Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W....

2

Natural gas liquids consumption, production, and reserves  

Science Conference Proceedings (OSTI)

Natural gas liquids are condensates that occur during production and liquids recovered during processing, and they are classified as lease condensate or natural gas plant liquids (NGPL). There has been a decline in total domestic production, but an increase in ethane and liquefied petroleum gas (LPG) during the past decade. Statistical tables illustrate trends in the production of NGPLs and liquefied refinery gases (LRG), imports and exports, and marketing and sales. World production data show that, while the US now produces close to 41% of world output, the production trends in other areas are increasing as ours decline. 10 tables. (DCK)

Sala, D.

1983-03-28T23:59:59.000Z

3

EIA projects world energy consumption will increase 56% by ...  

U.S. Energy Information Administration (EIA)

EIA's recently released International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56% between 2010 and 2040, ...

4

Efficiency alone as a solution to increasing energy consumption  

E-Print Network (OSTI)

A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

Haidorfer, Luke

2005-01-01T23:59:59.000Z

5

Rapid Metal Heating: Reducing Energy Consumption and Increasing Productivity in the Thermal Processing of Metals  

Science Conference Proceedings (OSTI)

Energy intensive manufacturing operations, such as iron and steel production, forging, and heat treating, are attempting to increase productivity while decreasing energy consumption.

2000-05-08T23:59:59.000Z

6

Utah Natural Gas Liquids Lease Condensate, Proved Reserves Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Utah Natural Gas Liquids Lease Condensate, Proved Reserves Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

7

U.S. Natural Gas Plant Liquids, Reserves Revision Increases ...  

Annual Energy Outlook 2012 (EIA)

Increases (Million Barrels) U.S. Natural Gas Plant Liquids, Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

8

Hydrodynamics and energy consumption studies in a three-phase liquid circulating three-phase fluid bed contactor  

SciTech Connect

The hydrodynamics and energy consumption have been studied in a cold flow, bubbling and turbulent, pressurized gas-liquid-solid three-phase fluidized bed (0.15 m ID x 1 m height) with concurrent gas-liquid up flow is proposed with the intention of increasing the gas hold up. The hydrodynamic behaviour is described and characterised by some specific gas and liquid velocities. Particles are easily fluidized and can be uniformly distributed over the whole height of the column. The effect of parameters like liquid flow rate, gas flow rate, particle loading, particle size, and solid density on gas hold up and effect of gas flow rate, solid density and particle size on solid hold up, energy consumption and minimum fluidization velocity has been studied. At the elevated pressures a superior method for better prediction of minimum fluidization velocity and terminal settling velocities has been adopted. The results have been interpreted with Bernoulli's theorem and Richardson-Zaki equation. Based on the assumption of the gas and liquid as a pretend fluid, a simplification has been made to predict the particle terminal settling velocities. The Richardson-Zaki parameter n' was compared with Renzo's results. A correlation has been proposed with the experimental results for the three-phase fluidization. (author)

Rusumdar, Ahmad J [Thirumalai Engineering College, Kancheepuram, Tamil Nadu (India); Dept. of Modelling, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig (Germany); Abuthalib, A. [Dept. of Modelling, Leibniz Institute for Tropospheric Research, Permoserstr. 15, 04318 Leipzig (Germany); Mohan, Vaka Murali; Srinivasa Kumar, C. [Dept. of CSE, New Netaji Institute of Technology, Toopranpet, Nalgonda 508 252, AP (India); Sujatha, V.; Rajendra Prasad, P. [Dept. of Chemical Engineering, Andhra University, College of Engineering, Visakhapatnam 530 003, AP (India)

2009-07-15T23:59:59.000Z

9

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

10

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Prices and Oil Consumption Would Increase Without Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

11

Consumption  

E-Print Network (OSTI)

www.eia.gov Annual Energy Outlook 2013 projections to 2040 • Growth in energy production outstrips consumption growth • Crude oil production rises sharply over the next decade • Motor gasoline consumption reflects more stringent fuel economy standards • The U.S. becomes a net exporter of natural gas in the early 2020s • U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

12

Domestic supply of liquid fuels projected to increase, resulting ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

13

Effect of increased social unacceptability of cigarette smoking on reduction in cigarette consumption.  

E-Print Network (OSTI)

means that a 3.8% drop in consumption would occur for everyIndividual ciga- rette consumption and addiction: a flexibleReduction in Cigarette Consumption | Benjamin Alamar, PhD,

Alamar, Benjamin; Glantz, Stanton A

2006-01-01T23:59:59.000Z

14

Policies for Increasing Throughput and Decreasing Power Consumption in Bluetooth MAC  

E-Print Network (OSTI)

Bluetooth is a fast emerging standard for indoor pico-cellular wireless networks. Power is at a premium in typical Bluetooth devices like palmtops, PDAs, laptops and mobile phones. The Bluetooth standard defines various modes for reducing power consumption of the devices by reducing their transmission and reception activities. System throughput can be increased by keeping Bluetooth devices in low power mode in case of low data rates at those devices, by avoiding unnecessary polling packets. In this paper we propose policies for scheduling and switching of power modes of Bluetooth devices for increasing throughput and decreasing power consumption. All the proposed schemes, along with a policy where all the devices are always in active mode, and a policy with previous information of packet arrival times are implemented on a Bluetooth simulator for comparing their performance. Performance of the policies is compared for different traffic models and actual traffic traces. The policies are found to perform well in terms of power savings and throughput enhancement.

Indraneel Chakraborty; Abhishek Kashyap; Anupam Rastogi; Huzur Saran; Rajeev Shorey; Apurva Kumar

2000-01-01T23:59:59.000Z

15

Microsoft Word - Gas Prices and Oil Consumption Would Increase Without Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release June 11, 2008 202-586-4940 Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. The letter is available at http://www.energy.gov Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. * The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol 1 , a first-generation biofuel. * For a typical household, that means saving about $150 to $300 per year. * For the U.S. overall, this saves gas expenditures of $28 billion to $49 billion based on annual

16

Do homeowners increase consumption after the last mortgage payment? An alternative test of the permanent income hypothesis  

E-Print Network (OSTI)

The maturity date of a mortgage loan marks the end of monthly mortgage payments for homeowners. In the period after the last payment, homeowners experience an increase in their monthly disposable income that is equal to the average monthly mortgage payment. Our study interprets this event as an anticipated increase in income, and analyzes consumption behavior over the transition period. In particular, we test whether households smooth consumption as predicted by the rational expectation Life-Cycle/Permanent Income Hypothesis (Re-LC/PIH). We find that they do. Households do not alter nondurable goods consumption in the period following the last mortgage payment despite the increase in disposable income.

Brahima Coulibaly; Geng Li

2006-01-01T23:59:59.000Z

17

The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

SR/OIAF-CNEAF/2008-04 SR/OIAF-CNEAF/2008-04 The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special

18

China's growing CO{sub 2} emissions - a race between increasing consumption and efficiency gains  

SciTech Connect

China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO{sub 2} emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO{sub 2} emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO{sub 2} emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries. 65 refs., 3 figs., 1 tab.

Glen P. Peters; Christopher L. Weber; Dabo Guan; Klaus Hubacek [Norwegian University of Science and Technology, Trondheim (Norway)

2007-09-15T23:59:59.000Z

19

Bubble statistics and coarsening dynamics for quasi-two dimensional foams with increasing liquid content  

E-Print Network (OSTI)

We report on the statistics of bubble size, topology, and shape and on their role in the coarsening dynamics for foams consisting of bubbles compressed between two parallel plates. The design of the sample cell permits control of the liquid content, through a constant pressure condition set by the height of the foam above a liquid reservoir. We find that in the scaling state, all bubble distributions are independent not only of time but also of liquid content. For coarsening, the average rate decreases with liquid content due to the blocking of gas diffusion by Plateau borders inflated with liquid. By observing the growth rate of individual bubbles, we find that von Neumann's law becomes progressively violated with increasing wetness and with decreasing bubble size. We successfully model this behavior by explicitly incorporating the border blocking effect into the von Neumann argument. Two dimensionless bubble shape parameters naturally arise, one of which is primarily responsible for the violation of von Neumann's law for foams that are not perfectly dry.

A. E. Roth; C. D. Jones; D. J. Durian

2012-06-30T23:59:59.000Z

20

A Note on the Consumption Function  

E-Print Network (OSTI)

Zeldes, S. (1989) ‘ Consumption and Liquidity Constraints:A Note on the Consumption Function Douglas G.Steigerwald Consumption Function The international

Steigerwald, Douglas G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

22

Did Household Consumption Become More Volatile?  

E-Print Network (OSTI)

I show that after accounting for predictable variation arising from movements in real interest rates, preferences, income shocks, liquidity constraints and measurement errors, volatility of household consumption in the US increased between 1970 and 2004. For households headed by nonwhite and/or poorly educated individuals, this rise was significantly larger. This stands in sharp contrast with the dramatic fall in instability of the aggregate U.S. economy over the same period. Thus, while aggregate shocks affecting households fell over time, idiosyncratic shocks increased. This finding may lead to significant welfare implications.

Olga Gorbachev

2009-01-01T23:59:59.000Z

23

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

24

EIA - International Energy Outlook 2009-Liquid Fuels Graphic...  

Gasoline and Diesel Fuel Update (EIA)

26. World Liquids Supply in three Cases, 2006 and 2030 Figure 27. World Production of Unconventional Liquid Fuels, 2006-2030 Figure 28. World Liquids Consumption by Sector,...

25

EIA - International Energy Outlook 2008-Liquid Fuels  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Chapter 2 - Liquid Fuels World liquids consumption increases from 84 million barrels per day in 2005 to 99 million barrels per day in 2030 in the IEO2008 high price case. In the reference case, which reflects a price path that departs significantly from prices prevailing in the first 8 months of 2008, liquids use rises to 113 million barrels per day in 2030. Figure 26. World Liquids Production in the Reference Case, 1990-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800.

26

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

27

Shellfish consumption and intertidal occupancy review, Sellafield, 2004. This note describes a review of public radiation exposure pathways due to liquid radioactive  

E-Print Network (OSTI)

a review of public radiation exposure pathways due to liquid radioactive waste discharges from the British limited to adults. The results are shown in Tables 1 to 3. Data analysis Internal exposure In addition and external exposure pathways have also been conducted by the Centre for Environment, Fisheries

28

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

29

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

that per-capita energy consumption increases significantly wi n an increase per-capita energy consumption (Hasegawa and

2006-01-01T23:59:59.000Z

30

Indexes of Consumption and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Figure on manufacturing production indexes and purchased energy consumption Figure on manufacturing production indexes and purchased energy consumption Source: Energy Information Administration and Federal Reserve Board. History of Shipments This chart presents indices of 14 years (1980-1994) of historical data of manufacturing production indexes and Purchased (Offsite-Produced) Energy consumption, using 1992 as the base year (1992 = 100). Indexing both energy consumption and production best illustrates the trends in output and consumption. Taken separately, these two indices track the relative growth rates within the specified industry. Taken together, they reveal trends in energy efficiency. For example, a steady increase in output, coupled with a decline in energy consumption, represents energy efficiency gains. Likewise, steadily rising energy consumption with a corresponding decline in output illustrates energy efficiency losses.

31

Figure 64. Industrial energy consumption by fuel, 2011, 2025, and ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 64. Industrial energy consumption by fuel, 2011, 2025, and 2040 (quadrillion Btu) Natural Gas Petroleum and other liquids

32

liquid fuels | OpenEI  

Open Energy Info (EERE)

dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date...

33

HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS  

SciTech Connect

The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

2009-01-14T23:59:59.000Z

34

Residential Energy Consumption Survey data show decreased ...  

U.S. Energy Information Administration (EIA)

Total U.S. energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the ...

35

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

36

Optimal consumption policies in illiquid markets  

E-Print Network (OSTI)

We investigate optimal consumption policies in the liquidity risk model introduced in Pham and Tankov (2007). Our main result is to derive smoothness results for the value functions of the portfolio/consumption choice problem. As an important consequence, we can prove the existence of the optimal control (portfolio/consumption strategy) which we characterize both in feedback form in terms of the derivatives of the value functions and as the solution of a second-order ODE. Finally, numerical illustrations of the behavior of optimal consumption strategies between two trading dates are given.

Cretarola, Alessandra; Pham, Huyên; Tankov, Peter

2008-01-01T23:59:59.000Z

37

Progressive consumption : strategic sustainable excess  

E-Print Network (OSTI)

Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

Bonham, Daniel J. (Daniel Joseph MacLeod)

2007-01-01T23:59:59.000Z

38

Factors of material consumption  

E-Print Network (OSTI)

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Díaz, Pamela Cristina

2012-01-01T23:59:59.000Z

39

Margins up; consumption down  

SciTech Connect

The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

Mantho, M.

1983-09-01T23:59:59.000Z

40

Data Center Power Consumption  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

42

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Maps by energy source and topic, includes ... Total United States energy consumption in homes has remained relatively stable for many years as increased energy ...

43

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

44

Consumption Technical Notes  

U.S. Energy Information Administration (EIA)

as street lighting and public services; and the Manufacturing Energy Consumption Survey covers only manufacturing establishments,

45

Liquid ventilation  

E-Print Network (OSTI)

For 350 million years, fish have breathed liquid through gills. Mammals evolved lungs to breathe air. Rarely, circumstances can occur when a mammal needs to `turn back the clock' to breathe through a special liquid medium. This is particularly true if surface tension at the air-liquid interface of the lung is increased, as in acute lung injury. In this condition, surface tension increases because the pulmonary surfactant system is damaged, causing alveolar collapse, atelectasis, increased right-to-left shunt and hypoxaemia. 69 The aims of treatment are: (i) to offset increased forces causing lung collapse by applying mechanical ventilation with PEEP; (ii) to decrease alveolar surface tension with exogenous surfactant; (iii) to eliminate the air-liquid interface by filling the lung with a fluid in

U. Kaisers; K. P. Kelly; T. Busch

2003-01-01T23:59:59.000Z

46

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

Science Conference Proceedings (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

47

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

48

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

49

UK Energy Consumption by Sector The energy consumption data consists...  

Open Energy Info (EERE)

Consumption by Sector The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following...

50

Connected Consumption: The hidden networks of consumption  

E-Print Network (OSTI)

In this paper, we present the Connected Consumption Network (CCN) that allows a community of consumers to collaboratively sense the market from a mobile device, enabling more informed financial decisions in geo-local ...

Reed, David P.

51

CSV File Documentation: Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption The State Energy Data System (SEDS) comma-separated value (CSV) files contain consumption estimates shown in the tables located on the SEDS website. There are four files that contain estimates for all states and years. Consumption in Physical Units contains the consumption estimates in physical units for all states; Consumption in Btu contains the consumption estimates in billion British thermal units (Btu) for all states. There are two data files for thermal conversion factors: the CSV file contains all of the conversion factors used to convert data between physical units and Btu for all states and the United States, and the Excel file shows the state-level conversion factors for coal and natural gas in six Excel spreadsheets. Zip files are also available for the large data files. In addition, there is a CSV file for each state, named

52

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network (OSTI)

relative to increases in its consumption at a higher rate than all but two states (in part because California is the lowest user of electricity per capita and per dollar of gross state product in the west). Annual WSCC consumption increased 64% from 1977 to 1998, but California's consumption grew by only 44

California at Berkeley. University of

53

Energy Consumption of Die Casting Operations  

SciTech Connect

Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

Jerald Brevick; clark Mount-Campbell; Carroll Mobley

2004-03-15T23:59:59.000Z

54

consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

55

Outdoor advertising, obesity, and soda consumption: a cross-sectional study  

E-Print Network (OSTI)

285–306. 3. Kearney J: Food consumption trends and drivers.increase the food intake and consumption volume of unknowingfast food and soft drink consumption and obesity. Econ Hum

Lesser, Lenard I; Zimmerman, Frederick J; Cohen, Deborah A

2013-01-01T23:59:59.000Z

56

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

57

Petroleum & Other Liquids - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, ... Sources & Uses Petroleum Coal Natural Gas Renewable Nuclear Electricity Consumption Total Energy. Topics

58

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

59

Adaptive Liquid Crystal Windows  

SciTech Connect

Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

Taheri, Bahman; Bodnar, Volodymyr

2011-12-31T23:59:59.000Z

60

OpenEI - consumption  

Open Energy Info (EERE)

91/0 en Operational water 91/0 en Operational water consumption and withdrawal factors for electricity generating technologies http://en.openei.org/datasets/node/969 This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions.

License

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy-consumption modelling  

SciTech Connect

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

62

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

Science Conference Proceedings (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL

2012-01-01T23:59:59.000Z

63

EIA Average Energy Consumption 2005  

U.S. Energy Information Administration (EIA)

Table US8. Average Consumption by Fuels Used, 2005 Physical Units per Household Fuels Used (physical units of consumption per household using the fuel)

64

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

65

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

66

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

67

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

68

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

69

Wealth, consumption, and regional economic development in the United States.  

E-Print Network (OSTI)

??Consumption has become increasingly important to regional economies, yet the focus upon production activities as the basis for regional economic development has limited our understanding… (more)

Wenzl, Andrew J

2008-01-01T23:59:59.000Z

70

World Net Electricity Consumption, by Region, 1990-2020  

U.S. Energy Information Administration (EIA)

Electricity consumption worldwide increases by 76 percent in the reference case, from 12 trillion kilowatthours in 1997 to 22 trillion kilowatthours in 2020.

71

1997 Residential Energy Consumption and Expenditures per Household ...  

U.S. Energy Information Administration (EIA)

Return to: Residential Home Page . Changes in the 1997 RECS: Housing Unit Type Per Household Member Per Building Increase. Residential Energy Consumption ...

72

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Vehicle Energy Consumption Survey Data; ... That increase in supply has in turn lowered the price of natural gas to manufacturers as well as other consumers.

73

World Energy Consumption: IEO99 vs. IEO98  

U.S. Energy Information Administration (EIA)

... world energy consumption increases by about 65 percent by ... Asia and Russia. ... to build and are often more efficient than other means of power generation.

74

Elements of consumption: an abstract visualization of household consumption  

Science Conference Proceedings (OSTI)

To promote sustainability consumers must be informed about their consumption behaviours. Ambient displays can be used as an eco-feedback technology to convey household consumption information. Elements of Consumption (EoC) demonstrates this by visualizing ... Keywords: a-life, eco-feedback, household consumption, sustainability

Stephen Makonin; Philippe Pasquier; Lyn Bartram

2011-07-01T23:59:59.000Z

75

Coal-to-Liquids in the U S Status and Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

to-Liquids in the United States to-Liquids in the United States Status and Roadmap CTLtec Americas 2008 June 23 - 24, 2008 Daniel C. Cicero, Technology Manager, Hydrogen and Syngas National Energy Technology Laboratory CTL Tec Americas 2008 / Daniel Cicero / U.S. DOE-NETL / June 2008 * 35% of world energy consumption is from oil 2 * 96% of all world oil used for transportation * World vehicle population at 700 million; - double by 2030 to 1.5 billion; - developing countries to triple * World oil consumption is 84 MMBPD - 20% higher than 1995 - expect 120 MMBPD by 2030 * World oil supplies could peak between 2016 and 2037 3 * Increasing competition with China, India, and other growing nations for oil resources * Oil resources not equitably distributed globally; coal more wide spread 2 Ref: World Coal Institute Report "Coal-to-Liquids"

76

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

77

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

78

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

79

Amtrak fuel consumption study  

Science Conference Proceedings (OSTI)

This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

Hitz, J.

1981-02-01T23:59:59.000Z

80

Liquid-Liquid Extraction Processes  

E-Print Network (OSTI)

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between the two liquid phases, separation will result. This is the principle upon which separation by liquid-liquid extraction is based, and there are a number of important applications of this concept in industrial processes. This paper will review the basic concepts and applications as well as present future directions for the liquid-liquid extraction process.

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reduced power consumption in  

E-Print Network (OSTI)

and a potential energy savings of over $30 Billion/year. This new approach is demanded by the exponentiallyBenefits Reduced power consumption in IC devices; hence potential energy savings of 300 Billion KWh://www.sia- online.org) CuRIE Interconnect Technology for Improved Energy Efficiency in IC Chips ARPA-E Technology

82

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network (OSTI)

12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity the NAO. ENERGY CONSUMPTION AND PRODUCTION IN NORWAY AND THE NAO The demand for heating oil in Norway

83

Reduction of Water Consumption  

E-Print Network (OSTI)

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews the various options available: WET-DRY towers, or DRY-WET, or combination WET and DRY towers!

Adler, J.

1985-05-01T23:59:59.000Z

84

Crisis and Consumption Smoothing  

Science Conference Proceedings (OSTI)

The dramatic impact of the current crisis on performance of businesses across sectors and economies has been headlining the business press for the past several months. Extant reconciliations of these patterns in the popular press rely on ad hoc reasoning. ... Keywords: consumer behavior, consumption smoothing, crisis, econometrics, marketing strategy

Pushan Dutt; V. Padmanabhan

2011-05-01T23:59:59.000Z

85

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

86

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

87

Natural Gas Liquids Reserves Revision Increases  

Gasoline and Diesel Fuel Update (EIA)

882 1,232 968 845 1,187 1,192 1979-2008 882 1,232 968 845 1,187 1,192 1979-2008 Federal Offshore U.S. 118 148 114 118 116 85 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 89 104 89 99 90 71 1981-2008 Texas 29 44 25 19 26 14 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 882 1,232 968 845 1,187 1,192 1979-2008 Alabama 8 4 2 5 2 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 12 22 31 8 16 12 1979-2008 Coastal Region Onshore 1 3 2 3 2 1 1979-2008 Los Angeles Basin Onshore 1 0 1 0 1 0 1979-2008 San Joaquin Basin Onshore 10 19 28 5 13 11 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 51 72 55 34 105 93 1979-2008 Florida 0 0 0 0 2 0 1979-2008 Kansas 11 44 12 44 22 19 1979-2008

88

EIA projects world energy consumption will increase 56% by ...  

U.S. Energy Information Administration (EIA)

However, fossil fuels continue to supply nearly 80% of world energy use through 2040. Natural gas is the fastest-growing fossil fuel, ...

89

EIA projects world energy consumption will increase 56% by 2040 ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

90

101. Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Consumption 1. Natural Gas Consumption in the United States, 1930-1996 (Million Cubic Feet) Table Year Lease and Plant Fuel Pipeline Fuel Delivered to Consumers Total Consumption Residential Commercial Industrial Vehicle Fuel Electric Utilities Total 1930 ....................... 648,025 NA 295,700 80,707 721,782 NA 120,290 1,218,479 1,866,504 1931 ....................... 509,077 NA 294,406 86,491 593,644 NA 138,343 1,112,884 1,621,961 1932 ....................... 477,562 NA 298,520 87,367 531,831 NA 107,239 1,024,957 1,502,519 1933 ....................... 442,879 NA 283,197 85,577 590,865 NA 102,601 1,062,240 1,505,119 1934 ....................... 502,352 NA 288,236 91,261 703,053 NA 127,896 1,210,446 1,712,798 1935 ....................... 524,926 NA 313,498 100,187 790,563 NA 125,239 1,329,487 1,854,413 1936 ....................... 557,404 NA 343,346

91

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

92

Modelling Energy Consumption in China  

E-Print Network (OSTI)

Energy consumption in China has attracted considerable research interest since the middle 1990s. This is largely prompted by the environmental ramifications of the extensive use of fossil fuels in the country to propel two decades of high economic growth. Since the late 1980s, there has been an increasing awareness on the part of the Chinese government of the imperative for the balance of economic growth and environmental protection. The government has since taken various measures ranging from encouraging energy-saving practice, controlling waste discharges to financing R & D programs on improving energy efficiency. Against this backdrop has seen a constant decline of the energy intensity of the economy, measured as the ratio of total energy consumed in standard coal equivalent to the real GDP since 1989. Using the 1987 and 1997 input-output tables for China, the present study examines the impact of technical and structural changes in the economy on industry fuel consumption over the 10-year period. Technical changes are reflected in changes in direct input-output coefficients, which capture the technical evolvement of intermediate production processes. Structural changes refer to shifts in the pattern of final demand for energy, including the import and export composition of various fuels. Six fuels are included in the study, namely, coal, oil, natural gas, electricity, petroleum and coke and gas, which cover all of the energy types available in the input-output tables. It is found that the predominant force of falling energy intensity was changes in direct energy input requirements in various industries. Such changes were responsible for a reduction in the consumption of four of the six fuels per unit of total output. Structural changes were not conducive for improv...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

93

Figure 7. U.S. dry natural gas consumption by sector, 2005-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 7. U.S. dry natural gas consumption by sector, 2005-2040 (trllion cubic feet) Residential Commercial Transportation Gas to liquids

94

2009 Energy Consumption Per Person  

Energy.gov (U.S. Department of Energy (DOE))

Per capita energy consumption across all sectors of the economy. Click on a state for more information.

95

Analysis of federal incentives used to stimulate energy consumption  

SciTech Connect

Conclusions of an analysis which identifies and quantifies Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity are summarized. Data on estimated cost of incentives used to stimulate energy consumption by incentive type and energy source are tabulated for coal, oil, gas, and electricity. It is suggested that the examination of past incentives can be useful in developing guidelines and limits for the use of incentives to stimulate consumption of solar energy. (MCW)

Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

1981-04-01T23:59:59.000Z

96

Aging of SRC liquids  

Science Conference Proceedings (OSTI)

The viscosity of SRC?LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30?70 blend of SRC?I with SRC?LL was subjected to oxygen aging in the absence of copper

T. Hara; L. Jones; K. C. Tewari; N. C. Li

1981-01-01T23:59:59.000Z

97

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

98

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

the Emissions and Fuel Consumption Impacts of IntelligentTravel Time, Fuel Consumption and Weigh Station Efficiency.EMISSIONS AND FUEL CONSUMPTION - Sustainable Approaches for

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

99

Essays on consumption cycles and corporate finance  

E-Print Network (OSTI)

and the consumption cycle . . . . . . . . . . . . .3.1.6 Optimal consumption, expenditures and1.3.2 Optimal nondurable consumption and durable

Issler, Paulo Floriano

2013-01-01T23:59:59.000Z

100

Milk consumption and acne in adolescent girls  

E-Print Network (OSTI)

Milk consumption and acne in adolescent girls Clement Aassociation between milk consumption and occurrence of acneand 'don't drink milk'. Consumption of the specific types of

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Stock Market and Consumption: Evidence from China  

E-Print Network (OSTI)

A. 1992. Understanding Consumption. Cambridge, UK: CambridgeStock market wealth and consumption. The Journal of Economic139–146. Stock Market and Consumption: Evidence from China

Hau, Leslie C

2011-01-01T23:59:59.000Z

102

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

103

Residential energy-consumption survey: consumption and expenditures, April 1978-March 1979  

SciTech Connect

Tables present data on energy consumption and expenditures for US households during a 12-month period. The total amount of energy consumed by the residential sector from April 1978 through March 1979 is estimated to have been 10,563 trillion Btu with an average household consumption of 138 million Btu. Table 1 summarizes residential energy consumption for all fuels (totals and averages) as wells as total amounts consumed and expenditures for each of the major fuel types (natural gas, electricity, fuel oil, and liquid petroleum gas). Tables 2 and 3 give the number of households and the average energy prices, respectively, for each of the major fuel types. In Tables 4 to 9, totals and averages for both consumption and expenditures are given for each of the major fuels. The consumption of each fuel is given first for all households using the fuel. Then, households are divided into those that use the fuel as their main source of heat and those using the fuel for other purposes. Electricity data (Tables 5 to 7) are further broken down into households that use electricity for air conditioning and those not using it for this purpose. Limited data are also presented on households that use each of the major fuels for heating water. Each of the consumption tables is given for a variety of general household features, including: geographical, structural and physical, and demographic characteristics. Tables 10 to 18 present the same information for the subgroup of households living in single-family owner-occupied detached houses. The third set of tables (19 to 27) is limited to households that paid directly for all of the energy they used. Tables 28 to 36 provide variance estimates for the data.

Not Available

1980-07-01T23:59:59.000Z

104

AEO2011: Liquid Fuels Supply and Disposition

Open Energy Info (EERE)

dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption.
...

105

Table 5.1a Petroleum and Other Liquids Overview, 1949-2011  

U.S. Energy Information Administration (EIA)

Table 5.1a Petroleum and Other Liquids Overview, 1949-2011: Year: Production 1: Production as Share of Estimated Consumption: Net Imports 2: Net Imports

106

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

107

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

108

A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics  

E-Print Network (OSTI)

-module configuration and to its large liquid nitrogen consumption (~1 liquid m3 /hour), the 300-ton geometry purity (UHP) liquefied noble gas and for coping with the engineering and safety issues related

McDonald, Kirk

109

Electrical appliance energy consumption control methods and ...  

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy ...

110

Map Data: State Consumption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Map Data: State Consumption stateconsumptionpc2009.csv More Documents & Publications Map Data: Renewable Production Map Data: State Spending...

111

Consumption & Efficiency - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

Today in Energy - Commercial Consumption & Efficiency. Short, timely articles with graphs about recent commercial consumption and efficiency ...

112

Evaluation of the Trade-Off between Power Consumption and Performance in Bluetooth Based Systems  

Science Conference Proceedings (OSTI)

To further increase the applicability of Bluetooth in real appli- cations, reducing the energy consumption and hardware cost are important research topics. In this paper we examine the trade-off between power consumption and performance for our experimen- ...

Juan-Carlos Cano; Jose-Manuel Cano; Carlos Calafate; Eva Gonzalez; Pietro Manzoni

2007-10-01T23:59:59.000Z

113

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

114

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

115

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

116

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

117

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

118

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

119

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

120

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

122

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

123

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Appendix A How the Survey Was Conducted Introduction The Residential Transportation Energy Consumption Survey (RTECS) was designed by the Energy Information Administration (EIA)...

124

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTIONENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

125

RECS data show decreased energy consumption per household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-06-06T23:59:59.000Z

126

World energy consumption  

Science Conference Proceedings (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

127

Electricity Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Consumption world Data text/csv icon total_electricity_net_consumption_1980_2009billion_kwh.csv (csv, 50.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

128

Biofuels Consumption | OpenEI  

Open Energy Info (EERE)

Biofuels Consumption Biofuels Consumption Dataset Summary Description Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration (EIA). Data is presented as thousand barrels per day. Source EIA Date Released Unknown Date Updated Unknown Keywords Biofuels Biofuels Consumption EIA world Data text/csv icon total_biofuels_production_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) text/csv icon total_biofuels_consumption_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2010 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

129

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

130

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

131

Nonconventional Liquid Fuels  

Reports and Publications (EIA)

Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the AEO2006 projections.

Information Center

2006-02-01T23:59:59.000Z

132

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

Larson, Loren L. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

133

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

134

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

135

US ENC IL Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

136

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

137

US ENC MI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

138

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

139

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

140

Financing retirement consumption and bequests  

E-Print Network (OSTI)

This dissertation consists of three essays that evaluate possible vehicles for financing either retirement consumption or bequests. Chapter 1 compares the use of Roth and tax-deferred retirement accounts for retirement ...

Bishop, Tonja Bowen

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy consumption of building 39  

E-Print Network (OSTI)

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

142

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

143

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

144

Fuel Consumption | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Road Load Equation Jan 15 2014 11:30 AM - 12:30 PM Glen E. Johnson Tennessee Tech University, Cookeville Energy and Transportation Science Division Seminar National Transportation Research Center, Room C-04 CONTACT : Email: Andreas Malikopoulos Phone:865.382.7827 Add to Calendar SHARE Ambitious goals have been set to reduce fuel consumption and CO2 emissions over the next generation. Starting from first principles, we will derive relations to connect fuel consumption and carbon dioxide emissions to a vehicle's road load equation. The model suggests approaches to facilitate achievement of future fuel and emissions targets. About the speaker: Dr. Johnson is a 1973 Mechanical Engineering graduate of Worcester

145

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

146

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2011 State Coal Natural Gas a Petroleum Nuclear Electric Power Hydro- electric Power f Fuel Ethanol g...

147

Guidance Document Cryogenic Liquids  

E-Print Network (OSTI)

liquefies them. Cryogenic liquids are kept in the liquid state at very low temperatures. Cryogenic liquids are liquid nitrogen, liquid argon and liquid helium. The different cryogens become liquids under different. In addition, when they vaporize the liquids expand to enormous volumes. For example, liquid nitrogen

148

Reduces electric energy consumption  

E-Print Network (OSTI)

implementation of the assessment recommendations is estimated to be $843,000 with a total implementation cost. Manufacturing at the facility includes both casting and extrusion processes. Process equipment, air compressors productivity. As a result, facility production costs can be reduced and profits can be increased. August 2001

149

OpenEI - Electricity Consumption  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Consumption (1980 - 2009) http://en.openei.org/datasets/node/877 Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). License

Type of License:  Other (please specify below)
Source of data

150

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

151

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

152

Long-term Outlook for Oil and Other Liquid Fuels  

U.S. Energy Information Administration (EIA)

Biofuels, natural gas liquids, and crude oil production are key sources of increased domestic liquids supply. Source: EIA, Annual Energy Outlook 2011. Gulf of Mexico.

153

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice vs. Liquid Nitrogen Previous Video (Dry Ice vs. Liquid Nitrogen) Frostbite Theater Main Index Next Video (Shattering Pennies) Shattering Pennies Liquid Nitrogen Cooled...

154

LANNDD -A line of liquid argon TPC detectors scalable in mass from 200 Tons to 100 KTons  

E-Print Network (OSTI)

and to its large liquid nitrogen consumption (~1 liquid m3/hour), the 300-ton geometry and construction required for a detector based on an ultra high purity (UHP) liquefied noble gas and for coping

McDonald, Kirk

155

Liquid level controller  

DOE Patents (OSTI)

A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)

Mangus, J.D.; Redding, A.H.

1975-07-15T23:59:59.000Z

156

A Glance at China’s Household Consumption  

SciTech Connect

Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

Shui, Bin

2009-10-22T23:59:59.000Z

157

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot...

158

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of...

159

Natural gas consumption reflects shifting sectoral patterns ...  

U.S. Energy Information Administration (EIA)

U.S. natural gas consumption since 1997 reflects shifting patterns. Total U.S. natural gas consumption rose 7% between 1997 and 2011, but this modest ...

160

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

RECS data show decreased energy consumption per household. RECS 2009 — Release date: June 6, 2012. Total United States energy consumption in homes has remained ...

162

Measuring the efficacy of an energy and environmental awareness campaign to effectively reduce water consumption.  

E-Print Network (OSTI)

??Increased energy costs and a move toward environmental stewardship are driving many organizations, including universities, to engage in awareness efforts to reduce both energy consumption… (more)

Miller, Laura

2010-01-01T23:59:59.000Z

163

Minneapolis residential energy consumption. Final report  

SciTech Connect

This report deals with residential energy consumption in single - family, townhouse, low - rise, and high - rise structures in Minnapolis, Minn., with the year 1957 chosen as a typical weather year for the area. Design and structural features considered important in defining the residences were structural parameters (construction details, dimensions, and materials), energy consumption parameters (heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels), and lifestyle parameters (thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated using a time - response computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The heating load was significantly higher than the cooling load for single - family and townhouse residences, as would be expected for the cold Minneapolis climate. Due to increased internal heat generation, low - rise and high - rise cooling and heating loads were similar in magnitude. Energy - conserving modifications involving both structural and comfort control system changes resulted in the following: single - family residences consumed 47 percent, townhouse residences consumed 52 percent, low - rise residences consumed 53 percent, and high - rise residences consumed 34 percent of the primary energy required by the characteristic residence. Supporting data, layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-11-01T23:59:59.000Z

164

Commercialization of Coal-to-Liquids Technology  

SciTech Connect

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

165

EIA - International Energy Outlook 2008-Liquid Fuels Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Figure 26. World Liquids Production in the Reference Case, 1990-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. World Liquids Consumption by Sector, 2005-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 29. World Liquids Consumption by Region and Country Group, 2005 and 2030 Figure 29 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 30. Nominal World Oil Prices in three Cases, 1980-2030 Figure 30 Data. Need help, contact the National Energy Information Center at 202-586-8800.

166

US ENC WI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

167

US ENC WI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

168

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

169

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

170

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

ESC TN ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average and among the highest in the nation, but spending for electricity is closer to average due to relatively low electricity prices. * Tennessee homes are typically newer, yet smaller in size, than homes in other parts of the country.

171

Today in Energy - Residential Consumption & Efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent residential consumption and efficiency issues and trends

172

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... An Assessment of EIA's Building Consumption Data. ... Commercial Buildings - CBECS. Manufacturing - MECS.

173

Railroad fuel-oil consumption in 1928  

SciTech Connect

Data are presented, by districts, covering the consumption of fuel oil for various uses by railroads.

Redfield, A.H.

1930-01-01T23:59:59.000Z

174

Today in Energy - Commercial Consumption & Efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends

175

OpenEI - Energy Consumption  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the consumption/residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

176

Monitoring Energy Consumption of Smartphones  

E-Print Network (OSTI)

With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.

Ding, Fangwei; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

2012-01-01T23:59:59.000Z

177

Consumptive water use in the production of ethanonl and petroleum gasoline.  

DOE Green Energy (OSTI)

The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

2009-01-30T23:59:59.000Z

178

Consumptive water use in the production of ethanonl and petroleum gasoline.  

SciTech Connect

The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

2009-01-30T23:59:59.000Z

179

EIA - International Energy Outlook 2007 - Energy Consumption by End-Use  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector International Energy Outlook 2007 Chapter 2 - Energy Consumption by End-Use Sector In the IEO2007 projections, end-use energy consumption depends on resource endowment, economic growth, and other political, social, and demographic factors.. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is dominated by petroleum-based liquids products at present, the mix of energy use in the residential, commercial, and industrial sectors varies widely by region, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social,

180

Amtrak fuel consumption study. Final report May-Sep 80  

SciTech Connect

This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC) under the sponsorship of the Federal Railroad Administration and in cooperation with Amtrak. A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations. Results of the tests showed that the average fuel consumption for the 157.7 mile trip was 368 gallons and that the average fuel use efficiency was 277 ton-miles per gallon. Fuel consumption and fuel use efficiency were found to increase consistently with increasing train tonnage. One locomotive was also found to consume about 12 percent more fuel than the other locomotive tested. The fuel consumption and trip time results for individual runs varied between +8.0 to -9.5 and +5.4 and -10.7 percent, respectively, of the Train Performance Simulator results. However, when averaged over the ten test runs analyzed, the fuel consumption and trip time results were within 1.04 and 0.03 percent, respectively, of the simulator. Throttle notch settings and train speed profiles also agreed well with simulated results.

Hitz, J.S.

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

182

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

183

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumed more petroleum-based liquid fuel per capita than any other OECD- high-income country- 30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxemburg). ...

Knittel, Christopher R.

2011-12-01T23:59:59.000Z

184

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumes more petroleum-based liquid fuel per capita than any other OECD high-income country—30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxembourg). ...

Knittel, Christopher Roland

2012-01-01T23:59:59.000Z

185

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

186

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

187

Conspicuous Consumption and Dynamic Pricing  

Science Conference Proceedings (OSTI)

How do firms develop marketing strategy when consumers seek to satisfy both quality and status-related considerations? We develop an analytical model to study this issue, examining both pricing and product management decisions in markets for conspicuous ... Keywords: conspicuous consumption, durable goods, dynamic pricing, game theory, status

Raghunath Singh Rao, Richard Schaefer

2013-09-01T23:59:59.000Z

188

Reduces a processor's energy consumption  

E-Print Network (OSTI)

). Clearly, this is energy inefficient and wasteful of energy. 2 More precisely, the faster that a processor decide that energy is being wasted and will decrease the frequency/voltage level. Translation: LowerReduces a processor's energy consumption by up to 70% Diminishes greenhouse gas emissions Improves

189

The 1997 Residential Energy Consumption Survey -- Two Decades  

U.S. Energy Information Administration (EIA)

1997 Residential Energy Consumption Survey presents two decades of changes in energy consumption related Household Characteristics

190

Liquid cooled counter flow turbine bucket  

DOE Patents (OSTI)

Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

Dakin, James T. (Schenectady, NY)

1982-09-21T23:59:59.000Z

191

Corresponding author: Tel. (617) 253-3901, Fax. (617) 253-9845, Email: jrm1@mit.edu THE FUTURE OF COAL CONSUMPTION IN A CARBON CONSTRAINED WORLD  

E-Print Network (OSTI)

of coal consumption in the US and European electric power sectors to carbon prices, natural gas prices and natural gas prices are determined endogenously. Coal consumption in the US electric power sector increases consumption is most highly dependent upon the carbon price. Coal consumption is less sensitive to natural gas

192

Trade-Off Between Consumption Growth and Inequality: Theory and Evidence for Germany  

E-Print Network (OSTI)

This paper examines the structure and evolution of consumption inequality. Once heterogeneous agents relate their neighbors ’ consumption to their own, consumption volatility and inequality are affected. The model predicts a positive relationship between the group specific average consumption growth and within-group inequality, which is empirically confirmed using survey data from the German Socio-Economic Panel (GSOEP) covering the period 1984-2005. Age and household size are crucial for within-group inequality, as young and/or small households are more sensitive to income and consumption shocks. The data also shows increases of within-group inequality directly after the reunification and the introduction of the euro. Preliminary! Keywords: consumption inequality, consumption growth, German Socio-Economic Panel,

Runli Xie; Jel Codes E

2009-01-01T23:59:59.000Z

193

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

194

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

195

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

196

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

197

US WNC MO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WNC MO WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less than the national average, primarily due to historically lower residential electricity prices in the state. * Missouri homes are typically larger than homes in other states and are more likely to be attached or detached single-family housing units.

198

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

199

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

200

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Petroleum & Other Liquids - Analysis & Projections - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Petroleum & Other Liquids Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude Reserves and Production Refining and Processing Imports/Exports & Movements Stocks Consumption/Sales All Petroleum & Other Liquids Data Reports Analysis & Projections Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Prices Change category... Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Filter by: All Data Analysis Projections This Week in Petroleum Data and analysis of recent events affecting the petroleum industry and

202

Figure 1:Energy Consumption in USg gy p 1E Roberts, Energy in US  

E-Print Network (OSTI)

: High Voltage DC Charging of fa Nissan Leaf. E Roberts, Energy in US 53 NPC Future Transportation FuelsFigure 1:Energy Consumption in USg gy p 2008 1E Roberts, Energy in US Source: www.eia.gov #12;Figure 2: US Liquid Demand by Sector and Fuel 2E Roberts, Energy in US Source: EIA: Annual Energy Outlook

Sutton, Michael

203

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

204

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

205

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 Rank Residential Sector Commercial Sector Industrial Sector Transportation Sector Total Consumption State Million Btu State Million Btu State Million Btu State Million Btu State Million Btu 1 North Dakota 99.8 District of Columbia 193.1 Louisiana 585.8 Alaska 277.3 Wyoming 974.7 2 West Virginia 90.9 Wyoming 119.2 Wyoming 568.2 Wyoming 200.7 Louisiana 886.5 3 Missouri 89.4 North Dakota 106.9 Alaska 435.7 North Dakota 172.8 Alaska 881.3 4 Tennessee 87.8 Alaska 94.1 North Dakota 388.9 Louisiana 158.0 North Dakota 768.4 5 Kentucky 87.4 Montana 78.4 Iowa 243.4 Oklahoma 122.3 Iowa 493.6

206

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

207

Properties of Liquid Plutonium  

SciTech Connect

Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

208

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C31A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption...

209

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C25A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption...

210

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C32A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption...

211

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C10A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption...

212

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C30A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption...

213

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C35A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption...

214

Benefits vs. risks of fish consumption  

Science Conference Proceedings (OSTI)

The benefits of fish consumption outweigh the risks, according to a joint expert consultation released in October 2011 by two United Nations agencies. Benefits vs. risks of fish consumption News Inform Magazine Inform Archives Health Nutrition Omega

215

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary ...

216

Happiness through consumption: towards a theoretical approach based on  

E-Print Network (OSTI)

human needs satisfaction Economic welfare is traditionally related to happiness as increases in economic welfare are viewed as increases in utility, which has been a measure of happiness since the marginalist revolution at the beginning of XX century. Consumption is one of the main activities analysed by economic theory that is thought to account for greatest utility. However, the analysis of macroeconomic data do not allow the statement that individual consumption choices do not lead to greatest social welfare or global happiness, as in most capitalist societies deprivation and negative effects from over-consumption are experienced simultaneously. The neoclassical formal approach, which is the main theoretical framework followed by economist, does not intend to contemplate everyday paradoxes of consumption and happiness as it is based upon Utilitarianism. To maintain the link between theory and real economy it is necessary to progress towards a theoretical framework that facilitates the evaluation of consumption and its effects on individual and social welfare or happiness. This normative framework could facilitate the theoretical analysis of the paradoxes found

Monica Guillen Royo

2003-01-01T23:59:59.000Z

217

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

218

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

219

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... State Energy Data System: Noncombustible Renewable Energy for 2011 ...

220

State energy data report 1992: Consumption estimates  

SciTech Connect

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA - Analysis of Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per-customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Categories: Consumption (Released, 6/23/2010, pdf format)

222

Mathematical models of natural gas consumption  

E-Print Network (OSTI)

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

223

Liquid electrode  

DOE Patents (OSTI)

A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

Ekechukwu, Amy A. (Augusta, GA)

1994-01-01T23:59:59.000Z

224

Los angeles residential energy consumption. Final report  

SciTech Connect

Heating and cooling energy requirements were determined for characteristic single - family, townhouse, low - rise, and high - rise residences in Los Angeles, Calif. Using 1951 as a typical weather year for the area, heating and cooling energy requirements were determined for modified versions of these characteristic residences after both structural and comfort control modifications had been incorporated. Parameters of concern were structural (construction details, dimensions, and materials), energy consumption (heating and cooling equipment, types of fuel and energy used, and appliances and their energy consumption levels), and lifestyle (thermostat set points, relative humidity points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated with the aid of a computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The cooling load for the single - family residence was moderately larger than the heating load. Due to increased internal heat generation, the cooling load for the remaining residences was much larger than the heating load. Energy - conserving modifications resulted in the following: single - family residences required 55 percent, townhouse residences required 57 percent, low - rise residences required 55 percent, and high - rise residences required 82 percent of the primary energy consumed by the characteristic structure. Supporting data, illustrative layouts of the residences, and a list of references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-09-01T23:59:59.000Z

225

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

The impact of increasing home size on energy demand The impact of increasing home size on energy demand RECS 2009 - Release date: April 19, 2012 Homes built since 1990 are on average 27% larger than homes built in earlier decades, a significant trend because most energy end-uses are correlated with the size of the home. As square footage increases, the burden on heating and cooling equipment rises, lighting requirements increase, and the likelihood that the household uses more than one refrigerator increases. Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption. According to results from EIA's 2009 Residential Energy Consumption Survey (RECS), the stock of homes built in the 1970s and 1980s averages less than

226

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

227

Energy, environment, and conscious consumption: making connections through design  

Science Conference Proceedings (OSTI)

While environmental scientists alert the society to the urgent need for a turning point in the way resources have been consumed globally, the current economic situation in Brazil favors opportunities to increase still more individual's consumption. This ... Keywords: culture, eco-feedback technology, motivation

Lara Schibelsky Godoy Piccolo; Maria Cecília Calani Baranauskas

2012-11-01T23:59:59.000Z

228

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY  

E-Print Network (OSTI)

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

Dukes, Jeffrey

229

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

2008 Standby Power Consumption Report”, March. http://of measurement for the power consumption of audio, video andand Low Power Mode Energy Consumption”, Energy Efficiency in

Park, Won Young

2011-01-01T23:59:59.000Z

230

Addressing Water Consumption of Evaporative Coolers with Greywater  

E-Print Network (OSTI)

5 3. Water Consumption of Evaporative7 3.1.2. Water Consumption Due to9 3.1.4. Water Consumption due to

Sahai, Rashmi

2013-01-01T23:59:59.000Z

231

Alcohol consumption, medical conditions and health behavior in older adults  

E-Print Network (OSTI)

Alcohol consumption In press, American JournalHealth Behavior Alcohol Consumption, Medical Conditions andin the association of alcohol consumption with health and

Satre, Derek; Gordon, Nancy P.; Weisner, Constance

2007-01-01T23:59:59.000Z

232

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network (OSTI)

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

233

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

234

Whole-house measurements of standby power consumption  

E-Print Network (OSTI)

Whole-House Measurements of Standby Power Consumption" InStudy on Miscellaneous Standby Consumption of HouseholdA. , Murakoshi, C. 1997. Standby Electricity Consumption in

Ross, J.P.; Meier, Alan

2000-01-01T23:59:59.000Z

235

2009 Energy Consumption Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption...

236

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

237

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

238

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

239

THE LIQUID METAL LINEAR GENERATOR  

SciTech Connect

In the utilization of nuclear heat energy, liquid metal could be used in a vapor cycle to propel a column of liquid metal in a jet pump or injector where electrical energy could be extracted by means of a MHD arrangement. The recirculating system is being studied as a means of increasing the efficiency. Results are described briefly for a preliminary run made using steam and water; the efficiency of conversion of steam kinetic energy to liquid kinetic energy was approximates 20%. The possible causes of the low efficiency and some of the methods for decreasing hydraulic losses are outlined. (D.L.C.)

Sowa, E.S.

1963-10-31T23:59:59.000Z

240

Figure 1.6 State-Level Energy Consumption Estimates and Estimated ...  

U.S. Energy Information Administration (EIA)

Figure 1.6 State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C3. Primary Energy Consumption Estimates, 2011 C3. Primary Energy Consumption Estimates, 2011 (Trillion Btu) State Fossil Fuels Fossil Fuels (as commingled) Coal Natural Gas excluding Supplemental Gaseous Fuels a Petroleum Total Natural Gas including Supplemental Gaseous Fuels a Motor Gasoline including Fuel Ethanol a Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline excluding Fuel Ethanol a Residual Fuel Oil Other d Total Alabama ........... 651.0 614.8 156.5 13.4 12.8 304.5 13.4 49.1 549.5 1,815.4 614.8 319.8 Alaska ............... 15.5 337.0 85.1 118.2 1.3 31.9 1.9 28.6 267.1 619.6 337.0 34.6 Arizona ............. 459.9 293.7 151.8 21.5 9.1 297.3 (s) 21.1 500.9 1,254.5 293.7 323.4 Arkansas ........... 306.1 288.6 134.9 5.9 9.4 165.4 0.2 19.8 335.7 930.5 288.6 175.6 California .......... 55.3 2,196.6 567.0 549.7 67.2 1,695.4 186.9 339.6 3,405.8 5,657.6 2,196.6

242

The Bevatron liquid nitrogen circulation system  

SciTech Connect

A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented.

Hunt, D.; Stover, G.

1987-03-01T23:59:59.000Z

243

Modeling overall energy consumption in Wireless Sensor Networks  

E-Print Network (OSTI)

Minimizing the energy consumption of a wireless sensor network application is crucial for effective realization of the intended application in terms of cost, lifetime, and functionality. However, the minimizing task is hardly possible as no overall energy cost function is available for optimization. Optimizing a specific component of the total energy cost does not help in reducing the total energy cost as this reduction may be negated by an increase in the energy consumption of other components of the application. Recently we proposed Hierarchy Energy Driven Architecture as a robust architecture that takes into account all principal energy constituents of wireless sensor network applications. Based on the proposed architecture, this paper presents a single overall model and proposes a feasible formulation to express the overall energy consumption of a generic wireless sensor network application in terms of its energy constituents. The formulation offers a concrete expression for evaluating the performance of ...

Kamyabpour, Najmeh

2011-01-01T23:59:59.000Z

244

Liquid electrode  

DOE Patents (OSTI)

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

245

The Perils of Consumption and the Gift Economy as the Solution Daniel Miller’s Consumption and Its Consequences  

E-Print Network (OSTI)

Press. Miller, D. (2012). Consumption and its consequences.The Perils of Consumption and the Gift Economy asSolution Daniel Miller’s ‘Consumption and Its Consequences’

Leahy, Terry

2013-01-01T23:59:59.000Z

246

Natural gas production and consumption 1979  

Science Conference Proceedings (OSTI)

Total marketed production of natural gas in the United States during 1979 was 20,471 billion cubic feet, an increase of approximately 497 billion cubic feet, or 2.5 percent over 1978. Texas and Louisiana, the two leading producing states, accounted for 70.5 percent of total 1979 marketed production. In 1979, deliveries of natural gas to residential, commercial, industrial, electric utilities, and other consumers totaled 18,141 billion cubic feet. Total consumption, which includes lease, plant, and pipeline fuel in addition to deliveries to consumers, was 20,241 billion cubic feet in 1979 compared to 19,627 billion cubic feet in 1978, an increase of 3.1 percent. Movements of natural gas into and out of each state are presented. Louisiana accounted for the largest quantity of net deliveries, 5,107 billion cubic feet, followed by Texas and Oklahoma with net deliveries of 2,772 billion cubic feet and 914 billion cubic feet, respectively. Imports of natural gas by pipeline from Canada and as liquefied natural gas (LNG) from Algeria totaled 1,253 billion cubic feet in 1979. Total imports increased 288 billion cubic feet, or 29.8 percent, from 1978 levels. Exports of LNG to Japan and pipeline shipments to Canada and Mexico increased 6.0 percent from 52.5 billion cubic feet in 1978 to 55.7 billion cubic feet in 1979. LNG shipments to Japan accounted for 92.1 percent of total exports in 1979.

Not Available

1981-01-01T23:59:59.000Z

247

Lifestyle Factors in U.S. Residential Electricity Consumption  

Science Conference Proceedings (OSTI)

A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

2012-03-30T23:59:59.000Z

248

Fault Detection of Hourly Measurements in District Heat and Electricity Consumption; Feldetektion av Timinsamlade Mätvärden i Fjärrvärme- och Elförbrukning.  

E-Print Network (OSTI)

?? Within the next years, the amount of consumption data will increase rapidly as old meters will be exchanged in favor of meters with hourly… (more)

Johansson, Andreas

2005-01-01T23:59:59.000Z

249

Diversity in OECD energy consumption: Achievements and long-term goals  

SciTech Connect

Energy consumption in the industrialized world has resumed a rising trend but has been moderated by increased energy efficiency. The demand for energy is also being spread more evenly over a variety of fuels. This paper provides a measure for diversity and examines the implications for energy prices, while reiterating the long-term goal of lower energy consumption.

Heal, D.W. (Univ. College of Wales, Aberystwyth (England))

1990-01-01T23:59:59.000Z

250

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Sustainable Water Consumption  

E-Print Network (OSTI)

into Sustainable Water Consumption Kultar Kanda, Terry Brar, Ronald Ho, Nick Yeh University of British Columbia;1 An Investigation into Sustainable Water Consumption APSC 261- TECHNOLOGY AND SOCIETY I DR. CHRISTINA GYENGE NOVEMBER 30, 2010 KULTAR KANDA TERRY BRAR RONALD HO NICK YEH #12;2 Abstract With the increasing global

251

Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency  

E-Print Network (OSTI)

Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency Jeffrey Harris, Rick ultimately reverse) the growth in total energy consumption and carbon emissions. Instead, policy makers need for effective policy in a carbon- and oil-constrained world with increasingly brittle energy markets. To start

Diamond, Richard

252

Statistical Derivation of an Accurate Energy Consumption Model for Embedded Processors  

E-Print Network (OSTI)

The energy consumption of software is becoming an increasingly important issue in designing mobile embedded systems where batteries are used as the main power source. As a consequence, recently, a number of promising techniques have been proposed to optimize software for reduced energy consumption.

Sheayun Lee; Andreas Ermedahl; Sang Lyul Min; et a l.; Min Naehyuck Chang

2002-01-01T23:59:59.000Z

253

Accounting for the energy consumption of personal computing including portable devices  

Science Conference Proceedings (OSTI)

In light of the increased awareness of global energy consumption, questions are also being asked about the contribution of computing equipment. Though studies have documented the share of energy consumption due to these equipment over the years, these ... Keywords: computing, electricity, energy, environment, networking, portable devices

Pavel Somavat; Shraddha Jadhav; Vinod Namboodiri

2010-04-01T23:59:59.000Z

254

Manufacturing Energy Consumption Survey (MECS) - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

255

Table 5.14c Heat Content of Petroleum Consumption ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

256

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

257

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

258

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

259

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

260

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

262

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

263

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

264

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

265

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Housing Characteristics; Consumption & Expenditures; Microdata; Consumption & Expenditures Tables + EXPAND ALL. Summary Statistics (revised January 2009) PDF (all tables)

266

Table 6a. Total Electricity Consumption per Effective Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

267

1997 Consumption and Expenditures-Detailed Data Tables  

U.S. Energy Information Administration (EIA)

1997 Resdiential Energy Consumption Survey(RECS)-1997 Consumption and Expenditures-1997 Detailed Tables, Energy Information Administration

268

Table US8. Average Consumption by Fuels Used, 2005 Physical ...  

U.S. Energy Information Administration (EIA)

Wood (cords) Energy Information Administration 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table US8.

269

Consumption & Efficiency | U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Consumption and efficiency analysis & projections. Annual Energy Outlook 2013 Reference Case: consumption by sector projections; energy intensity projections

270

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

271

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

272

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

273

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 . Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2 California 7,858.4 55.3 2,196.6 3,405.8 5,657.6 383.6 928.5 868.6 20.1 1,516.1 1,556.1 1,785.7 3,000.5 Colorado 1,480.8 368.9 476.5 472.9 1,318.3

274

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C4. Total End-Use Energy Consumption Estimates, 2011 C4. Total End-Use Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power f Biomass Geo- thermal Solar/PV i Retail Electricity Sales Net Energy j,k Electrical System Energy Losses l Total j,k Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste g Losses and Co- products h Alabama ........... 65.0 265.4 155.4 13.4 12.8 319.8 13.4 49.1 563.8 0.0 154.1 0.0 0.1 0.2 303.7 1,352.2 579.1 1,931.3 Alaska ............... 9.5 294.7 81.8 118.2 1.3 34.6 0.4 28.6 265.0 0.0 2.3 0.0 0.2 (s) 21.6 593.2 44.7 637.9 Arizona ............. 10.0 109.8 151.3 21.5 9.1 323.4 (s) 21.1 526.5 0.0 4.4 3.1 0.3 7.9 255.7 917.8 513.7 1,431.5 Arkansas ........... 5.6 179.4 134.5 5.9 9.4 175.6 0.1 19.8 345.4 0.0 82.6 0.0 0.7 0.2 163.5 777.4 339.8 1,117.1 California ..........

275

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

276

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

277

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 State Energy Data 2011: Consumption Table C5. Residential Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal a Natural Gas b Petroleum Biomass Geothermal Solar/PV e Retail Electricity Sales Net Energy f Electrical System Energy Losses g Total f Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama ............. 0.0 37.2 0.1 0.1 6.0 6.2 6.0 0.1 0.2 112.6 162.2 214.7 376.9 Alaska ................. 0.0 20.5 8.1 0.1 0.5 8.8 1.9 0.1 (s) 7.3 38.6 15.1 53.7 Arizona ............... 0.0 39.1 (s) (s) 5.5 5.5 2.6 (s) 7.9 112.9 168.0 226.8 394.7 Arkansas ............. 0.0 34.2 0.1 (s) 5.2 5.3 8.6 0.7 0.2 64.1 113.1 133.2 246.3 California ............ 0.0 522.4 0.6 0.6 30.9 32.2 33.3 0.2 43.2 301.6 932.9 583.1 1,516.1 Colorado ............. 0.0 134.2 0.1 (s) 12.3 12.4 8.3 0.2 0.7 62.4 216.5 136.5 353.0 Connecticut ......... 0.0 46.0 59.6

278

RANGE INCREASER FOR PNEUMATIC GAUGES  

DOE Patents (OSTI)

An improved pneumatic gage is offered in which the linear range has been increased without excessive air consumption. This has been accomplished by providing an expansible antechamber connected to the nozzle of the gage so that the position of the nozzle with respect to the workpiece is varied automatically by variation in pressure within the antechamber. This arrangement ensures that the nozzle-to-workpiece clearance is maintained within certain limits, thus obtaining a linear relation of air flow to nozzle-to-workpiece clearance over a wider range.

Fowler, A.H.; Seaborn, G.B. Jr.

1960-09-27T23:59:59.000Z

279

EIA - Natural Gas Consumption Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Consumption by End Use U.S. and State consumption by lease and plant, pipeline, and delivered to consumers by sector (monthly, annual). Number of Consumers Number of sales and transported consumers for residential, commercial, and industrial sectors by State (monthly, annual). State Shares of U.S. Deliveries By sector and total consumption (annual). Delivered for the Account of Others Commercial, industrial and electric utility deliveries; percentage of total deliveries by State (annual). Heat Content of Natural Gas Consumed Btu per cubic foot of natural gas delivered to consumers by State (annual) and other components of consumption for U.S. (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot.

280

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

annual energy consumption | OpenEI  

Open Energy Info (EERE)

energy consumption energy consumption Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

282

A structural analysis of natural gas consumption by income class from 1987 to 1993  

SciTech Connect

This study had two major objectives: (1) assess and compare changes in natural gas consumption between 1987 and 1993 by income group and (2) assess the potential influence of energy policy on observed changes in natural gas consumption over time and across income groups. This analysis used U.S. Department of Energy (DOE) data files and involved both the generation of simple descriptive statistics and the use of multivariate regression analysis. The consumption of natural gas by the groups was studied over a six-year period. The results showed that: (1) natural gas use was substantially higher for the highest income group than for the two lower income groups and (2) natural gas consumption declined for the lowest and middle income quintiles and increased for the highest income quintile between 1987 and 1990; between 1990 and 1993, consumption increased for the lowest and middle income quintile, but remained relatively constant for the highest income quintile. The relative importance of the structural and variable factors in explaining consumption changes between survey periods varies by income group. The analysis provides two major energy policy implications: (1) natural gas intensity has been the highest for the lowest income group, indicating that this group is more vulnerable to sudden changes in demand-indicator variables, in particular weather-related variables, than increase natural gas consumption, and (2) the fall in natural gas intensity between 1987 and 1993 may indicate that energy policy has had some impact on reducing natural gas consumption. 11 refs., 4 figs., 16 tabs.

Poyer, D.A.

1996-12-01T23:59:59.000Z

283

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and State. The report covers the period from 2006 through 2010.

2012-12-11T23:59:59.000Z

284

,"Utah Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","52013" ,"Release Date:","7...

285

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector Has Fallen. Release Date: ... and water consumption for hospital buildings greater than 200,000 squar ...

286

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

287

,"Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

288

,"Texas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

289

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

290

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

may not sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-871A of the 2003 Commercial Buildings Energy Consumption Survey....

291

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Annual state-level estimates of consumption for hydroelectric power, wind, geothermal, and solar energy. Annual Energy Outlook 2013.

292

A Green Solution To Energy Consumption  

Science Conference Proceedings (OSTI)

Presentation Title, MAX HT® Bayer Sodalite Scale Inhibiter: A Green Solution To Energy Consumption. Author(s), Morris E. Lewellyn, Alan Rothenberg, Calvin ...

293

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

A video about changes in home heating in the United States. Annual Energy Review Consumption Statistics. Released September 27, 2012. A report of annual energy ...

294

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

... video - Keeping Our Homes Warm, released November 2, 2012. Energy consumption per home has steadily declined over the last three decades ...

295

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

296

,"California Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural...

297

,"Tennessee Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural...

298

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural...

299

,"Washington Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural...

300

,"Virginia Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Nebraska Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural...

302

Consumption externalities, habit formation and equilibrium efficiency  

E-Print Network (OSTI)

We analyze the welfare properties of the competitive equilibrium in a capital accumulation model where individual preferences are subject to both habit formation and consumption spillovers. Using an additive specification for preferences, according to which the argument in the utility function is a linear combination of present and past values of own consumption and consumption spillovers, we analyze the circumstances under which these spillovers are a source of inefficiency. It is shown that consumption externalities have to interact with habits in order to generate an inefficient dynamic equilibrium. Finally, we characterize optimal tax policies aimed at restoring efficient decentralized paths.

Jaime Alonso-carrera; Jordi Caballé; Xavier Raurich

2004-01-01T23:59:59.000Z

303

,"Pennsylvania Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania...

304

,"Arkansas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural...

305

,"Kentucky Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural...

306

,"Mississippi Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural...

307

,"Michigan Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural...

308

,"Delaware Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural...

309

,"Maryland Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural...

310

,"Louisiana Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural...

311

,"Missouri Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural...

312

,"Oklahoma Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural...

313

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network (OSTI)

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges.… (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

314

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas ... Total United States energy consumption in homes has remained relatively ...

315

,"California Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

316

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Heating and cooling no longer majority of U.S. home energy use. Source: U.S. Energy Information Administration, Residential Energy Consumption Survey.

317

2005 RECS Consumption and Expenditures Detailed Tables  

U.S. Energy Information Administration (EIA)

Detailed Consumption and Expenditures (C&E) tables containing Space Heating, Air-Conditioning, Water Heating, and Appliance residential energy data are now available.

318

,"Ohio Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release Date:","9...

319

California Energy Commission - Electricity Consumption by Utility  

Open Energy Info (EERE)

Utility (1990-2009) Electricity consumption by Utility company for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total...

320

California Energy Commission - Electricity Consumption by Planning...  

Open Energy Info (EERE)

Planning Area (1990-2009) Electricity consumption data from the California Energy Commission by planning area for Commercial, Residential, Ag & Water Pump, Streetlight,...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

,"New Hampshire Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural...

322

Renewable Energy Consumption and Electricity Preliminary ...  

U.S. Energy Information Administration (EIA)

Renewable Energy Consumption and Electricity Preliminary Statistics 2010 June 2011 ... and Job Creation Act of 2010 (H.R. 4853) was signed in December

323

All Consumption Tables - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a

324

Residential Energy Consumption Survey (RECS) 2009 Technical ...  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey (RECS) Using the 2009 microdata file to compute estimates and standard errors (RSEs) February 2013 Independent Statistics & Analysis

325

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2012 (EIA)

(92) Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Contacts The Energy Information Administration (EIA) prepared this...

326

,"Vermont Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

327

,"Texas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

328

,"Texas Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

329

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

330

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

331

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

332

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

333

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

334

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

335

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWhsquare foot)...

336

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

337

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

338

,"Michigan Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","72013" ,"Release...

339

,"Idaho Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Consumption by End Use",6,"Monthly","102013","1151989" ,"Release...

340

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"South Dakota Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"South Dakota Natural Gas Industrial Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

342

,"New Mexico Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

343

,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","52013" ,"Release Date:","7...

344

Liquid foams of graphene  

E-Print Network (OSTI)

Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

Alcazar Jorba, Daniel

2012-01-01T23:59:59.000Z

345

Glossary Term - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Lepton Previous Term (Lepton) Glossary Main Index Next Term (Mercury) Mercury Liquid Nitrogen Liquid nitrogen boils in a frying pan on a desk. The liquid state of the element...

346

Why did China's Energy Intensity Increase during 1998-2006: Decomposition and Policy Analysis  

E-Print Network (OSTI)

coal-dependent consumption structure (Fig. 4) and low per capita energy endowments. China's coal use takes up about 70 percent of the total energy consumption. Per capita oil, natural gas and coal deposits). Moreover, industrial consumption increased more rapidly due to expansion in energy-intensive industries

Edwards, Paul N.

347

Residential energy consumption survey. Consumption patterns of household vehicles, supplement: January 1981-September 1981  

Science Conference Proceedings (OSTI)

Information on the fuel consumption characteristics on household vehicles in the 48 contiguous States and the District of Columbia is presented by monthly statistics of fuel consumption, expenditures, miles per gallon, and miles driven.

Not Available

1983-02-01T23:59:59.000Z

348

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

349

Breathing liquid oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

question is interesting though because it would be desirable to breath liquid instead of gas under certain conditions. Special liquids are being designed to carry dissolved...

350

Liquid Nitrogen Ice Cream  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Ice Cream If you have access to liquid nitrogen and the proper safety equipment and training, try this in place of your normal cryogenics demonstration Download...

351

Power Consumption at 40 and 45 nm  

E-Print Network (OSTI)

At 40 and 45 nm process nodes, power has become the primary factor for FPGA selection. This white paper details how Xilinx designed for this new reality in its recently introduced Spartan®-6 (45 nm) and Virtex®-6 (40 nm) FPGA families, achieving dramatic power reductions over previous generation Spartan-3A and Virtex-5 devices. Accomplishing such a significant reduction in power consumption required major engineering innovations. At 40 and 45 nm, transistor leakage increases exponentially, making static power a major challenge. Additionally, the desire for higher performance continues to drive core clock rates higher, increasing dynamic power. This white paper describes how Xilinx addressed theses challenges by using engineering innovations in Spartan-6 and Virtex-6 FPGAs that keep these families ahead of the curve. © 2009 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Matt Klein

2009-01-01T23:59:59.000Z

352

Sources and characteristics of oil consumption in a spark-ignition engine  

E-Print Network (OSTI)

(cont.) At low load, oil flowing past by the piston was found to be the major consumption source, while the contributions of oil evaporation and of blowby entrainment became more significant with increasing engine load. ...

Yilmaz, Ertan, 1970-

2003-01-01T23:59:59.000Z

353

Process to upgrade coal liquids by extraction prior to hydrodenitrogenation  

DOE Patents (OSTI)

Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

Schneider, Abraham (Overbrook Hills, PA); Hollstein, Elmer J. (Wilmington, DE); Janoski, Edward J. (Havertown, PA); Scheibel, Edward G. (Media, PA)

1982-01-01T23:59:59.000Z

354

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

355

Prediction of domestic warm-water consumption  

Science Conference Proceedings (OSTI)

The paper presents methodologies able to predict dynamic warm water consumption in district heating systems, using time-series analysis. A simulation model according to the day of a week has been chosen for modeling the domestic warm water consumption ... Keywords: autoregressive model, district heating systems, domestic warm water, prediction, simulation, time series models

Elena Serban; Daniela Popescu

2008-12-01T23:59:59.000Z

356

Energy Consumption Issues on Mobile Network Systems  

Science Conference Proceedings (OSTI)

This paper describes energy consumption demographic data in operating real mobile networks. We examine published data from NTT DoCoMo, which is the largest mobile telecommunication operator in Japan and operating nation-wide 3G networks, and identify ... Keywords: Moble Network, Power Consumption, Battery, CO2, Green Network

Minoru Etoh; Tomoyuki Ohya; Yuji Nakayama

2008-07-01T23:59:59.000Z

357

Modelling Office Energy Consumption: An Agent Based  

E-Print Network (OSTI)

Modelling Office Energy Consumption: An Agent Based Approach Tao Zhang, Peer-Olaf Siebers, Uwe · Overall Project Background · Office Energy Consumption · Case Study · Simulation Experiments · Conclusions #12;Overall Project Background · EPSRC funded City Energy Future Project ­ Under Energy & Complexity

Aickelin, Uwe

358

US SoAtl GA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

359

US SoAtl GA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

360

Recent world fossil-fuel and primary energy production and consumption trends  

SciTech Connect

Worldwide fossil fuel and primary electric power production figures since 1973 show a recent drop in oil production similar to the 1975 decline after recession. Crude oil consumption has declined since 1978, while production has increased. Natural gas production and consumption continue to increase as does power generation from all energy sources. Differences are noted between data sources and comparisons made of the validity of the data. 13 references, 7 figures, 12 tables. (DCK)

Parent, J.D.

1982-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

362

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Share of energy used by appliances and consumer electronics increases in Share of energy used by appliances and consumer electronics increases in U.S. homes RECS 2009 - Release date: March 28, 2011 Over the past three decades, the share of residential electricity used by appliances and electronics in U.S. homes has nearly doubled from 17 percent to 31 percent, growing from 1.77 quadrillion Btu (quads) to 3.25 quads. This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to 10.55 quads, and energy use per household fell 31 percent. Federal energy efficiency standards have greatly reduced consumption for home heating Total energy use in all U.S. homes occupied as primary residences decreased slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the

363

Reducing system level power consumption for mobile and embedded platforms  

E-Print Network (OSTI)

Abstract. The power consumption of peripheral devices is a significant portion of the overall energy usage of a mobile platform. To take advantage of idle times, most devices offer the ability to transition into low power states. However, the amount of energy saved by utilizing these sleep states depends on the lengths and number of idle periods experienced by the device. This paper describes a new process scheduling algorithm which accumulates device usage information in the form of device windows to make power a first class resource: it attempts to increase the burstiness of both device accesses and idle periods, and it provides enhanced behavior for timeout-based sleep mechanisms. An initial implementation based on the default Linux scheduler demonstrates the algorithm’s and approach’s ability to reduce the average power consumption of devices by increasing device sleep times and reducing transition overheads. 1

Ripal Nathuji; Karsten Schwan

2005-01-01T23:59:59.000Z

364

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

365

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

366

Petroleum & Other Liquids - Pub - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Petroleum & Other Liquids Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude Reserves and Production Refining and Processing Imports/Exports & Movements Stocks Consumption/Sales All Petroleum & Other Liquids Data Reports Analysis & Projections Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Proposed Natural Gas Liquids Realignment EIA has reviewed the approaches and terminology that have been used by EIA and others to categorize and organize natural gas liquids (NGL) data. The review uncovered definitional inconsistencies in the use of terms such as NGL, natural gas plant liquids (NGPL), and liquefied petroleum gases (LPG) that are adversely affecting the quality and clarity of U.S. and

367

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

368

Analysis of the Effects of the Application of Solar Water Heater in Building Energy Consumption  

E-Print Network (OSTI)

With the development of the economy, civilian construction in the Changjiang River delta region is rapidly expanding. The boom in the construction industry definitely results in that the proportion of building energy consumption to whole energy consumption in the national economy will increase. The energy consumption of the air conditioning system, lighting system and hot-water system are the main components of the building energy consumption. Theoretically, solar energy can meet the requirements for these systems by changing the technology of photo-electricity and photo-thermal. However, the application of these technologies is on the basis of demand of space and atmospheric clarity conditions. This paper focuses on the specific conditions of city and building construction in the Changjiang River delta region, discusses the applying condition of photo-thermal transformation technology of solar energy, then analyzes the influence of mature applications of this technology on energy consumption.

Wang, J.; Li, Z.

2006-01-01T23:59:59.000Z

369

An Accurate Instruction-Level Energy Consumption Model for Embedded RISC Processors  

E-Print Network (OSTI)

Energy consumption of software is becoming an increasingly important issue in designing mobile embedded systems where batteries are used as the main power source. As a consequence, recently, a number of promising techniques have been proposed to optimize software for reduced energy consumption. Such low-power software techniques require an energy consumption model that can be used to estimate or predict the energy consumed by software. We propose a technique to derive an accurate energy consumption model at the instruction level, combining an empirical method and a statistical analysis technique. The result of the proposed approach is given by a model equation that characterizes energy behavior of software based on the properties of the instructions. Experimental results show that the model equation can accurately estimate the energy consumption of random instruction sequences, with an average error of 2.5 %. Keywords Low-power systems, instruction-level energy model, regression analysis 1.

Sheayun Lee; Andreas Ermedahl; Sang Lyul Min

2001-01-01T23:59:59.000Z

370

Predicting summer energy consumption from homeowners attitudes  

SciTech Connect

Two surveys examined the relationship between homeowners attitudes toward energy use and their actual summer electric consumption. In Survey 1, 56 couples filled out questionnaires concerning their energy attitudes. A factor analysis of their responses revealed four factors: comfort and health concerns, effort to conserve and monetary savings, role of the individual, and legitimacy of the energy crisis. The factors were entered into a multiple regression analysis to predict actual summer electric consumption. The attitudinal factors together significantly accounted for 55% of the variance in summer electric consumption. The comfort and health factor by itself explained 30% of the consumption variance. Survey 2, consisting of 69 couples, was conducted to elaborate the meaning of the factors. The results of the factor analysis of Survey 2 revealed six factors: comfort, health, individual's role, belief in science, legitimacy of the energy crisis, and effort to conserve. An overall regression analysis showed that the factors significantly explained nearly 60% of the summer consumption variance. The comfort factor was again the best predictor of summer electric consumption, accounting for 42% of the variance. It was concluded that attitudes about one's comfort are significantly related to household energy consumption (primarily air conditioning). The implications for energy conservation campaigns were discussed. 10 references, 3 tables.

Seligman, C.; Kriss, M.; Darley, J.M.; Fazio, R.H.; Becker, L.J.; Pryor, J.B.

1979-01-01T23:59:59.000Z

371

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

372

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

373

State energy data report 1993: Consumption estimates  

SciTech Connect

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1995-07-01T23:59:59.000Z

374

Consumption processes and positively homogeneous projection properties  

E-Print Network (OSTI)

We constructively prove the existence of time-discrete consumption processes for stochastic money accounts that fulfill a pre-specified positively homogeneous projection property (PHPP) and let the account always be positive and exactly zero at the end. One possible example is consumption rates forming a martingale under the above restrictions. For finite spaces, it is shown that any strictly positive consumption strategy with restrictions as above possesses at least one corresponding PHPP and could be constructed from it. We also consider numeric examples under time-discrete and -continuous account processes, cases with infinite time horizons and applications to income drawdown and bonus theory.

Fischer, Tom

2007-01-01T23:59:59.000Z

375

Consumption processes and positively homogeneous projection properties  

E-Print Network (OSTI)

We constructively prove the existence of time-discrete consumption processes for stochastic money accounts that fulfill a pre-specified positively homogeneous projection property (PHPP) and let the account always be positive and exactly zero at the end. One possible example is consumption rates forming a martingale under the above restrictions. For finite spaces, it is shown that any strictly positive consumption strategy with restrictions as above possesses at least one corresponding PHPP and could be constructed from it. We also consider numeric examples under time-discrete and-continuous account processes, cases with infinite time horizons and applications to income drawdown and bonus theory.

Tom Fischer

2008-01-01T23:59:59.000Z

376

Residential Energy Consumption Survey: Quality Profile  

SciTech Connect

The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

NONE

1996-03-01T23:59:59.000Z

377

State Energy Data Report, 1991: Consumption estimates  

DOE Green Energy (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

Not Available

1993-05-01T23:59:59.000Z

378

AEO2011: Liquid Fuels Supply and Disposition | OpenEI  

Open Energy Info (EERE)

Liquid Fuels Supply and Disposition Liquid Fuels Supply and Disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

379

US SoAtl VA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

380

US Mnt(S) AZ Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

US SoAtl VA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

382

Natural gas consumption | OpenEI  

Open Energy Info (EERE)

gas consumption gas consumption Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

383

US Mnt(S) AZ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

384

Iowa Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption 293,274 325,772 315,186...

385

Compiler Support for Reducing Leakage Energy Consumption  

Science Conference Proceedings (OSTI)

Current trends indicate that leakage energy consumption will be an important concern in upcoming process technologies. In this paper, we propose a compiler-based leakage energy optimization strategy. Our strategy is built upon a data-flow analysis that ...

W. Zhang; M. Kandemir; N. Vijaykrishnan; M. J. Irwin; V. De

2003-03-01T23:59:59.000Z

386

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

387

,"Idaho Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas...

388

,"Wyoming Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas...

389

,"Alaska Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas...

390

,"Oregon Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas...

391

,"Alabama Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas...

392

,"Florida Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas...

393

,"Arizona Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas...

394

,"Kansas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas...

395

,"Montana Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas...

396

,"Nevada Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas...

397

,"Utah Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas...

398

,"Indiana Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas...

399

,"Texas Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas...

400

,"Ohio Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reducing the Energy Consumption of Networked Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing the Energy Consumption of Networked Devices Speaker(s): Ken Christensen Date: July 19, 2005 - 12:00pm Location: 90-4133 When Personal Computers are networked, energy...

402

California Natural Gas Residential Consumption (Million Cubic ...  

U.S. Energy Information Administration (EIA)

California Natural Gas Residential Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1960's: 522,122 ...

403

US MidAtl NJ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

in New Jersey homes is for space heating. Air conditioning accounts for a larger share of household consumption than other Northeast states, but still only accounts for 3% of the...

404

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C12A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of...

405

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major...

406

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C29A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas...

407

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1...

408

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C28A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas...

409

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C27A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas...

410

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C9A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3...

411

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C11A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of...

412

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C5A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of...

413

US MidAtl NJ Site Consumption  

Annual Energy Outlook 2012 (EIA)

than the average U.S. household. * New Jersey homes are 20% larger than the average U.S. home. CONSUMPTION BY END USE Nearly half the energy consumed in New Jersey homes is for...

414

Energy consumption metrics of MIT buildings  

E-Print Network (OSTI)

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

415

TECHNICAL DOCUMENTATION Commercial Buildings Energy Consumption Survey  

Reports and Publications (EIA)

This is the technical documentation for the public use data set based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), the national sample survey of commercial buildings and their energy suppliers conducted by the Energy Information Administration.

Information Center

1996-07-01T23:59:59.000Z

416

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

417

California Energy Commission - Electricity Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Electricity consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009.


...

418

,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:31:19 PM" "Back to Contents","Data 1: Texas Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570STX2" "Date","Texas...

419

State energy data report 1996: Consumption estimates  

Science Conference Proceedings (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

420

Illinois energy consumption 1963-1977  

SciTech Connect

This report contains current and historical Illinois energy consumption data by consuming sector and fuel type. It also contains detailed description of mapping techniques used in developing the data.

Hill, L.; Biermann, W.

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"New Mexico Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:27:06 PM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New Mexico...

422

,"New Mexico Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 3:27:55 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New Mexico...

423

OpenEI - Renewable Energy Consumption  

Open Energy Info (EERE)

Jul 2011 18:05:28 +0000 Meredith1219 758 at http:en.openei.orgdatasets EIA Data: 2009 United States Renewable Energy Consumption by Sector and Source http:en.openei.org...

424

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

viii Figure 4.1: Electrical power usage breakdown for a3:30PM. The total HVAC electrical power consumption for thepower consumption, over Electrical Power Consumption (in kW)

Balaji, Bharathan

2011-01-01T23:59:59.000Z

425

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

Figure 4.4: Power consumption of a desktop PC + 3 LCDChapter 2 Trends in Building Consumption 2.1 UCSD as abreakdown of the energy consumption of the CSE mixed- use

Balaji, Bharathan

2011-01-01T23:59:59.000Z

426

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

breakdown of the energy consumption of the CSE mixed- useFigure 3.7: The energy consumption of HVAC during ourSpring 2011 tests - Energy consumption for electricity and

Balaji, Bharathan

2011-01-01T23:59:59.000Z

427

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

installation Total Electricity Consumption 1 Year Pre & PostGWh total Total Electricity Consumption 1 Year Pre & 2 YearsInstall Total Electricity Consumption 1 Year Pre & 3 Years

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

428

Estimates of US biomass energy consumption 1992  

DOE Green Energy (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

429

State energy data report 1994: Consumption estimates  

Science Conference Proceedings (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

430

Residential energy-consumption survey: housing characteristics, 1981  

SciTech Connect

Data in this report cover fuels and their use in the home, appliances, square footage of floor space, heating equipment, thermal characteristics of the housing unit, conservation activities, and consumption of wood. Collected for the first time are data related to indoor temperatures and the use of air conditioning. A unique feature of the 1981 survey is an increased sampling of low-income households funded by the Social Security Administration to provide them information for the Low-Income Home Energy Assistance Program. Discussion highlights data pertaining to these topics: changes in home heating fuel, secondary heating, indoor temperatures, features of new homes, use of air conditioning, use of solar collectors, and wood consumption.

Thompson, W.

1983-08-01T23:59:59.000Z

431

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

432

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

433

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

434

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

435

Liquid level detector  

DOE Patents (OSTI)

A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, Albert P. (Vernon, CT)

1986-01-01T23:59:59.000Z

436

Liquid level detector  

DOE Patents (OSTI)

A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, A.P.

1984-02-21T23:59:59.000Z

437

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

438

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Energy Data Center Energy Consumption Trends to someone by E-mail Share Federal Energy Management Program: Data Center Energy Consumption Trends on Facebook Tweet about Federal Energy Management Program: Data Center Energy Consumption Trends on Twitter Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Google Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Delicious Rank Federal Energy Management Program: Data Center Energy Consumption Trends on Digg Find More places to share Federal Energy Management Program: Data Center Energy Consumption Trends on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends

439

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

440

Review of Operational Water Consumption and Withdrawal Factors...  

NLE Websites -- All DOE Office Websites (Extended Search)

have the highest water consumption values when using a recirculating cooling system. Non-thermal renewables, such as photovoltaics (PV) and wind, have the lowest water consumption...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Texas Natural Gas Residential Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Residential Consumption (Million Cubic Feet) Texas Natural Gas Residential Consumption (Million Cubic Feet)...

442

Texas Natural Gas Industrial Consumption (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Industrial Consumption (Million Cubic Feet) Texas Natural Gas Industrial Consumption (Million Cubic Feet)...

443

Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Texas Natural Gas Vehicle Fuel Consumption (Million Cubic...

444

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, ...

445

Global natural gas consumption doubled from 1980 to 2010 - Today ...  

U.S. Energy Information Administration (EIA)

Although consumption in North America saw the slowest regional ... trends in regional natural gas consumption and production are more similar because of the limited ...

446

Table CT1. Energy Consumption Estimates for Major Energy Sources ...  

U.S. Energy Information Administration (EIA)

R A D O. U.S. Energy Information Administration State Energy Data 2011: Consumption 89 Table CT6. Industrial Sector Energy Consumption Estimates, Selected Years, 1960 ...

447

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, and electricity ...

448

Essays on the effects of demographics on household consumption.  

E-Print Network (OSTI)

??My dissertation analyses the relationship between households' consumption behavior and changes in family demographic characteristics. The first paper studies consumption over the period of the… (more)

Stepanova, Ekaterina, 1977-

2006-01-01T23:59:59.000Z

449

Study on optimal train movement for minimum energy consumption.  

E-Print Network (OSTI)

?? The presented thesis project is a study on train energy consumption calculation and optimal train driving strategies for minimum energy consumption. This study is… (more)

Gkortzas, Panagiotis

2013-01-01T23:59:59.000Z

450

Table 8: Water Consumption Information for Large Hospitals  

U.S. Energy Information Administration (EIA)

Water Consumption Information for Large Hospitals, 2007 Table H8. RSEs for Water Consumption Information for Large Hospitals, 2007 Number of Large Hospital Buildings

451

How much of world energy consumption and electricity generation is ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy consumption is from ...

452

Biofuels Consumption and Production by Country (2000 - 2010)...  

Open Energy Info (EERE)

Biofuels Consumption and Production by Country (2000 - 2010) Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration...

453

Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic...

454

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2012 (EIA)

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

455

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

456

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

457

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions.      ...

458

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

459

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu.  Figures in this table...

460

Renewable Energy Consumption for Nonelectric Use by Energy Use...  

Open Energy Info (EERE)

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 This dataset provides annual renewable energy consumption (in quadrillion Btu)...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Residential Energy Consumption for Water Heating (2005) Provides...  

Open Energy Info (EERE)

Residential Energy Consumption for Water Heating (2005) Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in...

462

Residential Energy Consumption Survey Results: Total Energy Consumptio...  

Open Energy Info (EERE)

Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005)

463

Annual Renewable Electricity Consumption by Country (2005 - 2009...  

Open Energy Info (EERE)

Renewable Electricity Consumption by Country (2005 - 2009) Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as...

464

Historical Renewable Energy Consumption by Energy Use Sector...  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Provides annual renewable energy consumption by source and end use between 1989 and 2008....

465

Natural Gas Consumption by Country (1980 - 2009) Total annual...  

Open Energy Info (EERE)

Natural Gas Consumption by Country (1980 - 2009) Total annual dry natural gas consumption by country, 1980 to 2009 (available in Quadrillion Btu). Compiled by Energy Information...

466

Table E7.1. Consumption Ratios of Fuel, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit:...

467

Annual Electricity Consumption (1980 - 2009) Total annual electricity  

Open Energy Info (EERE)

Consumption (1980 - 2009) Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA).
...

468

TV Energy Consumption Trends and Energy-Efficiency Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

TV Energy Consumption Trends and Energy-Efficiency Improvement Options Title TV Energy Consumption Trends and Energy-Efficiency Improvement Options Publication Type Report LBNL...

469

Electricity Generation and Consumption by State (2008 ) Provides...  

Open Energy Info (EERE)

Electricity Generation and Consumption by State (2008 ) Provides total annual electricity consumption by sector (residential, commercial and industrial) for all states in 2008,...

470

Table CT1. Energy Consumption Estimates for Major Energy ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration State Energy Data 2011: Consumption 365 Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, North ...

471

Whole-house measurements of standby power consumption  

E-Print Network (OSTI)

kWh/year of non-heating electricity consumption correlatesof electricity consumption. The home at 20,000 kWh/year has

Ross, J.P.; Meier, Alan

2000-01-01T23:59:59.000Z

472

South Dakota Natural Gas Industrial Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) South Dakota Natural Gas Industrial Consumption (Million...

473

South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption...

474

South Dakota Natural Gas Residential Consumption (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Residential Consumption (Million Cubic Feet) South Dakota Natural Gas Residential Consumption...

475

South Dakota Natural Gas Total Consumption (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Total Consumption (Million Cubic Feet) South Dakota Natural Gas Total Consumption (Million Cubic Feet)...

476

South Dakota Natural Gas Lease Fuel Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

477

California Energy Commission - Natural Gas Consumption by Utility  

Open Energy Info (EERE)

California Energy Commission - Natural Gas Consumption by Utility (1990-2009) California Energy Commission natural gas consumption data by Utility company for Commercial,...

478

Natural Gas Production, Transmission, and Consumption by State...  

Open Energy Info (EERE)

Natural Gas Production, Transmission, and Consumption by State, 2009 The EIA dataset is a state by state comparison of natural gas production, transmission, and consumption for the...

479

Energy consumption of building 39; Energy consumption of building thirty-nine.  

E-Print Network (OSTI)

??The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further… (more)

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

480

5. Natural Gas Liquids Statistics  

U.S. Energy Information Administration (EIA)

5. Natural Gas Liquids Statistics Natural Gas Liquids Proved Reserves U.S. natural gas liquids proved reserves decreased 7 percent to 7,459 million ...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Liquid Hydrogen Absorber for MICE  

E-Print Network (OSTI)

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

482

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

console usage and national energy consumption: Results fromNational Energy Consumption .Discussion National Energy Consumption Under the assumption

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

483

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

commercial). National Energy Consumption Estimates We usedsection entitled “National Energy Consumption Estimates”).section entitled “National Energy Consumption Estimates”).

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

484

Analysis of ultimate energy consumption by sector in Islamic republic of Iran  

Science Conference Proceedings (OSTI)

Total ultimate energy consumption in Iran was 1033.32 MBOE in 2006, and increased at an average annual rate of 6% in 1996-2006. Household and commercial sector has been the main consumer sector (418.47 MBOE) and the fastest-growing sector (7.2%) that ... Keywords: Iran, agricultural sector, energy audits, energy consumption, industrial sector, residential and commercial sector, transportation sector

B. Farahmandpour; I. Nasseri; H. Houri Jafari

2008-02-01T23:59:59.000Z

485

Petroleum & Other Liquids - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum & Other Liquids Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude Reserves and Production Refining and Processing Imports/Exports & Movements Stocks Consumption/Sales All Petroleum & Other Liquids Data Reports Analysis & Projections Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports EIA's latest Short-Term Energy Outlook for crude oil and liquid fuels › image chart of World Liquid Fuels Supply and Demand as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. EIA's latest weekly petroleum analysis › Featured chart from This Week in Petroleum using statistics from the Weekly Petroleum Status Report

486

Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco  

E-Print Network (OSTI)

in household and per capita consumption of energy and water, and also at food, beverages, and tobacco, products invites several questions: Did per capita energy use increase from 1949 to 1973 due to bigger houses US primary energy consumption from 1949 to 2001 (Figure 1). In 1949, U.S. energy use per person stood

Diamond, Richard

487

Improved Lithium-Loaded Liquid Scintillators for Neutron Detection  

A liquid scintillator with a substantially increased lithium weight was developed byORNL researchers. Scintillators are widely used for the detection ...

488

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

489

1991 Manufacturing Consumption of Energy 1991 Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

1991 Executive Summary 1991 Executive Summary 1991 Figure showing the Largest Energy Consumers in the Manufacturing Sector Executive Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy Consumption Survey (MECS). The MECS is the only comprehensive source of national-level data on U.S. manufacturing energy use. The 1991 MECS is the third in an ongoing series of surveys conducted at 3-year intervals beginning in 1985. Pursuant to a provision of the Energy Policy Act of 1992, the MECS will be conducted biennially beginning in 1994. The MECS surveys a nationally representative sample of manufacturing establishments by means of mailed questionnaires. The 1991 sample represented 98 percent of the U.S. manufacturing sector universe, which consists of all manufacturing establishments in the 50 States and the District of Columbia. Compared with the 1988 MECS, the designed sample size for 1991 was increased from 12,065 manufacturing establishments to 16,054 establishments.

490

Liquid convective diodes  

DOE Green Energy (OSTI)

Liquid convective diodes are analyzed by experiments and theory. The experiments include flow visualization and temperature measurements. The dynamic behavior of a diode is analyzed and explained. Performance of three diodes of different designs that were installed in a test cell this past winter showed an average 50% thermal efficiency over a three-month period. If only the performance of the most efficient diode among the three is considered, it is expected that this figure may be increased to 60% or possibly 65% with some design improvements. A simple analytical model, which was developed earlier, is discussed. A comparison of reservoir temperatures from one of the test cell diodes with predicted temperatures from the model showed excellent agreement. The good agreement indicates that the model contains the elements that are necessary to accurately predict site-specific diode performance.

Jones, G.F.

1984-01-01T23:59:59.000Z

491

METHODOLOGY AND APPLICATIONS IN IMPUTATION, FOOD CONSUMPTION AND OBESITY RESEARCH  

E-Print Network (OSTI)

Obesity is a rapidly growing public health threat as well as an economic problem in the United States. The recent changes in eating habits, especially the relative increase of food away from home (FAFH) consumption over the last three decades raised the possibility of causal linkage between obesity and FAFH. This study confirms the positive, significant association between the body mass index and FAFH consumption in adults, consistent with previous findings in the economic and nutrition literature. This work goes a step further, however. We demonstrate FAFH consumption at quick-service restaurants has a significantly larger effect on body mass index than FAFH consumption at full-service restaurants. Further disaggregation of FAFH by meal occasion reveals that lunch consumed away from home has the largest positive effect on body mass index compared to other meal occasions (breakfast, dinner and snacks). Survey data with missing observations or latent variables are not rare phenomena. The missing value imputation methods are combined into two groups, contingent upon the existence or absence of an underlying explicit statistical model. Explicit modeling methods include unconditional mean value imputation, conditional mean and regression imputation, stochastic regression imputation, and multiple imputation. The methods based on implicit modeling include hot deck and cold deck imputation. In the second essay, we review imputation methods commonly used in the agricultural economics literature. Our analysis revealed strong preference of researchers for the regression imputation method. We consider several alternative (regression, mean and median) single imputation methods to impute and to append prices of foods consumed at home (foods commercially purchased and prepared from ingredients) from the National Health and Nutrition Examination Survey (NHANES) dietary intake data. We also demonstrate the superiority of regression imputation method compared to the mean and median imputation methods for commercially prepared foods. For ingredient foods, the results are ambiguous with no imputation method clearly outperforming the others.

Kyureghian, Gayaneh

2009-05-01T23:59:59.000Z

492

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

493

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

494

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

495

US Mnt(N) CO Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

496

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

497

US Mnt(N) CO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

498

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

499

Purifying mixed-use electrical consumption data  

SciTech Connect

This paper describes several analytical techniques for obtaining pure end-use load information from mixed end-use consumption data. This process is frequently necessary to make metered data useful to those involved in electric utility load forecasting and conservation assessment. Analyses based on traditional thermal models can be greatly augmented by these data sets if the measured entities correspond to those for which modeled estimates are necessary. We present two scenarios in which greater end-use resolution was needed than was available in existing data. The first involves segregating measured total HVAC consumption data into its heating, cooling, and ventilation constituents. The second discusses a technique to separate measurements of mixed equipment consumption into equipment type categories. These techniques were successfully applied to a large number of metered commercial buildings. We conclude with suggestions for extending these techniques to applications involving high-time-resolution building total data. 3 refs., 8 figs.

Taylor, Z.T.; Pratt, R.G.

1990-09-01T23:59:59.000Z

500

Metropolitan functional specialization, transportation, and gasoline consumption  

SciTech Connect

This study examines metropolitan functional specialization relative to urban commuting patterns and per capita gasoline consumption in 55 Standard Metropolitan Statistical Areas throughout the United States. Under the concept of sustenance organization in human ecology, social scientists have documented support for the importance of the key urban economic function for composition and distribution of population and firms in cities. However, sociological and ecological knowledge of the relationships of functional specialization, commuting, and transportation energy use is extremely limited. The present research utilizes the concept of function specialization and the framework of the ecological complex in developing relationships and models of personal daily urban travel patterns and gasoline use. The effort is made to examine human ecological factors in a physical approach to energy consumption. Relationships are tested using correlation matrices, regression analyses, and scatterplots where necessary. The findings indicate that the functional specialization of communities is significant in accounting for variance and patterns in their commuting travel and per capita gasoline consumption.

Hoffman, W.D.

1985-01-01T23:59:59.000Z