variety of surfaces with high spatial resolution. This type of sampling when employed in conjunction with liquid capture followed by nanoelectrospray ionization provides the opportunity for sensitive and prolonged interrogation of samples by mass spectrometry as well as the ability to analyze surfaces not amenable to direct liquid extraction. METHODS: A fully automated, reflection geometry, laser ablation liquid capture spot sampling system was achieved by incorporating appropriate laser fiber optics and a focusing lens into a commercially available, liquid extraction surface analysis (LESA ) ready Advion TriVersa NanoMate system. RESULTS: Under optimized conditions about 10% of laser ablated material could be captured in a droplet positioned vertically over the ablation region using the NanoMate robot controlled pipette. The sampling spot size area with this laser ablation liquid capture surface analysis (LA/LCSA) mode of operation (typically about 120 m x 160 m) was approximately 50 times smaller than that achievable by direct liquid extraction using LESA (ca. 1 mm diameter liquid extraction spot). The set-up was successfully applied for the analysis of ink on glass and paper as well as the endogenous components in Alstroemeria Yellow King flower petals. In a second mode of operation with a comparable sampling spot size, termed laser ablation/LESA , the laser system was used to drill through, penetrate, or otherwise expose material beneath a solvent resistant surface. Once drilled, LESA was effective in sampling soluble material exposed at that location on the surface. CONCLUSIONS: Incorporating the capability for different laser ablation liquid capture spot sampling modes of operation into a LESA ready Advion TriVersa NanoMate enhanced the spot sampling spatial resolution of this device and broadened the surface types amenable to analysis to include absorbent and solvent resistant materials.

Lorenz, Matthias [ORNL] [ORNL; Ovchinnikova, Olga S [ORNL] [ORNL; Van Berkel, Gary J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

407

Next-Generation Liquid-Scintillator-Based Detectors: Quantums Dots and Picosecond Timing  

E-Print Network [OSTI]

Liquid-scintillator-based detectors are a robust technology that scales well to large volumes. For this reason, they are attractive for experiments searching for neutrinoless double-beta decay. A combination of improved photo-detection technology and novel liquid scintillators may allow for the extraction of particle direction in addition to the total energy of the particle. Such an advance would find applications beyond searches for neutrinoless double-beta decay.

Lindley Winslow

2013-07-10T23:59:59.000Z

408

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1981  

SciTech Connect (OSTI)

Progress accomplished during the quarter ending September 1981 is reported under the following headings: liquid fossil fuel cycle; extraction (reservoir characterization and evaluation, recovery projects, reservoir access, extraction technology, recovery processes and process implementation); liquid processing (characterization, thermodynamics, and process technology); utilization (energy conversion - adaptive engineering, combustion systems assessment, and heat engines/heat recovery); and project integration and technology transfer. Special reports include: air drilling research; fluid injection in reservoirs; target reservoirs in Permian Basin suitable for CO/sub 2/ flooding; heavy oil technology; and the fate of used motor oil/results of a survey.

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

409

Determinants of Hospital's Financial Liquidity  

Science Journals Connector (OSTI)

Abstract The purpose of the articles is to identify key factors that may affect the level of hospital's liquidity ratio. We’ve posed four research hypotheses, assuming that, the level of financial liquidity in hospitals depends on several factors (number of beds, annual income per bed, profitability ratios, debt ratio). We’ve found that: 1) there is a positive relationship between debt ratio and liquidity and profitability ratio and liquidity 2) the relationship between the size of the hospital and the financial liquidity is not statistically significant. In the study we’ve use statistical tools: Pearson's correlation coefficient, T-Student's test with Cohran-Cox's correction.

Agnieszka Bem; Katarzyna Pr?dkiewicz; Pawe? Pr?dkiewicz; Paulina Ucieklak-Je?

2014-01-01T23:59:59.000Z

410

Extraction Utility Design Specification  

Broader source: Energy.gov (indexed) [DOE]

Extraction Utility Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All Eric Morgan, Dekker, Ltd. Initial Draft Document January 19, 2010 1.1 All Igor Pedan, Dekker, Ltd. Document update with EM team review notes January 20, 2010 1.2 2.1.1 EM Project Team Document Review January 27, 2010 1.3 All Bruce Bartells Final Draft Review May 10, 2010 1.4.1 2.8 Igor Pedan, Dekker, Ltd. Section Update May 14, 2010 1.4.2 2.3.1 Igor Pedan, Dekker, Ltd. System Tables Added May 17, 2010 1.4.3 2.3 Igor Pedan, Dekker, Ltd. Enhancements Update June 29, 2010 1.5 All Igor Pedan, Dekker, Ltd. Revised for Version 8.0.20100628 July 14, 2010 1.5.1 2.8 Igor Pedan,

411

Quantal Ising Liquid  

Science Journals Connector (OSTI)

An example is presented of a model of an amorphous quantum mechanical system, a liquid of quantal Ising spins, which can be solved exactly within certain many-body theories. Analytical solutions of the model in mean-field theory are shown to reveal a decrease in the extent of the ferromagnetic region (compared to an equivalent classical system) and the occurrence of some degree of quantum localization. Both phenomena are analyzed as a competition between quantum mechanics and the condensed phase.

Richard M. Stratt

1984-10-01T23:59:59.000Z

412

RHIC The Perfect Liquid  

ScienceCinema (OSTI)

Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

BNL

2009-09-01T23:59:59.000Z

413

Theory of fermion liquids  

Science Journals Connector (OSTI)

We develop a general theory of fermion liquids in spatial dimensions greater than 1. The principal method, bosonization, is applied to the cases of short- and long-range longitudinal interactions and to transverse gauge interactions. All the correlation funtions of the system may be obtained with the use of a generating functional. Short-range and Coulomb interactions do not destroy the Landau-Fermi fixed point. Non-Fermi liquid fixed points are found, however, in the cases of a super-long-range longitudinal interaction in two dimensions and transverse gauge interactions in two and three spatial dimensions. We consider in some detail the (2+1)-dimensional problem of a Chern-Simons gauge action combined with a longitudinal two-body interaction V(q)??q?y-1, which controls the density, and hence gauge, fluctuations. For y0 the interaction is relevant and the fixed point cannot be accessed by bosonization. Of special importance is the case y=0 (Coulomb interaction), which describes the Halperin-Lee-Read theory of the half-filled Landau level. We obtain the full quasiparticle propagator, which is of a marginal Fermi-liquid form. Using Ward identities, we show that neither the inclusion of nonlinear terms in the fermion dispersion nor vertex corrections alters our results: the fixed point is accessible by bosonization. As the two-point fermion Green’s function is not gauge invariant, we also invetigate the gauge-invariant density response function. Near momentum Q=2kF, in addition to the Kohn anomaly we find other nonanalytic behavior. In the appendies we present a numerical calculation of the spectral function for a Fermi liquid with Landau parameter f0?0. We also show how Kohn’s theorem is satisfied within the bosonization framework.

H.-J. Kwon; A. Houghton; J. B. Marston

1995-09-15T23:59:59.000Z

414

What constitutes a simple liquid?  

E-Print Network [OSTI]

Simple liquids are traditionally defined as many-body systems of classical particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be defined instead by the property of having strong correlation between virial and potential energy equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions, but also some notable differences. For instance, in the new definition simplicity is not a property of the intermolecular potential only because a liquid is usually only strongly correlating in part of its phase diagram. Moreover, according to the new definition not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of structure and dynamics of 15 atomic and molecular model liquids with a shifted-forces cutoff placed at the first minimum of the radial distribution function. No proof is given that the chemical characterization follows from the strong correlation property, but it is shown to be consistent with the existence of isomorphs in strongly correlating liquids' phase diagram. Finally, we note that the FCS characterization of simple liquids calls into question the basis for standard perturbation theory, according to which the repulsive and attractive forces play fundamentally different roles for the physics of liquids.

Trond S. Ingebrigtsen; Thomas B. Schrøder; Jeppe C. Dyre

2011-11-15T23:59:59.000Z

415

Development of Novel Sorbents for Uranium Extraction from Seawater  

SciTech Connect (OSTI)

As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.

Lin, Wenbin; Taylor-Pashow, Kathryn

2014-01-08T23:59:59.000Z

416

Frostbite Theater - Liquid Nitrogen Experiments - Let's Pour Liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shattering Flowers! Shattering Flowers! Previous Video (Shattering Flowers!) Frostbite Theater Main Index Next Video (Giant Koosh Ball!) Giant Koosh Ball! Let's Pour Liquid Nitrogen on the Floor! Liquid nitrogen?! On the floor?! Who's going to clean that mess up?! See what really happens when one of the world's most beloved cryogenic liquids comes into contact with a room temperature floor. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: From time to time, we spill a little liquid nitrogen! The reaction we sometimes get is.... Shannon: Did they just pour LIQUID NITROGEN on the FLOOR?!?! Joanna: Yes. Yes we did. Steve: One thing people seem to have a problem with is the mess that liquid

417

Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids  

SciTech Connect (OSTI)

The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9×10–7 cm2?s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help t

Dr. R. G. Reddy

2007-09-01T23:59:59.000Z

418

Selective chelation and extraction of lanthanides and actinides with supercritical fluids  

SciTech Connect (OSTI)

This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest.

Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

1994-01-01T23:59:59.000Z

419

Radiation Chemistry of Ionic Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquids Liquids James F. Wishart, Alison M. Funston, and Tomasz Szreder in "Molten Salts XIV" Mantz, R. A., et al., Eds.; The Electrochemical Society, Pennington, NJ, (2006) pp. 802-813. [Information about the volume (look just above this link)] Abstract: Ionic liquids have potentially important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Successful use of ionic liquids in radiation-filled environments will require an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of ionic liquid radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material

420

SOONER MAGAZINE22 33 thousand  

E-Print Network [OSTI]

Traffic on Boyd Street, lead- ing straight to the University of Oklahoma's front door, was backed up for blocks. Such an impressive showing of brake lights and turn sig- nals usually was reserved for Satur a gridiron magnet. On this chilly No- vember evening, however, the spot- light was not on the exalted Owen

Oklahoma, University of

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NATIONAL OCEAN SERVICE ($ in Thousands)  

E-Print Network [OSTI]

and Restoration, HI 185 0 0 0 (185) UTMSI - Center for Biological Indicators of Change in Coastal Ecosystem Health and Restoration Response and Restoration Base 19,266 493 1,400 19,134 (132) Estuary Restoration Program 2,188 0 0 1,188 (1,000) Marine Debris 4,000 0 0 4,000 0 Marine Debris Removal - Alaska 0 0 0 0 Aquatic

422

Development of a U.S. EPA Drinking Water Method for the Analysis of Selected Perfluoroalkyl Acids by Solid-Phase Extraction and LC-MS-MS  

Science Journals Connector (OSTI)

......to 4 C storage for the remainder of the storage period. This procedure simulates a typical...14-day aqueous holding time. Extract storage and holding time study Extracts prepared...at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass......

Jody A. Shoemaker; Brenda Boutin; Paul Grimmett

2009-01-01T23:59:59.000Z

423

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

424

FLARE, Fermilab Liquid Argon Experiments  

E-Print Network [OSTI]

Mature technology of Liquid Argon Time Projection Chambers in conjunction with intense neutrino beams constructed at Fermilab offer a broad program of neutrino physics for the next decade.

L. Bartoszek

2004-08-24T23:59:59.000Z

425

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and Fire!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Antifreeze! Antifreeze! Previous Video (Liquid Nitrogen and Antifreeze!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and the Tea Kettle Mystery!) Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and Fire! A burning candle is placed in a container of liquid nitrogen! Filmed in front of a live studio audience. Well, they were live when we started... [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Steve: Now, then. I'm a little bit afraid to ask this next question because I think I already know the answer, but is anyone in here feeling a little... dangerous? You're willing to take a chance? Because I am willing to do an experiment they haven't let me do since 'The Incident.' Now, because of the danger, I cannot have a volunteer. I must do this on my

426

A new Diffractometer for Studies of Liquid-Liquid Interfaces  

SciTech Connect (OSTI)

We have designed a novel, dedicated diffractometer for surface x-ray scattering studies of liquid-liquid and liquid-gas interfaces for the PETRA III High Resolution Diffraction Beamline. Using a double crystal beam-tilter in Bragg geometry this new instrument enables reflectivity and grazing incidence diffraction investigations without moving the sample, which is mechanically decoupled from the rest of the diffractometer. This design minimizes external excitation of surface vibrations, a key prerequisite for studies of liquid interfaces. The instrument operates over the energy range 6.4 keV to 30 keV, the higher energy range being optimal for penetration through liquid sample environments. Vertical momentum transfer up to q{sub z} 2.5 A{sup -1} and lateral q{sub ||} up to 4 A{sup -1}will be available.

Murphy, B. M.; Greve, M.; Runge, B.; Koops, C. T.; Elsen, A.; Stettner, J.; Magnussen, O. M. [IEAP, Christian-Albrechts-Universitaet zu Kiel, D-24098 Kiel (Germany); Seeck, O. H. [PETRA III at DESY, Notkestr. 85, D-22603 Hamburg (Germany)

2010-06-23T23:59:59.000Z

427

Frostbite Theater - Liquid Nitrogen Experiments - Cells vs. Liquid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Superconductors! Superconductors! Previous Video (Superconductors!) Frostbite Theater Main Index Next Video (Liquid Oxygen and Fire!) Liquid Oxygen and Fire! Cells vs. Liquid Nitrogen! Let's say you've carelessly dunked your hand into a vat of liquid nitrogen and let it freeze solid. Every movie you've seen where this happens tells you that your hand will shatter like fine china should you bump it into something. If you're extremely careful, will your hand be okay once it thaws out? We'll explore this issue, using flower and onion cells rather than our hands! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: By now, we all know what happens when you place a flower in liquid

428

Treatment Options for Liquid Radioactive Waste. Factors Important for Selecting of Treatment Methods  

SciTech Connect (OSTI)

The cleanup of liquid streams contaminated with radionuclides is obtained by the selection or a combination of a number of physical and chemical separations, processes or unit operations. Among those are: Chemical treatment; Evaporation; Ion exchange and sorption; Physical separation; Electrodialysis; Osmosis; Electrocoagulation/electroflotation; Biotechnological processes; and Solvent extraction.

Dziewinski, J.J.

1998-09-28T23:59:59.000Z

429

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1980  

SciTech Connect (OSTI)

Highlights of research activities at BETC during the past quarter are summarized in this document. Major research areas include: liquid fossil fuel cycle, extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, and process technology); utilization; and product integration and technology transfer.

Not Available

1981-05-01T23:59:59.000Z

430

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect (OSTI)

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

431

Solvent–Coal–Mineral Interaction during Solvent Extraction of Coal  

Science Journals Connector (OSTI)

The solvent extraction of Poplar lignite coal was studied with three model solvents (tetralin, quinoline, and 1-naphtol) and one industrial coal liquid derived solvent. ... Thanks to its wide distribution and large reserves, coal is a feasible local substitute feed material for conventional crude oil in many countries. ... Physical dissolution dominates at lower temperature, around 200 °C and lower temperatures for lignites; the role of the solvent is to relax the coal matrix and drag soluble molecules from the coal into the bulk solvent phase. ...

Mariangel Rivolta Hernández; Carolina Figueroa Murcia; Rajender Gupta; Arno de Klerk

2012-10-26T23:59:59.000Z

432

Wyoming-Colorado Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2012 2013 View History Natural Gas Processed (Million Cubic Feet) 69,827 75,855 2012-2013 Total Liquids Extracted (Thousand Barrels) 5,481 5,903 2012-2013 NGPL Production, Gaseous...

433

Colorado-Colorado Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

,507,467 1,460,433 1,368,677 2011-2013 Total Liquids Extracted (Thousand Barrels) 57,095 51,936 2012-2013 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 87,456...

434

New Mexico-New Mexico Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

795,069 774,620 737,403 2011-2013 Total Liquids Extracted (Thousand Barrels) 57,890 58,861 2012-2013 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 85,948...

435

New Mexico Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2008 2009 2010 2011 2012 2013 View History Natural Gas Processed (Million Cubic Feet) 853,470 769,783 737,187 795,069 777,099 746,010 1967-2013 Total Liquids Extracted (Thousand...

436

California Onshore-California Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

180,648 169,203 164,401 2011-2013 Total Liquids Extracted (Thousand Barrels) 9,923 10,641 2012-2013 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 12,755 14,298...

437

Louisiana Offshore-Louisiana Natural Gas Plant Processing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2012 2013 View History Natural Gas Processed (Million Cubic Feet) 151,301 99,910 2012-2013 Total Liquids Extracted (Thousand Barrels) 3,378 2,694 2012-2013 NGPL Production,...

438

Alabama Offshore-Alabama Natural Gas Plant Processing  

Gasoline and Diesel Fuel Update (EIA)

2012 2013 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 2012-2013 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2012-2013 NGPL Production, Gaseous...

439

Characterization of the crude oil polar compound extract  

SciTech Connect (OSTI)

This research is designed to determine if there are any naturally occurring constituents in crude oils that can be chemically altered to bring about increased oil production. An extract containing only the polar organic compounds of the crude oil was obtained by using a modification of the ASTM-2007 procedure. Chemical characterization of the polar compounds were carried out using high pressure liquid chromatography (HPLC) and gas chromatography. The HPLC analyses indicated a range of polar organic compound content of 10 crude oils from 1.6% to 12.7%. Wettability determinations show that by adding a small amount of the polar fraction from a crude oil, to a mineral oil, a 40 to 111% change of wettability toward a more oil-wet system will occur, depending on the specific extract used.

Donaldson, E.C.; Crocker, M.E.

1980-10-01T23:59:59.000Z

440

Enhanced liquid hydrocarbon recovery process  

SciTech Connect (OSTI)

This patent describes a process for recovering liquid hydrocarbons. It comprises: injecting into a fractured subterranean formation a polymer enhanced foam comprising a polymer selected from a synthetic polymer or a biopolymer, a surfactant, an aqueous solvent and a gas, recovering liquid hydrocarbons from the formation.

Sydansk, R.D.

1992-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Laboratory solvent reuse -- Liquid chromatography  

SciTech Connect (OSTI)

The objective of this work was to develop a method for reduction of waste solvent in the Process Engineering Chemistry Laboratory. The liquid chromatographs are the largest generators of explosive-contaminated waste in the laboratory. We developed a successful process for the reuse of solvents from the liquid chromatographs and demonstrated the utility of the process in the assay of hexanitrostilbene.

Quinlin, W.T.; Schaffer, C.L.

1992-11-01T23:59:59.000Z

442

Orifice mixing of immiscible liquids  

E-Print Network [OSTI]

measured with an Ostwald Viscosimeter relative to tap water also, All of these physical measurements were made at 83c F, the average tempera- ture noted during the runs. The liquid upon which these measurements were made were samples of the liquids...

McDonough, Joseph Aloysius

1960-01-01T23:59:59.000Z

443

Liquid-permeable electrode  

DOE Patents [OSTI]

Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

Folser, George R. (Lower Burrell, PA)

1980-01-01T23:59:59.000Z

444

Magnetically focused liquid drop radiator  

DOE Patents [OSTI]

A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

Botts, T.E.; Powell, J.R.; Lenard, R.

1984-12-10T23:59:59.000Z

445

Freezing of a Liquid Marble  

E-Print Network [OSTI]

In this study, we present for the first time the observations of a freezing liquid marble. In the experiment, liquid marbles are gently placed on the cold side of a Thermo-Electric Cooler (TEC) and the morphological changes are recorded and characterized thereafter. These liquid marbles are noticed to undergo a shape transition from a spherical to a flying-saucer shaped morphology. The freezing dynamics of liquid marbles is observed to be very different from that of a freezing water droplet on a superhydrophobic surface. For example, the pointy tip appearing on a frozen water drop could not be observed for a frozen liquid marble. In the end, we highlight a possible explanation for the observed morphology.

Ali Hashmi; Adam Strauss; Jie Xu

2012-07-03T23:59:59.000Z

446

Advanced Extraction Methods for Actinide/Lanthanide Separations  

SciTech Connect (OSTI)

The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form high level liquid wastes and a general actinide clean-up procedure. The selectivity of the standard extractant for tetravalent actinides, (N,N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide (CMPO), was markedly improved by the attachment of three CMPO-like functions onto a triphenoxymethane platform, and a ligand that is both highly selective and effective for An(IV) ions was isolated. A 10 fold excess of ligand will remove virtually all of the 4+ actinides from the acidic layer without extracting appreciable quantities of An(III) and Ln(III) unlike simple CMPO ligands. Inspired by the success of the DIAMEX industrial process for extractions, three new tripodal chelates bearing three diglycolamide and thiodiglycolamide units precisely arranged on a triphenoxymethane platform have been synthesized for an highly efficient extraction of trivalent f-element cations from nitric acid media. A single equivalent of ligand will remove 80% of the Ln(III) ion from the acidic layer since the ligand is perfectly suited to accommodate the tricapped trigonal prismatic geometry preferred by the metal center. The ligand is perhaps the most efficient binder available for the heavier lanthanides and due to this unique attribute, the extraction event can be easily followed by 1H NMR spectroscopy confirming the formation of a TPP complex. The most lipophilic di-n-butyl tris-diglycolamide was found to be a significantly weaker extractant in comparison to the di-isopropyl analogs. The tris-thiodiglycolamide derivative proved to be an ineffective chelate for f-elements and demonstrated the importance of the etheric oxygens in the metal binding. The results presented herein clearly demonstrate a cooperative action of these three ligating groups within a single molecule, confirmed by composition and structure of the extracted complexes, and since actinides prefer to have high coordination numbers, the ligands should be particularly adept at binding with three arms. The use of such an extractant permits the extraction of metal ions form highly acidic environment through the ability

Scott, M.J.

2005-12-01T23:59:59.000Z

447

Examination of Liquid Fluoride Salt Heat Transfer  

SciTech Connect (OSTI)

The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

448

Development of alternate extractant systems for fast reactor fuel cycle  

SciTech Connect (OSTI)

Due to the limitations of TBP in processing of high burn-up, Pu-rich fast reactor fuels, there is a need to develop alternate extractants for fast reactor fuel processing. In this context, our Centre has been examining the suitability of alternate tri-alkyl phosphates. Third phase formation in the extraction of Th(IV) by TBP, tri-n-amyl phosphate (TAP) and tri-2-methyl-butyl phosphate (T2MBP) from nitric acid media has been investigated under various conditions to derive conclusions on their application for extraction of Pu at macro levels. The chemical and radiolytic degradation of tri-n-amyl-phosphate (TAP) diluted in normal paraffin hydrocarbon (NPH) in the presence of nitric acid has been investigated by the measurement of plutonium retention in organic phase. The potential application of room temperature ionic liquids (RTILs) for reprocessing of spent nuclear fuel has been explored. Extraction of uranium (VI) and palladium (II) from nitric acid medium by commercially available RTIL and tri-n-butyl phosphate solution in RTIL have been studied and the feasibility of electrodeposition of uranium as uranium oxide (UO{sub 2}) and palladium (II) as metallic palladium from the loaded organic phase have been demonstrated. This paper describes results of the above studies and discusses the suitability of the systems for fast reactor fuel reprocessing. (authors)

Vasudeva Rao, P.R.; Suresh, A.; Venkatesan, K.A.; Srinivasan, T.G.; Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

2007-07-01T23:59:59.000Z

449

Tributylphosphate Extraction Behavior of Bismuthate-Oxidized Americium  

SciTech Connect (OSTI)

Higher oxidation states of americium have long been known; however, options for their preparation in acidic solution are limited. The conventional choice, silver-catalyzed peroxydisulfate, is not useful at nitric acid concentrations above about 0.3 M. We investigated the use of sodium bismuthate as an oxidant for Am3+ in acidic solution. Room-temperature oxidation produced AmO2 2+ quantitatively, whereas oxidation at 80 °C produced AmO2+ quantitatively. The efficacy of the method for the production of oxidized americium was verified by fluoride precipitation and by spectroscopic absorbance measurements. We performed absorbance measurements using a conventional 1 cm cell for high americium concentrations and a 100 cm liquid waveguide capillary cell for low americium concentrations. Extinction coefficients for the absorbance of Am3+ at 503 nm, AmO2+ at 514 nm, and AmO2 2+ at 666 nm in 0.1 M nitric acid are reported. We also performed solvent extraction experiments with the hexavalent americium using the common actinide extraction ligand tributyl phosphate (TBP) for comparison to the other hexavalent actinides. Contact with 30% tributyl phosphate in dodecane reduced americium; it was nevertheless extracted using short contact times. The TBP extraction of AmO2 2+ over a range of nitric acid concentrations is shown for the first time and was found to be analogous to that of uranyl, neptunyl, and plutonyl ions.

Mincher; Leigh R. Martin; Nicholas C. Schmitt

2008-08-01T23:59:59.000Z

450

Method of measuring a liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

Garcia, Gabe V. (Las Cruces, NM); Carlson, Nancy M. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

451

Impact of nuclear irradiation on helium bubble nucleation at interfaces in liquid metals coupled to permeation through stainless steels  

E-Print Network [OSTI]

The impact of nucleating gas bubbles in the form of a dispersed gas phase on hydrogen isotope permeation at interfaces between liquid metals, like LLE, and structural materials, like stainless steel, has been studied. Liquid metal to structural material interfaces involving surfaces, may lower the nucleation barrier promoting bubble nucleation at active sites. Hence, hydrogen isotope absorption into gas bubbles modelling and control at interfaces may have a capital importance regarding design, operation and safety. He bubbles as a permeation barrier principle is analysed showing a significant impact on hydrogen isotope permeation, which may have a significant effect on liquid metal systems, e.g., tritium extraction systems. Liquid metals like LLE under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles...

Fradera, Jorge

2013-01-01T23:59:59.000Z

452

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

453

Liquid metal MHD experimental activities for LLCB TBM development  

Science Journals Connector (OSTI)

Abstract In Indian Lead Lithium cooled Ceramic Breeder (LLCB) blanket concept, Lead–Lithium (Pb–Li) liquid metal is used to extract heat from its own bulk volume and also from the neighboring solid breeder zones. The moderate flow velocity of Pb–Li inside the module can be significantly modified due to MHD effects, which arise because of the presence of strong toroidal magnetic field. Recently, two MHD experiments have been jointly carried out at Institute of Physics, University of Latvia (IPUL) with hot Pb–Li (?350 ?C) as the working fluid under a strong transverse magnetic field of up to ?4.0 T. The uncoated test sections are made of SS316L material and consist of LLCB TBM relevant flow geometries, such as rectangular and circular flow cross-sections, 90? bends, rectangular to circular flow transition region. The details of the liquid metal MHD experimental set up and experimental results are discussed in this paper.

Rajendraprasad Bhattacharyay; Anita Patel; Rajendrakumar Ellappan; Pravat K. Swain; Polepalle Satyamurthy; Sushil Kumar; Sergei Ivanov; Andrew Shishko; Erik Platacis; Anatoli Ziks

2013-01-01T23:59:59.000Z

454

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

455

Frostbite Theater - Liquid Nitrogen Experiments - Instant Liquid Nitrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freezing Balloons! Freezing Balloons! Previous Video (Freezing Balloons!) Frostbite Theater Main Index Next Video (Shattering Flowers!) Shattering Flowers! Instant Liquid Nitrogen Balloon Party! Need a bunch of balloons blown-up quickly? Liquid nitrogen to the rescue! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: We've been making videos for a while now and we've learned that people like balloons and liquid nitrogen! Steve: So... Here you go! Balloon: Crackling... Balloon: Pop! Joanna: Ooh! Balloon: Pop! Balloon: Pop! Steve: If you'd like to know the science of what's going on behind this, please one of our first videos, "Liquid Nitrogen Experiments: The Balloon."

456

Concentration of marc extracts by membrane techniques  

Science Journals Connector (OSTI)

By-products obtained from red currant processing still contain large amounts of useful components, e.g. pectin. Pectin was extracted from red currant marc with water at a solid/liquid ratio of 1:10. To reduce the operating costs of further possessing, we concentrated the pectin solution by membrane separation, i.e. nanofiltration (NF) and reverse osmosis (RO). The objectives of our work were to study the effects of the operating pressure and cross-volume flow rate on the flux and on the membrane separation concentration ratio in order to establish the optimum operating conditions and to evaluate the contributions of the fouling, cake and membrane resistances to the overall resistance. Flat-sheet RO and a spiral-wound NF membrane were applied in the work. The conductivity, the color, the viscosity and the TSS of the permeate and the concentrate were followed during the measurements. Concentration by RO resulted in an increase of the TSS content to 4.28°Brix; for NF the corresponding level was 8.88°Brix. The membrane resistance and the fouling resistance were the determinant relative to the gel resistance.

C. Hodúr; Sz. Kertész; S. Beszédes; Zs. László; G. Szabó

2009-01-01T23:59:59.000Z

457

Indeed is the #1 job search engine worldwide. Since 2004, Indeed has given job seekers free access to millions of jobs from thousands of company websites and job boards. Our core mis-  

E-Print Network [OSTI]

Indeed is the #1 job search engine worldwide. Since 2004, Indeed has given job seekers free access to millions of jobs from thousands of company websites and job boards. Our core mis- sion is to help people get jobs. To make this possible, we built an amazing platform that han- dles 5 billion job search

Ghosh, Joydeep

458

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2012, based on zinc contained in concentrate, was about  

E-Print Network [OSTI]

188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production uses. Zinc compounds and dust were used principally by the agricultural, chemical, paint, and rubber industries. Salient Statistics--United States: 2008 2009 2010 2011 2012 e Production: Mine, zinc in ore

459

(Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use: The value of zinc mined in 1995 was about $700 million. Essentially all came from  

E-Print Network [OSTI]

188 ZINC (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use were used principally by the agricultural, chemical, paint, and rubber industries. Major coproducts--United States: 1991 1992 1993 1994 1995e Production: Mine, recoverable 518 523 488 570 600 Primary slab zinc 253

460

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2010, based on zinc contained in concentrate, was about  

E-Print Network [OSTI]

188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber, and germanium. Salient Statistics--United States: 2006 2007 2008 2009 2010 e Production: Mine, zinc in ore

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2011, based on zinc contained in concentrate, was about  

E-Print Network [OSTI]

188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber industries. Salient Statistics--United States: 2007 2008 2009 2010 2011 e Production: Mine, zinc in ore

462

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1996 was about $800 million. Essentially all came from  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production were used principally by the agricultural, chemical, paint, and rubber industries. Major coproducts--United States: 1992 1993 1994 1995 1996e Production: Mine, recoverable 523 488 570 614 6201 Primary slab zinc

463

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2007, based on zinc contained in concentrate, was about  

E-Print Network [OSTI]

190 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production U.S. production. One primary and 12 large- and medium-sized secondary smelters refined zinc metal by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting, in order

464

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2009, based on zinc contained in concentrate, was about  

E-Print Network [OSTI]

184 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber, and germanium. Salient Statistics--United States: 2005 2006 2007 2008 2009e Production: Mine, zinc in ore

465

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million  

E-Print Network [OSTI]

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million tons--Arizona, Utah, Nevada, New Mexico, and Montana--accounted for more than 99% of domestic production; copper also

466

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at  

E-Print Network [OSTI]

54 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in three other States. Although copper-electrowinning facilities operated during the year. Refined copper and direct melt scrap were consumed at about 30 brass

467

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,  

E-Print Network [OSTI]

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons of production--accounted for more than 99% of domestic mine production; copper also was recovered in Alaska

468

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric  

E-Print Network [OSTI]

52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in six other States. While copper was recovered at about 35 mines operating in the United States, 15

469

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons  

E-Print Network [OSTI]

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons order of production--accounted for more than 99% of domestic mine production; copper also was recovered

470

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its  

E-Print Network [OSTI]

54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines in two other States. Although copper was recovered at 26 mines operating in the United

471

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its  

E-Print Network [OSTI]

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also was recovered at mines in Idaho and Missouri. Although copper was recovered at 29 mines operating in the United

472

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,  

E-Print Network [OSTI]

48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons of production--accounted for more than 99% of domestic mine production; copper also was recovered in Idaho

473

Extractant composition including crown ether and calixarene extractants  

DOE Patents [OSTI]

An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.

Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocalello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

2009-04-28T23:59:59.000Z

474

Removal of residual uranium in simulated radwaste solution by TBP extraction  

SciTech Connect (OSTI)

The extraction behavior of uranium in a multicomponent system simulated on the basis of high-level liquid waste was examined in order to find effective conditions for the removal of residual uranium in a simulated radwaste solution by the TBP solvent extraction method. While the conventional semiempirical equation for the distribution coefficient of uranium could be used in a system composed of only uranium and nitric acid, it was found to be unsuitable for a multicomponent system where the concentration of uranium is not dominant. Uranium extractability by TBP was found to be limited in multicomponents systems regardless of high TBP concentration, phase ratio, and extraction times because of the presence of neodymium and iron together with uranium in the systems.

Kim, Kwang-Wook; Lee, Eil-Hee; Shin, Young-Joon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

1995-10-01T23:59:59.000Z

475

Recovery of uranium from phosphoric acid medium by polymeric composite beads encapsulating organophosphorus extractants  

SciTech Connect (OSTI)

The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ion concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)

Singh, D.K.; Yadav, K.K.; Varshney, L.; Singh, H. [Bhabha Atomic Research Centre, Mumbai 400 085 (India)

2013-07-01T23:59:59.000Z

476

Molecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Richard J. Sadus  

E-Print Network [OSTI]

coexistence. 1. Introduction Henry's constant is a well-known measure of a solute's solubility in a particularMolecular Simulation of Henry's Constant at Vapor-Liquid and Liquid-Liquid Phase Boundaries Richard to determine Henry's constant from the residual chemical potential at infinite dilution at the vapor-liquid

477

Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants  

DOE Patents [OSTI]

A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

Meikrantz, David H. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Riddle, Catherine L. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID); Peterman, Dean R. (Idaho Falls, ID); Mincher, Bruce J. (Idaho Falls, ID); McGrath, Christopher A. (Blackfoot, ID); Baker, John D. (Blackfoot, ID)

2007-11-06T23:59:59.000Z

478

The Viscosity of Liquid Helium  

Science Journals Connector (OSTI)

2 September 1935 research-article The Viscosity of Liquid Helium J. O. Wilhelm A. D. Misener A. R. Clark The Royal Society is collaborating with JSTOR to digitize, preserve...

1935-01-01T23:59:59.000Z

479

Liquid Oxygen and its Uses  

Science Journals Connector (OSTI)

... of the liquid. At present, however, there is no known method of rendering them flameless, and their use in the majority of coal-mines is therefore inadmissible. If this ...

HENRY BRIGGS

1924-02-02T23:59:59.000Z

480

Gaseous and Liquid Hydrogen Storage  

Broader source: Energy.gov [DOE]

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

Note: This page contains sample records for the topic "liquids extracted thousand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Liquid helium cryo TEM | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cryo TEM Liquid helium cryo TEM The JEOL JEM-3000SFF was designed for high-resolution cryogenic transmission electron microscopy (cryo-EM) of biological samples and expands EMSL...

482

Essays on liquidity and information  

E-Print Network [OSTI]

This dissertation studies the interaction of liquidity and incomplete or asymmetric information. In Chapter 1, I study a dynamic economy with illiquidity due to adverse selection in financial markets. Investment is undertaken ...

Kurlat, Pablo (Pablo Daniel)

2010-01-01T23:59:59.000Z

483

Physical Chemistry of Ionic Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ionic liquids are experiencing explosive growth in many areas of research Ionic liquids are experiencing explosive growth in many areas of research and practical applications. They present a wide range of complex physical and chemical behaviors, including ambient vapor pressures ranging from UHV to weakly volatile, a substantial variety of distinct condensed phases, including multiple crystal isomorphs, glasses, amorphous plastic and liquid crystal phases, deep supercooling, and interesting dynamical and transport phenomena. Experiments and simulations have shown that their intrinsic self-organization at the nanoscale is responsible for several of these properties. The symposium will assemble an international array of speakers to discuss ionic liquids in the context of their heterogeneous environments, solvation, dynamics and transport, interfacial properties,

484

Liquid Microjunction Surface Sampling Coupled with High-Pressure Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections  

SciTech Connect (OSTI)

In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent.

Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

2010-01-01T23:59:59.000Z

485

SRS - Programs - Liquid Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

486

PHASE CHANGE LIQUIDS  

SciTech Connect (OSTI)

Work is being performed to develop a new shipping system for frozen environmental samples (or other materials) that uses an optimal phase change liquid (PCL) formulation and an insulated shipping container with an on-board digital temperature data logger to provide a history of the temperature profile within the container during shipment. In previous work, several PCL formulations with temperatures of fusion ranging from approximately -14 to -20 C were prepared and evaluated. Both temperature of fusion and heat of fusion of the formulations were measured, and an optimal PCL formulation was selected. The PCL was frozen in plastic bags and tested for its temperature profile in a cooler using a digital temperature data logger. This testing showed that the PCL formulation can maintain freezer temperatures (< -7 to -20 C) for an extended period, such as the time for shipping samples by overnight courier. The results of the experiments described in this report provide significant information for use in developing an integrated freezer system that uses a PCL formulation to maintain freezer temperatures in coolers for shipping environmental samples to the laboratory. Experimental results show the importance of the type of cooler used in the system and that use of an insulating material within the cooler improves the performance of the freezer system. A new optimal PCL formulation for use in the system has been determined. The new formulation has been shown to maintain temperatures at < -7 to -20 C for 47 hours in an insulated cooler system containing soil samples. These results are very promising for developing the new technology.

Susan S. Sorini; John F. Schabron

2006-03-01T23:59:59.000Z

487

Extremely Correlated Fermi Liquids B. Sriram Shastry  

E-Print Network [OSTI]

Extremely Correlated Fermi Liquids B. Sriram Shastry Physics Department, University of California the theory of an extremely correlated Fermi liquid with U ! 1. This liquid has an underlying auxiliary Fermi liquid Green's function that is further caparisoned by extreme correlations. The theory leads to two

California at Santa Cruz, University of

488

Extraction Route Trials on Sensitive Sites  

E-Print Network [OSTI]

on extraction routes. These routes must therefore be carefully constructed and maintained in order to safeguard

489

Supercritical Fluid Extraction of Radionuclides - A Green Technology for Nuclear Waste Management  

SciTech Connect (OSTI)

Supercritical fluid carbon dioxide (SF-CO2) is capable of extracting radionuclides including cesium, strontium, uranium, plutonium and lanthanides directly from liquid and solid samples with proper complexing agents. Of particular interest is the ability of SF-CO2 to dissolve uranium dioxide directly using a CO2-soluble tri-nbutylphosphate- nitric acid (TBP-HNO3) extractant to form a highly soluble UO2(NO3)2(TBP)2 complex that can be transported and separated from Cs, Sr, and other transition metals. This method can also dissolve plutonium dioxide in SF-CO2. The SF-CO2 extraction technology offers several advantages over conventional solvent-based methods including ability to extract radionuclides directly from solids, easy separation of solutes from CO2, and minimization of liquid waste generation. Potential applications of the SF-CO2 extraction technology for nuclear waste treatment and for reprocessing of spent nuclear fuels will be discussed. Information on current demonstrations of the SF-CO2 technology by nuclear companies and research organizations in different countries will be reviewed.

Wai, Chien M.

2003-09-10T23:59:59.000Z

490

Accurate extraction of the News  

E-Print Network [OSTI]

We propose a new scheme for extracting gravitational radiation from a characteristic numerical simulation of a spacetime. This method is similar in conception to our earlier work but analytical and numerical implementation is different. The scheme is based on direct transformation to the Bondi coordinates and the gravitational waves are extracted by calculating the Bondi news function in Bondi coordinates. The entire calculation is done in a way which will make the implementation easy when we use uniform Bondi angular grid at $\\mathcal I^+$. Using uniform Bondi grid for news calculation has added advantage that we have to solve only ordinary differential equations instead of partial differential equation. For the test problems this new scheme allows us to extract gravitational radiation much more accurately than the previous schemes.

Shrirang S. Deshingkar

2006-09-14T23:59:59.000Z

491

Commercialization of Coal-to-Liquids Technology  

SciTech Connect (OSTI)

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

492

The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991  

SciTech Connect (OSTI)

Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1992-04-01T23:59:59.000Z

493

Core-softened Fluids, Water-like Anomalies and the Liquid-Liquid Critical Points  

E-Print Network [OSTI]

. INTRODUCTION Water is characterized by well-known thermodynamic and kinetic liquid-state anomalies; for examplePREPRINT Core-softened Fluids, Water-like Anomalies and the Liquid-Liquid Critical Points Evy simulations are used to examine the relationship between water-like anoma- lies and the liquid-liquid critical

Barbosa, Marcia C. B.

494

2 Extracting and trapping biogenic 3 volatile organic compounds stored  

E-Print Network [OSTI]

, Subcritical water extraction; UAE, Ultrasound-assisted extraction 36 1. Introduction Plants release

Goldstein, Allen

495

Iron(III) extraction from chloride media by N,N?-tetrasubstituted malonamides: An interfacial study  

Science Journals Connector (OSTI)

Abstract The interfacial behaviour of two N,N?-tetrasubstituted malonamides, N,N?-dimethyl-N,N?-diphenyl malonamide (DMDPHMA) and N,N?-dimethyl-N,N?-dicyclohexylmalonamide (DMDCHMA), in the liquid–liquid (L/L) extraction of iron(III) from hydrochloric acid solutions, was studied. The experimental results obtained validate the absence of third phases for these systems. The equilibrium adsorption constants and surface excess concentrations, estimated by the Szyszkowski model, explain the experimental extraction efficiency patterns for both malonamides in the two diluents tested, 1,2-dichloroethane (1,2-DCE) and toluene. A solvation type mechanism is in accordance with all the results obtained, accounting for the structural and diluent effects observed.

M. Soledade C.S. Santos; Ana Paula Paiva

2014-01-01T23:59:59.000Z

496

He3 as an almost-localized Fermi liquid: The superfluid transition temperature  

Science Journals Connector (OSTI)

We examine the superfluid instability of liquid He3 from the standpoint of the almost-localized theory, based on the Gutzwiller approximation to the Hubbard model. Using the boson representation of Kotliar and Ruckenstein [Phys. Rev. Lett. 57, 1362 (1986)], we calculate the equal-spin two-particle vertex to first order in a loop expansion. We extract the l=1 coupling constant as a function of pressure and obtain values within 20% of the experimental ones. The choice of a cutoff proportional to the effective bandwidth leads to results for Tc in reasonably good agreement with experiments on liquid He3 under pressure.

J. W. Rasul; T. Li; H. Beck

1989-03-01T23:59:59.000Z

497

Black Hole Energy Extraction Problems  

Science Journals Connector (OSTI)

... non-rotating black hole the particle can be lowered to no closer than 1.14 Schwarzschild radii, and the energy extracted can be no more than 63.2 per cent ... gram of matter-and the rope could be lowered no closer than 5 x 1011 Schwarzschild radii. This seems to rule out black holes as practical sources of energy. ...

1972-11-24T23:59:59.000Z

498

Extraction of Three Bioactive Diterpenoids from Andrographis paniculata: Effect of the Extraction Techniques on Extract Composition and Quantification of Three Andrographolides Using High-Performance Liquid Chromatography  

Science Journals Connector (OSTI)

......high-pressure pumps (P-50A, P-200A), a recycler and a chiller (Accel 500 LC, Thermo scientific, USA) units. The HPLC...and 16.67 min for AP1, AP2 and AP3, respectively, when absorption was measured at 210 nm (Table-I). At this wavelength......

Satyanshu Kumar; Tushar Dhanani; Sonal Shah

2014-10-01T23:59:59.000Z

499

Extraction of Three Bioactive Diterpenoids from Andrographis paniculata: Effect of the Extraction Techniques on Extract Composition and Quantification of Three Andrographolides Using High-Performance Liquid Chromatography  

Science Journals Connector (OSTI)

......Considering the effect of temperature on the solubility of...observed with a rise in temperature from 60 to 80C. The...selected for the method development. Under the optimized...G.S. HPLC method development and characterization...Andrographis paniculata on snake venom induced death......

Satyanshu Kumar; Tushar Dhanani; Sonal Shah

2014-10-01T23:59:59.000Z

500

Physical Properties of Ionic Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical Properties of Ionic Liquids Consisting of the Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations Hui Jin, Bernie O'Hare, Jing Dong, Sergei Arzhantsev, Gary A. Baker, James F. Wishart, Alan J. Benesi, and Mark Maroncelli J. Phys. Chem. B 112, 81-92 (2008). [Find paper at ACS Publications] Abstract: Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of