Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and...

2

INCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS,  

E-Print Network (OSTI)

respectively. Fish accounted for 66.4% of food biomass (69.4% of total energy consumption); squidINCREASED FOOD AND ENERGY CONSUMPTION OF LACTATING NORTHERN FUR SEALS, CALWRHINUS URSINUS MICHAEL A on ter- restrial mammals have specifically shown increased energy consumption by lactating females

3

Efficiency alone as a solution to increasing energy consumption  

E-Print Network (OSTI)

A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

Haidorfer, Luke

2005-01-01T23:59:59.000Z

4

A simple system for nutritional studies with chronic consumption of liquid diet in rats  

E-Print Network (OSTI)

Short note A simple system for nutritional studies with chronic consumption of liquid diet in rats to rats without any loss by evapora- tion is described. A liquid diet stirred continuously is offered to rats in water bottles. The diet is made available to the animals without any clotting throughout the 24

Paris-Sud XI, Université de

5

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

6

Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Prices and Oil Consumption Would Increase Without Gas Prices and Oil Consumption Would Increase Without Biofuels Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels June 11, 2008 - 1:30pm Addthis Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. Read the letter. Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol1, a first-generation biofuel. For a typical household, that means saving about $150 to $300 per year. For the U.S. overall, this saves gas expenditures of $28 billion to

7

Microsoft Word - Gas Prices and Oil Consumption Would Increase Without Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release June 11, 2008 202-586-4940 Fact Sheet: Gas Prices and Oil Consumption Would Increase Without Biofuels Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Edward T. Schafer sent a letter on June 11, 2008 to Senator Jeff Bingaman addressing a number of questions related to biofuels, food, and gasoline and diesel prices. The letter is available at http://www.energy.gov Without Biofuels, Gas Prices Would Increase $.20 to $.35 per Gallon. * The U.S. Department of Energy (DOE) estimates that gasoline prices would be between 20 cents to 35 cents per gallon higher without ethanol 1 , a first-generation biofuel. * For a typical household, that means saving about $150 to $300 per year. * For the U.S. overall, this saves gas expenditures of $28 billion to $49 billion based on annual

8

The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

SR/OIAF-CNEAF/2008-04 SR/OIAF-CNEAF/2008-04 The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special

9

Energy consumption and optimization of internally cooled/heated liquid desiccant air-conditioning system: A case study in Hong Kong  

Science Journals Connector (OSTI)

Abstract LDAC (liquid desiccant air-conditioning system) is promising for reducing the energy consumption, and improving the indoor air quality. In this paper, the operation performance of LDAC with internally cooled/heated dehumidifier/regenerator was simulated and optimized. The cooling tower and solar collectors were employed as the cooling/heating source. Four nested iteration loops were developed and solved for system modeling. A typical commercial building in Hong Kong was selected as a case study, which air-conditioning load was obtained by Energy-plus. Results show that with the increase of solar collector area, the electricity consumption of AC (air-conditioning systems) system reduced by 11–35% in original system, but only a part of dehumidification demand was handled with liquid desiccant ventilation, which led to a low chiller COP (coefficient of performance). By adding a cooling coil for the solution entering dehumidifier, the electricity saving effectively increased to 22–47%, while the heat demand for regeneration also increased by 17%. So, a heat exchanger between water leaving regenerator and solution leaving dehumidifier was introduced. With the lower thermal requirement (reduced by 20%) and higher solar fraction (increased from 30 to 40%), the saving further increased to 29–49%, and the required collector area obviously reduced by 50–60% for the similar energy saving purpose.

Ronghui Qi; Lin Lu

2014-01-01T23:59:59.000Z

10

Glyphosate-Based Herbicidal Ionic Liquids with Increased Efficacy  

Science Journals Connector (OSTI)

Greenhouse testing indicated that while at a higher application rate of 360 g/ha the efficacy of all the HILs was comparable to the commercial herbicide control, at a lower application rate of 180 g/ha, the efficacy of all HILs was as much as two and a half to three times higher when compared to the commercial formulation, and the dianionic glyphosates were the most effective. ... In field trials, all but one of the tested HILs demonstrated excellent efficacy. ... Laboratory regrowth tests established that the ionic liquids of glyphosate are efficiently translocated to rhizomes preventing the regrowth of plants. ...

Juliusz Pernak; Micha? Niemczak; Rafa? Giszter; Julia L. Shamshina; Gabriela Gurau; O. Andreea Cojocaru; Tadeusz Praczyk; Katarzyna Marcinkowska; Robin D. Rogers

2014-11-04T23:59:59.000Z

11

New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability  

Energy.gov (U.S. Department of Energy (DOE))

This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual $11,255 in pumping costs. With a capital investment of $44,966 in the energy efficiency portion of their new system, GM projected a simple payback of 4 years.

12

Externality of Consumption  

Science Journals Connector (OSTI)

Externalities of consumption exist if one individual's consumption of a good or service has positive... utility of another person. A positive externality increases ...

2008-01-01T23:59:59.000Z

13

INCREASE  

ScienceCinema (OSTI)

The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

None

2013-07-22T23:59:59.000Z

14

Shellfish consumption and intertidal occupancy review, Sellafield, 2004. This note describes a review of public radiation exposure pathways due to liquid radioactive  

E-Print Network (OSTI)

1 Shellfish consumption and intertidal occupancy review, Sellafield, 2004. This note describes out during July 2004, specifically targeted mollusc and crustacean consumption and intertidal occupancy rates of the Sellafield Fishing Community (SFC). People who have had high shellfish consumption

15

Increasing the magnetic sensitivity of liquid crystals by rod-like magnetic nanoparticles  

E-Print Network (OSTI)

Magnetic Fr\\'eedericksz transition was studied in ferronematics based on the nematic liquid crystal 4-(trans-4'-n-hexylcyclohexyl)-isothiocyanatobenzene (6CHBT). 6CHBT was doped with rod-like magnetic particles of different size and volume concentration. The volume concentrations of magnetic particles in the prepared ferronematics were $\\phi_1$ = 10$^{-4}$ and $\\phi_2$ = 10$^{-3}$. The structural changes were observed by capacitance measurements that demonstrate a significant influence of the concentration, the shape anisotropy, and/or the size of the magnetic particles on the magnetic response of these ferronematics.

P. Kop?anský; N. Tomašovi?ová; T. Tóth-Katona; N. Éber; M. Timko; V. Závišová; J. Majorošová; M. Raj?ak; J. Jadzyn; X. Chaud

2014-01-08T23:59:59.000Z

16

The Application of Ultrasonic Energy into Liquid Mediums to Increase Effectiveness  

E-Print Network (OSTI)

The use of high frequency or ultrasonic vibrations transmitted into and through a suitable medium can increase solution effectiveness. This means that in a continuous cleaning process, ultrasonic activation of the cleaning solution can increase...

Goodman, M. A.

1979-01-01T23:59:59.000Z

17

Increasing liquid hydrocarbon recovery from natural gas: Evaluation of the vortex-tube device  

SciTech Connect

The vortex-tube device provides a useful addition to the range of equipment available to the gas industry. It has been shown that the use of vortex-tube equipment permits improved separation in comparison with a Joule-Thomson system, without entering into the cost and complexity of a true isentropic system such as a turbo-expander unit. The comparative advantage of the vortex tube depends upon the inlet conditions of the gas and the pressure drop that is available. An optimum pressure drop of 25--35% of the inlet gas pressure has been confirmed in practice. Although not yet tested on operating plant, it is expected that a loss of performance of vortex-tube units will occur for inlet liquid-to-gas ratios of greater than 20%. Units with up to 5% liquid at the inlet have been successfully operated showing that a single phase gas at the unit inlet is not essential. It is expected that future application of vortex tube units will be concentrated where performance improvements over Joule-Thomson units, at low capital cost, are required.

Hajdik, B. [CBS Engineering, Houston, TX (United States); Steinle, J. [BEB Erdoel and Erdgas GmbH, Hannover (Germany); Lorey, M. [Filtan Analgenbau GmbH, Langenselbold (Germany); Thomas, K. [Falk and Thomas Engineering GmbH, Wettenberg (Germany)

1997-12-31T23:59:59.000Z

18

Energy Consumption  

Science Journals Connector (OSTI)

We investigated the relationship between electrical power consumption per capita and GDP per capita in 130 countries using the data reported by World Bank. We found that an electrical power consumption per capita...

Aki-Hiro Sato

2014-01-01T23:59:59.000Z

19

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

20

Tobacco Consumption  

Science Journals Connector (OSTI)

Tobacco consumption is the use of tobacco products in different forms such as , , , water-pipes or tobacco products. Cigarettes and tobacco products containing tobacco are highly engineered so as to creat...

Martina Pötschke-Langer

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

22

New Water Booster Pump System Reduces Energy Consumption by 80...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases...

23

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

24

Indexes of Consumption and Production  

U.S. Energy Information Administration (EIA) Indexed Site

Figure on manufacturing production indexes and purchased energy consumption Figure on manufacturing production indexes and purchased energy consumption Source: Energy Information Administration and Federal Reserve Board. History of Shipments This chart presents indices of 14 years (1980-1994) of historical data of manufacturing production indexes and Purchased (Offsite-Produced) Energy consumption, using 1992 as the base year (1992 = 100). Indexing both energy consumption and production best illustrates the trends in output and consumption. Taken separately, these two indices track the relative growth rates within the specified industry. Taken together, they reveal trends in energy efficiency. For example, a steady increase in output, coupled with a decline in energy consumption, represents energy efficiency gains. Likewise, steadily rising energy consumption with a corresponding decline in output illustrates energy efficiency losses.

25

EIA - International Energy Outlook 2008-Liquid Fuels  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Chapter 2 - Liquid Fuels World liquids consumption increases from 84 million barrels per day in 2005 to 99 million barrels per day in 2030 in the IEO2008 high price case. In the reference case, which reflects a price path that departs significantly from prices prevailing in the first 8 months of 2008, liquids use rises to 113 million barrels per day in 2030. Figure 26. World Liquids Production in the Reference Case, 1990-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800.

26

Consumption Behavior in Investment/Consumption Problems  

Science Journals Connector (OSTI)

In this chapter we study the consumption behavior of an agent in the dynamic framework of consumption/investment decision making that allows the presence of a subsistence consumption level and the possibility of ...

E. L. Presman

1997-01-01T23:59:59.000Z

27

Progressive consumption : strategic sustainable excess  

E-Print Network (OSTI)

Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

Bonham, Daniel J. (Daniel Joseph MacLeod)

2007-01-01T23:59:59.000Z

28

Energy consumption and environmental pollution: a stochastic model  

Science Journals Connector (OSTI)

......indicated that total energy consumption in sugar beet production...pollution. Although energy consumption increased sugar beet yield...and found that hybrid and electric car technologies exhibit (efficiency...ergy efficiency, affects consumption choice by Swedish households......

Charles S. Tapiero

2009-07-01T23:59:59.000Z

29

Optimal consumption policies in illiquid markets Alessandra Cretarola1)  

E-Print Network (OSTI)

Optimal consumption policies in illiquid markets Alessandra Cretarola1) , Fausto Gozzi1) , Huy Abstract We investigate optimal consumption policies in the liquidity risk model intro- duced in [5]. Our main result is to derive smoothness C1 results for the value functions of the portfolio/consumption

Paris-Sud XI, Université de

30

Optimal consumption policies in illiquid markets Alessandra Cretarola1)  

E-Print Network (OSTI)

Optimal consumption policies in illiquid markets Alessandra Cretarola1) , Fausto Gozzi1) , Huyên optimal consumption policies in the liquidity risk model intro- duced in [5]. Our main result is to derive smoothness C1 results for the value functions of the portfolio/consumption choice problem. As an important

Pham, Huyên

31

Ethanol Consumption by Rat Dams During Gestation,  

E-Print Network (OSTI)

Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

Galef Jr., Bennett G.

32

Data Center Power Consumption  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

33

Electricity Consumption Electricity Consumption EIA Electricity Consumption Estimates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Consumption Electricity Consumption EIA Electricity Consumption Estimates (million kWh) National Petroleum Council Assumption: The definition of electricity con- sumption and sales used in the NPC 1999 study is the equivalent ofwhat EIA calls "sales by utilities" plus "retail wheeling by power marketers." This A nn u al Gro wth total could also be called "sales through the distribution grid," 2o 99 99 to Sales by Utilities -012% #N/A Two other categories of electricity consumption tracked by EIA cover on site Retail Wheeling Sales by generation for host use. The first, "nonutility onsite direct use," covers the Power Marketen 212.25% #N/A traditional generation/cogeneration facilities owned by industrial or large All Sales Through Distribution

34

Population, Consumption & the Environment  

E-Print Network (OSTI)

12/11/2009 1 Population, Consumption & the Environment Alex de Sherbinin Center for International of carbon in 2001 · The ecological footprint, a composite measure of consumption measured in hectares kind of consumption is bad for the environment? 2. How are population dynamics and consumption linked

Columbia University

35

Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO{sub 2} from molecular simulation  

SciTech Connect

The capture of CO{sub 2} from fossil fuel combustion, particularly in coal-fired power plants, represents a critical component of efforts aimed at stabilizing greenhouse gas levels in the atmosphere. Recently, a series of second-generation task-specific ionic liquids (TSILs) containing amine functional groups have been synthesized and demonstrated to have much higher capacities for CO{sub 2} due to their reactivity with CO{sub 2}, as well unusually high viscosities in both the neat and complexed states. The current work extends the seminal studies of CO{sub 2} capture with ionic liquids (ILs) by providing insight from simulations into the mechanism responsible for the dramatic increase in viscosity upon complexation. Simulations conclusively demonstrate that the slow translational and rotational dynamics, which are manifest in the high viscosity, may be attributable to the formation of a strong, pervasive hydrogen-bonded network. Semiquantitative estimates of the cation and anion self-diffusion coefficients and rotational time constants, as well as detailed hydrogen bond analysis, are consistent with the experimentally observed formation of glassy or gel-like materials upon contact with CO{sub 2}. This has significant implications for the design of new approaches or materials involving ILs that take advantage of these preconceived limitations, in the synthesis or manipulation of new TSIL frameworks for CO{sub 2} capture, and in novel experimental studies of chemistries and dynamics in persistent heterogeneous environments.

Gutowski, K.E.; Maginn, E.J. [University of Notre Dame, Notre Dame, IN (United States)

2008-11-15T23:59:59.000Z

36

Household energy consumption and expenditures 1993  

SciTech Connect

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

37

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

38

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

" Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per...

39

CSV File Documentation: Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption The State Energy Data System (SEDS) comma-separated value (CSV) files contain consumption estimates shown in the tables located on the SEDS website. There are four files that contain estimates for all states and years. Consumption in Physical Units contains the consumption estimates in physical units for all states; Consumption in Btu contains the consumption estimates in billion British thermal units (Btu) for all states. There are two data files for thermal conversion factors: the CSV file contains all of the conversion factors used to convert data between physical units and Btu for all states and the United States, and the Excel file shows the state-level conversion factors for coal and natural gas in six Excel spreadsheets. Zip files are also available for the large data files. In addition, there is a CSV file for each state, named

40

An explanation for enhanced perceptions of attractiveness after alcohol consumption  

E-Print Network (OSTI)

An explanation for enhanced perceptions of attractiveness after alcohol consumption L.G. Halseya alcohol consumption increases ratings of attractiveness to faces. This may help to explain increased attraction may be the result of alcohol consumption decreasing ability to detect bilateral asymmetry

Little, Tony

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTION

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

42

consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

43

Energy Consumption of Die Casting Operations  

SciTech Connect

Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

Jerald Brevick; clark Mount-Campbell; Carroll Mobley

2004-03-15T23:59:59.000Z

44

Reduces electric energy consumption  

E-Print Network (OSTI)

consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings, and recycling. Alcoa provides the packaging, automotive, aerospace, and construction markets with a variety

45

Transportation Energy Consumption Surveys  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption (RTECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses...

46

Current Demands on Fuel Consumption Measurement  

Science Journals Connector (OSTI)

The general focus on the reduction of greenhouse gases, specifically of CO2..., is also increasingly drawing the attention of engine developers back to the priority of lowering fuel consumption. Fundamental to th...

Karl Köck; Romain Lardet; Rainer Schantl

2011-09-01T23:59:59.000Z

47

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

48

Reducing the Energy Consumption of Mobile Applications Behind the Scenes  

E-Print Network (OSTI)

Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

Tilevich, Eli

49

OpenEI - consumption  

Open Energy Info (EERE)

91/0 en Operational water 91/0 en Operational water consumption and withdrawal factors for electricity generating technologies http://en.openei.org/datasets/node/969 This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions.

License

50

Reduction of Water Consumption  

E-Print Network (OSTI)

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

Adler, J.

51

Fuel Consumption and Emissions  

Science Journals Connector (OSTI)

Calculating fuel consumption and emissions is a typical offline analysis ... simulations or real trajectory data) and the engine speed (as obtained from gear-shift schemes ... as input and is parameterized by veh...

Martin Treiber; Arne Kesting

2013-01-01T23:59:59.000Z

52

Spermatophore consumption in a cephalopod  

Science Journals Connector (OSTI)

...Animal behaviour 1001 14 70 Spermatophore consumption in a cephalopod Benjamin J. Wegener...provide evidence of ejaculate and sperm consumption in a cephalopod. Through labelling...combination of female spermatophore consumption and short-term external sperm storage...

2013-01-01T23:59:59.000Z

53

Food consumption trends and drivers  

Science Journals Connector (OSTI)

...original work is properly cited. Food consumption trends and drivers John Kearney...Government policy. A picture of food consumption (availability) trends and projections...largely responsible for these observed consumption trends are the subject of this review...

2010-01-01T23:59:59.000Z

54

Rice consumption in China  

E-Print Network (OSTI)

RICE CONSUMPTION IN CHINA A Thesis by JIN LAN Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989 Major Subject: Agricultural... Economics RICE CONSUMPTION IN CHINA A Thesis by JIN LAN Approved as to style and content by: E, We ey F. Peterson (Chair of Committee) James E. Christiansen (Member) Carl Shaf (Member) Daniel I. Padberg (Head of Department) August 1989...

Lan, Jin

2012-06-07T23:59:59.000Z

55

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

56

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

57

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

58

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

59

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

60

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Standby electricity consumption and saving potentials of Turkish households  

Science Journals Connector (OSTI)

Abstract The share of the residential sector currently accounts for about 25% of the national electricity consumption in Turkey. Due to increase in household income levels and decrease in the costs of appliances; significant increases in appliance ownerships and residential electricity consumption levels have been observed in recent years. Most domestic appliances continue consuming electricity when they are not performing their primary functions, i.e. at standby mode, which can constitute up 15% of the total household electricity consumption in some countries. Although the demand in Turkish residential electricity consumption is increasing, there are limited studies on the components of the residential electricity consumption and no studies specifically examining the extent and effects of standby electricity consumption using a surveying/measurement methodology. Thus, determining the share of standby electricity consumption in total home electricity use and the ways of reducing it are important issues in residential energy conservation strategies. In this study, surveys and standby power measurements are conducted at 260 households in Ankara, Turkey, to determine the amount, share, and saving potentials of the standby electricity consumption of Turkish homes. The survey is designed to gather information on the appliance properties, lights, electricity consumption behavior, economic and demographics of the occupants, and electricity bills. A total of 1746 appliances with standby power are measured in the surveyed homes. Using the survey and standby power measurements data, the standby, active, and lighting end-use electricity consumptions of the surveyed homes are determined. The average Turkish household standby power and standby electricity consumption are estimated as 22 W and 95 kW h/yr, respectively. It was also found that the standby electricity consumption constitutes 4% of the total electricity consumption in Turkish homes. Two scenarios are then applied to the surveyed homes to determine the potentials in reducing standby electricity consumption of the households.

Mustafa Cagri Sahin; Merih Aydinalp Koksal

2014-01-01T23:59:59.000Z

62

Natural Gas Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Lease Fuel Consumption Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential Volumes Delivered to Commercial Consumers Volumes Delivered to Industrial Consumers Volumes Delivered to Vehicle Fuel Consumers Volumes Delivered to Electric Power Consumers Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 23,103,793 23,277,008 22,910,078 24,086,797 24,477,425 25,533,448 1949-2012 Alabama 418,512 404,157 454,456 534,779 598,514 666,738 1997-2012 Alaska 369,967 341,888 342,261 333,312 335,458 343,110 1997-2012

63

The impact of retirement on household consumption in Japan  

Science Journals Connector (OSTI)

Using monthly data from the Japanese Family Income and Expenditure Survey, we examine the impact of retirement on household consumption. We find little evidence of an immediate change in consumption at retirement, on average, in Japan. However, we find a decrease in consumption at retirement for low income households that is concentrated in food and work-related consumption. The availability of substantial retirement bonuses to a large share of Japanese retirees may help smooth consumption at retirement. We find that those households that are more likely to receive such bonuses experience a short-run consumption increase at retirement. However, among households that are less likely to receive a retirement bonus, we find that consumption decreases at retirement.

Melvin Stephens Jr.; Takashi Unayama

2012-01-01T23:59:59.000Z

64

Coal-to-Liquids in the U S Status and Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

to-Liquids in the United States to-Liquids in the United States Status and Roadmap CTLtec Americas 2008 June 23 - 24, 2008 Daniel C. Cicero, Technology Manager, Hydrogen and Syngas National Energy Technology Laboratory CTL Tec Americas 2008 / Daniel Cicero / U.S. DOE-NETL / June 2008 * 35% of world energy consumption is from oil 2 * 96% of all world oil used for transportation * World vehicle population at 700 million; - double by 2030 to 1.5 billion; - developing countries to triple * World oil consumption is 84 MMBPD - 20% higher than 1995 - expect 120 MMBPD by 2030 * World oil supplies could peak between 2016 and 2037 3 * Increasing competition with China, India, and other growing nations for oil resources * Oil resources not equitably distributed globally; coal more wide spread 2 Ref: World Coal Institute Report "Coal-to-Liquids"

65

101. Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Consumption 1. Natural Gas Consumption in the United States, 1930-1996 (Million Cubic Feet) Table Year Lease and Plant Fuel Pipeline Fuel Delivered to Consumers Total Consumption Residential Commercial Industrial Vehicle Fuel Electric Utilities Total 1930 ....................... 648,025 NA 295,700 80,707 721,782 NA 120,290 1,218,479 1,866,504 1931 ....................... 509,077 NA 294,406 86,491 593,644 NA 138,343 1,112,884 1,621,961 1932 ....................... 477,562 NA 298,520 87,367 531,831 NA 107,239 1,024,957 1,502,519 1933 ....................... 442,879 NA 283,197 85,577 590,865 NA 102,601 1,062,240 1,505,119 1934 ....................... 502,352 NA 288,236 91,261 703,053 NA 127,896 1,210,446 1,712,798 1935 ....................... 524,926 NA 313,498 100,187 790,563 NA 125,239 1,329,487 1,854,413 1936 ....................... 557,404 NA 343,346

66

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

67

All Consumption Tables.vp  

U.S. Energy Information Administration (EIA) Indexed Site

3. Drip gases, and liquid hydrocarbons produced from tar sands, gilsonite, and oil shale. Liquids produced at natural gas processing plants are excluded. Crude oil is...

68

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

69

Carbon monoxide absorbing liquid  

SciTech Connect

The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

1981-07-07T23:59:59.000Z

70

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

71

Green mining: energy consumption of advertisement blocking methods  

Science Journals Connector (OSTI)

Extending battery life on mobile devices has become an important topic recently due to the increasing frequency of smartphone adoption. A primary component of smart phone energy consumption is the apps that run on these devices. Many apps have embedded ... Keywords: Advertising, Software Energy Consumption

Kent Rasmussen; Alex Wilson; Abram Hindle

2014-06-01T23:59:59.000Z

72

Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption  

E-Print Network (OSTI)

of Natural Sciences bOcean & Resources Engineering Department cAutonomous System Laboratory, College, the onboard energy system is key to their ability to perform a prescribed mission. For a long duration mission (respectively surge, sway and heave) and by (p, q, r) for rotational motion (respectively roll, pitch and yaw

Chyba, Monique

73

The Impact of Increased Use of Hydrogen on Petroleum Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

A. Michael Schaal (michael.schaal@eia.doe.gov, 202586-5590), Director of its Oil and Gas Division. Specific questions about the report can be directed to the following...

74

Increasing the Consumption of Whole Grain Foods in School Meals  

E-Print Network (OSTI)

nutritious meals in their cafeterias, while maintaining customer acceptance of the foods. Whether or not students consume whole grains determines if these foods are served again. Input from participants determined which whole grain were foods tested...

Warren, Cynthia Ann

2011-08-08T23:59:59.000Z

75

MFR PAPER 1012 Increased U.S. fish consumption and  

E-Print Network (OSTI)

eaters-perhaps some ne'A ones-but It I IIk.el) that a large num- ber 'Aere already regular consumers

76

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

77

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

78

A new adaptive fuzzy inference system for electricity consumption forecasting with hike in prices  

Science Journals Connector (OSTI)

Large increase or hike in energy prices has proven to impact electricity consumption in a way which cannot be drawn ... (FIS) to estimate and forecast long-term electricity consumption when prices experience larg...

S. M. Sajadi; S. M. Asadzadeh; V. Majazi Dalfard…

2013-12-01T23:59:59.000Z

79

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

from household energy consumption i n Japan increased b y 20is that household energy consumption i n Japan has notfrom a l l households i n Japan, through 2050 (with energy-

2006-01-01T23:59:59.000Z

80

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

82

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

83

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

84

RECS Data Show Decreased Energy Consumption per Household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-01-01T23:59:59.000Z

85

Variety in Fruit and Vegetable Consumption and the Risk of Lung Cancer in the European Prospective Investigation into Cancer and Nutrition  

Science Journals Connector (OSTI)

...Vegetable and fruit consumption has been hypothesized...cancer risk. The 2007 World Cancer Research Fund...vegetable and fruit consumption and energy intake increased with...fruit and vegetable consumption. Those reporting higher...

Frederike L. Büchner; H. Bas Bueno-de-Mesquita; Martine M. Ros; Kim Overvad; Christina C. Dahm; Louise Hansen; Anne Tjønneland; Françoise Clavel-Chapelon; Marie-Christine Boutron-Ruault; Marina Touillaud; Rudolf Kaaks; Sabine Rohrmann; Heiner Boeing; Ute Nöthlings; Antonia Trichopoulou; Dimosthenis Zylis; Vardis Dilis; Domenico Palli; Sabina Sieri; Paolo Vineis; Rosario Tumino; Salvatore Panico; Petra H.M. Peeters; Carla H. van Gils; Eiliv Lund; Inger T. Gram; Tonje Braaten; María-José Sánchez; Antonio Agudo; Nerea Larrañaga; Eva Ardanaz; Carmen Navarro; Marcial V. Argüelles; Jonas Manjer; Elisabet Wirfält; Göran Hallmans; Torgny Rasmuson; Tim J. Key; Kay-Tee Khaw; Nick Wareham; Nadia Slimani; Anne-Claire Vergnaud; Wei W. Xun; Lambertus A.L.M. Kiemeney; and Elio Riboli

2010-09-01T23:59:59.000Z

86

Natural Gas Liquids Reserves Revision Increases  

Gasoline and Diesel Fuel Update (EIA)

882 1,232 968 845 1,187 1,192 1979-2008 882 1,232 968 845 1,187 1,192 1979-2008 Federal Offshore U.S. 118 148 114 118 116 85 1981-2008 Pacific (California) 0 0 0 0 0 0 1979-2008 Louisiana & Alabama 89 104 89 99 90 71 1981-2008 Texas 29 44 25 19 26 14 1981-2008 Alaska 0 0 0 0 0 0 1979-2008 Lower 48 States 882 1,232 968 845 1,187 1,192 1979-2008 Alabama 8 4 2 5 2 9 1979-2008 Arkansas 0 0 0 0 0 0 1979-2008 California 12 22 31 8 16 12 1979-2008 Coastal Region Onshore 1 3 2 3 2 1 1979-2008 Los Angeles Basin Onshore 1 0 1 0 1 0 1979-2008 San Joaquin Basin Onshore 10 19 28 5 13 11 1979-2008 State Offshore 0 0 0 0 0 0 1979-2008 Colorado 51 72 55 34 105 93 1979-2008 Florida 0 0 0 0 2 0 1979-2008 Kansas 11 44 12 44 22 19 1979-2008

87

World energy consumption  

SciTech Connect

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

88

Electricity Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Electricity Electricity Consumption world Data text/csv icon total_electricity_net_consumption_1980_2009billion_kwh.csv (csv, 50.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

89

Biofuels Consumption | OpenEI  

Open Energy Info (EERE)

Biofuels Consumption Biofuels Consumption Dataset Summary Description Total annual biofuels consumption and production data by country was compiled by the Energy Information Administration (EIA). Data is presented as thousand barrels per day. Source EIA Date Released Unknown Date Updated Unknown Keywords Biofuels Biofuels Consumption EIA world Data text/csv icon total_biofuels_production_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) text/csv icon total_biofuels_consumption_2000_2010thousand_barrels_per_day.csv (csv, 9.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2010 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

90

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

91

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

92

Consumption of Lysozyme-Rich Milk Can Alter Microbial Fecal Populations  

Science Journals Connector (OSTI)

...research-article Microbial Ecology Consumption of Lysozyme-Rich Milk Can Alter Microbial...diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes...increased over time in response to the consumption of lysozyme-rich milk. The proportions...

Elizabeth A. Maga; Prerak T. Desai; Bart C. Weimer; Nguyet Dao; Dietmar Kültz; James D. Murray

2012-06-29T23:59:59.000Z

93

Fruit and Vegetable Consumption and Incidence of Gastric Cancer: A Prospective Study  

Science Journals Connector (OSTI)

...and intakes of total energy, alcohol, and processed...supplement use, and consumption of red meat, poultry...suggest that frequent consumption of vegetables may reduce...to increase vegetable consumption. 1 Parkin DM, Bray...55:74-108. 2 World Cancer Research Fund...

Susanna C. Larsson; Leif Bergkvist; and Alicja Wolk

2006-10-01T23:59:59.000Z

94

An Analysis of Hard Drive Energy Consumption Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian Jones  

E-Print Network (OSTI)

An Analysis of Hard Drive Energy Consumption Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian consumed by the electronics of a drive is just as important as the mechanical energy consumption; (ii consumption was a concern pri- marily for mobile computing domains. The rising cost of energy and increased

Cambridge, University of

95

Accounting for the Energy Consumption of Personal Computing Including Portable Devices  

E-Print Network (OSTI)

Accounting for the Energy Consumption of Personal Computing Including Portable Devices Pavel.S.A vinod.namboodiri@wichita.edu ABSTRACT In light of the increased awareness of global energy consumption the share of energy consumption due to these equipment over the years, these have rarely characterized

Namboodiri, Vinod

96

DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption  

Gasoline and Diesel Fuel Update (EIA)

General information about EIA data on energy consumption may be obtained from Wray Smith, Director, Office of Energy Markets and End Use (202- 252-1617); Lynda T. Carlson,...

97

Effects of financial developments and income on energy consumption  

Science Journals Connector (OSTI)

Abstract Extending Sadorsky (2010), this paper focuses on nonlinear effects of financial development and income on energy consumption. Utilizing five alternative measures of financial development, it employs a panel threshold regression approach to reexamine the effect of financial development and income on energy consumption. The analysis relies on a sample of 53 countries for the period 1999–2008, showing a single-threshold effect on energy consumption when private credit, domestic credit, value of traded stocks, and stock market turnover are used as financial development indicators. It implies that the sample can be split into two regimes: high income, and non-high income. Energy consumption increases with income in emerging market and developing economies, while in advanced economies energy consumption increases with income beyond a point at which the economy achieves a threshold level of income. In addition, in the non–high income regime, energy consumption increases with financial development when both private and domestic credit are used as financial development indicators. However, when the value of traded stocks and stock market turnover are used as financial development indicators, it slightly declines with financial development in advanced economies, especially in high-income countries, but increases in the higher income countries of emerging market and developing economies.

Shu-Chen Chang

2015-01-01T23:59:59.000Z

98

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

99

Fuel Consumption | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Fuel Consumption, CO2 Emissions, And A Simple Connection To the Vehicle Road Load Equation Jan 15 2014 11:30 AM - 12:30 PM Glen E. Johnson Tennessee Tech University, Cookeville Energy and Transportation Science Division Seminar National Transportation Research Center, Room C-04 CONTACT : Email: Andreas Malikopoulos Phone:865.382.7827 Add to Calendar SHARE Ambitious goals have been set to reduce fuel consumption and CO2 emissions over the next generation. Starting from first principles, we will derive relations to connect fuel consumption and carbon dioxide emissions to a vehicle's road load equation. The model suggests approaches to facilitate achievement of future fuel and emissions targets. About the speaker: Dr. Johnson is a 1973 Mechanical Engineering graduate of Worcester

100

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

US ENC IL Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

IL IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Illinois households spending 2% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

102

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

103

US ENC MI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MI MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels compared to states with a similar climate, result in Michigan households spending 6% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers keeps average site electricity consumption in the state low relative to other parts of the U.S.

104

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

105

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

106

Energy Consumption in Access Networks  

Science Journals Connector (OSTI)

We present a comparison of energy consumption of access networks. We consider passive optical networks, fiber to the node, point-to-point optical systems and WiMAX. Optical access...

Baliga, Jayant; Ayre, Robert; Sorin, Wayne V; Hinton, Kerry; Tucker, Rodney S

107

The Wealth-Consumption Ratio  

E-Print Network (OSTI)

We derive new estimates of total wealth, the returns on total wealth, and the wealth effect on consumption. We estimate the prices of aggregate risk from bond yields and stock returns using a no-arbitrage model. Using these ...

Verdelhan, Adrien Frederic

108

Energy consumption of building 39  

E-Print Network (OSTI)

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

109

Energy Consumption Profile for Energy  

E-Print Network (OSTI)

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

110

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

111

Electricity Demand and Energy Consumption Management System  

E-Print Network (OSTI)

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

112

Asset Pricing with Countercyclical Household Consumption Risk  

E-Print Network (OSTI)

1 Asset Pricing with Countercyclical Household Consumption Risk George M. Constantinides that shocks to household consumption growth are negatively skewed, persistent, and countercyclical and play that drives the conditional cross-sectional moments of household consumption growth. The estimated model

Sadeh, Norman M.

113

Optimal consumption strategies under model uncertainty  

E-Print Network (OSTI)

Optimal consumption strategies under model uncertainty Christian Burgert, Ludger R of finding optimal consumption strategies in an incomplete semimartingale market model under model uncertainty. The quality of a consumption strategy is measured by not only one probability measure

Rüschendorf, Ludger

114

OpenEI - Electricity Consumption  

Open Energy Info (EERE)

Annual Electricity Annual Electricity Consumption (1980 - 2009) http://en.openei.org/datasets/node/877 Total annual electricity consumption by country, 1980 to 2009 (billion kilowatthours). Compiled by Energy Information Administration (EIA). License

Type of License:  Other (please specify below)
Source of data

115

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

116

Power Production and Consumption  

Science Journals Connector (OSTI)

... and motor fuels. There appears to be a relative increase in the use of diesel engines in all the major industrial countries, excluding Japan, where curiously there is a pronounced ... with 80 in 1940. The diesel fuel situation shows less improvement, as diesel running costs are kept low by ...

F. D. ROBINSON

1956-08-25T23:59:59.000Z

117

E-Print Network 3.0 - atmospheric methane consumption Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidation of Methane with Air in AC Electric Gas Discharge Summary: , and specific energy consumption. Methane and oxygen conversions increased with input power but...

118

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

119

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

120

New York: Weatherizing Westbeth Reduces Energy Consumption |...  

Energy Savers (EERE)

York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

122

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

123

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

124

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

125

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

126

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

127

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

128

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

129

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

130

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

131

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

132

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

133

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

134

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

135

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

136

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

137

Energy Information Administration - Transportation Energy Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

138

The Impact of Using Derived Fuel Consumption Maps to Predict...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption The Impact of Using Derived Fuel Consumption Maps to Predict Fuel Consumption Poster presented at the...

139

Fact #839: September 22, 2014 World Petroleum Consumption Continues to Rise despite Declines from the United States and Europe  

Energy.gov (U.S. Department of Energy (DOE))

From 1980 to 2013, overall world petroleum consumption has increased from 63 to 90 million barrels per day. Overall consumption is the total of the individual countries/regions shown below....

140

Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program  

E-Print Network (OSTI)

Daily, 2007. Energy consumption per unit GDP down 1.23%increase in energy use per unit of GDP after 2002 following2006, the energy consumption per unit of GDP declined 1.23%

Price, Lynn; Wang, Xuejun

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Increasing Knowledge Increasing Knowledge 29  

E-Print Network (OSTI)

28 Increasing Knowledge Increasing Knowledge 29 Expanding Leadership 36 Building Partnerships 43 the world. The challenges ahead are large, but WSP is preparing to meet them by increasing knowledge, expanding leadership, building partnerships, and seeking solutions. #12;29 Increasing Knowledge Increasing

Fay, Noah

142

Today in Energy - commercial consumption & efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends.

2028-01-01T23:59:59.000Z

143

US ENC WI Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

144

US ENC WI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

120 120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to states with a similar climate, such as New York, result in households spending 5% less for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S.

145

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

146

US WSC TX Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

WSC TX WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but similar to the amount used in neighboring states. * The average annual electricity cost per Texas household is $1,801, among the highest in the nation, although similar to other warm weather states like Florida. * Texas homes are typically newer, yet smaller in size, than homes in other parts of

147

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

ESC TN ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average and among the highest in the nation, but spending for electricity is closer to average due to relatively low electricity prices. * Tennessee homes are typically newer, yet smaller in size, than homes in other parts of the country.

148

Trends in worldwide ICT electricity consumption from 2007 to 2012  

Science Journals Connector (OSTI)

Abstract Information and Communication Technology (ICT) devices and services are becoming more and more widespread in all aspects of human life. Following an increased worldwide focus on the environmental impacts of energy consumption in general, there is also a growing attention to the electricity consumption associated with ICT equipment. In this paper we assess how ICT electricity consumption in the use phase has evolved from 2007 to 2012 based on three main ICT categories: communication networks, personal computers, and data centers. We provide a detailed description of how we calculate the electricity use and evolution in these three categories. Our estimates show that the yearly growth of all three individual ICT categories (10%, 5%, and 4%, respectively) is higher than the growth of worldwide electricity consumption in the same time frame (3%). The relative share of this subset of ICT products and services in the total worldwide electricity consumption has increased from about 3.9% in 2007 to 4.6% in 2012. We find that the absolute electricity consumption of each of the three categories is still roughly equal. This highlights the need for energy-efficiency research across all these domains, rather than focusing on a single one.

Ward Van Heddeghem; Sofie Lambert; Bart Lannoo; Didier Colle; Mario Pickavet; Piet Demeester

2014-01-01T23:59:59.000Z

149

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

150

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

151

OpenEI - Energy Consumption  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the consumption/residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

152

Fuel consumption model for FREFLO  

E-Print Network (OSTI)

above, Biggs and Akcelik (1985) proposed a model of the following form: f = fsito + &Pr + z[apr)o o (5) where, Po = total drag power P, = inertia power a = instantaneous acceleration 8, = fuel consumption per unit power 8, = fuel consumption per... that is additional to S, P, . This component is expressed as SzaP, , where &z is considered to be a secondary efficiency parameter that relates fuel to the product of inertia power and acceleration rate, for positive accelerations. This term allows for the effects...

Rao, Kethireddipalli Srinivas

1992-01-01T23:59:59.000Z

153

EIA - International Energy Outlook 2007 - Energy Consumption by End-Use  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector International Energy Outlook 2007 Chapter 2 - Energy Consumption by End-Use Sector In the IEO2007 projections, end-use energy consumption depends on resource endowment, economic growth, and other political, social, and demographic factors.. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is dominated by petroleum-based liquids products at present, the mix of energy use in the residential, commercial, and industrial sectors varies widely by region, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social,

154

US NE MA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

155

Rail Transit and Energy Consumption  

Science Journals Connector (OSTI)

...Transit and Energy Consumption In a recent issue...D.C. 20418 The Diesel's Advantages It...p. 517). The diesel car, while it has...Other types of engine can be made to meet...catalysts by using leaded fuel because it is 3 to...politically unpopular. The diesel car requires no add-on...

CHARLES A. LAVE

1977-09-02T23:59:59.000Z

156

US NE MA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

NE MA NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption results in households spending 22% more for energy than the U.S. average. * Less reliance on electricity for heating, as well as cool summers, keeps average site electricity consumption in the state low relative to other parts of the U.S. However, spending on electricity is closer to the national average due to higher

157

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumed more petroleum-based liquid fuel per capita than any other OECD- high-income country- 30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxemburg). ...

Knittel, Christopher R.

2011-12-01T23:59:59.000Z

158

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumes more petroleum-based liquid fuel per capita than any other OECD high-income country—30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxembourg). ...

Knittel, Christopher Roland

2012-01-01T23:59:59.000Z

159

Heart Rate and Oxygen Consumption of Northern Elephant Seals during Diving in the Laboratory  

E-Print Network (OSTI)

116 Heart Rate and Oxygen Consumption of Northern Elephant Seals during Diving in the Laboratory Paul M. Webb1 heart rate over the entire dive cycle increased with increasing oxygen consumption in all, which casts some doubt on the usefulness of heart rate as an indicator of metabolicBurney J. Le Boeuf1 1

Webb, Paul M.

160

Response of office building electricity consumption to urban weather in Adelaide, South Australia  

Science Journals Connector (OSTI)

Abstract Knowledge of climate dependency of building energy consumption is useful for predicting the impacts of climate change and urban heat island on energy demand and associated carbon emissions, and to evaluate and improve building energy performance. Climate dependent electricity consumption is examined in this study for four office buildings in Adelaide, the capital city of South Australia with a warm-summer Mediterranean climate. Influences of both outdoor temperature and specific humidity on building electricity consumption are analyzed using the multiple linear regression, based on both sub-daily and monthly electricity consumption data. The results indicate that there is a daytime mean temperature threshold of around 17 °C, above which, electricity consumption increases with air temperature. Specific humidity also contributes to interpreting the temporal variability of office hour electricity consumption. Daytime temperature and specific humidity together determine 80–90% of office hour electricity consumption variation for days with mean daytime temperature above the threshold temperature. Office building daily electricity consumption can be examined with monthly electricity consumption data of a period of three years. The results also suggest that heatwaves may increase office building electricity demand by up to 50%, and that one degree warming can increase annual office electricity consumption by 2% in Adelaide.

Huade Guan; Veronica Soebarto; John Bennett; Roger Clay; Robert Andrew; Yunhui Guo; Saeedeh Gharib; Kathryn Bellette

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EMSL - liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

liquids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate...

162

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

163

Liquid sampling system  

DOE Patents (OSTI)

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

Larson, Loren L. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

164

Power consumption in gas-inducing-type mechanically agitated contactors  

SciTech Connect

Power consumption was measured in 0.57, 1.0, and 1.5 m i.d. gas inducing type of mechanically agitated contactors (GIMAC) using single and multiple impellers. The ratio of impeller diameter to vessel diameter was varied in the range of 0.13 < D/T < 0.59. The effect of liquid submergence from the top and impeller clearance from the vessel bottom was investigated in detail. In the case of multiple impeller systems, six different designs were investigated. The designs included pitched blade downflow turbine (PBTD), pitched blade upflow turbine (PBTU), downflow propeller (PD), upflow propeller (PU), straight bladed turbine (SBT) and disc turbine (DT). The effect of interimpeller clearance was studied for the multiple impeller system. The effect of impeller speed was studied in the range of 0.13 < N < 13.5 rotations/s. A mathematical model has been developed for power consumption before and after the onset of gas induction.

Saravanan, K.; Mundale, V.D.; Patwardhan, A.W.; Joshi, J.B. [Univ. of Bombay (India). Dept. of Chemical Technology] [Univ. of Bombay (India). Dept. of Chemical Technology

1996-05-01T23:59:59.000Z

165

Some heat engine cycles in which liquids can work  

Science Journals Connector (OSTI)

Some heat engine cycles in which liquids can work...inefficiency of liquids working in heat engines, and the third factor is Carnot's...Improvementsfor Diminishing the Consumption of Fuel, and in Particular on Engines Capable of Being Applied to the...

P. C. Allen; D. N. Paulson; J. C. Wheatley

1981-01-01T23:59:59.000Z

166

OXYGEN CONSUMPTION OF NORMAL AND GREEN OYSTERS 1 PAUL S. GALTSOFF, Ph. D., In Charge, Oyster Fishery Investigations  

E-Print Network (OSTI)

OXYGEN CONSUMPTION OF NORMAL AND GREEN OYSTERS 1 $ By PAUL S. GALTSOFF, Ph. D., In Charge, Oyster _ ~ethod _ Oxygen consumption of normal oyster _ Effect of oxygen tension on oxygen con- sumption _ Page 489 Increased rate of metabolism _ 490 Experiments with green oysters _ 493 Oxygen consumption

167

Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco  

E-Print Network (OSTI)

at 215 million Btu. The rate of consumption generally increased until the oil price shocks of the midChanging Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages understand energy conservation policies, we take a brief look at the history in the US of consumption

168

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

169

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

170

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

171

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

172

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

173

US WNC MO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

WNC MO WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less than the national average, primarily due to historically lower residential electricity prices in the state. * Missouri homes are typically larger than homes in other states and are more likely to be attached or detached single-family housing units.

174

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

175

Manufacturing consumption of energy 1994  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

176

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

177

Sensitivity to electricity consumption in urban business and commercial area buildings according to climatic change  

Science Journals Connector (OSTI)

Recently, urban high temperature phenomenon has become a problem which results from human activities, the increase in energy consumption, and land-cover change in urban areas ... is increased and results in the d...

Kang-guk Lee; Sung-bum Kim; Won-hwa Hong

2012-03-01T23:59:59.000Z

178

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

4) 4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Coal Natural Gas c Petroleum Nuclear Electric Power Hydro- electric Power d Biomass e Other f Net Interstate Flow of Electricity/Losses g Residential Commercial Industrial b Transportation Alabama 2,159.7 853.9 404.0 638.5 329.9 106.5 185.0 0.1 -358.2 393.7 270.2 1,001.1 494.7 Alaska 779.1 14.1 411.8 334.8 0.0 15.0 3.3 0.1 0.0 56.4 63.4 393.4 266.0 Arizona 1,436.6 425.4 354.9 562.8 293.1 69.9 8.7 3.6 -281.7 368.5 326.0 231.2 511.0 Arkansas 1,135.9 270.2 228.9 388.3 161.1 36.5 76.0 0.6 -25.7 218.3 154.7 473.9 288.9 California 8,364.6 68.9 2,474.2 3,787.8 315.6 342.2

179

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9) 9) June 2011 State Energy Consumption Estimates 1960 Through 2009 2009 Consumption Summary Tables Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,906.8 631.0 473.9 583.9 1,688.8 415.4 272.9 -470.3 0.0 383.2 266.0 788.5 469.2 Alaska 630.4 14.5 344.0 255.7 614.1 0.0 16.3 0.0 (s) 53.4 61.0 325.4 190.6 Arizona 1,454.3 413.3 376.7 520.8 1,310.8 320.7 103.5 -279.9 -0.8 400.8 352.1 207.8 493.6 Arkansas 1,054.8 264.1 248.1 343.1 855.3 158.7 126.5 -85.7 0.0 226.3 167.0 372.5

180

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 3. Energy Consumption per Capita by End-Use Sector, Ranked by State, 2011 Rank Residential Sector Commercial Sector Industrial Sector Transportation Sector Total Consumption State Million Btu State Million Btu State Million Btu State Million Btu State Million Btu 1 North Dakota 99.8 District of Columbia 193.1 Louisiana 585.8 Alaska 277.3 Wyoming 974.7 2 West Virginia 90.9 Wyoming 119.2 Wyoming 568.2 Wyoming 200.7 Louisiana 886.5 3 Missouri 89.4 North Dakota 106.9 Alaska 435.7 North Dakota 172.8 Alaska 881.3 4 Tennessee 87.8 Alaska 94.1 North Dakota 388.9 Louisiana 158.0 North Dakota 768.4 5 Kentucky 87.4 Montana 78.4 Iowa 243.4 Oklahoma 122.3 Iowa 493.6

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

182

Essays on aggregate and individual consumption fluctuations  

E-Print Network (OSTI)

This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

Hwang, Youngjin

2006-01-01T23:59:59.000Z

183

Reduced Energy Consumption for Melting in Foundries  

E-Print Network (OSTI)

Reduced Energy Consumption for Melting in Foundries Ph.D. Thesis by Søren Skov-Hansen Supervisor-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

184

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

185

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

186

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

187

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

188

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

189

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

190

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

191

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

192

EIA - International Energy Outlook 2008-Liquid Fuels Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Figure 26. World Liquids Production in the Reference Case, 1990-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. World Liquids Consumption by Sector, 2005-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 29. World Liquids Consumption by Region and Country Group, 2005 and 2030 Figure 29 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 30. Nominal World Oil Prices in three Cases, 1980-2030 Figure 30 Data. Need help, contact the National Energy Information Center at 202-586-8800.

193

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

The impact of increasing home size on energy demand The impact of increasing home size on energy demand RECS 2009 - Release date: April 19, 2012 Homes built since 1990 are on average 27% larger than homes built in earlier decades, a significant trend because most energy end-uses are correlated with the size of the home. As square footage increases, the burden on heating and cooling equipment rises, lighting requirements increase, and the likelihood that the household uses more than one refrigerator increases. Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption. According to results from EIA's 2009 Residential Energy Consumption Survey (RECS), the stock of homes built in the 1970s and 1980s averages less than

194

EIA - Analysis of Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption 2010 Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format) Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per-customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Categories: Consumption (Released, 6/23/2010, pdf format)

195

Mathematical models of natural gas consumption  

E-Print Network (OSTI)

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

196

Public perceptions of energy consumption and savings  

E-Print Network (OSTI)

Public perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De consumption and savings for a variety of household, transportation, and recycling activities. When asked, with 98% of US emissions attributed to energy consumption (2). According to Pacala and Socolow (3

Kammen, Daniel M.

197

Consumption Oriented Free Capitalism Qiudong Wang  

E-Print Network (OSTI)

Consumption Oriented Free Capitalism Qiudong Wang An economic system is a framework, under which people are organized to produce consumption-goods and to consume the produced. Concerning economic of consumption, which in turn not only hindered further improvement of overall productivity, but also threatened

Wang, Quidong

198

STATE OF CALIFORNIA FAN POWER CONSUMPTION  

E-Print Network (OSTI)

STATE OF CALIFORNIA FAN POWER CONSUMPTION CEC-MECH-4C (Revised 08/09) CALIFORNIA ENERGY COMMISSION FAN POWER CONSUMPTION MECH-4C PROJECT NAME: DATE: NOTE: Provide one copy of this worksheet for each Systems or Variable Air Volume (VAV) Systems when using the Prescriptive Approach. See Power Consumption

199

Energy Consumption of Personal Computing Including Portable  

E-Print Network (OSTI)

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

200

Hard Drive Power Consumption Uncovered Computer Laboratory  

E-Print Network (OSTI)

Hard Drive Power Consumption Uncovered Computer Laboratory Digital Technology Group Anthony Hylick, Andrew Rice, Brian Jones, Ripduman Sohan Motivation Attempts to reduce power consumption have mainly of power consumption and identify the need for a more expressive API between the OS and hardware devices

Cambridge, University of

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The food consumption of the world's seabirds  

Science Journals Connector (OSTI)

...May 2004 research-article The food consumption of the world's seabirds M. de L...provisional estimate of their annual food consumption. Knowing the body mass and energy density...equations to estimate daily and hence annual consumption of a seabird. Using this approach...

2004-01-01T23:59:59.000Z

202

The service economy: ‘wealth without resource consumption’?  

Science Journals Connector (OSTI)

...service economy: wealth without resource consumption? W. R. Stahel The Product-Life...with regard to its per capita material consumption in the industrialized countries. A...economy: `wealth without resource consumption'? B y W. R. Stahel The Product-Life...

1997-01-01T23:59:59.000Z

203

EXPONENTIAL UTILITY WITH NON-NEGATIVE CONSUMPTION  

E-Print Network (OSTI)

EXPONENTIAL UTILITY WITH NON-NEGATIVE CONSUMPTION ROMAN MURAVIEV AND MARIO V. W¨UTHRICH DEPARTMENT- ponential utility maximization problem, where feasible consumption policies are not permitted to be negative- come reduces the current consumption level, thus confirming the presence of the precautionary savings

Wüthrich, Mario

204

Optimal Consumption Choice with Intertemporal Substitution y  

E-Print Network (OSTI)

Optimal Consumption Choice with Intertemporal Substitution y By Peter Bank and Frank Riedel z consumption plans are established under arbitrary convex portfolio constraints, including both complete of the underlying stochastics, optimal consumption occurs at rates, in gulps, or in a singular way. y Support

Bank, Peter

205

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network (OSTI)

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

206

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY  

E-Print Network (OSTI)

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

Dukes, Jeffrey

207

The effect of chronic ethanol consumption on enzyme activities of the energy-supplying metabolism and the alcohol-aldehyde oxidizing system in rat hearts  

Science Journals Connector (OSTI)

We investigated in rat hearts if chronic alcohol consumption causes an enzymatic adaption of the energy-supplying metabolism and/or of the alcohol- ... with a liquid diet for 10 weeks. Ethanol was added to this d...

Dr. H. H. Klein; U. Spaar; H. Kreuzer

208

Commercialization of Coal-to-Liquids Technology  

SciTech Connect

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

209

EVOLUTION OF THE STANDARD HELIUM LIQUEFIER AND REFRIGERATOR RANGE DESIGNED BY AIR LIQUIDE DTA, FRANCE.  

Science Journals Connector (OSTI)

The standard helium liquefier and refrigerator range called Helial and designed by Air Liquide DTA has recently been upgraded in order to improve the efficiency of these machines. Indeed over the multi-range markets requiring these cryogenic systems (international laboratories aerospace applications synchrotrons HTS applications…) the technological solution has to provide increasingly high performances. The new Helial Evolution range equipped with very reliable DTA turbo-expanders constitutes a highly efficient product for this wide application field. The optimizations adaptations and results of the Helial Evolution series doubling the performance for the same power consumption will be presented.

A. Caillaud; S. Crispel; V. Grabié; G. Aigouy

2008-01-01T23:59:59.000Z

210

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

211

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network (OSTI)

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

212

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network (OSTI)

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

213

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network (OSTI)

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

214

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network (OSTI)

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

215

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network (OSTI)

Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

216

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

217

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network (OSTI)

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

218

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

a forecast for total energy consumption in network standbyconsiderable impact on total energy consumption from TVs.factors affecting total energy consumption. Although further

Park, Won Young

2011-01-01T23:59:59.000Z

219

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

E. Kahn (2011). Electricity Consumption and Durable Housing:49 3.3.3. Pre-installation electricity consumption of CSIon Electricity Consumption .

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

220

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Use of advanced cluster analysis to characterize seafood consumption patterns and methyle mercury exposures among  

E-Print Network (OSTI)

1 N° 2007/14 Use of advanced cluster analysis to characterize seafood consumption patterns. This study provides demonstrates that a global increase in seafood consumption could lead to MeHg exposure exclusively from eating fish and seafood products. Of the organic mercury compounds, MeHg is the most toxic

Paris-Sud XI, Université de

222

PREDICTING ENERGY CONSUMPTION OF MPEG VIDEO PLAYBACK ON HANDHELDS Srijan Chakraborty and David K. Y. Yau  

E-Print Network (OSTI)

PREDICTING ENERGY CONSUMPTION OF MPEG VIDEO PLAYBACK ON HANDHELDS Srijan Chakraborty and David K. Y to construct simple polynomial models of energy us- age with good least square fit (R value of 0.92 and higher computing is the need to re- duce the energy consumption of these devices, thereby increasing the lifetime

Yau, David K Y

223

Bus HVAC energy consumption test method based on HVAC unit behavior  

Science Journals Connector (OSTI)

This paper presents a test method for determination of energy consumption of bus HVAC unit. The energy consumption corresponds to a bus engine fuel consumption increase during the HVAC unit operation period. The HVAC unit energy consumption is determined from the unit input power, which is measured under several levels of bus engine speeds and at different levels of testing heat load in the laboratory environment. Since the bus engine fuel consumption is incrementally induced by powering an HVAC unit, the results are subsequently recalculated to the unit fuel consumption under the defined road cycles in terms of standardized diesel engine. The method is likewise applicable either for classic or electric HVAC units with a main consumer (compressor or high voltage alternator) mechanically driven directly from the bus engine and also for electric HVAC units supplied from an alternative electric energy source in case of hybrid or fully electric buses.

M. Hegar; M. Kolda; M. Kopecka; V. Rajtmajer; A. Ryska

2013-01-01T23:59:59.000Z

224

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C3. Primary Energy Consumption Estimates, 2011 C3. Primary Energy Consumption Estimates, 2011 (Trillion Btu) State Fossil Fuels Fossil Fuels (as commingled) Coal Natural Gas excluding Supplemental Gaseous Fuels a Petroleum Total Natural Gas including Supplemental Gaseous Fuels a Motor Gasoline including Fuel Ethanol a Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline excluding Fuel Ethanol a Residual Fuel Oil Other d Total Alabama ........... 651.0 614.8 156.5 13.4 12.8 304.5 13.4 49.1 549.5 1,815.4 614.8 319.8 Alaska ............... 15.5 337.0 85.1 118.2 1.3 31.9 1.9 28.6 267.1 619.6 337.0 34.6 Arizona ............. 459.9 293.7 151.8 21.5 9.1 297.3 (s) 21.1 500.9 1,254.5 293.7 323.4 Arkansas ........... 306.1 288.6 134.9 5.9 9.4 165.4 0.2 19.8 335.7 930.5 288.6 175.6 California .......... 55.3 2,196.6 567.0 549.7 67.2 1,695.4 186.9 339.6 3,405.8 5,657.6 2,196.6

225

Petroleum & Other Liquids - Analysis & Projections - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Petroleum & Other Liquids Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude Reserves and Production Refining and Processing Imports/Exports & Movements Stocks Consumption/Sales All Petroleum & Other Liquids Data Reports Analysis & Projections Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Prices Change category... Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Filter by: All Data Analysis Projections This Week in Petroleum Data and analysis of recent events affecting the petroleum industry and

226

LNG liquid-liquid immiscibility  

SciTech Connect

Although natural gas species rarely exhibit liquid-liquid immiscibility in binary systems, the presence of additional components can extend the domain of immiscibility in those few binary systems where it already exists or produce immiscibility in binary systems where it had not existed. If the solute has the proper molecular relation to the solvent mixture background, liquid-liquid-vapor (LLV) behavior will occur; such phenomena greatly complicate the design of LNG processing equipment. To aid LNG engineers, researchers mapped the thermodynamic behavior of four ternary LLV systems and examined the effects of the second solvents - ethane, propane, n-butane, and CO/sub 2/ - on the binary methane + n-octane system.

Luks, K.D.; Kohn, J.P.

1981-09-01T23:59:59.000Z

227

FISH CONSUMPTION, METHYLMERCURY, AND HUMAN HEART DISEASE.  

SciTech Connect

Environmental mercury continues to be of concern to public health advocates, both in the U.S. and abroad, and new research continues to be published. A recent analysis of potential health benefits of reduced mercury emissions has opened a new area of public health concern: adverse effects on the cardiovascular system, which could account for the bulk of the potential economic benefits. The authors were careful to include caveats about the uncertainties of such impacts, but they cited only a fraction of the applicable health effects literature. That literature includes studies of the potentially harmful ingredient (methylmercury, MeHg) in fish, as well as of a beneficial ingredient, omega-3 fatty acids or ''fish oils''. The U.S. Food and Drug Administration (FDA) recently certified that some of these fat compounds that are primarily found in fish ''may be beneficial in reducing coronary heart disease''. This paper briefly summarizes and categorizes the extensive literature on both adverse and beneficial links between fish consumption and cardiovascular health, which are typically based on studies of selected groups of individuals (cohorts). Such studies tend to comprise the ''gold standard'' of epidemiology, but cohorts tend to exhibit a great deal of variability, in part because of the limited numbers of individuals involved and in part because of interactions with other dietary and lifestyle considerations. Note that eating fish will involve exposure to both the beneficial effects of fatty acids and the potentially harmful effects of contaminants like Hg or PCBs, all of which depend on the type of fish but tend to be correlated within a population. As a group, the cohort studies show that eating fish tends to reduce mortality, especially due to heart disease, for consumption rates up to about twice weekly, above which the benefits tend to level off. A Finnish cohort study showed increased mortality risks in the highest fish-consuming group ({approx}3 times/wk), which had mercury exposures (mean hair content of 3.9 ppm) much higher than those seen in the United States. As an adjunct to this cursory review, we also present some new ''ecological'' analyses based on international statistics on hair Hg, fish consumption, other dietary and lifestyle factors, and selected cardiovascular health endpoints. We searched for consistent differences between primarily fish-consuming nations, like Japan or the Seychelles, and others who traditionally eat much less fish , such as in central Europe, for example. We use data on cigarette sales, smoking prevalence surveys, and national lung cancer mortality rates to control for the effects of smoking on heart disease. These ecological analyses do not find significant adverse associations of either fish consumption or hair Hg with cardiovascular health; instead, there is a consistent trend towards beneficial effects, some of which are statistically significant. However, such ecological studies cannot distinguish differences due to variations in individual rates of fish consumption. We conclude that the extant epidemiological evidence does not support the existence of significant heart disease risks associated with mercury in fish, for the United States. The most prudent advice would continue to be that of maintaining a well-balanced diet, including fish or shellfish at least once per week. There may be additional benefits from fatty fish.

LIPFERT, F.W.; SULLIVAN, T.M.

2005-09-21T23:59:59.000Z

228

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

229

Flow shop scheduling with peak power consumption constraints  

E-Print Network (OSTI)

Mar 29, 2012 ... Flow shop scheduling with peak power consumption constraints ... Keywords: scheduling, flow shop, energy, peak power consumption, integer ...

K. Fang

2012-03-29T23:59:59.000Z

230

Electricity consumption and human development level: A comparative analysis based on panel data for 50 countries  

Science Journals Connector (OSTI)

Abstract As a representative of modern energy, the level of electricity consumption can be regarded as an appraisal criterion of a country’s development level. This study analyses the causality between electricity consumption and human development and assesses the changing trend of electricity consumption. The models in this study are established using panel data from 1990–2009 for 50 countries divided into four groups according to income. For human development indicators, per-capita GDP, consumption expenditure, urbanisation rate, life expectancy at birth and the adult literacy rate were selected. The results show that long-run bidirectional causality exists between electricity consumption and five indicators. Additionally, the higher the income of a country, the greater is its electricity consumption and the higher is its level of human development. Further, the variables of four income-groupings vary considerably. Specifically, as income increases, the contribution of electricity consumption to GDP and consumption expenditure increases, but the urbanisation rate, life expectancy at birth and adult literacy rate present a weakening trend. This mainly because that the latter indicators in high-income countries are increasing to converge. To improve human development, electricity should be incorporated into the basic public services construction to enhance the availability of electricity for low-income residents.

Shuwen Niu; Yanqin Jia; Wendie Wang; Renfei He; Lili Hu; Yan Liu

2013-01-01T23:59:59.000Z

231

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

232

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

233

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

234

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

235

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

236

Household vehicles energy consumption 1991  

SciTech Connect

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

237

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

238

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 State Energy Data 2011: Consumption Table C9. Electric Power Sector Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Nuclear Electric Power Hydroelectric Power b Biomass Geothermal Solar/PV d Wind Net Electricity Imports e Total f Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste c Alabama ............. 586.1 349.4 1.1 0.0 0.0 1.1 411.8 86.3 4.6 0.0 0.0 0.0 0.0 1,439.3 Alaska ................. 6.0 42.3 3.3 0.0 1.5 4.8 0.0 13.1 0.0 0.0 0.0 0.1 (s) 66.3 Arizona ............... 449.9 183.9 0.6 0.0 0.0 0.6 327.3 89.1 2.4 0.0 0.8 2.5 1.5 1,057.9 Arkansas ............. 300.5 109.2 0.5 0.0 0.1 0.6 148.5 28.7 1.3 0.0 0.0 0.0 0.0 588.9 California ............ 19.7 630.1 0.4 11.1 (s) 11.5 383.6 413.4 69.0 122.0 8.4 75.3 20.1 1,753.1 Colorado ............. 362.4 88.1 0.3 0.0 0.0 0.3 0.0 20.2 0.9

239

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 . Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2 California 7,858.4 55.3 2,196.6 3,405.8 5,657.6 383.6 928.5 868.6 20.1 1,516.1 1,556.1 1,785.7 3,000.5 Colorado 1,480.8 368.9 476.5 472.9 1,318.3

240

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

C4. Total End-Use Energy Consumption Estimates, 2011 C4. Total End-Use Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power f Biomass Geo- thermal Solar/PV i Retail Electricity Sales Net Energy j,k Electrical System Energy Losses l Total j,k Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste g Losses and Co- products h Alabama ........... 65.0 265.4 155.4 13.4 12.8 319.8 13.4 49.1 563.8 0.0 154.1 0.0 0.1 0.2 303.7 1,352.2 579.1 1,931.3 Alaska ............... 9.5 294.7 81.8 118.2 1.3 34.6 0.4 28.6 265.0 0.0 2.3 0.0 0.2 (s) 21.6 593.2 44.7 637.9 Arizona ............. 10.0 109.8 151.3 21.5 9.1 323.4 (s) 21.1 526.5 0.0 4.4 3.1 0.3 7.9 255.7 917.8 513.7 1,431.5 Arkansas ........... 5.6 179.4 134.5 5.9 9.4 175.6 0.1 19.8 345.4 0.0 82.6 0.0 0.7 0.2 163.5 777.4 339.8 1,117.1 California ..........

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

State State Energy Data 2011: Consumption 11 Table C8. Transportation Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Retail Electricity Sales Net Energy Electrical System Energy Losses e Total Aviation Gasoline Distillate Fuel Oil Jet Fuel b LPG c Lubricants Motor Gasoline d Residual Fuel Oil Total Alabama ............. 0.0 23.5 0.4 124.4 13.4 0.3 2.3 316.3 6.7 463.7 0.0 487.2 0.0 487.2 Alaska ................. 0.0 3.5 0.8 44.4 118.2 (s) 0.4 32.9 0.4 197.2 0.0 200.7 0.0 200.7 Arizona ............... 0.0 15.6 1.0 111.3 21.5 0.8 1.6 318.2 0.0 454.5 0.0 470.1 0.0 470.1 Arkansas ............. 0.0 11.5 0.4 99.7 5.9 0.4 2.0 171.3 0.0 279.8 (s) 291.2 (s) 291.2 California ............ 0.0 25.7 1.9 440.9 549.7 3.8 13.3 1,770.1 186.9 2,966.5 2.8 2,995.1 5.5 3,000.5 Colorado ............. 0.0 14.7 0.6 83.2 58.3 0.3

242

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

0 0 State Energy Data 2011: Consumption Table C7. Industrial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric power e Biomass Geo- thermal Retail Electricity Sales Net Energy h,i Electrical System Energy Losses j Total h,i Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste f Losses and Co- products g Alabama ............. 65.0 179.1 23.9 3.7 3.3 6.7 46.3 83.9 0.0 147.2 0.0 (s) 115.1 590.4 219.5 810.0 Alaska ................. 0.1 253.8 19.2 0.1 1.0 0.0 27.1 47.4 0.0 0.1 0.0 0.0 4.5 306.0 9.4 315.4 Arizona ............... 10.0 22.0 33.2 1.4 4.6 (s) 18.4 57.6 0.0 1.4 3.1 0.2 42.1 136.5 84.7 221.2 Arkansas ............. 5.6 93.1 31.1 2.6 4.0 0.1 17.4 55.1 0.0 72.7 0.0 (s) 58.0 284.5 120.5 405.0 California ............ 35.6 767.4 77.2 23.9 29.6 (s) 312.5

243

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

8 8 State Energy Data 2011: Consumption Table C5. Residential Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal a Natural Gas b Petroleum Biomass Geothermal Solar/PV e Retail Electricity Sales Net Energy f Electrical System Energy Losses g Total f Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama ............. 0.0 37.2 0.1 0.1 6.0 6.2 6.0 0.1 0.2 112.6 162.2 214.7 376.9 Alaska ................. 0.0 20.5 8.1 0.1 0.5 8.8 1.9 0.1 (s) 7.3 38.6 15.1 53.7 Arizona ............... 0.0 39.1 (s) (s) 5.5 5.5 2.6 (s) 7.9 112.9 168.0 226.8 394.7 Arkansas ............. 0.0 34.2 0.1 (s) 5.2 5.3 8.6 0.7 0.2 64.1 113.1 133.2 246.3 California ............ 0.0 522.4 0.6 0.6 30.9 32.2 33.3 0.2 43.2 301.6 932.9 583.1 1,516.1 Colorado ............. 0.0 134.2 0.1 (s) 12.3 12.4 8.3 0.2 0.7 62.4 216.5 136.5 353.0 Connecticut ......... 0.0 46.0 59.6

244

EIA - Natural Gas Consumption Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Consumption by End Use U.S. and State consumption by lease and plant, pipeline, and delivered to consumers by sector (monthly, annual). Number of Consumers Number of sales and transported consumers for residential, commercial, and industrial sectors by State (monthly, annual). State Shares of U.S. Deliveries By sector and total consumption (annual). Delivered for the Account of Others Commercial, industrial and electric utility deliveries; percentage of total deliveries by State (annual). Heat Content of Natural Gas Consumed Btu per cubic foot of natural gas delivered to consumers by State (annual) and other components of consumption for U.S. (annual). Natural Gas Weekly Update Analysis of current price, supply, and storage data; and a weather snapshot.

245

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

246

annual energy consumption | OpenEI  

Open Energy Info (EERE)

energy consumption energy consumption Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

247

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

2012-01-01T23:59:59.000Z

248

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Consumption by End Use",6,"Monthly","112014","1151989" ,"Release...

249

Fuel Consumption per Vehicle.xls  

U.S. Energy Information Administration (EIA) Indexed Site

... 729 NA 618 628 652 681 Table 9. Fuel Consumption per Vehicle, Selected Survey Years (Gallons) Survey Years Page A-1 of A-5 1983 1985...

250

Power Consumption of Hybrid Optical Switches  

Science Journals Connector (OSTI)

Two realization options of hybrid optical switches are evaluated with regard to power consumption. Both switches show improved energy efficiency in comparison to a pure packet...

Aleksic, Slavi?a

251

Issues in International Energy Consumption Analysis: Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Electricity Usage in India's Housing Sector Release date: November 7, 2014...

252

Displacing Natural Gas Consumption and Lowering Emissions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels and thereby reduce their natural gas consumption. Opportunity gas fuels include biogas from animal and agri- cultural wastes, wastewater plants, and landfills, as well as...

253

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network (OSTI)

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges.… (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

254

,"New York Natural Gas Total Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","12312014"...

255

,"California Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Consumption by End Use",11,"Annual",2013,"6301967" ,"Release...

256

Advertising in Markets with Consumption Externalities.  

E-Print Network (OSTI)

??This paper extends the entry deterrence literature by examining coordinating advertising in markets with consumption externalities using a stochastic success function. Optimal advertising and pricing… (more)

Whelan, Adele

2014-01-01T23:59:59.000Z

257

Pricing Conspicuous Consumption Products in Recession Periods ...  

E-Print Network (OSTI)

Conspicuous consumptions products as luxury cars, designer brands, and fancy hotel rooms .... mand D is driven by the brand image and the pricing strategy p.

2012-09-26T23:59:59.000Z

258

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

or fewer than 20 buildings were sampled. NNo responding cases in sample. Notes: Statistics for the "Energy End Uses" category represent total consumption in buildings that...

259

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

260

Sources and characteristics of oil consumption in a spark-ignition engine  

E-Print Network (OSTI)

(cont.) At low load, oil flowing past by the piston was found to be the major consumption source, while the contributions of oil evaporation and of blowby entrainment became more significant with increasing engine load. ...

Yilmaz, Ertan, 1970-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Novel Collaboration Paradigm for Reducing Energy Consumption and Carbon Dioxide Emissions in Data Centres  

Science Journals Connector (OSTI)

......consumption can be reduced (or increased) in periods of power generation shortage (or surplus). In the context of Smart Grid technologies, this can even be extended to average or even minor customers. 3. ARCHITECTURE OVERVIEW In Fig. 3......

D. Rincón; A. Agustí-Torra; J.F. Botero; F. Raspall; D. Remondo; X. Hesselbach; M.T. Beck; H. de Meer; F. Niedermeier; G. Giuliani

2013-12-01T23:59:59.000Z

262

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

263

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use  

Science Journals Connector (OSTI)

Spatial and Temporal Impacts on Water Consumption in Texas from Shale Gas Development and Use ... Despite the water intensity of hydraulic fracturing, recent life cycle analyses have concluded that increased shale gas development will lead to net decreases in water consumption if the increased natural gas production is used at natural gas combined cycle power plants, shifting electricity generation away from coal-fired steam cycle power plants. ... This work expands on these studies by estimating the spatial and temporal patterns of changes in consumptive water use in Texas river basins during a period of rapid shale gas development and use in electricity generation from August 2008 through December 2009. ...

Adam P. Pacsi; Kelly T. Sanders; Michael E. Webber; David T. Allen

2014-06-24T23:59:59.000Z

264

On an optimal consumption problem for p-integrable consumption plans  

Science Journals Connector (OSTI)

...A generalization is presented of the existence results for an optimal consumption problem of Aumann and Perles [4]...

Erik J. Balder; Martijn R. Pistorius

2001-05-01T23:59:59.000Z

265

Alcohol consumption, Lewis phenotypes, and risk of ischemic heart disease  

SciTech Connect

The authors have previously found an increased risk of ischemic heart disease (IHD) in men with the Lewis phenotype Le(a[minus]b[minus]) and suggested that the Lewis blood group has a close genetic relation with insulin resistance. The authors have investigated whether any conventional risk factors explain the increased risk in Le(a[minus]b[minus]) men. 3,383 men aged 53-75 years were examined in 1985-86, and morbidity and mortality during the next 4 years were recorded. At baseline, the authors excluded 343 men with a history of myocardial infarction, angina pectoris, intermittent claudication, or stroke. The potential risk factors examined were alcohol consumption, physical activity, tobacco smoking, serum cotinine, serum lipids, body-mass index, blood pressure, prevalence of hypertension and non-insulin-dependent diabetes mellitus, and social class. In 280 (9.6%) men with Le(a[minus]b[minus]), alcohol was the only risk factor significantly associated with risk of IHD. There was a significant inverse dose-effect relation between alcohol consumption and risk; trend tests, with adjustment for age, were significant for fatal IHD (p=0.02), all IHD (p=0.03), and all causes of death (p=0.02). In 2649 (90.4%) men with other phenotypes, there was a limited negative association with alcohol consumption. In Le(a[minus]b[minus]) men, a group genetically at high risk of IHD, alcohol consumption seems to be especially protective. The authors suggest that alcohol consumption may modify insulin resistance in Le(a[minus]b[minus]) men.

Hein, H.O.; Suadicani, P.; Gyntelberg, F. (Rigshospitalet State Univ. Hospital, Copenhagen (Denmark). Epidemiological Research Unit); Sorenson, H. (Rigshospitalet State Univ. Hospital, Copenhagen (Denmark). Dept. of Chemical Immunology); Hein, H.O. (Univ. of Copenhagen (Denmark). Dept. of Internal Medicine)

1993-02-13T23:59:59.000Z

266

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

267

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Share of energy used by appliances and consumer electronics increases in Share of energy used by appliances and consumer electronics increases in U.S. homes RECS 2009 - Release date: March 28, 2011 Over the past three decades, the share of residential electricity used by appliances and electronics in U.S. homes has nearly doubled from 17 percent to 31 percent, growing from 1.77 quadrillion Btu (quads) to 3.25 quads. This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to 10.55 quads, and energy use per household fell 31 percent. Federal energy efficiency standards have greatly reduced consumption for home heating Total energy use in all U.S. homes occupied as primary residences decreased slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the

268

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

269

DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic  

E-Print Network (OSTI)

of the system and decides when and how to force power state transitions. The power manager makes state transition decisions according to the power management policy. The choice of the policy that minimizes powerChapter 1 DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic HP Labs Abstract Power consumption

Simunic, Tajana

270

Energy Consumption Issues on Mobile Network Systems  

Science Journals Connector (OSTI)

This paper describes energy consumption demographic data in operating real mobile networks. We examine published data from NTT DoCoMo, which is the largest mobile telecommunication operator in Japan and operating nation-wide 3G networks, and identify ... Keywords: Moble Network, Power Consumption, Battery, CO2, Green Network

Minoru Etoh; Tomoyuki Ohya; Yuji Nakayama

2008-07-01T23:59:59.000Z

271

Energy Consumption of Minimum Energy Coding in  

E-Print Network (OSTI)

Energy Consumption of Minimum Energy Coding in CDMA Wireless Sensor Networks Benigno Zurita Ares://www.ee.kth.se/control Abstract. A theoretical framework is proposed for accurate perfor- mance analysis of minimum energy coding energy consumption is analyzed for two coding schemes proposed in the literature: Minimum Energy coding

Johansson, Karl Henrik

272

NOAAlNMFS Developments Seafood Consumption and  

E-Print Network (OSTI)

NOAAlNMFS Developments Seafood Consumption and Exports Are Up in Hawaii Seafood consumption amount to $28.7 million, of which $2.4 million is fresh fish and $21.2 million is frozen seafood (lobster and the inter- national market; 5) seafood consump- tion in Hawaii is estimated to be 24 pounds per person

273

Electricity consumption of telecommunication equipment to achieve a telemeeting  

Science Journals Connector (OSTI)

Abstract The article assesses the electricity consumption in use of telecommunication equipment to achieve one remote multi-user work meeting, an existing service proposed by Orange group. It also examines the electric gains of substitution for a meeting requiring physical transport. Equipment comprises participant computers PC and phones, access to core networks and servers to permit audio link and the share of documents on PC display between users. Each device requires power to perform hours of activity or transfer nominal bit/s of throughput. A generic and modular method is suggested to determine from this information, which is not directly related to services processed by the devices, the consumption of the service under study. The method thus provides a quantitative relation of service consumption to its characteristics – duration, number of users and access throughput – but also to device consumption efficiency and utilization rate. The relation of dependance permits to assess potential energy saving by substituting devices for more efficiency ones and/or by increasing their utilization rate at same provided service. With some utilization rates at around 10%, as observed for the servers, a telemeeting between three users and lasting 2.3 h requires 9 MJ of electricity. Using better equipment and higher rates it can be decreased to 1.5 MJ. By comparison transport of two of the users by train over a total distance of 2500 km requires 500 MJ. The method can be applied to any service provided its characteristics are known.

X. Chavanne; S. Schinella; D. Marquet; J.P. Frangi; S. Le Masson

2015-01-01T23:59:59.000Z

274

US SoAtl GA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

275

US SoAtl GA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

276

Econometric estimation of the petroleum products consumption in Nigeria: Assessing the premise for biofuels adoption  

Science Journals Connector (OSTI)

Abstract The promotion and adoption of biofuels in Nigeria must be predicated on sufficient capacity for absorbing biofuels produced from the increasing investments in biofuels plantations, plants and processing facilities. This paper assesses the socioeconomic and related premises for biofuels development in Nigeria by conducting an econometric estimation of the petroleum products consumption. The paper first estimates aggregated petroleum product consumption, and then assess the response to specific petroleum products in terms of consumption, market (population), electricity generation, installed electricity generation capacity, and GDP. The result shows that all the petroleum products contribute significantly and about equally to aggregate petroleum consumption. The high proportion of petrol (about 44 percent) as a percentage of the aggregate petroleum product consumption validates the push for implementing the E10 petrol-ethanol blending for Nigeria. The consumption of diesel is also significant. Diesel is another petroleum product for which D20 biofuel blending policy has been proposed. The increase in population and GDP, coupled with the poor electricity situation, will keep driving the consumption of petroleum products. As the population increases, and the country continues to struggle to match electricity generation with population growth, the petrol-ethanol and diesel-biodiesel blending policy must be pursued tenaciously to ensure a reduction in carbon emission in Nigeria.

Nelson Abila

2015-01-01T23:59:59.000Z

277

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table C6. Commercial Sector Energy Consumption Estimates, 2011 (Trillion Btu) State Coal Natural Gas a Petroleum Hydro- electric Power e Biomass Geothermal Retail Electricity Sales Net Energy g Electrical System Energy Losses h Total g Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste f Alabama ............. 0.0 25.5 7.0 (s) 2.7 0.2 0.0 10.0 0.0 0.9 0.0 75.9 112.4 144.8 257.2 Alaska ................. 9.4 16.9 10.1 0.1 0.6 0.7 0.0 11.5 0.0 0.3 0.1 9.7 48.0 20.2 68.2 Arizona ............... 0.0 33.1 6.8 (s) 1.5 0.7 0.0 8.9 0.0 0.5 (s) 100.7 143.2 202.3 345.5 Arkansas ............. 0.0 40.6 3.6 (s) 1.2 0.4 0.0 5.2 0.0 1.3 0.0 41.4 88.6 86.1 174.7 California ............ 0.0 250.9 47.9 0.1 8.7 1.4 0.0 58.1 (s) 17.4 0.7 418.9 746.2 809.9 1,556.1 Colorado ............. 3.2 57.6 5.9 (s) 2.9 0.2 0.0 9.1 0.0 1.2 0.2

278

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

279

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

280

Effects of Chronic Ethanol Consumption on the Metabolism and Carcinogenicity of N?-Nitrosonornicotine in F344 Rats  

Science Journals Connector (OSTI)

...research-article Special Lecture Effects of Chronic Ethanol Consumption on Benzo(a)pyrene Metabolism...golden hamsters which had been consuming an ethanol-containing liquid diet for 4 wk and...glutathione levels were measured in both ethanol-consuming and control animals. The...

Andre Castonguay; Abraham Rivenson; Neil Trushin; Joel Reinhardt; Stella Spathopoulos; Carol J. Weiss; Betti Reiss; Stephen S. Hecht

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Simple Indicator To Identify the Environmental Soundness of Growth of Consumption and Technology:? “Eco-velocity of Consumption  

Science Journals Connector (OSTI)

Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan, Faculty of Economics, Kyushu University, 6-19-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan, and Department of Bioproducts and Biosystems Engineering, College of Food, Agriculture and Natural Resources Sciences, University of Minnesota, 2004 Folwell Avenue, St. Paul, MN 55108, and Institute of Environmental Sciences (CML), Leiden University, P.O. ... Eq 8 thus determined Dt where Yt denotes the quantity of goods and services provided to households as measured in monetary units and Pt is the aggregate CO2 emissions due to Yt. ... The linked IOT defines electricity, petroleum fuels (gasoline, diesel, kerosene, liquid petroleum gas, etc.), and city gas as three separate sectors (commodities) but with no further breakdown of quantitative consumption or the uses to which the respective energy carriers are put, either nationally or at the household level. ...

Keisuke Nansai; Shigemi Kagawa; Sangwon Suh; Rokuta Inaba; Yuichi Moriguchi

2007-01-19T23:59:59.000Z

282

Prospective Study of Alcohol Consumption and Risk of Oral Premalignant Lesions in Men  

Science Journals Connector (OSTI)

...the prospective quality of the investigation...including beer, red wine, white wine...0.3 mg/dL increase in serum high-density...observed similar increases in OPL risk with consumption of wine, beer, or liquor...12.5 g/d increase in wine, compared with...

Nancy Nairi Maserejian; Kaumudi J. Joshipura; Bernard A. Rosner; Edward Giovannucci; and Athanasios I. Zavras

2006-04-01T23:59:59.000Z

283

Alcohol Consumption and Lung Cancer: A Review of the Epidemiologic Evidence  

Science Journals Connector (OSTI)

...particularly beer intake may increase lung cancer risk after...has been suggested to increase lung cancer risk in a...that alcohol intake may increase lung cancer risk (3...criteria to assess the quality of the studies were assessment...usual consumption of wine (including Japanese...

Elisa V. Bandera; Jo L. Freudenheim; and John E. Vena

2001-08-01T23:59:59.000Z

284

Liquid electrode  

DOE Patents (OSTI)

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

285

US SoAtl VA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

286

US Mnt(S) AZ Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

287

US SoAtl VA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

SoAtl VA SoAtl VA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl VA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl VA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl VA Expenditures dollars ELECTRICITY ONLY average per household * Virginia households consume an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national average, but similar to those in neighboring states where electricity is the most common heating fuel. * Virginia homes are typically newer and larger than homes in other parts of the country. CONSUMPTION BY END USE

288

Natural gas consumption | OpenEI  

Open Energy Info (EERE)

gas consumption gas consumption Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

289

Power Consumption Analysis of Architecture on Demand  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): Recently proposed Architecture on Demand (AoD) node shows considerable flexibility benefits against traditional ROADMs. We study the power consumption of AoD...

Garrich, Miquel; Amaya, Norberto; Zervas, Georgios; Giaccone, Paolo; Simeonidou, Dimitra

290

State energy data report 1996: Consumption estimates  

SciTech Connect

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

291

,"New York Natural Gas Residential Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:45:53 PM" "Back to Contents","Data 1: New York Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NY2" "Date","New...

292

,"New York Natural Gas Industrial Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:47:17 PM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NY2" "Date","New York...

293

Fuel Consumption Monitoring and Diesel Engines  

Science Journals Connector (OSTI)

In a perspective to explore how fuel monitoring and diesel engine life are interconnected, it’s necessary to ... touch several issues such as specifics of diesel engines in fuel consumption, the effects of precis...

Anna Antimiichuk

2014-09-01T23:59:59.000Z

294

Analyzing electricity consumption via data mining  

Science Journals Connector (OSTI)

This paper proposes a model to analyze the massive data of electricity. Feature subset is determined by the correlation ... be determined further. The effects on analyzing electricity consumption of the other thr...

Jinshuo Liu; Huiying Lan; Yizhen Fu; Hui Wu…

2012-04-01T23:59:59.000Z

295

Energy consumption metrics of MIT buildings  

E-Print Network (OSTI)

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

296

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

297

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

298

US Mnt(S) AZ Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(S) AZ Mnt(S) AZ Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(S) AZ Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US Mnt(S) AZ Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US Mnt(S) AZ Expenditures dollars ELECTRICITY ONLY average per household * Arizona households use 66 million Btu of energy per home, 26% less than the U.S. average. * The combination of lower than average site consumption of all energy, but above average electricity which is relatively expensive, results in Arizona households spending 3% less for energy than the U.S. average. * More reliance on air conditioning keeps average site electricity consumption in the state high relative to other parts of the U.S.

299

Towards sustainable consumption: do green households have smaller ecological footprints?  

Science Journals Connector (OSTI)

The need for households in rich countries to develop more sustainable consumption patterns is high on the political agenda. An increased awareness of environmental issues among the general public is often presented as an important prerequisite for this change. This article describes how the study team compared the ecological footprints of ''green'' and ''ordinary'' households. These footprint calculations are based on a number of consumption categories that have severe environmental consequences, such as energy and material use in the home, and transport. The comparison is based on a survey of 404 households in the city of Stavanger, where 66 respondents were members of the Environmental Home Guard in Norway. The analysis suggests that, even if the green households have a smaller ecological footprint per household member, this is not caused by their participation in the Home Guard. It merely reflects the fact that green households are larger than ordinary households.

Erling Holden

2004-01-01T23:59:59.000Z

300

Optimal consumption and investment for markets with random coefficients.  

E-Print Network (OSTI)

Optimal consumption and investment for markets with random coefficients. Belkacem Berdjane and Serguei Pergamenshchikov December 9, 2011 Abstract We consider an optimal investment and consumption. We assume that an agent makes consumption and investment decisions based on CRRA utility functions

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sequential #optimal consumption and investment for stochastic volatility markets  

E-Print Network (OSTI)

Sequential #­optimal consumption and investment for stochastic volatility markets with unknown investment and consumption problem for a Black­Scholes financial market with stochastic volatility sequential estimation. We show that the consumption and investment strategy calculated through

302

Intertemporal Consumption and Savings Behavior: Neoclassical, Behavioral, and Neuroeconomic Approaches  

E-Print Network (OSTI)

Intertemporal Consumption and Savings Behavior: Neoclassical, Behavioral, and Neuroeconomic models of intertemporal consumption and savings behavior. I summarize the construction and implications of Modigliani & Brumberg's Life-Cycle Hypothesis [4] and Laibson's quasi-hyperbolic consumption function [8

Morrow, James A.

303

On an Investment-Consumption model with transaction costs  

E-Print Network (OSTI)

On an Investment-Consumption model with transaction* Abstract This paper considers the optimal consumption and investment policy for* * an investor of consumption. Dynamic Programming leads to a Variational* * Inequality for the value function

Menaldi, Jose-Luis

304

Consumption of Imipenem Correlates with ?-Lactam Resistance in Pseudomonas aeruginosa  

Science Journals Connector (OSTI)

...Microbiology ARTICLE CLINICAL THERAPEUTICS Consumption of Imipenem Correlates with b-Lactam...from 1997 to 2000, we monitored the consumption of b-lactam and other antibiotics...Partial correlation coefficients between consumption and resistance rates were determined...

Philipp M. Lepper; Eberhard Grusa; Helga Reichl; Josef Högel; Matthias Trautmann

2002-09-01T23:59:59.000Z

305

Consumption patterns, complexity and enrichment in aquatic food chains  

Science Journals Connector (OSTI)

...22 May 1998 research-article Consumption patterns, complexity and enrichment...patterns resembling ratio-dependent consumption. However, whereas the prey-dependent...prey-dependent|enrichment|omnivory| Consumption patterns, complexity and enrichment...

1998-01-01T23:59:59.000Z

306

Uncertainties in Energy Consumption Introduced by Building Operations and  

E-Print Network (OSTI)

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

307

National Seafood Consumption Survey: Overview of Survey Methodology & Implementation Strategy  

E-Print Network (OSTI)

National Seafood Consumption Survey: Overview of Survey Methodology & Implementation Strategy Methodology The primary objective of NOAA Fisheries National Seafood Consumption Survey was to gather information about people's purchase and consumption behaviors of various seafood products. These behavioral

308

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

Meter allows us to study the energy consumption patterns onThis allows us to study the energy consumption of individualgives us a good framework to study the energy consumption

Balaji, Bharathan

2011-01-01T23:59:59.000Z

309

Residential Lighting End-Use Consumption  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications.

310

State energy data report 1994: Consumption estimates  

SciTech Connect

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

311

The importance of population growth in future commercial energy consumption  

SciTech Connect

This paper estimates the contribution of population growth to commercial energy consumption, which is considered a major cause of increases in air pollution and greenhouse gases. This paper first summarizes some of the recent estimates of future energy use developed by well-known models. It then develops several alternative scenarios that use different assumptions about population growth and energy use per capita for 122 countries for the years 2020 and 2050. It calculates the relative contribution of population growth to the change in total commercial energy use and demonstrates the sensitivity of the results to different assumptions. Individual country data are separately summed to totals for more-developed countries (MDCs) and less-developed countries (LDCs). Under a business as usual scenario for both MDCs and LDCs, population growth is important, but not the most important factor, in future increases in global energy consumption. Analysis of other scenarios shows that while slower population growth always contributes to a slowing of future global energy consumption, such changes are not as effective as reductions in per capita commercial energy use. Calculations on a global basis are made in two ways: from global aggregates and by summing individual country data. Comparison of the results shows that the first method is misleading because of the heterogeneity of population growth rates and energy consumption rates of individual countries. The tentative conclusions reached in this paper are only small pieces of a much larger puzzle. More work needs to be done to better understand the dynamics of these relationships before the analysis is extended to the broader questions of population growth and environmental change.

Kolsrud, G. [Congress, Washington, DC (United States); Torrey, B.B. [Bureau of the Census, Washington, DC (United States)

1992-12-31T23:59:59.000Z

312

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

313

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

314

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

315

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

316

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Energy Data Center Energy Consumption Trends to someone by E-mail Share Federal Energy Management Program: Data Center Energy Consumption Trends on Facebook Tweet about Federal Energy Management Program: Data Center Energy Consumption Trends on Twitter Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Google Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Delicious Rank Federal Energy Management Program: Data Center Energy Consumption Trends on Digg Find More places to share Federal Energy Management Program: Data Center Energy Consumption Trends on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends

317

Fact #839: September 22, 2014 World Petroleum Consumption Continues...  

Energy Savers (EERE)

39: September 22, 2014 World Petroleum Consumption Continues to Rise despite Declines from the United States and Europe Fact 839: September 22, 2014 World Petroleum Consumption...

318

Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by State, 2010 Fact 749: October 15, 2012 Petroleum and Natural Gas Consumption for Transportation by...

319

Complex System Method to Assess Commercial Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle...

320

Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lubricant Formulation and Consumption Effects on Diesel Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine...

322

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: December 19, 2011 Vocational Vehicle Fuel Consumption Standards Fact 706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards The National Highway Traffic Safety...

323

Table E7.1. Consumption Ratios of Fuel, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit:...

324

Impact of Driving Behavior on PHEV Fuel Consumption for Different...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain,...

325

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

326

Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...  

Annual Energy Outlook 2012 (EIA)

-- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

327

Comparison of Real World Energy Consumption to Models and DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates...

328

Power to the Plug: An Introduction to Energy, Electricity, Consumption...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

329

Hydraulic HEV Fuel Consumption Potential | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Consumption Potential Hydraulic HEV Fuel Consumption Potential 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

330

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

331

Reducing fuel consumption on the field, by continuously measuring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuel consumption on the field, by continuously measuring fuel quality on electronically fuel injected engines. Reducing fuel consumption on the field, by continuously measuring...

332

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust...

333

Guidance Document Cryogenic Liquids  

E-Print Network (OSTI)

Guidance Document Cryogenic Liquids [This is a brief and general summary. Read the full MSDS for more details before handling.] Introduction: All cryogenic liquids are gases at normal temperature liquefies them. Cryogenic liquids are kept in the liquid state at very low temperatures. Cryogenic liquids

334

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

335

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network (OSTI)

consumption. Total energy consumption (in thousand BTUs) waselectricity and total energy consumption. Because all homesin gas, electric, and total energy consumption. Removing

Kelsven, Phillip

2013-01-01T23:59:59.000Z

336

Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations  

SciTech Connect

Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

2014-09-01T23:59:59.000Z

337

Process to upgrade coal liquids by extraction prior to hydrodenitrogenation  

DOE Patents (OSTI)

Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

Schneider, Abraham (Overbrook Hills, PA); Hollstein, Elmer J. (Wilmington, DE); Janoski, Edward J. (Havertown, PA); Scheibel, Edward G. (Media, PA)

1982-01-01T23:59:59.000Z

338

Petroleum & Other Liquids - Pub - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Petroleum & Other Liquids Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude Reserves and Production Refining and Processing Imports/Exports & Movements Stocks Consumption/Sales All Petroleum & Other Liquids Data Reports Analysis & Projections Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports Proposed Natural Gas Liquids Realignment EIA has reviewed the approaches and terminology that have been used by EIA and others to categorize and organize natural gas liquids (NGL) data. The review uncovered definitional inconsistencies in the use of terms such as NGL, natural gas plant liquids (NGPL), and liquefied petroleum gases (LPG) that are adversely affecting the quality and clarity of U.S. and

339

A liquid film motor  

Science Journals Connector (OSTI)

It is well known that electro-hydrodynamical effects in freely suspended liquid films can force liquids to flow. Here, we report a purely electrically driven rotation in water and some other liquid suspended film...

A. Amjadi; R. Shirsavar; N. Hamedani Radja…

2009-05-01T23:59:59.000Z

340

1991 Manufacturing Consumption of Energy 1991 Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

1991 Executive Summary 1991 Executive Summary 1991 Figure showing the Largest Energy Consumers in the Manufacturing Sector Executive Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy Consumption Survey (MECS). The MECS is the only comprehensive source of national-level data on U.S. manufacturing energy use. The 1991 MECS is the third in an ongoing series of surveys conducted at 3-year intervals beginning in 1985. Pursuant to a provision of the Energy Policy Act of 1992, the MECS will be conducted biennially beginning in 1994. The MECS surveys a nationally representative sample of manufacturing establishments by means of mailed questionnaires. The 1991 sample represented 98 percent of the U.S. manufacturing sector universe, which consists of all manufacturing establishments in the 50 States and the District of Columbia. Compared with the 1988 MECS, the designed sample size for 1991 was increased from 12,065 manufacturing establishments to 16,054 establishments.

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Causal relationship between energy consumption and GDP in Tunisia: aggregated and disaggregated analysis  

Science Journals Connector (OSTI)

This study investigates the causality between energy consumption and GDP in Tunisia for the 1980 to 2009 period at both aggregated and disaggregated levels as oil, natural gas, and electricity. To determine the Granger causality in the presence of cointegration between variables, a vector error correction model (VECM) is used instead of an autoregressive model (VAR). In the short-run, the neutrality hypothesis is supported between total energy consumption and GDP. This is also true between GDP and oil consumption in one hand and the gas consumption in other hand. Whereas a unidirectional is detected from electricity to the GDP is found (growth hypothesis). In the long-run, total energy consumption, in aggregate and disaggregated forms (gas and electricity) causes GDP (growth hypothesis). For against GDP causes oil consumption (conservation hypothesis). Consequently, the policy makers in Tunisia should place priority an increased commitment to aggregated and disaggregated energy consumption will stabilise the country's inefficient spending and allow it to have a stable income stream in the short-term to raise capital for its long-term investments.

Mehdi Abid; Rafaa Mraihi

2014-01-01T23:59:59.000Z

342

Housing as basis for sustainable consumption  

Science Journals Connector (OSTI)

An important element in the discussion regarding sustainable development in our part of the world is directed towards the large growth in private consumption, and the clash of interests that arises between this growth and sustainable development requirements. A considerable part of private consumption can be related to our houses and the living situations of which they are part. It is of considerable interest to obtain more knowledge about the variations in patterns and volumes of consumption between different living situations, as well as to explore the important factors behind these variations. The acquisition of this type of empirical knowledge is an important aim in the present study. It is based on the superior thesis that it is possible through land use and housing planning to achieve substantial changes in living situations and thus contribute to a development in a direction of ''sustainable production and consumption''. The article first sums up the state-of-art regarding research on relations between physical planning, household consumption and environment. A theoretical framework and the methods applied in a Norwegian research project acquiring new empirical knowledge into these relations are also presented. The project was intended to be finished by the end of year 2000. Parts of the investigations are, however, completed and the material has been analysed. Two different types of urban structure, Oslo and a small rural town, are included in the investigations. The article presents some of the findings and relates them to former research.

Karl Georg Hoyer; Erling Holden

2001-01-01T23:59:59.000Z

343

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

344

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

345

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

346

US Mnt(N) CO Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

347

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

348

US Mnt(N) CO Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Mnt(N) CO Mnt(N) CO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US Mnt(N) CO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US Mnt(N) CO Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US Mnt(N) CO Expenditures dollars ELECTRICITY ONLY average per household * Colorado households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Average household energy costs in Colorado are 23% less than the national average, primarily due to historically lower natural gas prices in the state. * Average electricity consumption per household is lower than most other states, as Colorado residents do not commonly use electricity for main space heating, air

349

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

350

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

the effects of same other nOl1"operational variables on the energy target. Figure 10 shows the results of the monitoring period in rep;Jrt form. The actual consumption for each utility is listed and converted to energy content. The base target consumption... ===============~===~.========.=.=====.=========~====================~===== ENERGY TOTAL CONTENT ENEF~GY ACTW~L CONSUMPT I ON UI\\lITS BTU/UI\\lIT MMBTU/DAY FUEL G?\\S: 441425.0 SCFH 1401.0 14842.5 FUEL OIL: O.C' BPO 6470000.0 0.0 HP STEAI1: -79344.0 tt/Hf~ 1136. C' -2163.2 MP STEAI1: 48488.0 tt/HR 952.0 1107.9 LP STEAM: BFW...

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

351

Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: A panel data analysis  

Science Journals Connector (OSTI)

Abstract This study investigates the influence of nuclear energy consumption on GDP growth and CO2 emission in 30 major nuclear energy consuming countries. The panel mode was used taking the period 1990–2010. The results of the study indicated that nuclear energy consumption has a positive long run effect on GDP growth while it has no long run effect on CO2 emission. The Granger causality test results also revealed that nuclear energy consumption has a positive short run causal relationship with GDP growth while it has a negative short run causal relationship with CO2 emission. Based on the results of this study, nuclear energy consumption has an important role in increasing GDP growth in the investigated countries with no effect on CO2 emission. Consequently, unlike fossil fuels which also increase GDP growth, nuclear energy consumption causes less damage to the environment. From the results of the study, a number of recommendations were provided for the investigated countries.

Usama Al-mulali

2014-01-01T23:59:59.000Z

352

Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities  

Buildings Energy Data Book (EERE)

1 1 Energy Policy Act of 2005, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Energy Management Requirements - Amended reduction goals set by the National Energy Conservation Policy Act, and requires increasing percentage reductions in energy consumption through FY 2015, with a final energy consumption reduction goal of 20 percent savings in FY 2015, as compared to the baseline energy consumption of Federal buildings in FY 2003. (These goals were superseded by Section 431 of the Energy Independence and Security Act of 2007.) [Section 102] Energy Use Measurement and Accountability - Requires that all Federal buildings be metered to measure electricity use by 2012. [Section 103] Procurement of Energy Efficient Products - Requires all Federal agencies to procure ENERGY STAR qualified products, for product

353

The role of information and communication technologies in paper consumption  

Science Journals Connector (OSTI)

Conventionally, paper demand is modelled by using only gross domestic product and the price of paper as explanatory variables. However, one factor affecting the demand of printing and writing papers is presumably the diffusion of information and communication technologies (ICT). In this paper, the regression analysis model and large global scale panel data sets from 1990-2007 are used to analyse the effect of ICT on paper demand for three paper grades: newsprint, office paper and magazine paper. Results show that the internet is a substitute for newsprint and possibly for magazine paper and mobile telephones are complementary and a growing number of personal computers increase office paper consumption.

Maija Hujala

2011-01-01T23:59:59.000Z

354

Estimating the rebound effect in US manufacturing energy consumption  

Science Journals Connector (OSTI)

The energy price shocks of the 1970s are usually assumed to have increased the search for new energy saving technologies where eventual gains in energy efficiencies will reduce the real per unit price of energy services and hence, the consumption of energy will rise and partially offset the initial reduction in the usage of energy sources. This is the ‘rebound effect’, which is estimated for the US manufacturing sector using time series data applying the dynamic OLS method (DOLS). When allowing for asymmetric price effects the rebound effect is found to be approximately 24% for the US manufacturing sector.

Jan Bentzen

2004-01-01T23:59:59.000Z

355

Estimates of US biofuels consumption, 1990  

SciTech Connect

This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

Not Available

1991-10-01T23:59:59.000Z

356

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

357

Direct Liquid Cooling for Electronic Equipment  

SciTech Connect

This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

Coles, Henry; Greenberg, Steve

2014-03-01T23:59:59.000Z

358

AEO2011: Liquid Fuels Supply and Disposition | OpenEI  

Open Energy Info (EERE)

Liquid Fuels Supply and Disposition Liquid Fuels Supply and Disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

359

Defibering and specific energy consumption in bale pulpers  

SciTech Connect

In this paper, the defibering and the specific energy consumption (SEC) for bale pulping of old corrugated containers and supercalendered paper are studied. Experimental variables were pulper dimensions, rotor shape, process temperature, and pulp consistency. The extent of defibering was monitored by measuring Somerville shives, and SEC was determined for a range of pulping conditions. It was found that SEC is reduced by at least 50% when process temperature is increased from 20{degrees}C to 60{degrees}C and by about 30% when pulp consistency is increased from 3.5% to 7%. The results also showed that defibering is increased by rotors that generate shear forces both radially and tangentially. The more swiftly the mass bale and the flakes are wetted, the lower will be the SEC. The rheology of low-consistency water-fiber suspensions is also discussed, with emphasis on how shear affects defibering during the pulping process.

Savolainen, A. (Tampere Univ. of Technology, Lab. of Process, Technology, P.O. Box 527, 33101 Tampere (FI)); Jusila, T.; Nikula, S. (Tampella Papertech Oy, P.O. Box 56, LE2 33701 Tampere (FI))

1991-11-01T23:59:59.000Z

360

Safetygram #9- Liquid Hydrogen  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan  

E-Print Network (OSTI)

Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

362

Use of Computer Simulation to Reduce the Energy Consumption in a Tall Office Building in Dubai-UAE  

E-Print Network (OSTI)

increasing the cooling load due to its heat dissipation. Proper design for the maximization of natural light helps reduce the use of artificial lights and results in reduction in the buildings energy consumption. Computer simulation of the lighting and energy...

Abu-Hijleh, B.; Abu-Dakka, M.

2010-01-01T23:59:59.000Z

363

LifeCycle Water Consumption of  

E-Print Network (OSTI)

of agricultural consumption · Analytical tools development #12;· 1/3 of Less Developed Countries predicted to have insufficient water resources to meet their needs by 2025 · Agriculture = 70% of withdrawn water ­ LCAbased policies ­ CA LCFS 3. But a good GHG LCA does not a responsible product make "Sustainability

Keller, Arturo A.

364

Coal consumption and economic growth in China  

Science Journals Connector (OSTI)

The aim of this paper is to re-examine the relationship between coal consumption and real GDP of China with the use of panel data. This paper applies modern panel data techniques to help shed light on the importance of the heterogeneity among different regions within China. Empirical analyses are conducted for the full panel as well as three subgroups of the panel. The empirical results show that coal consumption and GDP are both I(1) and cointegrated in all regional groupings. Heterogeneity is found in the GDP equation of the full panel. The regional causality tests reveal that the coal consumption–GDP relationship is bidirectional in the Coastal and Central regions whereas causality is unidirectional from GDP to coal consumption in the Western region. Thus, energy conservation measures will not adversely affect the economic growth of the Western region but such measures will likely encumber the economy of the Coastal and Central regions, where most of the coal intensive industries are concentrated.

Raymond Li; Guy C.K. Leung

2012-01-01T23:59:59.000Z

365

Electricity consumption from renewable and non-renewable sources and economic growth: Evidence from Latin American countries  

Science Journals Connector (OSTI)

Abstract This study explores the effect of renewable and non-renewable electricity consumption on economic growth in 18 Latin American countries. To achieve the goal of this study a panel Gross Domestic Product (GDP) model was constructed taking the period 1980–2010 into account. From the Pedroni cointegration test results it was found that renewable electricity consumption, non-renewable electricity consumption, labor, gross fixed capital formation, and total trade are cointegrated. Moreover, the panel Dynamic Ordinary Least Squares (DOLS) test results revealed that all above the mentioned variables have a long run positive effect on GDP growth in the investigated countries. The Vector Error-Correction (VEC) Granger causality model results revealed the existence of feedback causality between the variables. The results of the study indicated that renewable electricity consumption is more significant than non-renewable electricity consumption in promoting economic growth in the investigated countries in the long run and the short run. Based on the results of this study, it is recommended that the investigated countries should increase their investment on renewable energy projects to increase the role of electricity consumption from renewable sources. In addition, it is essential that these countries should reduce their non-renewable electricity consumption by increasing their energy efficiency and implementing energy saving projects. By applying these recommendations, these countries would be able to mitigate global warming and reduce their dependency on fossil fuel to increase their energy security.

Usama Al-mulali; Hassan Gholipour Fereidouni; Janice Y.M. Lee

2014-01-01T23:59:59.000Z

366

Organotin intake through fish consumption in Finland  

SciTech Connect

Background: Organotin compounds (OTCs) are a large class of synthetic chemicals with widely varying properties. Due to their potential adverse health effects, their use has been restricted in many countries. Humans are exposed to OTCs mostly through fish consumption. Objectives: The aim of this study was to describe OTC exposure through fish consumption and to assess the associated potential health risks in a Finnish population. Methods: An extensive sampling of Finnish domestic fish was carried out in the Baltic Sea and freshwater areas in 2005-2007. In addition, samples of imported seafood were collected in 2008. The chemical analysis was performed in an accredited testing laboratory during 2005-2008. Average daily intake of the sum of dibutyltin (DBT), tributyltin (TBT), triphenyltin (TPhT) and dioctyltin (DOT) ({Sigma}OTCs) for the Finnish population was calculated on the basis of the measured concentrations and fish consumption rates. Results: The average daily intake of {Sigma}OTCs through fish consumption was 3.2 ng/kg bw day{sup -1}, which is 1.3% from the Tolerable Daily Intake (TDI) of 250 ng/kg bw day{sup -1} set by the European Food Safety Authority. In total, domestic wild fish accounted for 61% of the {Sigma}OTC intake, while the intake through domestic farmed fish was 4.0% and the intake through imported fish was 35%. The most important species were domestic perch and imported salmon and rainbow trout. Conclusions: The Finnish consumers are not likely to exceed the threshold level for adverse health effects due to OTC intake through fish consumption.

Airaksinen, Riikka, E-mail: Riikka.Airaksinen@thl.fi [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Rantakokko, Panu; Turunen, Anu W.; Vartiainen, Terttu [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland)] [National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio (Finland); Vuorinen, Pekka J.; Lappalainen, Antti; Vihervuori, Aune [Finnish Game and Fisheries Research Institute, Helsinki (Finland)] [Finnish Game and Fisheries Research Institute, Helsinki (Finland); Mannio, Jaakko [Finnish Environment Institute, Helsinki (Finland)] [Finnish Environment Institute, Helsinki (Finland); Hallikainen, Anja [Finnish Food Safety Authority Evira, Helsinki (Finland)] [Finnish Food Safety Authority Evira, Helsinki (Finland)

2010-08-15T23:59:59.000Z

367

Consumption of PCB-contaminated sport fish and risk of spontaneous fetal death  

SciTech Connect

Spontaneous fetal death has been observed among various mammalian species after exposure to polychlorinated biphenyls (PCBs). Our exposure-based cohort study assessed the relationship between consumption of PCB-contaminated Lake Ontario sport fish and spontaneous fetal death using 1820 multigravid fertile women from the 1990-1991 New York State Angler Cohort Study. Fish consumption data were obtained from food frequency questionnaires and history of spontaneous fetal death from live birth certificates. Analyses were stratified by number of prior pregnancies and controlled for smoking and maternal age. No significant increases in risk for fetal death were observed across four measures of exposure: a lifetime estimate of PCB exposure based on species-specific PCB levels; the number of years of fish consumption; kilograms of sport fish consumed in 1990-1991; and a lifetime estimate of kilograms eaten. A slight risk reduction was seen for women with two prior pregnancies at the highest level of PCB exposure (odds ratio = 0.36; 95% CI, 0.14-0.92) and for women with three or more prior pregnancies with increasing years of fish consumption (odds ratio = 0.97; 95% CI, 0.94-0.99). These findings suggest that consumption of PCB-contaminated sport fish does not increase the risk of spontaneous fetal death. 50 refs., 2 tabs.

Mendola, P.; Buck, G.M.; Vena, J.E.; Zielezny, M. [State Univ. of New York, Buffalo, NY (United States); Sever, L.E. [Battelle Seattle Research Center, WA (United States)

1995-05-01T23:59:59.000Z

368

Petroleum & Other Liquids - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum & Other Liquids Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude Reserves and Production Refining and Processing Imports/Exports & Movements Stocks Consumption/Sales All Petroleum & Other Liquids Data Reports Analysis & Projections Most Requested Consumption & Sales Crude Reserves & Production Imports/Exports & Movements Prices Projections Refining & Processing Stocks All Reports EIA's latest Short-Term Energy Outlook for crude oil and liquid fuels › image chart of World Liquid Fuels Supply and Demand as described in linked Short-Term Energy Outlook Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly. EIA's latest weekly petroleum analysis › Featured chart from This Week in Petroleum using statistics from the Weekly Petroleum Status Report

369

China's Industrial Energy Consumption Trends and Impacts of the Top-1000  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy Consumption Trends and Impacts of the Top-1000 China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Title China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects Publication Type Journal Year of Publication 2012 Authors Ke, Jing, Lynn K. Price, Stephanie Ohshita, David Fridley, Nina Zheng Khanna, Nan Zhou, and Mark D. Levine Keywords energy saving, energy trends, industrial energy efficiency, top-1000 Abstract This study analyzes China's industrial energy consumption trends from 1996 to 2010 with a focus on the impact of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. From 1996 to 2010, China's industrial energy consumption increased by 134%, even as the industrial economic energy intensity decreased by 46%. Decomposition analysis shows that the production effect was the dominant cause of the rapid growth in industrial energy consumption, while the efficiency effect was the major factor slowing the growth of industrial energy consumption. The structural effect had a relatively small and fluctuating influence. Analysis shows the strong association of industrial energy consumption with the growth of China's economy and changing energy policies. An assessment of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects indicates that the economic energy intensity of major energy-intensive industrial sub-sectors, as well as the physical energy intensity of major energy-intensive industrial products, decreased significantly during China's 11th Five Year Plan (FYP) period (2006-2010). This study also shows the importance and challenge of realizing structural change toward less energy-intensive activities in China during the 12th FYP period (2011-2015).

370

Effect of increased social unacceptability of cigarette smoking on reduction in cigarette consumption.  

E-Print Network (OSTI)

Carolina North Dakota Ohio Oklahoma Oregon PennsylvaniaCarolina North Dakota Ohio Oklahoma Oregon Pennsylvania

Alamar, Benjamin; Glantz, Stanton A

2006-01-01T23:59:59.000Z

371

Ocean acidification and rising temperatures may increase biofilm primary productivity but decrease grazer consumption  

Science Journals Connector (OSTI)

...what can animal physiology tell us? J. Exp. Mar. Biol. Ecol...Oak Ridge National Laboratory, US Department of Energy. 51 Mehrbach, C , Culberson...PCO2 reduces respiration rate and energy status in the periwinkle Littorina littorea...

2013-01-01T23:59:59.000Z

372

China's Growing CO2 EmissionsA Race between Increasing Consumption and Efficiency Gains  

Science Journals Connector (OSTI)

In 1992 rural households represented over half of household expenditure and emissions and in 1997 the split was roughly equal, but by 2002 urban households spent and emitted about three times more than rural households. ... However, recent research suggests that if China and India strive to have similar income levels as Japan, technological improvements alone are unlikely to stabilize emissions (6). ...

Glen P. Peters; Christopher L. Weber; Dabo Guan; Klaus Hubacek

2007-08-02T23:59:59.000Z

373

Cable length optimization for trawl fuel consumption reduction  

Science Journals Connector (OSTI)

A numerical method for optimization of the cable lengths in trawls with respect to the ratio between the estimated trawl drag and the predicted catch efficiency is developed and applied. The trawl cables of interest are warps, bridles, headline and footrope. The optimization algorithm applies an ordered sequential process changing one cable length at the time. It is assumed in the predictions that the catch efficiency of the trawl is proportional with the trawl mouth area. In a case study optimizing a bottom trawl used on a research vessel by applying the new method it is predicted that it would be possible to reduce the ratio between trawl drag and catch efficiency by up to 46% by optimizing the cable lengths. Thus this would enable a considerable reduction in fuel consumption to catch a specific amount of fish. Moreover, we predict an increase in the value of the trawl mouth area leading to better catching efficiency without increase in otter door drag.

Ramez Khaled; Daniel Priour; Jean-Yves Billard

2013-01-01T23:59:59.000Z

374

Liquid level detector  

DOE Patents (OSTI)

A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, Albert P. (Vernon, CT)

1986-01-01T23:59:59.000Z

375

Liquid level detector  

DOE Patents (OSTI)

A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, A.P.

1984-02-21T23:59:59.000Z

376

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

377

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

378

Energy Consumption ESPRIMO E7935 E80+  

E-Print Network (OSTI)

joined the "Green Grid" and "Climate Savers Computing" initiatives and publishes SPECpower benchmark (WOL enabled) 4) 96.7 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 348.3 MJ/year Heat Consumption (WOL enabled) 4) 103.6 kWh/year Heat dissipation, WOL enabled (MJ, 1 W = 3.6 kJ/h) 373.0 MJ

Ott, Albrecht

379

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 178 238 104 3,788 7,286 2,521 47.0 32.7 41.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 27 11 346 360 218 66.6 75.8 51.9 5,001 to 10,000 .............................. 14 36 Q 321 662 Q 45.1 53.8 Q 10,001 to 25,000 ............................ 31 33 Q 796 1,102 604 39.5 29.9 Q

380

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education ....................................... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food Sales ..................................... 36 24 Q 747 467 Q 48.8 51.1 Q

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................. 1,488 2,794 1,539 17,685 29,205 17,893 84.1 95.7 86.0 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 191 290 190 2,146 2,805 1,838 89.1 103.5 103.5 5,001 to 10,000 ............................ 131 231 154 1,972 2,917 1,696 66.2 79.2 91.0 10,001 to 25,000 .......................... 235 351 191 3,213 4,976 3,346 73.1 70.5 57.0

382

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 454 715 356 378 134 8,486 14,122 8,970 11,796 5,098 53.5 50.6 39.7 32.0 26.3 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 57 84 35 58 16 666 1,015 427 832 234 84.8 83.1 81.9 69.6 66.6 5,001 to 10,000 ........................... 50 57 33 61 17 666 1,030 639 1,243 392 75.2 54.9 51.2 49.2 44.0

383

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

384

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 137 254 189 261 202 11,300 18,549 12,374 17,064 10,894 12.1 13.7 15.3 15.3 18.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 19 27 14 32 23 1,210 1,631 923 1,811 903 15.7 16.4 15.0 17.8 25.8 5,001 to 10,000 ........................... 12 18 15 27 14 1,175 1,639 1,062 1,855 914 10.2 10.9 14.3 14.3 15.5

385

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 172 234 452 185 13,899 17,725 26,017 12,541 12.4 13.2 17.4 14.7 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 14 30 52 19 1,031 1,742 2,410 1,296 13.5 17.4 21.5 14.6 5,001 to 10,000 .............................. 11 17 37 21 1,128 1,558 2,640 1,319 9.8 10.8 14.0 15.8 10,001 to 25,000 ............................ 22 33 59 28 2,094 3,317 4,746 2,338 10.4 10.0 12.5 12.1

386

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 448 728 511 350 10,162 14,144 15,260 8,907 44.1 51.5 33.5 39.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 50 92 68 40 547 1,086 912 629 90.6 84.6 74.5 63.7 5,001 to 10,000 .............................. 39 63 69 46 661 1,064 1,439 806 59.2 59.4 48.1 57.4 10,001 to 25,000 ............................ 58 133 81 70 1,293 2,656 2,332 1,542 45.2 50.1 34.7 45.7

387

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ....................................... Q 137 101 419 3,629 2,997 53.9 37.6 33.7 Food Sales ..................................... 16 Q Q 339 Q Q 46.6 Q Q

388

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 168 185 165 5,453 3,263 5,644 30.9 56.6 29.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 29 18 Q 334 266 363 87.9 68.5 60.2 5,001 to 10,000 .............................. 25 Q Q 545 291 514 45.6 62.7 54.4 10,001 to 25,000 ............................ 20 45 26 626 699 844 32.1 63.9 30.6

389

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to 10,000 .............................. 7 20 5 681 1,389 386 10.8 14.4 13.3 10,001 to 25,000 ............................ 9 31 12 1,204 2,411 842 7.8 12.8 14.1

390

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings* ............................... 436 1,064 309 5,485 12,258 3,393 79.5 86.8 91.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 116 36 922 1,207 538 64.9 96.5 67.8 5,001 to 10,000 .............................. 44 103 Q 722 1,387 393 60.5 74.0 Q

391

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ............................... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ................................... 144 Q Q 765 467 Q 188.5 Q Q

392

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ........................... 990 1,761 1,134 1,213 724 10,622 17,335 11,504 15,739 9,584 93.2 101.6 98.5 77.0 75.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

393

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings* ............................. 1,188 2,208 2,425 13,374 29,260 22,149 88.8 75.5 109.5 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7

394

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 . Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings* ............................... 575 381 530 7,837 3,675 7,635 73.4 103.8 69.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 464 871 110.9 94.7 73.0 5,001 to 10,000 .............................. 60 36 76 879 418 820 68.2 86.7 92.9 10,001 to 25,000 ............................ 53 76 73 1,329 831 1,256 40.2 91.7 58.4

395

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 .............................. 45 111 27 738 1,468 420 61.6 75.4 63.2

396

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................. 1,271 1,690 1,948 911 12,905 17,080 23,489 11,310 98.5 98.9 82.9 80.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 118 206 240 108 1,025 1,895 2,533 1,336 115.1 108.5 94.9 80.6 5,001 to 10,000 ............................ 102 117 185 112 1,123 1,565 2,658 1,239 90.7 74.7 69.5 90.8

397

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 .............................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................ 77 91 89 1,555 933 1,429 49.4 97.2 62.4

398

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 .............................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................ Q 121 187 674 1,448 2,113 Q 83.4 88.4

399

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................ 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 .......................... 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9

400

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ............................ 1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ................................ 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 .............................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................ 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................ 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 .......................... 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................ 12,639 0.09 13.1 0.09 1.03

402

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 141 68 117 8,634 4,165 8,376 16.3 16.3 14.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 17 7 12 696 439 857 24.1 15.7 14.0 5,001 to 10,000 .............................. 12 5 15 865 451 868 13.8 12.1 17.7 10,001 to 25,000 ............................ 16 12 16 1,493 933 1,405 11.0 13.0 11.5

403

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ................................ 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 24 54 38 2,072 2,767 1,640 11.4 19.4 23.0 5,001 to 10,000 .............................. 16 41 29 1,919 3,154 1,572 8.2 13.0 18.4 10,001 to 25,000 ............................ 28 69 45 3,201 5,610 3,683 8.7 12.3 12.2

404

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWh/square foot) 25th Per- centile Median 75th Per- centile per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) All Buildings ................................ 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 48 17.8 3.8 9.0 20.0 4.4 1.63 0.092 5,001 to 10,000 .............................. 96 12.9 4.0 8.2 15.5 9.2 1.23 0.096 10,001 to 25,000 ............................ 178 11.4 3.1 7.2 15.0 15.2 0.97 0.086

405

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 580 986 471 12,407 22,762 13,304 46.8 43.3 35.4 Building Floorspace (Square Feet) 1,001 to 5,000 ............................... 86 103 61 1,245 1,271 659 69.0 81.0 92.1 5,001 to 10,000 ............................. 57 101 60 1,154 1,932 883 49.4 52.3 67.6 10,001 to 25,000 ........................... 105 174 65 2,452 3,390 1,982 42.6 51.2 32.7

406

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 41 131 168 3,430 10,469 12,202 12.0 12.5 13.8 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 5 9 20 369 662 921 12.9 13.9 21.9 5,001 to 10,000 .............................. 3 8 9 360 768 877 8.4 10.4 10.8 10,001 to 25,000 ............................ Q 16 24 674 1,420 2,113 Q 11.6 11.2

407

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using Fuel Oil (million square feet) Fuel Oil Energy Intensity (gallons/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 1,302 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................ 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................ 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 ............................... 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q

408

US MidAtl NY Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

409

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) All Buildings ................................ 4,859 71,658 14.7 6,523 1,342 91.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 685 265 99.0 5,001 to 10,000 .............................. 948 7,033 7.4 563 594 80.0 10,001 to 25,000 ............................ 810 12,659 15.6 899 1,110 71.0 25,001 to 50,000 ............................ 261 9,382 36.0 742 2,843 79.0

410

US MidAtl PA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

411

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

412

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 85 364 550 1,861 8,301 10,356 45.4 43.8 53.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q 42 69 Q 427 741 Q 98.4 92.9 5,001 to 10,000 .............................. Q 32 49 Q 518 743 Q 62.1 65.5 10,001 to 25,000 ............................ Q 47 102 Q 952 1,860 Q 49.7 54.6

413

US MidAtl PA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl PA MidAtl PA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl PA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl PA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl PA Expenditures dollars ELECTRICITY ONLY average per household * Pennsylvania households consume an average of 96 million Btu per year, 8% more than the U.S. average. Pennsylvania residents also spend 16% more than the average U.S. households for energy consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh per year, which is lower than the national average, but 58% more than New York households and 17% more than New Jersey residents.

414

US MidAtl NY Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

MidAtl NY MidAtl NY Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US MidAtl NY Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US MidAtl NY Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US MidAtl NY Expenditures dollars ELECTRICITY ONLY average per household * New York households consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. Electricity costs are closer to the national average due to higher than average electricity prices in the state.

415

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

416

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

SciTech Connect

While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

Zhou, Nan; Lin, Jiang

2007-08-01T23:59:59.000Z

417

Trends in U.S. Residential Natural Gas Consumption  

Gasoline and Diesel Fuel Update (EIA)

Trends in U.S. Residential Natural Gas Consumption Trends in U.S. Residential Natural Gas Consumption This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009). It examines a long-term downward per- customer consumption trend and analyzes whether this trend persists across Census Divisions. The report also examines some of the factors that have contributed to the decline in per-customer consumption. To provide a more meaningful measure of per-customer consumption, EIA adjusted consumption data presented in the report for weather. Questions or comments on the contents of this article should be directed to Lejla Alic at Lejla.Alic@eia.doe.gov or (202) 586-0858.

418

Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Plan to Reduce State Plan to Reduce Petroleum Consumption to someone by E-mail Share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Facebook Tweet about Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Twitter Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Google Bookmark Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Delicious Rank Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on Digg Find More places to share Alternative Fuels Data Center: State Plan to Reduce Petroleum Consumption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Plan to Reduce Petroleum Consumption

419

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network (OSTI)

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

420

Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

422

Colorado Natural Gas Total Consumption (Million Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Total Consumption (Million Cubic Feet) Colorado Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

423

Fact #704: December 5, 2011 Fuel Consumption Standards for New...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September...

424

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

425

Evaluating Texas State University Energy Consumption According to Productivity  

E-Print Network (OSTI)

The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

Carnes, D.; Hunn, B. D.; Jones, J. W.

1998-01-01T23:59:59.000Z

426

Electricity Consumption Simulation Based on Multi-agent System  

Science Journals Connector (OSTI)

In order to simulate impact on electricity of macroeconomic policy and foreign trade, Electricity Consumption Simulation System (ECMAS) was established based ... according to I/O table and data of electricity consumption

Minjie Xu; Zhaoguang Hu; Baoguo Shan…

2009-01-01T23:59:59.000Z

427

Connecticut Natural Gas Total Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

428

INCREASED SENSITIVITY OF HYPOPHYSECTOMIZED RATS TO RADIATION  

Science Journals Connector (OSTI)

...prolonged period of cloudy weather showed a marked increase of...necessary heat transfer between the cold stream and the bath liquid...non-aqueous bath media. A heater is used continuously, and...hydrostatic pressure. The operation of the thermoregulator is self-evident...

Evelyn Anderson; John H. Lawrence; Michael Joseph; Paul C. Aebersold

1939-06-23T23:59:59.000Z

429

Federal Energy Consumption and Progress Made toward Requirements  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Energy Management Program (FEMP) tracks Federal agency energy consumption and progress toward achieving energy laws and requirements.

430

Photosynthesis and the dynamics of oxygen consumption in a ...  

Science Journals Connector (OSTI)

photosynthesis minus oxygen consumption), and gross photosynthesis at high ... The depth distribution of gross photosynthesis, as obtained by the cycling ...

1999-11-15T23:59:59.000Z

431

Viscosity, specific (for liquids)  

Science Journals Connector (OSTI)

n. The ratio between the viscosity of a liquid and the viscosity of water at the same temperature. Specific viscosity is sometimes used interchangeably with relative viscosity for liquids.

2007-01-01T23:59:59.000Z

432

Liquid Piston Stirling Engines  

Science Journals Connector (OSTI)

The Fluidyne liquid piston engine is a simple free-piston Stirling engine that can be made from nothing more...

Graham Walker Ph. D.; J. R. Senft Ph.D.

1985-01-01T23:59:59.000Z

433

Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications  

SciTech Connect

Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

2014-09-01T23:59:59.000Z

434

Energy Consumption Characteriation of Heterogeneous Servers School of Computer Science  

E-Print Network (OSTI)

Energy Consumption Characteriation of Heterogeneous Servers Xiao Zhang School of Computer Science Machine between servers to save energy. An accurate energy consumption model is the basic of energy management. Most past studies show that energy consumption has linear relation with resource utilization. We

Qin, Xiao

435

Getting to Green: Understanding Resource Consumption in the Home  

E-Print Network (OSTI)

Getting to Green: Understanding Resource Consumption in the Home Marshini Chetty, David Tran managing their domestic resource consumption. Yet, the question of what tools Ubicomp researchers can and natural gas systems in the home. We find that in-the- moment resource consumption is mostly invisible

Grinter, Rebecca Elizabeth

436

American Options, Multiarmed Bandits, and Optimal Consumption Plans  

E-Print Network (OSTI)

American Options, Multi­armed Bandits, and Optimal Consumption Plans: A Unifying View By Peter Bank consumption choice can all be reduced to the same problem of representing a given stochastic process in terms­armed bandits, optimal consumption plans, optimal stopping, representation theorem, universal exercise signal

Föllmer, Hans

437

Optimal consumption and investment for markets with randoms coefficients.  

E-Print Network (OSTI)

Optimal consumption and investment for markets with randoms coefficients. Belkacem Berdjane and Serguei Pergamenshchikov February 6, 2011 Abstract We consider an optimal consumption - investment problem consumption - investment strategies are obtained. It turns out that the optimal convergence rate in this case

438

Optimal lifetime consumption and investment under drawdown constraint  

E-Print Network (OSTI)

Optimal lifetime consumption and investment under drawdown constraint Romuald Elie Nizar Touzi October 21, 2006 Abstract We consider the infinite horizon optimal consumption-investment problem under-form expressions for the optimal consumption and investment strategy. Key words: portfolio allocation, drawdown

Elie, Romuald

439

Term Structure of Interest Rates with Consumption Commitments  

E-Print Network (OSTI)

Term Structure of Interest Rates with Consumption Commitments J. C. Duan Risk Management Institute Abstract We study the term structure of interest rates in the presence of consumption commitments using and develop computation methods. Examples are ana- lyzed to illustrate the effect of consumption commitments

Zhu, Qiji Jim

440

On the Energy Consumption and Performance of Systems Software  

E-Print Network (OSTI)

On the Energy Consumption and Performance of Systems Software Appears in the proceedings of the 4th,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption and performance are necessary to understand and identify system. This paper considers the energy consumption and performance of servers running a relatively simple file

Zadok, Erez

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Using Bytecode Instruction Counting as Portable CPU Consumption Metric  

E-Print Network (OSTI)

Using Bytecode Instruction Counting as Portable CPU Consumption Metric Walter Binder and Jarle-1015 Lausanne, Switzerland firstname.lastname@epfl.ch Abstract Accounting for the CPU consumption consumption information in order to detect a resource overuse of client components (detection of denial

Binder, Walter

442

Power Consumption of GPUs from a Software Perspective  

E-Print Network (OSTI)

Power Consumption of GPUs from a Software Perspective Sylvain Collange1 , David Defour1 and Arnaud computing solutions. They have power consumptions up to 300 W. This may lead to power supply and thermal. However, as long as the main goal of GPU was to serve in desktops, their power consumption was secondary

Paris-Sud XI, Université de

443

A Realistic Power Consumption Model for Wireless Sensor Network Devices  

E-Print Network (OSTI)

1 A Realistic Power Consumption Model for Wireless Sensor Network Devices Qin Wang, Mark Hempstead}@eecs.harvard.edu Abstract-- A realistic power consumption model of wireless communication subsystems typically used in many sensor network node devices is presented. Simple power consumption models for major components

Hempstead, Mark

444

Groundwater Consumption by Phreatophytes in Mid-Continent  

E-Print Network (OSTI)

Groundwater Consumption by Phreatophytes in Mid-Continent Stream-Aquifer Systems Gerard Kluitenberg. · Consumption of ground water by phreatophytes also a factor of potential importance. · Extensive control-water consumption by phreatophytes needed to: Introduction/Background · Clarify factors contributing to low

Hernes, Peter J.

445

A STOCHASTIC CONTROL MODEL OF INVESTMENT, PRODUCTION AND CONSUMPTION  

E-Print Network (OSTI)

A STOCHASTIC CONTROL MODEL OF INVESTMENT, PRODUCTION AND CONSUMPTION BY WENDELL H. FLEMING is to choose investment and consumption controls which maximize total expected discounted HARA utility of consumption. Optimal control policies are found using the method of dynamic programming. In case

Pang, Tao

446

Energy Consumption in Coded Queues for Wireless Information Exchange  

E-Print Network (OSTI)

Energy Consumption in Coded Queues for Wireless Information Exchange Jasper Goseling, Richard J customers. We use this relation to ob- tain bounds on the energy consumption in a wireless information, for example, from the observations in [3] that using network coding can reduce the energy consumption

Boucherie, Richard J.

447

Power Consumption Prediction and Power-Aware Packing in Consolidated  

E-Print Network (OSTI)

Power Consumption Prediction and Power-Aware Packing in Consolidated Environments Jeonghwan Choi the power consumption of groups of colocated applications. Such characterization is crucial for effective prediction and enforcement of appropriate limits on power consumption--power budgets--within the data center

Urgaonkar, Bhuvan

448

Past, Place & People: An Ethnography of Museum Consumption  

E-Print Network (OSTI)

Past, Place & People: An Ethnography of Museum Consumption Anat Hecht Department of Social the potential of ethnography as an approach to the study of museum consumption and its role within contemporary of the perception, discourse and practice of museum consumption, from the varied viewpoints of the producers and

Guillas, Serge

449

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization  

E-Print Network (OSTI)

Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption while limiting the latency in data transfer. In this paper, we focus on polling energy consumption and latency. We show that this problem can be posed as a geometric program, which

Poovendran, Radha

450

American Options, Multiarmed Bandits, and Optimal Consumption Plans  

E-Print Network (OSTI)

American Options, Multi­armed Bandits, and Optimal Consumption Plans: A Unifying View By Peter Bank, and in the microeconomic theory of intertemporal consumption choice can all be reduced to the same problem of representing and phrases. American options, Gittins index, multi­armed bandits, optimal consumption plans, optimal stopping

Bank, Peter

451

Towards New Widgets to Reduce PC Power Consumption  

E-Print Network (OSTI)

1 Towards New Widgets to Reduce PC Power Consumption Abstract We present a study which describes document) were compared for power consumption across both a desktop and a laptop computer and across two in the power consumption of the interac- tion technique is the number of screen updates in- volved. Keywords

Williamson, John

452

Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions  

Science Journals Connector (OSTI)

...research-article Environmental Microbiology Oxygen Consumption Rates of Bacteria under Nutrient-Limited...heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures...tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than...

Timothy E. Riedel; William M. Berelson; Kenneth H. Nealson; Steven E. Finkel

2013-06-14T23:59:59.000Z

453

On the Energy Consumption and Performance of Systems Software  

E-Print Network (OSTI)

On the Energy Consumption and Performance of Systems Software Zhichao Li, Radu Grosu, Priya Sehgal {zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption that can balance out performance and energy use. This paper considers the energy consumption

Stoller, Scott

454

Energino: a Hardware and Software Solution for Energy Consumption Monitoring  

E-Print Network (OSTI)

Energino: a Hardware and Software Solution for Energy Consumption Monitoring Karina Gomez, Roberto.granelli@disi.unitn.it Abstract--Accurate measurement of energy consumption of practical wireless deployments is vital in the availability of affordable and scalable energy consumption monitoring tools for the research community

Paris-Sud XI, Université de

455

Food Consumption by Sea Lions: Existing Data and Techniques  

E-Print Network (OSTI)

Food Consumption by Sea Lions: Existing Data and Techniques Arliss J. Winship, Andrea M.J. Hunter on the quantity of food consumed by sea lions in captivity, and examined how consumption varied by species, body ranges of estimates of food consumption for sea lions that can be used in various modeling strategies

456

A Note on Irreversible Investment, Hedging and Optimal Consumption Problems  

E-Print Network (OSTI)

A Note on Irreversible Investment, Hedging and Optimal Consumption Problems Vicky Henderson who aims to maximize expected utility of consumption over an infinite horizon. The agent pays a fixed to partially hedge risk. The agent maximizes his expected utility from consumption over an infinite horizon

457

Optimal lifetime consumption and investment under drawdown constraint  

E-Print Network (OSTI)

Optimal lifetime consumption and investment under drawdown constraint Romuald Elie Nizar Touzi consumption-investment problem under the drawdown constraint, i.e. the wealth process never falls below in explicit form, and we derive closed-form expressions for the optimal consumption and investment strategy

Touzi, Nizar

458

Power consumption optimization in multi-mode mobile relay  

E-Print Network (OSTI)

Power consumption optimization in multi-mode mobile relay C´edric L´evy-Bencheton #1 , Guillaume-mode can reduce terminal power consumption. Software Defined Radio is an enabler towards multi through relays, is another solution to reduce power consumption. We look at multi-mode relaying, where

Paris-Sud XI, Université de

459

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS  

E-Print Network (OSTI)

GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

460

Optimization of Energy and Water Consumption in Cornbased Ethanol Plants  

E-Print Network (OSTI)

1 Optimization of Energy and Water Consumption in Corn­based Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

Grossmann, Ignacio E.

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Automated Analysis of Performance and Energy Consumption for Cloud Applications  

E-Print Network (OSTI)

Automated Analysis of Performance and Energy Consumption for Cloud Applications Feifei Chen, John providers is thus to develop resource provisioning and management solutions at minimum energy consumption system performance and energy consumption patterns in complex cloud systems is imperative to achieve

Schneider, Jean-Guy

462

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks  

E-Print Network (OSTI)

Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks Shahram}@cs.odu.edu Abstract--This paper investigates the effect of various param- eters of energy consumption. Finding the optimum combination of parameters to minimize energy consumption while satisfying the Qo

Weigle, Michele

463

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network (OSTI)

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon of their energy consumption patterns. By varying the abstractions with the rest of the functionality fixed, we measure and analyze the impact of distributed programming abstractions on application energy consumption

Tilevich, Eli

464

On the Interplay of Parallelization, Program Performance, and Energy Consumption  

E-Print Network (OSTI)

to either minimize the total energy consumption or minimize the energy-delay product. The impact of staticOn the Interplay of Parallelization, Program Performance, and Energy Consumption Sangyeun Cho through parallel execution of applications, suppressing the power and energy consumption remains an even

Marchal, Loris

465

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network (OSTI)

vibration sensors, for inferring electrical consumption when direct measurementvibration and light sensors, we can increase our coverage, especially in places where direct electrical measurementAND MEASUREMENT Building A/C Unit ? Accelerometer ? Fig (A) accel x Building A/C Unit ? Vibration

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

466

Is Aquaculture Pro-Poor? Empirical Evidence of Impacts on Fish Consumption in Bangladesh  

Science Journals Connector (OSTI)

Summary Aquaculture is widely held to contribute to poverty reduction and food security in the Global South, but robust evidence is limited. Using nationally representative data from Bangladesh, this study analyses changes in fish consumption from 2000 to 2010. Rapid expansion of commercial aquaculture pegged down fish prices, resulting in increased fish consumption by extreme poor and moderate poor consumers and those in rural areas. These outcomes are closely linked to the pro-poor nature of national economic growth during this period. These findings contribute to a broadening of the debate on whether the growth of aquaculture in Bangladesh has been pro-poor.

Kazi Ali Toufique; Ben Belton

2014-01-01T23:59:59.000Z

467

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Residential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy ConsumptionResidential Density on Vehicle Usage and Energy Consumption

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

468

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

469

Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System  

E-Print Network (OSTI)

Selection for Energy Consumption Reduction in Machining,Dornfeld, D. (2011): Energy Consumption Characterization and2011): Unit Process Energy Consumption Models for Material

Diaz, Nancy; Dornfeld, David

2012-01-01T23:59:59.000Z

470

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

Golob, Thomas F.; Brownstone, David

2005-01-01T23:59:59.000Z

471

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

472

Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach  

E-Print Network (OSTI)

on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

473

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

474

ResPoNSe: modeling the wide variability of residential energy consumption.  

E-Print Network (OSTI)

affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

Peffer, Therese; Burke, William; Auslander, David

2010-01-01T23:59:59.000Z

475

One of These Homes is Not Like the Other: Residential Energy Consumption Variability  

E-Print Network (OSTI)

the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

Kelsven, Phillip

2013-01-01T23:59:59.000Z

476

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

477

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

478

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

accounting for 79% of non-biomass energy consumption inreliance on biomass for rural energy consumption shows thereliance on biomass for rural energy consumption shows the

Zhou, Nan

2010-01-01T23:59:59.000Z

479

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network (OSTI)

of steady state engine fuel consumption and emission maps.affecting engine load and consequently fuel consumption. Theand engine speed which it then relates to fuel consumption

Scora, George Alexander

2011-01-01T23:59:59.000Z

480

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network (OSTI)

that the diesel engines fuel consumption and emissions doEmissions and Fuel Consumption Model engine manufacturersEmissions and Fuel Consumption Model Connection to engine

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquids consumption increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Heavy-Duty Diesel Vehicle Fuel Consumption Modeling Based on Road Load and Power Train Parameters  

E-Print Network (OSTI)

Injection Diesel Engine Fuel Consumption”, SAE 971142, 11.engine load, engine speed, and fuel consumption. The tirevehicle speed, engine speed, fuel consumption, engine load,

Giannelli, R; Nam, E K; Helmer, K; Younglove, T; Scora, G; Barth, M

2005-01-01T23:59:59.000Z

482

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of China’s total energy consumption mix. However,about 19% of China’s total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

483

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network (OSTI)

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

484

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

the fraction of total energy consumption attributable toFraction of Total Energy Consumption Background Although thewindow fraction of total energy consumption. We believe that

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

485

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

about half of the total energy consumption from Wii consolescan estimate total national energy consumption due to videoof on mode energy consumption to the total AEC. For most

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

486

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network (OSTI)

comparison between electricity consumption and behavioralU.S. residential electricity consumption” Energy Policy, 42(of the residential electricity consumption. ” Energy Policy,

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

487

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network (OSTI)

to Btu, EC is the electricity consumption of EVs in Kwh perreductions EV in electricity consumption contributedsensitive to EV electricity consumption, which,in turn,is

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

488

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

end-use Residential primary energy consumption was 6.6 EJ inof primary energy. Primary energy consumption includes final14 Residential Primary Energy Consumption by Fuel (with

Zhou, Nan

2010-01-01T23:59:59.000Z

489

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

490

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network (OSTI)

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

491

Effect of idling on fuel consumption and emissions of a diesel engine fueled by Jatropha biodiesel blends  

Science Journals Connector (OSTI)

Abstract An engine running at low load and low rated speed is said to be subject to high idling conditions, a mode which represents one of the major problems currently the transport industry is facing. During this time, the engine can not work at peak operating temperature. This leads to incomplete combustion and emissions level increase due to having fuel residues in the exhaust. Also, idling results in increase in fuel consumption. The purpose of this study is to evaluate fuel consumption and emissions parameters under high idling conditions when diesel blended with Jatropha curcas biodiesel is used to operate a diesel engine. Although biodiesel–diesel blends decrease carbon monoxide and hydrocarbon emissions, they increase nitrogen oxides emissions in high idling modes. Compared to pure diesel fuel, fuel consumption also increases under all high idling conditions for biodiesel–diesel blends, with a further increase occurring as blend percentage rises.

S.M. Ashrafur Rahman; H.H. Masjuki; M.A. Kalam; M.J. Abedin; A. Sanjid; S. Imtenan

2014-01-01T23:59:59.000Z

492

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

493

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

494

Advanced liquid fuel production from biomass for power generation  

SciTech Connect

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

495

Liquid Wall Chambers  

SciTech Connect

The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

Meier, W R

2011-02-24T23:59:59.000Z

496

Two-Dimensional Property Distributions, Ohmic Losses, and Power Consumption within a Fuel Cell Polymer Electrolyte Membrane  

Science Journals Connector (OSTI)

Two-Dimensional Property Distributions, Ohmic Losses, and Power Consumption within a Fuel Cell Polymer Electrolyte Membrane ... The land provides both mechanical support and electrical contact to the porous transport layer (PTL), while the fuel and oxidant are distributed to the catalyst layer (CL) through the channels, again via the PTL. ... The anisotropic nature of the distributions suggest that there may be localized “hot spots” where an increased rate of power consumption could heat the membrane and cause it to fail. ...

Venkateshwar R. Devulapalli; Aaron V. Phoenix

2010-06-24T23:59:59.000Z

497

Carbon, Land, and Water Footprint Accounts for the European Union: Consumption, Production, and Displacements through International Trade  

Science Journals Connector (OSTI)

† Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway ... On the global level, the accounting for emissions embodied in trade increases the already high carbon footprints of Europe, Japan, South Korea, and the United States. ... On a global level, 72% of greenhouse gas emissions are related to household consumption, 10% to government consumption, and 18% to investments. ...

Kjartan Steen-Olsen; Jan Weinzettel; Gemma Cranston; A. Ertug Ercin; Edgar G. Hertwich

2012-09-26T23:59:59.000Z

498

Sliding Luttinger liquid phases  

Science Journals Connector (OSTI)

We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can stabilize a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi-liquid state: the crossed sliding Luttinger liquid phase. In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature T as T?0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.

Ranjan Mukhopadhyay; C. L. Kane; T. C. Lubensky

2001-07-09T23:59:59.000Z

499

Increasing Distillate Production at U.S. Refineries Â… Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

500

Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption  

NLE Websites -- All DOE Office Websites (Extended Search)

5: August 9, 5: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment to someone by E-mail Share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Facebook Tweet about Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Twitter Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Google Bookmark Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Delicious Rank Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on Digg Find More places to share Vehicle Technologies Office: Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment on