National Library of Energy BETA

Sample records for liquid water paths

  1. Ship-based liquid water path estimates in marine stratocumulus

    E-Print Network [OSTI]

    Zuidema, Paquita

    October 2005. [1] We examine liquid water paths (LWPs) derived from ship-based microwave radiometer to microwave absorption model differences are 10­25 g mÀ2 , increasing with LWP. The most recent models produce cycle, through the longwave cloud top radiative cooling and liquid water's ability to absorb solar

  2. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey December 2013 A method for separating the three components of the marine stratocumulus (MSC) aerosol cloud interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey

  3. Water Evaporation: A Transition Path Sampling Study

    E-Print Network [OSTI]

    Patrick Varilly; David Chandler

    2012-12-12

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface, and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  4. ARM - Measurement - Liquid water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARM Data Discovery Browse Datapath

  5. Cloud Liquid Water Measurements

    E-Print Network [OSTI]

    Delene, David J.

    of heat to vaporize drops. Power is supplied to coil to maintain a constant temperature. P ­ Total Power #12;Wet Power Term Energy is transferred to heat droplets to to the boiling point and vaporize;Liquid Water Content Formula Combine the Wet and Dry Power Terms PC Ts-TaPv x Mldv[Lvcw Tv-Ta] · M

  6. Electrokinetic Power Generation from Liquid Water Microjets

    E-Print Network [OSTI]

    Duffin, Andrew M.

    2008-01-01

    Electrokinetic Power Generation from Liquid Water MicrojetsElectrokinetic power generation using liquid water microjetscalculations of power generation and conversion efficiency.

  7. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  8. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  9. Commercial Light Water Production of Tritium Update and Path...

    Office of Environmental Management (EM)

    Light Water Production of Tritium: Update and Path Forward Dave Senor April 23, 2013 Tritium Focus Group 1 PNNL-SA-94431 Background United States defense maintains a stockpile of...

  10. 7, 40654083, 2007 Liquid water content

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 4065­4083, 2007 Liquid water content and effective number density Y. Hu et al. Title Page Chemistry and Physics Discussions Global statistics of liquid water content and effective number density: Y. Hu (yongxiang.hu-1@nasa.gov) 4065 #12;ACPD 7, 4065­4083, 2007 Liquid water content and effective

  11. Proton Electrodynamics in Liquid Water

    E-Print Network [OSTI]

    A. A. Volkov; V. G. Artemov; A. V. Pronin

    2013-02-20

    The dielectric spectrum of liquid water, $10^{4} - 10^{11}$ Hz, is interpreted in terms of diffusion of charges, formed as a result of self-ionization of H$_{2}$O molecules. This approach explains the Debye relaxation and the dc conductivity as two manifestations of this diffusion. The Debye relaxation is due to the charge diffusion with a fast recombination rate, $1/\\tau_{2}$, while the dc conductivity is a manifestation of the diffusion with a much slower recombination rate, $1/\\tau_{1}$. Applying a simple model based on Brownian-like diffusion, we find $\\tau_{2} \\simeq 10^{-11}$ s and $\\tau_{1} \\simeq 10^{-6}$ s, and the concentrations of the charge carriers, involved in each of the two processes, $N_{2} \\simeq 5 \\times 10^{26}$ m$^{-3}$ and $N_{1} \\simeq 10^{14}$ m$^{-3}$. Further, we relate $N_{2}$ and $N_{1}$ to the total concentration of H$_{3}$O$^{+}$--OH$^{-}$ pairs and to the pH index, respectively, and find the lifetime of a single water molecule, $\\tau_{0} \\simeq 10^{-9}$ s. Finally, we show that the high permittivity of water results mostly from flickering of separated charges, rather than from reorientations of intact molecular dipoles.

  12. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  13. Transport diffusion of liquid water and methanol through membranes...

    Office of Scientific and Technical Information (OSTI)

    Transport diffusion of liquid water and methanol through membranes Citation Details In-Document Search Title: Transport diffusion of liquid water and methanol through membranes The...

  14. Liquid Water Oceans in Ice Giants

    E-Print Network [OSTI]

    Sloane J. Wiktorowicz; Andrew P. Ingersoll

    2006-09-26

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune's deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be ~ 0.8 g/cm^3. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.

  15. Liquid chromatographic determination of water

    DOE Patents [OSTI]

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  16. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    E-Print Network [OSTI]

    Nielsen, Steven O.

    Calculation of heat capacities of light and heavy water by path-integral molecular dynamics 30 September 2005 As an application of atomistic simulation methods to heat capacities, path-integral has estimated the heat capacities too high, the quantum simulation based on path-integral molecular

  17. Peakons arising as particle paths beneath small-amplitude water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2011-06-20

    We present a new kind of particle path in constant vorticity water of finite depth, within the framework of small-amplitude waves.

  18. Aircraft Measurements of Cloud Liquid Water Content using the Forward

    E-Print Network [OSTI]

    Delene, David J.

    Aircraft Measurements of Cloud Liquid Water Content using the Forward Scattering Spectrometer Probe Water Content? Basic Cloud Parameter (MPACE) Icing Studies (WISP04, Sikorsky) Comparison with Remote Sensing Measurements (THORpex, IOP1) #12;Liquid Water Content Calculation The amount of liquid water

  19. Theory of water and charged liquid bridges

    E-Print Network [OSTI]

    Klaus Morawetz

    2012-05-29

    The phenomena of liquid bridge formation due to an applied electric field is investigated. A new solution for the charged catenary is presented which allows to determine the static and dynamical stability conditions where charged liquid bridges are possible. The creeping height, the bridge radius and length as well as the shape of the bridge is calculated showing an asymmetric profile in agreement with observations. The flow profile is calculated from the Navier Stokes equation leading to a mean velocity which combines charge transport with neutral mass flow and which describes recent experiments on water bridges.

  20. Isotope and Temperature Effects in Liquid Water Probed by Soft...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Isotope and Temperature Effects in Liquid Water Probed by Soft X Rays Print Wednesday, 24 September 2008 00:00...

  1. Spatial association between the locations of roots and water flow paths in highly structured soil 

    E-Print Network [OSTI]

    Gardiner, Nathan Thomas

    2005-02-17

    relative to the location of water flow paths is important in understanding how plants obtain nutrients and water for growth, and it would also be of considerable importance in phytoremediation research and research into the prevention of groundwater...

  2. Quantum path integral molecular dynamics simulations on transport properties of dense liquid helium

    E-Print Network [OSTI]

    Kang, Dongdong; Sun, Huayang; Yuan, Jianmin

    2015-01-01

    Transport properties of dense liquid helium under the conditions of planet's core and cool atmosphere of white dwarfs have been investigated by using the improved centroid path-integral simulations combined with density functional theory. The self-diffusion is largely higher and the shear viscosity is notably lower predicted with the quantum mechanical description of the nuclear motion compared with the description by Newton equation. The results show that nuclear quantum effects (NQEs), which depends on the temperature and density of the matter via the thermal de Broglie wavelength and the ionization of electrons, are essential for the transport properties of dense liquid helium at certain astrophysical conditions. The Stokes-Einstein relation between diffusion and viscosity in strongly coupled regime is also examined to display the influences of NQEs.

  3. An Evaluation of MWR Retrievals of Liquid Water Path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneand LosAmesAmped Up!Energy Preserving

  4. ARM - Publications: Science Team Meeting Documents: Liquid water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARMCarloDerivingimpact ofestimates

  5. DERIVING PROGNOSTIC EQUATIONS FOR CLOUD FRACTION AND LIQUID WATER CONTENT

    E-Print Network [OSTI]

    DERIVING PROGNOSTIC EQUATIONS FOR CLOUD FRACTION AND LIQUID WATER CONTENT Vincent E. Larson1 1 that accounts for how liquid water varies with both total water content and temperature. The variable s has- ter content, ql , and cloud fraction, C. This provides in- formation about partial cloudiness. Tiedtke

  6. Hydrogen bonds in liquid water are broken only fleetingly

    E-Print Network [OSTI]

    Geissler, Phillip

    Hydrogen bonds in liquid water are broken only fleetingly J. D. Eaves* , J. J. Loparo* , C. J that the local structure of liquid water has tetrahedral arrangements of molecules ordered by hydrogen bonds, the mechanism by which water molecules switch hydrogen-bonded partners remains unclear. In this mechanism

  7. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    E-Print Network [OSTI]

    Nordlund, Dennis

    2008-01-01

    Structure Effects in Liquid Water studied by Photoelectronphotoelectron emission spectra of liquid water in comparisonwith gas-phase water, ice close to the melting point, low

  8. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent lowmore »water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.« less

  9. Thermoluminescence dosimetry measurements of brachytherapy sources in liquid water

    SciTech Connect (OSTI)

    Tailor, Ramesh; Tolani, Naresh; Ibbott, Geoffrey S. [Radiation Physics, UT M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 94, Houston, Texas 77030 (United States); Radiological Physics Center, UT M.D. Anderson Cancer Center, 7515 South Main Street, Suite 300, Houston, Texas 77030-4519 (United States)

    2008-09-15

    Radiation therapy dose measurements are customarily performed in liquid water. The characterization of brachytherapy sources is, however, generally based on measurements made with thermoluminescence dosimeters (TLDs), for which contact with water may lead to erroneous readings. Consequently, most dosimetry parameters reported in the literature have been based on measurements in water-equivalent plastics, such as Solid Water. These previous reports employed a correction factor to transfer the dose measurements from a plastic phantom to liquid water. The correction factor most often was based on Monte Carlo calculations. The process of measuring in a water-equivalent plastic phantom whose exact composition may be different from published specifications, then correcting the results to a water medium leads to increased uncertainty in the results. A system has been designed to enable measurements with TLDs in liquid water. This system, which includes jigs to support water-tight capsules of lithium fluoride in configurations suitable for measuring several dosimetric parameters, was used to determine the correction factor from water-equivalent plastic to water. Measurements of several {sup 125}I and {sup 131}Cs prostate brachytherapy sources in liquid water and in a Solid Water phantom demonstrated a correction factor of 1.039{+-}0.005 at 1 cm distance. These measurements are in good agreement with a published value of this correction factor for an {sup 125}I source.

  10. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect (OSTI)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  11. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determined

  12. On the streamlines and particle paths of gravitational water waves

    E-Print Network [OSTI]

    Mats Ehrnstrom

    2007-12-04

    We investigate steady symmetric gravity water waves on finite depth. For non-positive vorticity it is shown that the particles display a mean forward drift, and for a class of waves we prove that the size of this drift is strictly increasing from bottom to surface. We also provide detailed information concerning the streamlines and the particle trajectories. This includes the case of particles within irrotational waves.

  13. Spectroscopic investigations of hydrogen bond dynamics in liquid water

    E-Print Network [OSTI]

    Fecko, Christopher J., 1975-

    2004-01-01

    Many of the remarkable physical and chemical properties of liquid water are due to the strong influence hydrogen bonds have on its microscopic dynamics. However, because of the fast timescales involved, there are relatively ...

  14. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    SciTech Connect (OSTI)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)] [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)] [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA)

  15. Process for blending coal with water immiscible liquid

    DOE Patents [OSTI]

    Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  16. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    E-Print Network [OSTI]

    John W. Biddle; Vincent Holten; Mikhail A. Anisimov

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter, to be consistent with the presence of the metastable liquid-liquid transition. We suggest an interpretation of the liquid-liquid transition in aqueous solutions of glycerol, recently observed by Murata and Tanaka, elucidating the non-conserved nature of the order parameter, its coupling with density and concentration, and the peculiarity of "spinodal decomposition without phase separation". We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  17. Structure and Depletion at Fluoro- and Hydro-carbon/Water Liquid/Liquid Interfaces

    E-Print Network [OSTI]

    Kaoru Kashimoto; Jaesung Yoon; Binyang Hou; Chiu-hao Chen; Binhua Lin; Makoto Aratono; Takanori Takiue; Mark L. Schlossman

    2008-07-18

    The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vapor-like depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose super-hydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These results are consistent with the sub-angstrom proximity of water to soft hydrophobic materials.

  18. Local Structure Analysis in $Ab$ $Initio$ Liquid Water

    E-Print Network [OSTI]

    Biswajit Santra; Robert A. DiStasio Jr.; Fausto Martelli; Roberto Car

    2015-02-27

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate $ab$ $initio$ liquid water. At ambient conditions, the LSI probability distribution, P($I$), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P($I$) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies $among$ water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- (LDA) and high-density (HDA) amorphous phases of ice are present in the IPES of ambient liquid water. Analysis of the LSI autocorrelation function uncovered a persistence time of $\\sim$ 4 ps---a finding consistent with the fact that natural thermal fluctuations are responsible for transitions between these distinct yet transient local aqueous environments in ambient liquid water.

  19. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    E-Print Network [OSTI]

    Cappa, Chris D.

    2008-01-01

    the “free” –OH bond. The water molecule of interest is shownAbsorption Spectra of Liquid Water Microjets Christopher D.spectrum (XAS) of liquid water by Wilson et al. [J. Phys.

  20. On the particle paths and the stagnation points in small-amplitude deep-water waves

    E-Print Network [OSTI]

    Delia Ionescu-Kruse

    2012-02-22

    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.

  1. Equation of State for Supercooled Water Near the Liquid-Liquid Critical Point

    E-Print Network [OSTI]

    M. A. Anisimov; D. A. Fuentevilla

    2006-09-19

    We have developed a scaled parametric equation of state to describe and predict thermodynamic properties of supercooled water. The equation of state, built on the growing evidence that the critical point of supercooled liquid-liquid water separation exists, is universal in terms of theoretical scaling fields and is shown to belong to the Ising-model class of universality. The theoretical scaling fields are postulated to be analytical combinations of the physical fields, pressure and temperature. The equation of state enables us to accurately locate the "Widom line" (the locus of stability minima) and determine that the critical pressure is considerably lower than predicted by computer simulations.

  2. Local Structure Analysis in $Ab$ $Initio$ Liquid Water

    E-Print Network [OSTI]

    Santra, Biswajit; Martelli, Fausto; Car, Roberto

    2015-01-01

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate $ab$ $initio$ liquid water. At ambient conditions, the LSI probability distribution, P($I$), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P($I$) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies $among$ water molecules with the same LSI identities, we demonstrate that the signatures of th...

  3. Viscoelasticity and primitive path analysis of entangled polymer liquids: From f-actin to polyethylene

    E-Print Network [OSTI]

    Nariya Uchida; Gary S. Grest; Ralf Everaers

    2007-11-28

    We combine computer simulations and scaling arguments to develop a unified view of polymer entanglement based on the primitive path analysis (PPA) of the microscopic topological state. Our results agree with experimentally measured plateau moduli for three different polymer classes over a wide rangeof reduced polymer densities: (i) semi-dilute theta solutions of synthetic polymers, (ii) the corresponding dense melts above the glass transition or crystallization temperature, and (iii) solutions of semi-flexible (bio)polymers such as f-actin or suspensions of rodlike viruses. Together these systems cover the entire range from loosely to tightly entangled polymers. In particular, we argue that the primitive path analysis renormalizes a loosely to a tightly entangled system and provide a new explanation of the successful Lin-Noolandi packing conjecture for polymer melts.

  4. Long range optical phonons in liquid water

    E-Print Network [OSTI]

    Elton, Daniel C

    2015-01-01

    In this work we show that on subpicosecond time scales optical phonon modes can propagate through the H-bond network of water over relatively long distances (2-4 nm). Using molecular dynamics simulation we find propagating optical phonons in the librational and OH stretching bands. The OH stretching phonon only appears when a polarizable model (TTM3-F) is employed. Both of these phonon modes exhibit LO-TO splitting at $k = 0$, indicating long range dipole-dipole interactions in the system. We study the LO-TO splitting as a function of temperature, finding that the splitting increases for the librational mode at higher temperatures but decreases for the stretching mode. Since LO-TO splitting is intimately connected to structure, this analysis opens the door for new insights into how the local structure of water changes with temperature. Our results also explain a previously unnoticed discrepancy one encounters when comparing the librational peaks found in Raman and IR/dielectric spectra. Previously the three R...

  5. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    SciTech Connect (OSTI)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % and 1.31 ± 0.59 % after ? 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.

  6. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bignell, L. J.; Diwan, M. V.; Hans, S.; Jaffe, D. E.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C.

    2015-10-19

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of 5% scintillating phase) exhibit light yield reductions of 1.74 ± 0.55 % andmore »1.31 ± 0.59 % after ? 800 Gy of proton dose, respectively. Some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical context, a scintillating phantom used for proton therapy treatment plan verification would exhibit a systematic light yield reduction of approximately 0.1% after a year of operation.« less

  7. Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator

    E-Print Network [OSTI]

    Bignell, Lindsey J; Hans, Sunej; Jaffe, David E; Rosero, Richard; Vigdor, Steven; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of $5\\%$ scintillating phase) exhibit light yield reductions of $1.74 \\pm 0.55 \\%$ and $1.31 \\pm 0.59 \\%$ after $\\approx$ 800 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical conte...

  8. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  9. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  10. Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak

    E-Print Network [OSTI]

    Victoria, University of

    Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

  11. Liquid Polyamorphism: Some Unsolved Puzzles of Water in Bulk, Nanoconfined, and Biological Environments

    E-Print Network [OSTI]

    Stanley, H. Eugene

    , liquid bulk water begins to ex- pand when its temperature drops below 4°C. Indeed, a simple kitchen layers of 0°C water "float" on top (cf, Fig. 1 of Ref [2]). The mysterious properties of liquidLiquid Polyamorphism: Some Unsolved Puzzles of Water in Bulk, Nanoconfined, and Biological

  12. Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol-Cloud Interactions

    E-Print Network [OSTI]

    Han, Quingyuan

    third of the cases, a minus one third (-1/3) power law relation between effective droplet radius droplet size and enhance evaporation just below cloud base, which decouples the cloud from the boundary explanation for the observed decrease of the diurnal temperature cycle (Hansen et al., 1997). Significant

  13. Coupled cluster benchmarks of water monomers and dimers extracted from density-functional theory liquid water: The importance of monomer

    E-Print Network [OSTI]

    Alavi, Ali

    Coupled cluster benchmarks of water monomers and dimers extracted from density-functional theory functionals in simulations of liquid water, water monomers and dimers were extracted from a PBE simulation liquid water: The importance of monomer deformations Biswajit Santra,1 Angelos Michaelides,1,2,a

  14. Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path

    DOE Patents [OSTI]

    Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

    1993-01-01

    A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

  15. Spatially Inhomogeneous Bimodal Inherent Structure in Simulated Liquid Water

    E-Print Network [OSTI]

    K. T. Wikfeldt; A. Nilsson; L. G. M. Pettersson

    2011-06-24

    In the supercooled regime at elevated pressure two forms of liquid water, high-density (HDL) and low-density (LDL), have been proposed to be separated by a coexistence line ending at a critical point, but a connection to ambient conditions has been lacking. Here we perform large-scale molecular dynamics simulations and demonstrate that the underlying potential energy surface gives a strictly bimodal characterization of the molecules at all temperatures as spatially inhomogeneous either LDL- or HDL-like with a 3:1 predominance for HDL at ambient conditions. The Widom line, indicating maximum fluctuations, coincides with a 1:1 distribution. Our results indicate a unified description of liquid water covering supercooled to ambient conditions in agreement with recent x-ray spectroscopy and scattering data.

  16. Characterization and Modeling of a Water-based Liquid Scintillator

    E-Print Network [OSTI]

    Lindsey J. Bignell; Dmitriy Beznosko; Milind V. Diwan; Sunej Hans; David E. Jaffe; Steven Kettell; Richard Rosero; Harry W. Themann; Brett Viren; Elizabeth Worcester; Minfang Yeh; Chao Zhang

    2015-08-27

    We have characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 2 GeV, 475 MeV, and 210 MeV and for two WbLS compositions. Our results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cerenkov light on our measurements. These results are relevant to the suitability of water-based liquid scintillator materials for next generation intensity frontier experiments.

  17. Characterization and Modeling of a Water-based Liquid Scintillator

    E-Print Network [OSTI]

    Bignell, Lindsey J; Diwan, Milind V; Hans, Sunej; Jaffe, David E; Kettell, Steven; Rosero, Richard; Themann, Harry W; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    We have characterised Water-based Liquid Scintillator (WbLS) using low energy protons, UV-VIS absorbance, and fluorescence spectroscopy. We have also developed and validated a simulation model that describes the behaviour of WbLS in our detector configurations for proton beam energies of 2 GeV, 475 MeV, and 210 MeV and for two WbLS compositions. Our results have enabled us to estimate the light yield and ionisation quenching of WbLS, as well as to understand the influence of the wavelength shifting of Cerenkov light on our measurements. These results are relevant to the suitability of water-based liquid scintillator materials for next generation intensity frontier experiments.

  18. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    E-Print Network [OSTI]

    Karalidi, T; Hovenier, J W

    2012-01-01

    Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in the planetary signal by covering liquid water clouds. Here, we investigate the strength of the rainbow feature for exoplanets that have liquid and icy water clouds in their atmosphere, and calculate the rainbow feature for a realistic cloud coverage of Earth. We calculate flux and polarization signals of starlight that is reflected by horizontally and vertically inhomogeneous Earth--like exoplanets, covered by patchy clouds consisting of liquid water droplets or water ice crystals. The planetary surfaces are black. On a planet with a significant coverage of liquid water clouds only, the total flux signal shows a weak rainbow feature. Any coverage of the liquid water clouds by ice clouds, however, dampens the rainbow fea...

  19. Computational studies of liquid water and diluted water in carbon tetrachloride

    SciTech Connect (OSTI)

    Chang, Tsun-Mei; Dang, Liem X.

    2008-02-21

    Molecular dynamics simulations were carried out to study solvent effects on the energetic and dynamical properties of water molecules in liquid water and in carbon tetrachloride (CCl4). In these studies, the free energy profiles or potentials of mean force (PMF) for water dimers in both solvents were computed. The computed PMF results showed a stable minimum near 3 Å for the O-O separation, with a minimum free energy of about -2.8 kcal/mol in CCl4, as compared to a value of -0.5 kcal/mol in liquid water. The difference in free energy in water as compared to CCl4 was expected, and is the result of competition from surrounding water molecules, that are capable of forming hydrogen bonds) in the liquid water. This capability is absent in the diluted water found in CCl4. We found that the rotational motions were non-isotropic, with the out-of plane vector correlation times in water/D2O varying from 5.6/5.8 ps at 250 K to 0.57/0.56 ps at 350 K and the corresponding OH/OD bond vectors varying from 6.5/7.7 ps to 0.75/0.75 ps. The results compare reasonably well to the available NMR experimental and computer simulation data on the same system (Farrar and Skinner et al. JACS 2001, 123, 8047). For diluted water in CCl4, we found the computed rotational correlation times also were non-isotropic and much longer than the corresponding NMR experimental values at the same concentration (Farrar et al. J. Phys. Chem. A 2007, 111, 6146). Upon analyzing the water hydrogen bonding patterns as a function of water concentrations, we conclude that the differences in the rotational correlation times mainly result from the formation of water hydrogen-bonding networks as the water concentration is increased in liquid CCl4. In addition, we found the rotational correlation times to be substantially faster in liquid CCl4 than in liquid water. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  20. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell

    E-Print Network [OSTI]

    Natarajan, Dilip; Van Nguyen, Trung

    2003-03-27

    to the slower oxygen reduction kinetics and mass transport limitations imposed by the liquid water generated by the electrochemical reaction and electro-osmotic drag. The liquid water can hinder transport of the reactant species by blocking the pores... generated by the electrochemical reaction is removed from the catalyst layer by two mechanisms namely, evaporation and diffusion of water vapor and liquid water transport. The water vapor transport process is similar to the oxygen species, i.e. diffusion...

  1. Low-Dimensional Water on Ru(0001); Model System for X-ray Absorption Spectroscopy Studies of Liquid Water

    E-Print Network [OSTI]

    Nordlund, D.

    2009-01-01

    nm 2 STM image of isolated water molecules (bright spots) onLow-Dimensional Water on Ru(0001); Model System forSpectroscopy Studies of Liquid Water D. Nordlund 1 , H.

  2. Nuclear quantum effects in water

    E-Print Network [OSTI]

    Joseph A. Morrone; Roberto Car

    2008-03-25

    In this work, a path integral Car-Parrinello molecular dynamics simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed open path integral molecular dynamics methodology. It is shown that these results are in good agreement with neutron Compton scattering data for liquid water and ice.

  3. Gas-Liquid Coexistence in the Primitive Model for Water

    E-Print Network [OSTI]

    F. Romano; P. Tartaglia; F. Sciortino

    2007-05-08

    We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favored, as in the case of articles interacting via short-range attractive spherical potentials. Differently from spherical potentials, we do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in an homogeneous sample driven by bonding as opposed to packing.

  4. Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    , Maryland 20899, USA The operation and accumulation of liquid water within the cell structure of a polymer and cathode water flooding. The rate of accumulation of liquid water, and its impact on the rate of cell, polymer electrolyte membrane fuel cells PEMFCs operate below the boil- ing point of water, causing excess

  5. Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.

    E-Print Network [OSTI]

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

    2008-01-01

    for metal-ion extraction from water. All ionic liquids (useful for extraction of cations from water. 9-15 Previoussingle extraction of mercury in water with either [3MOPYR

  6. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    E-Print Network [OSTI]

    Das, Prodip K.

    2013-01-01

    droplets produced by forcing water through the gas-diffusioncontact to the subsurface water. REFERENCES A. Z. Weber andUniversity of California. Liquid-Water Uptake and Removal in

  7. Spin states of para-water and ortho-water molecule in gas and liquid phases

    E-Print Network [OSTI]

    V. K. Konyukhov

    2009-09-23

    Spin degrees of freedom of water molecule in gas and liquid state were investigated in order to provide a reasonable answer about the unsolved problem of a long-term behavior of water spin isomers. The approach used involves an assumption that molecules change their spin state from a pure state to a mixed one when they interact with some sorts of adsorbent surface. Some models and conceptions of the quantum information processing were used.

  8. Liquid Water the Key to Arctic Cloud Radiative Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E CChina (MillionLiquid Fuels andWater

  9. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    SciTech Connect (OSTI)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  10. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect (OSTI)

    Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

    2012-05-01

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

  11. Retrieval of Moisture from Simulated GPS Slant-Path Water Vapor Observations Using 3DVAR with Anisotropic Recursive Filters

    E-Print Network [OSTI]

    Xue, Ming

    Retrieval of Moisture from Simulated GPS Slant-Path Water Vapor Observations Using 3DVAR with Anisotropic Recursive Filters HAIXIA LIU AND MING XUE Center for Analysis and Prediction of Storms, and School) ABSTRACT Anisotropic recursive filters are implemented within a three-dimensional variational data

  12. Stratocumulus Liquid Water Content from Dual-Wavelength Radar ROBIN J. HOGAN

    E-Print Network [OSTI]

    Reading, University of

    Stratocumulus Liquid Water Content from Dual-Wavelength Radar ROBIN J. HOGAN , NICOLAS GAUSSIAT ABSTRACT A technique is described to retrieve stratocumulus liquid water content (LWC) using the integrated water content of the column, which is then partitioned with height according to the radar

  13. Liquid Polyamorphism: Some Unsolved Puzzles of Water in Bulk, Nanoconfined, and Biological Environments

    E-Print Network [OSTI]

    Franzese, Giancarlo

    decreases, liquid bulk water begins to ex- pand when its temperature drops below 4C. Indeed, a simple while colder layers of 0C water "float" on top (cf., Fig. 1 of Ref. [2]). The mysterious propertiesLiquid Polyamorphism: Some Unsolved Puzzles of Water in Bulk, Nanoconfined, and Biological

  14. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    SciTech Connect (OSTI)

    Das, Prodip K.; Grippin, Adam; Weber, Adam Z.

    2011-07-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on the gas-diffusion layer surfaces are investigated experimentally to improve the understating of water transport through and removal from gas-diffusion layers. An experiment using a sliding-angle measurement is designed and used to quantify and directly measure the adhesion force for liquid-water droplets, and to understand the droplets? growth and detachment from the gas-diffusion layers.

  15. Influence of gravity on the collective molecular dynamics of liquid water: the case of the floating water bridge

    E-Print Network [OSTI]

    Emilio Del Giudice; Giuseppe Vitiello

    2010-09-29

    Quantum electrodynamics (QED) produces a picture of liquid water as a mixture of a low density coherent phase and an high density non-coherent phase. Consequently, the Archimedes principle prescribes that, within a gravitational field, liquid water should be made up, at surface, mainly of the coherent fraction, which becomes a cage where the gas-like non-coherent fraction is trapped, acquiring a non-vanishing pressure (vapor tension). Therefore, it is possible to probe the QED picture by observing the behavior of liquid water under reduced gravity conditions. The floating water bridge could be a useful test model.

  16. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  17. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    E-Print Network [OSTI]

    Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures

  18. Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars

    E-Print Network [OSTI]

    Stillman, David E.

    Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars David E was measured by the Thermal and Electrical Conductivity Probe (TECP) on the Phoenix lander. We interpret liquid water at the Phoenix landing site, Mars, J. Geophys. Res., 116, E09005, doi:10.1029/2011JE003838

  19. Determination of cloud liquid water distribution using 3D cloud tomography

    E-Print Network [OSTI]

    Determination of cloud liquid water distribution using 3D cloud tomography Dong Huang,1 Yangang Liu; published 2 July 2008. [1] The cloud microwave tomography method for remotely retrieving 3D distributions of cloud Liquid Water Content (LWC) was originally proposed by Warner et al. in the 1980s but has lain

  20. Network analysis of proton transfer in liquid water

    SciTech Connect (OSTI)

    Shevchuk, Roman; Rao, Francesco; Agmon, Noam

    2014-06-28

    Proton transfer in macromolecular systems is a fascinating yet elusive process. In the last ten years, molecular simulations have shown to be a useful tool to unveil the atomistic mechanism. Notwithstanding, the large number of degrees of freedom involved make the accurate description of the process very hard even for the case of proton diffusion in bulk water. Here, multi-state empirical valence bond molecular dynamics simulations in conjunction with complex network analysis are applied to study proton transfer in liquid water. Making use of a transition network formalism, this approach takes into account the time evolution of several coordinates simultaneously. Our results provide evidence for a strong dependence of proton transfer on the length of the hydrogen bond solvating the Zundel complex, with proton transfer enhancement as shorter bonds are formed at the acceptor site. We identify six major states (nodes) on the network leading from the “special pair” to a more symmetric Zundel complex required for transferring the proton. Moreover, the second solvation shell specifically rearranges to promote the transfer, reiterating the idea that solvation beyond the first shell of the Zundel complex plays a crucial role in the process.

  1. Pressurized oceans and the eruption of liquid water on Europa and Enceladus

    E-Print Network [OSTI]

    Manga, Michael

    expansion of water as it freezes from the top increases pressure in the water confined below the ice. We the pressure in water trapped below the ice, we present in Figure 1 the results of a straightforward demonPressurized oceans and the eruption of liquid water on Europa and Enceladus M. Manga1 and C

  2. Liquid-liquid phase transition model incorporating evidence for ferroelectric state near the lambda-point anomaly in supercooled water

    E-Print Network [OSTI]

    Peter O. Fedichev; Leonid I. Menshikov

    2012-01-30

    We propose a unified model combining the first-order liquid-liquid and the second-order ferroelectric phase transitions models and explaining various features of the $\\lambda$-point of liquid water within a single theoretical framework. It becomes clear within the proposed model that not only does the long-range dipole-dipole interaction of water molecules yield a large value of dielectric constant $\\epsilon$ at room temperatures, our analysis shows that the large dipole moment of the water molecules also leads to a ferroelectric phase transition at a temperature close to the lambda-point. Our more refined model suggests that the phase transition occurs only in the low density component of the liquid and is the origin of the singularity of the dielectric constant recently observed in experiments with supercooled liquid water at temperature T~233K. This combined model agrees well with nearly every available set of experiments and explains most of the well-known and even recently obtained results of MD simulations.

  3. On the Fluctuations that Order and Frustrate Liquid Water

    E-Print Network [OSTI]

    Limmer, David

    2013-01-01

    Quantitative water model . . . . . . . . . . . . . . . .5.3 Determining T g for water . . . . . . . . . . . . . . .iv Contents 6 Frustrating water at ordered surfaces 6.1

  4. On the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby Frisch Paquita Zuidema Chris Fairall

    E-Print Network [OSTI]

    Zuidema, Paquita

    that calculations of the implied cloud-top entrainment were sensitive to the liquid water flux term of the radar reflectivity is shown graphically below. We estimate an error in the liquid water fluxOn the vertical profile of stratus liquid water flux using a millimeter cloud radar Shelby Frisch

  5. Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network rearrangement dynamics

    E-Print Network [OSTI]

    Ramaswamy, Ram

    Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network of the potential energy fluctuation of liquid water is examined and found to yield so-called l/f frequency of hydrogen bond network relaxations in liquid water. A simple model of cellular dynamics is proposed

  6. Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K. Bowles, Ivan Saika-Voivod, and Francesco Sciortino

    E-Print Network [OSTI]

    Sciortino, Francesco

    Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K://jcp.aip.org/about/rights_and_permissions #12;THE JOURNAL OF CHEMICAL PHYSICS 138, 034505 (2013) Free energy surface of ST2 water near umbrella sampling Monte Carlo simulations to evaluate the free energy surface of the ST2 model of water

  7. Water-saving liquid-gas conditioning system

    DOE Patents [OSTI]

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  8. Distributed Reforming of Renewable Liquids via Water Splitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Oxygen Transport Membrane (OTM) (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in...

  9. Diurnal cycle of liquid water path over the subtropical and tropical oceans

    E-Print Network [OSTI]

    Hartmann, Dennis

    (Tropical Rainfall Measuring Mission Microwave Imager) satellite microwave radiometer data. Diurnal, consistent with a diurnal cycle driven largely by cloud solar absorption. In deep convective regions [1995] examined a two-point sampling of the LWP diurnal cycle of using the special sensor microwave

  10. Diurnal cycle of liquid water path over the subtropical and tropical oceans

    E-Print Network [OSTI]

    Wood, Robert

    (Tropical Rainfall Measuring Mission Microwave Imager) satellite microwave radiometer data. Diurnal, consistent with a diurnal cycle driven largely by cloud solar absorption. In deep convective regions], using a 17 day period of near-continuous ground based microwave radio- meter data around the time

  11. Remote Spectroscopic Sounding of Liquid Water Path in Thick Clouds in Winter Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners *ReindustrializationEnergy Remote AlaskanJ.E.M.Remote

  12. Validation of Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentric viewingValidating extended MHDCERES/SARB

  13. Equations Governing Space-Time Variability of Liquid Water Path in Stratus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4th Quarter 2012 for period

  14. Solar Water Heater Roadmap Leads Path to Market Expansion (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Innovative strategy to reduce installed cost of solar water heater systems can rival conventional natural gas water heaters in the marketplace.

  15. Electronic structure of liquid water from polarization-dependent two-photon absorption spectroscopy

    E-Print Network [OSTI]

    Elles, Christopher G.; Rivera, Christopher A.; Zhang, Yuyuan; Pieniazek, Piotr A.; Bradforth, Stephen E.

    2009-02-26

    and connects the 2PA spectrum with previous one-photon absorption, photoelectron, and x-ray absorptionspectroscopy measurements of liquid water. Previously unresolved, overlapping transitions are assigned for the first time. Finally, the electronic character...

  16. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect (OSTI)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa; Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  17. Nuclear tanker producing liquid fuels from air and water

    E-Print Network [OSTI]

    Galle-Bishop, John Michael

    2011-01-01

    Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

  18. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  19. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  20. A liquid water management strategy for PEM fuel cell stacks

    E-Print Network [OSTI]

    Van Nguyen, Trung; Knobbe, M. W.

    2003-02-25

    Gas and water management are key to achieving good performance from a PEM fuel cell stack. Previous experimentation had found, and this experimentation confirms, that one very effective method of achieving proper gas and water management is the use...

  1. Investigating the Solid-Liquid Phase Transition of Water Nanofilms Using the Generalized Replica Exchange Method

    E-Print Network [OSTI]

    Lu, Qing; Kim, Jaegil; Farrell, James D.; Wales, David J.; Straub, John E.

    2014-10-09

    The Generalized Replica Exchange Method (gREM) was applied to simulate a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Merging an optimally designed non-Boltzmann sampling weight...

  2. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel

    E-Print Network [OSTI]

    Victoria, University of

    Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

  3. Mesoscopic modeling of liquid water transport in polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Mukherjee, Partha P [Los Alamos National Laboratory; Wang, Chao Yang [PENNSTATE UNIV.

    2008-01-01

    A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water leads to the coverage of the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blockage of the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL therefore playa major role in the mass transport loss and hence in the water management of a PEFC. In this article, we present the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation to study the profound influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer.

  4. Anomalous Density Properties and Ion Solvation in Liquid Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a number of fields, ranging from biologybiochemistry to energy storage and electrochemistry. Several key properties of water, are crucial for understanding and predicting...

  5. On the Fluctuations that Order and Frustrate Liquid Water

    E-Print Network [OSTI]

    Limmer, David

    2013-01-01

    strong confine- ment: neutron scattering investigations andand inelastic neutron scattering investigation of fragile-confined water with neutron scattering. Pro- ceedings of the

  6. Thermodynamic Evidence for Water as a Quantum Mechanical Liquid

    E-Print Network [OSTI]

    A. Widom; S. Sivasubramanian; D. Drosdoff; Y. N. Srivastava

    2010-01-22

    We consider general theoretical models of water and in particular the nature of the motions of the hydrogen nuclei. If the motion of hydrogen nuclei is classical, then the thermodynamic pressure equation of state for heavy water wherein the hydrogen nuclei are deuterons is identical to the pressure equation of state for light water wherein the hydrogen nuclei are protons. Since the experimental thermodynamic phase diagram for light water is clearly measurably different from the experimental thermodynamic phase diagram for heavy water, one may deduce that the motions of hydrogen nuclei are quantum mechanical in nature. This conclusion is in physical agreement with a recent analysis of X-ray, neutron and deep inelastic neutron scattering data.

  7. Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity aOverviewISM IntegratedIntegratingIntegration

  8. Liquid Water: Obtaining the right answer for the right reasons

    SciTech Connect (OSTI)

    Apra, Edoardo [ORNL; Harrison, Robert J [ORNL; de Jong, Wibe A [Pacific Northwest National Laboratory (PNNL); Rendell, Alistair P [Australian National University, Canberra, Australia; Tipparaju, Vinod [ORNL; Xantheas, Sotiris [Pacific Northwest National Laboratory (PNNL)

    2009-01-01

    Water is ubiquitous on our planet and plays an essential role in many chemical and biological processes. Accurate models for water are crucial in understanding, controlling and predicting the physical and chemical properties of complex aqueous systems. Over the last few years we have been developing a molecular-level based approach for a macroscopic model for water that is based on the explicit description of the underlying intermolecular interactions between molecules in water clusters. In the absence of detailed experimental data for small water clusters, highly-accurate theoretical results are required to validate and parameterize model potentials. As an example of the benchmarks needed for the development of accurate models for the interaction between water molecules, for the most stable structure of (H$_2$O)$_{20}$ we ran a coupled-cluster calculation on the ORNL's Jaguar petaflop computer that used over 100 TB of memory for a sustained performance of 487 TFLOP/s (double precision) on 96,000 processors, lasting for 2 hours. By this summer we will have studied multiple structures of both (H$_2$O)$_{20}$ and (H$_2$O)$_{30}$ and completed basis set and other convergence studies and anticipate the sustained performance rising close to 1 PFLOP/s.

  9. Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I) 

    E-Print Network [OSTI]

    Manning, Norman Willis William

    1997-01-01

    A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ ...

  10. Effect of simple solutes on the long range dipolar correlations in liquid water

    E-Print Network [OSTI]

    Upayan Baul; J. Maruthi Pradeep Kanth; Ramesh Anishetty; Satyavani Vemparala

    2015-12-07

    Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions (PDF). Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exists considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics (MD) simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl) and magnesium chloride (MgCl$_2$) have a long range effect on the dipolar correlations, which can not be explained by the notion of structure making and breaking by dissolved ions. The relative effects of cations on dipolar correlations are observed to be consistent with the well-known Hofmeister series. Observed effects are explained through orientational stratification of water molecules around ions, and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH$_4$) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water,- contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.

  11. Frequency dependent seismic reflection analysis: a path to new direct hydrocarbon indicators for deep water reservoirs 

    E-Print Network [OSTI]

    Yoo, Seung Chul

    2009-06-02

    ://maps.google.com/). . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Before and after the radon demultiple of two CMP gathers near target reservoirs. (a) and (b): before and after at the first CMP. (c) and (d): before and after at the second CMP. Free surface multiples interfere with relatively weaker primaries... the Ursa (deep water, GOM) field data set to preserve amplitude and frequency information. We use move-out based method for demultiple (radon method) and prestack time migration equivalent process (NMO + DMO + FK migration) for imaging. We implement a...

  12. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Wood, D. L.; Yi, Y. S.; Van Nguyen, Trung

    1998-01-01

    Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards providing adequate gas...

  13. Thermal signature reduction through liquid nitrogen and water injection 

    E-Print Network [OSTI]

    Guarnieri, Jason Antonio

    2005-02-17

    to the flow rate of exhaust gases, producing a small temperature reduction in the exhaust but no infrared shielding. Second, water was injected at a flow rate of 13% of the flow of exhaust gases, producing a greater temperature reduction and some shielding...

  14. Dataset used to improve liquid water absorption models in the microwave

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Turner, David

    2015-12-14

    Two datasets, one a compilation of laboratory data and one a compilation from three field sites, are provided here. These datasets provide measurements of the real and imaginary refractive indices and absorption as a function of cloud temperature. These datasets were used in the development of the new liquid water absorption model that was published in Turner et al. 2015.

  15. Park City/ANS 1 ANALYSIS OF LIQUID CRYOGEN-WATER EXPERIMENTS WITH THE MELCOR CODE

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Park City/ANS 1 ANALYSIS OF LIQUID CRYOGEN-WATER EXPERIMENTS WITH THE MELCOR CODE R.C. Duckworth, J code, MELCOR. Experimental results showed that no large `shock' pressures were observed. Thus, one can to benchmark the code and show its usefulness in determining potential critical issues involving these fusion

  16. Evaluating specific error characteristics of microwave-derived cloud liquid water products

    E-Print Network [OSTI]

    Christopher, Sundar A.

    of cloud LWP products globally using concurrent data from visible/ infrared satellite sensors. The approachEvaluating specific error characteristics of microwave-derived cloud liquid water products Thomas J microwave satellite measurements. Using coincident visible/infrared satellite data, errors are isolated

  17. Liquid Water Storage, Distribution, and Removal from Diffusion Media in PEFCS

    E-Print Network [OSTI]

    Mench, Matthew M.

    media DM of polymer electrolyte fuel cells PEFCs is a function of design geometry, surface geometry under the landings than cloth, resulting in a very high liquid saturation and eventual flooding. Available electronically August 28, 2006. The management of water within a polymer electrolyte fuel cell

  18. Effects of hydrogen bonding on supercooled liquid dynamics and the implications for supercooled water

    E-Print Network [OSTI]

    Johan Mattsson; Rikard Bergman; Per Jacobsson; Lars Börjesson

    2009-02-09

    The supercooled state of bulk water is largely hidden by unavoidable crystallization, which creates an experimentally inaccessible temperature regime - a 'no man's land'. We address this and circumvent the crystallization problem by systematically studying the supercooled dynamics of hydrogen bonded oligomeric liquids (glycols), where water corresponds to the chain-ends alone. This novel approach permits a 'dilution of water' by altering the hydrogen bond concentration via variations in chain length. We observe a dynamic crossover in the temperature dependence of the structural relaxation time for all glycols, consistent with the common behavior of most supercooled liquids. We find that the crossover becomes more pronounced for increasing hydrogen bond concentrations, which leads to the prediction of a marked dynamic transition for water within 'no man's land' at T~220 K. Interestingly, the predicted transition thus takes place at a temperature where a so called 'strong-fragile' transition has previously been suggested. Our results, however, imply that the dynamic transition of supercooled water is analogous to that commonly observed in supercooled liquids. Moreover, we find support also for the existence of a secondary relaxation of water with behavior analogous to that of the secondary relaxation observed for the glycols.

  19. Optical Kerr effect of liquid and supercooled water: the experimental and data analysis perspective

    E-Print Network [OSTI]

    A. Taschin; P. Bartolini; R. Eramo; R. Righini; R. Torre

    2014-06-20

    The time-resolved optical Kerr effect spectroscopy (OKE) is a powerful experimental tool enabling accurate investigations of the dynamic phenomena in molecular liquids. We introduced innovative experimental and fitting procedures, that permit a safe deconvolution of sample response function from the instrumental function. This is a critical issue in order to measure the dynamics of sample presenting weak signal, e.g. liquid water. We report OKE data on water measuring intermolecular vibrations and the structural relaxation processes in an extended temperature range, inclusive of the supercooled states. The unpreceded data quality makes possible a solid comparison with few theoretical models; the multi-mode Brownian oscillator model, the Kubo's discrete random jump model and the schematic mode-coupling model. All these models produce reasonable good fits of the OKE data of stable liquid water, i.e. over the freezing point. The features of water dynamics in the OKE data becomes unambiguous only at lower temperatures, i.e. for water in the metastable supercooled phase. Hence this data enable a valid comparison between the model fits. We found that the schematic mode-coupling model provides the more rigorous and complete model for water dynamics, even if is intrinsic hydrodynamic approach hide the molecular information.

  20. Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure

    E-Print Network [OSTI]

    Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-01-01

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...

  1. Ab initio molecular-dynamics method based on the restricted path integral: Application to the electron plasma and liquid alkali metal

    E-Print Network [OSTI]

    Deymier, Pierre

    Ab initio molecular-dynamics method based on the restricted path integral: Application on the discretized path-integral representation of quantum particles. Fermi statistics is automatically generated by an effective exchange potential. This path-integral molecular-dynamics method is able to simulate electron

  2. Linking Europa's plume activity to tides, tectonics, and liquid water

    E-Print Network [OSTI]

    Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

    2015-01-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

  3. Excited state dynamics of liquid water: Insight from the dissociation reaction following two-photon excitation

    E-Print Network [OSTI]

    Elles, Christopher G.; Shkrob, Ilya A.; Crowell, Robert A.; Bradforth, Stephen E.

    2007-04-25

    of liquid water.30,31 The energy for verti- cal ionization of the liquid is about 11 eV, and the discrep- ancy implies that nuclear motion must play a role in the ionization mechanism at low energies.26 The precise relation- ship of dissociation... and probe pulses come from fre- quency conversion of the 800 nm light from an amplified Ti:sapphire laser consisting of an oscillator #1;Spectra Physics, Tsunami#2; and two consecutive multipass amplifiers. The la- ser system produces 1.6 mJ pulses with a 1...

  4. The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like

    E-Print Network [OSTI]

    Adam P. Willard; David Chandler

    2014-07-16

    With molecular simulation for water and a tunable hydrophobic substrate, we apply the instantaneous interface construction [A. P. Willard and D. Chandler, J. Phys. Chem. B, 114, 1954 (2010)] to examine the similarity between a water-vapor interface and a water-hydrophobic surface interface. The intrinsic interface refers to molecular structure in terms of distances from the instantaneous interface. We show that attractive interactions between a hydrophobic surface and water affect capillary wave fluctuations of the instantaneous liquid interface, but these attractive interactions have essentially no effect on the intrinsic interface. Further, the intrinsic interface of liquid water and a hydrophobic substrate differs little from that of water and its vapor.The same is not true, we show, for an interface between water and a hydrophilic substrate. In that case, strong directional substrate-water interactions disrupt the liquid-vapor-like interfacial hydrogen bonding network.

  5. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    E-Print Network [OSTI]

    I. Pashalidis; H. Tsertos

    2003-04-28

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  6. Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo

    E-Print Network [OSTI]

    Andrea Zen; Ye Luo; Guglielmo Mazzola; Leonardo Guidoni; Sandro Sorella

    2015-04-21

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.

  7. Computing the dielectric constant of liquid water at constant dielectric displacement

    E-Print Network [OSTI]

    Zhang, Chao

    2015-01-01

    The static dielectric constant of liquid water is computed using classical force field based molecular dynamics simulation at fixed electric displacement D. The method to constrain the electric displacement is the finite temperature classical variant of the constant-D method developed by Stengel, Spaldin and Vanderbilt (Nat. Phys. 2009, 5: 304). There is also a modification of this scheme imposing fixed values of the macroscopic field E. The method is applied to the popular SPC/E model of liquid water. We compare four different estimates of the dielectric constant, two obtained from fluctuations of the polarization at D = 0 and E = 0 and two from the variation of polarization with finite D and E. It is found that all four estimates agree when properly converged. The computational effort to achieve convergence varies however, with constant D calculations being substantially more efficient. We attribute this difference to the much shorter relaxation time of longitudinal polarization compared to transverse polar...

  8. Ultrafast dynamics of liquid water: Frequency fluctuations of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-07-28

    Frequency fluctuations of the OH stretch and the HOH bend in liquid water are reported from the third-order response function evaluated using the TTM3-F potential for water. The simulated two-dimensional infrared (IR) spectra of the OH stretch are similar to previously reported theoretical results. The present study suggests that the frequency fluctuation of the HOH bend is faster than that of the OH stretch. The ultrafast loss of the frequency correlation of the HOH bend is due to the strong couplings with the OH stretch as well as the intermolecular hydrogen bond bend.

  9. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    SciTech Connect (OSTI)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  10. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect (OSTI)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  11. Estimating Entropy of Liquids from Atom-Atom Radial Distribution Functions: Silica, Beryllium Fluoride and Water

    E-Print Network [OSTI]

    Ruchi Sharma; Manish Agarwal; Charusita Chakravarty

    2008-09-24

    Molecular dynamics simulations of water, liquid beryllium fluoride and silica melt are used to study the accuracy with which the entropy of ionic and molecular liquids can be estimated from atom-atom radial distribution function data. All three systems are known to display similar liquid-state thermodynamic and kinetic anomalies due to a region of anomalous excess entropy behaviour where entropy rises on isothermal compression. The pair correlation entropy is demonstrated to be sufficiently accurate that the density-temperature regime of anomalous behaviour as well as the strength of the entropy anomaly can be predicted reliably for both ionic melts as well as different rigid-body pair potentials for water. Errors in the total thermodynamic entropy for ionic melts due to the pair correlation approximation are of the order of 10% or less for most state points but can be significantly larger in the anomalous regime at very low temperatures. In the case of water, as expected given the rigid-body constraints for a molecular liquids, the pair correlation approximation causes significantly larger errors, between 20 and 30%, for most state points. Comparison of the excess entropy, Se, of ionic melts with the pair correlation entropy, S2, shows that the temperature dependence of Se is well described by T ??2=5 scaling across both the normal and anomalous regimes, unlike in the case of S2. As a function of density, the Se(rho) curves shows only a single maximum while the S2(rho) curves show both a maximum and a minimum. These differences in the behaviour of S2 and Se are due to the fact that the residual multiparticle entropy, delta(S) = Se - S2, shows a strong negative correlation with tetrahedral order in the anomalous regime.

  12. Bond orientational ordering in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization

    E-Print Network [OSTI]

    Tanaka, Hajime

    2013-01-01

    There are at least three fundamental states of matter, depending upon temperature and pressure: gas, liquid, and solid (crystal). These states are separated by first-order phase transitions between them. In both gas and liquid phases the complete translational and rotational symmetry exist, whereas in a solid phase both symmetries are broken. In intermediate phases between liquid and solid, which include liquid crystal and plastic crystal phases, only one of the two symmetries is preserved. Among the fundamental states of matter, the liquid state is most poorly understood. We argue that it is crucial for a better understanding of liquid to recognize that a liquid generally has a tendency to have local structural order and its presence is intrinsic and universal to any liquid. Such structural ordering is a consequence of many body correlations, more specifically, bond angle correlations, which we believe are crucial for the description of the liquid state. We show that this physical picture may naturally expla...

  13. Molecular origin of the difference in the HOH bend of the IR spectra between liquid water and ice

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2013-02-07

    The intensity of the HOH bend in the IR spectrum of ice is significantly smaller than the corresponding one in liquid water. This difference in the IR intensities of the HOH bend in the two systems is investigated using MD simulations with the flexible, polarizable, ab-initio based TTM3-F model for water, a potential that correctly reproduces the experimentally observed increase of the HOH bend in liquid water and ice from the water monomer value. We have identified two factors that are responsible for the difference in the intensity of the HOH bend in liquid water and ice: (i) the decrease of the intensity of the HOH bend in ice caused by the strong anti-correlation between the permanent dipole moment of a molecule and the induced dipole moment of a neighboring hydrogen bond acceptor molecule and (ii) the weakening of this anti-correlation by the disordered hydrogen bond network in liquid water. The presence of the anti-correlation in ice is further confirmed by ab initio electronic structure calculations of water pentamer clusters extracted from the trajectories of the MD simulations for ice and liquid water.

  14. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  15. Temperature and Length Scale Dependence of Solvophobic Solvation in a Single-site Water-like Liquid

    E-Print Network [OSTI]

    John R. Dowdle; Sergey V. Buldyrev; H. Eugene Stanley; Pablo G. Debenedetti; Peter J. Rossky

    2012-11-01

    The temperature and length scale dependence of solvation properties of spherical hard solvophobic solutes is investigated in the Jagla liquid, a simple liquid that consists of particles interacting via a spherically symmetric potential combining a hard core repulsion and a longer ranged soft core interaction, yet exhibits water-like anomalies. The results are compared with equivalent calculations for a model of a typical atomic liquid, the Lennard-Jones (LJ) potential, and with predictions for hydrophobic solvation in water using the cavity equation of state and the extended simple point charge (SPC/E) model. We find that the Jagla liquid captures the qualitative thermodynamic behavior of hydrophobic hydration as a function of temperature for both small and large length scale solutes. In particular, for both the Jagla liquid and water, we observe temperature-dependent enthalpy and entropy of solvation for all solute sizes as well as a negative solvation entropy for sufficiently small solutes at low temperature. The results suggest that, compared to a simple liquid, it is the presence of a second thermally accessible repulsive energy scale, acting to increasingly favor larger separations for decreasing temperature, that is the essential characteristic of a liquid that favors low-density, open structures and models hydrophobic hydration, and that it is the presence of this second energy scale that leads to the similarity in the behavior of water and the Jagla liquid. The implications of the temperature and length scale dependence of solvation free energies in water-like liquids are explored with a simple model for the aggregation of solvophobic solutes. We show how aggregate stability depends upon the size of the aggregate and the size of its constituent solutes, and we relate this dependence to cold-induced destabilization phenomena such as the cold-induced denaturation of proteins.

  16. Effects of liquid pore water on acoustic wave propagation in snow as a Biot-type porous material

    E-Print Network [OSTI]

    Sidler, Rolf

    2015-01-01

    A method to estimate phase velocity and attenuation of acoustic waves in the presence of liquid water in a snowpack is presented. The method is based on Biot's theory of wave propagation in porous materials. Empirical relations and a priori information is used to characterize snow as a porous material as a function of porosity. Plane wave theory and an equivalent pore fluid are used to solve Biot's differential equations and to asses the impact of the air and water in the pore space. The liquid water in the pore space of a snow pack reduces the velocity of the first compressional wave by roughly 300 m/s for every 0.1 increase in liquid water saturation. Also the attenuation of the compressional waves is increased with increasing liquid water content. Two end member models for compaction are evaluated to asses the importance of an independent density measurement for an estimate of liquid pore water saturation in snow with acoustic waves. The two end members correspond to no compaction at all and to a melting s...

  17. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01

    Journal of Power Sources 164 (2007) 189­195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  18. Development of transferable interaction potentials for water: V. Extension of the flexible, polarizable, Thole-Type Model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water

    SciTech Connect (OSTI)

    Fanourgakis, George S.; Xantheas, Sotiris S.

    2008-02-21

    We present a new parametrization of the flexible, polarizable Thole-type model for water [J. Chem. Phys. 116, 5115 (2002); J. Phys. Chem. A 110, 4100 (2006)], with emphasis in describing the vibrational spectra of both water clusters and liquid water. The new model is able to produce results of similar quality with the previous versions for the structures and energetics of water clusters as well as structural and thermodynamic properties of liquid water evaluated with classical and converged quantum statistical mechanical atomistic simulations. At the same time it yields ­ for the first time for a classical interaction potential for water ­ accurate red shifts for the OH vibrational stretches of both water clusters and liquid water. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  19. Reverse Monte Carlo investigations concerning recent isotopic substitution neutron diffraction data on liquid water

    E-Print Network [OSTI]

    Pethes, Ildikó

    2015-01-01

    Although liquid water has been studied for many decades by (X-ray and neutron) diffraction measurements, new experimental results keep appearing, virtually every year. The reason for this is that neither X-ray, nor neutron diffraction data are trivial to correct and interpret for this essential substance. Since X-rays are somewhat insensitive to hydrogen, neutron diffraction with (most frequently, H/D) isotopic substitution is vital for investigating the most important feature in water: hydrogen bonding. Here, the two very recent sets of neutron diffraction data are considered, both exploiting the contrast between light and heavy hydrogen, $^1$H and $^2$H, in different ways. Reverse Monte Carlo structural modeling is applied for constructing large structural models that are as consistent as possible with all experimental information, both in real and reciprocal space. The method has also proven to be useful for revealing where possible small inconsistencies appear during primary data processing: for one neutr...

  20. Stratocumulus Liquid Water Content from Dual Wavelength Radar Robin J. Hogan # , Anthony J. Illingworth, John W. F. Goddard + , Suzanne C. H. M. Jongen # and Henri Sauvageot ++

    E-Print Network [OSTI]

    Hogan, Robin

    Stratocumulus Liquid Water Content from Dual Wavelength Radar Robin J. Hogan # , Anthony J­ quid water content (LWC) of such clouds, but active measure­ ments are required in order to obtain information on the vertical distribution of liquid water in the cloud. One of the main prob­ lems

  1. The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams

    E-Print Network [OSTI]

    for nearly 45% of the natural gas produced in the U.S. by 2035 [6,7]. As production in- creases and new complex and difficult liquid streams Bryan D. Coday a , Pei Xu b , Edward G. Beaudry c , Jack Herron c Oasys Water, Boston, MA, USA H I G H L I G H T S · Highly impaired liquid streams can be sustainably

  2. Isobaric vapor-liquid equilibria of the water + 1-propanol system at 30, 60, and 100 kPa

    SciTech Connect (OSTI)

    Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

    1996-09-01

    Isobaric vapor-liquid equilibria for the water + 1-propanol system are reported at 30, 60, and 100 kPa. The results were found to be thermodynamically consistent according to Van Ness-Byer-Gibbs, Kojima, and Wisniak methods. The system shows a minimum boiling azeotrope, and the azeotropic composition is scarcely shifted with pressure. Results were compared with literature values. The data were correlated with Margules, Van Laar, Wilson, NRTL, and UNIQUAC liquid-phase activity coefficient models.

  3. The Hierarchic Theory of Liquids and Solids. Computerized applications for ice, water, and Biosystems

    E-Print Network [OSTI]

    Alex Kaivarainen

    2008-06-05

    This is a new book of quantum Hierarchic theory of condensed matter, general for liquids and solids, developed by this author during 20 years and its numerous applications. Computer program, based on new theory, was used for simulations of big number of physical properties of water and ice. Condensed matter is considered as a superposition of 3D standing waves (collective excitations) of different nature: thermal de Broglie waves, IR photons and thermal phonons. New theories of total internal energy, heat capacity, surface tension, vapor pressure, thermal conductivity, viscosity and self-diffusion are described. Hierarchic theory of osmotic pressure, based on new state equation, new theories of light refraction, Brillouin light scattering and Mossbauer effect are presented also and compared with available experimental data for water and ice. The agreement between theoretical and available experimental results for water and ice is very good. New approach to the turbulence, superfluidity and superconductivity is developed. A lot of applications of new theory to biophysics, including model of Quantum of Mind are described. New optoacoustic device: Comprehensive Analyzer of Matter Properties (CAMP) is proposed.

  4. Frequency dependence of specific heat in supercooled liquid water and emergence of correlated dynamics

    E-Print Network [OSTI]

    Shinji Saito; Iwao Ohmine; Biman Bagchi

    2013-03-30

    Molecular origin of the well-known specific heat anomaly in supercooled liquid water is investigated here by using extensive computer simulations and theoretical analyses. A rather sharp increase in the values of isobaric specific heat with lowering temperature and the weak temperature dependence of isochoric specific heat in the same range are reproduced in simulations. We calculated the spatiotemporal correlation among temperature fluctuations and examined the frequency dependent specific heat. The latter shows a rapid growth in the low frequency regime as temperature is cooled below 270 K. In order to understand the microscopic basis of this increase, we have performed a shell wise decomposition of contributions of distant molecules to the temperature fluctuations in a central molecule. This decomposition reveals the emergence, at low temperatures, of temporally slow, spatially long ranged large temperature fluctuations. The temperature fluctuation time correlation function (TFCF) can be fitted to a William-Watts stretched exponential form with the stretching parameter close to 0.6 at low temperatures, indicating highly non-exponential relaxation. Temperature dependence of the relaxation time of the correlation function can be fitted to Vogel-Fulcher-Tamermann expression which provides a quantitative measure of the fragility of the liquid. Interestingly, we find that the rapid growth in the relaxation time of TFCF with lowering temperature undergoes a sharp crossover from a markedly fragile state to a weakly fragile state around 220 K.

  5. A Passive Probe for Subsurface Oceans and Liquid Water in Jupiter's Icy Moons

    E-Print Network [OSTI]

    Romero-Wolf, Andrew; Maiwald, Frank; Heggy, Essam; Ries, Paul; Liewer, Kurt

    2014-01-01

    We describe an interferometric reflectometer method for passive detection of subsurface oceans and liquid water in Jovian icy moons using Jupiter's decametric radio emission (DAM). The DAM flux density exceeds 3,000 times the galactic background in the neighborhood of the Jovian icy moons, providing a signal that could be used for passive radio sounding. An instrument located between the icy moon and Jupiter could sample the DAM emission along with its echoes reflected in the ice layer of the target moon. Cross-correlating the direct emission with the echoes would provide a measurement of the ice shell thickness along with its dielectric properties. The interferometric reflectometer provides a simple solution to sub-Jovian radio sounding of ice shells that is complementary to ice penetrating radar measurements better suited to measurements in the anti-Jovian hemisphere that shadows Jupiter's strong decametric emission. The passive nature of this technique also serves as risk reduction in case of radar transmi...

  6. Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water

    SciTech Connect (OSTI)

    Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Abellan Baeza, Patricia; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.

    2014-01-14

    In this paper we present in situ transmission electron microscopy (TEM) of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerization of an oxaliplatin analog, designed for an ongoing program in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point toward key design parameters that enable this new characterization approach for organic nanomaterials. We describe the preparation of the synthetic micellar nanoparticles to- gether with their characterization in liquid water.

  7. Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography

    E-Print Network [OSTI]

    , at shutdown, may freeze under subzero tem- peratures and makes cold start of a PEM fuel cell difficultQuantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X understanding of the two-phase flow and flooding occurrence in proton exchange membrane PEM fuel cells. We have

  8. Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet at Supercritical Pressures

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet in laminar jet flames of methane at elevated pressures in a high-pressure combustion chamber, we have MPa, after the laminar methane jet flame had been stabilized on a co-flow circular nozzle-type burner

  9. Solid - Liquid Phase Transition in a Gibbs Monolayer of Melissic Acid at the n-Hexane - Water Interface

    E-Print Network [OSTI]

    Aleksey M. Tikhonov

    2015-12-02

    A sharp phase transition from a crystalline state with the area per molecule A = (17 +/- 1) Angstrom^2 to a liquid state with A = (23 +/- 1) Angstrom^2 at the n-hexane - water interface in a Gibbs monolayer of melissic acid has been revealed in data of X-ray reflectometry with the use of synchrotron radiation.

  10. J. Phys. Chem. 1993,97, 13841-13851 13841 Effective Potentials for Liquid Water Using Polarizable and Nonpolarizable Models

    E-Print Network [OSTI]

    Berne, Bruce J.

    , Columbia University, New York,New York I0027 Received:July 30, 1993" Two three-site potentials for use for structure, energy, and pressure. The models presented correspond to a reduced effective representation a viable alternative to other simple pairwise and polarizable three-center liquid water potentials. 1

  11. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    E-Print Network [OSTI]

    Umstadter, Donald

    Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses by the ionizing electron pulses is monitored with 0.3 s time resolution. Hydrated electron concentrations as high

  12. Reverse Monte Carlo investigations concerning recent isotopic substitution neutron diffraction data on liquid water

    E-Print Network [OSTI]

    Ildikó Pethes; László Pusztai

    2015-08-25

    Although liquid water has been studied for many decades by (X-ray and neutron) diffraction measurements, new experimental results keep appearing, virtually every year. The reason for this is that neither X-ray, nor neutron diffraction data are trivial to correct and interpret for this essential substance. Since X-rays are somewhat insensitive to hydrogen, neutron diffraction with (most frequently, H/D) isotopic substitution is vital for investigating the most important feature in water: hydrogen bonding. Here, the two very recent sets of neutron diffraction data are considered, both exploiting the contrast between light and heavy hydrogen, $^1$H and $^2$H, in different ways. Reverse Monte Carlo structural modeling is applied for constructing large structural models that are as consistent as possible with all experimental information, both in real and reciprocal space. The method has also proven to be useful for revealing where possible small inconsistencies appear during primary data processing: for one neutron data set, it is the molecular geometry that may not be maintained within reasonable limits, whereas for the other set, it is one of the (composite) radial distribution functions that cannot be modeled at the same (high) level as the other three functions. Nevertheless, details of the local structure around the hydrogen bonds appear very much the same for both data sets: the most probable hydrogen bond angle is straight, and the nearest oxygen neighbours of a central oxygen atom occupy approximately tetrahedral positions.

  13. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect (OSTI)

    Soniat, Marielle; Rick, Steven W.

    2014-05-14

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup ?}, and I{sup ?}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Å away from the surface.

  14. A study of the influence of isotopic substitution on the melting point and temperature of maximum density of water by means of path integral simulations of rigid models

    E-Print Network [OSTI]

    McBride, Carl; Noya, Eva G; Vega, Carlos; 10.1039/C2CP42393F

    2012-01-01

    The melting point of ice Ih, as well as the temperature of maximum density (TMD) in the liquid phase, has been computed using the path integral Monte Carlo method. Two new models are introduced; TIP4PQ_D2O and TIP4PQ_T2O which are specifically designed to study D2O and T2O respectively. We have also used these models to study the "competing quantum effects" proposal of Habershon, Markland and Manolopoulos; the TIP4PQ/2005, TIP4PQ/2005 (D2O) and TIP4PQ/2005 (T2O) models are able to study the isotopic substitution of hydrogen for deuterium or tritium whilst constraining the geometry, while the TIP4PQ_D2O and TIP4PQ_T2O models, where the O-H bond lengths are progressively shortened, permit the study of the influence of geometry (and thus dipole moment) on the isotopic effects. For TIP4PQ_D2O - TIP4PQ/2005 we found a melting point shift of 4.9 K (experimentally the value is 3.68K) and a TMD shift of 6K (experimentally 7.2K). For TIP4PQ_T2O - TIP4PQ/2005 we found a melting point shift of 5.2 K (experimentally the ...

  15. Liquid water quantification in the cathode side gas channels of a proton exchange membrane fuel cell through two-phase flow

    E-Print Network [OSTI]

    Kandlikar, Satish

    t s Liquid water in the cathode side channels of PEM fuel cell is quantified. Algorithm developed in MATLABÒ electrolyte membrane fuel cell Two-phase flow visualization Gas channels Area coverage ratio Water quantification a b s t r a c t Water management is crucial to the performance of PEM fuel cells. Water

  16. Studies of liquid-liquid phase transition and critical phenomena in supercooled confined water by neutron scattering

    E-Print Network [OSTI]

    Liu, Dazhi, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    Small angle neutron scattering (SANS) is used to measure the density of water contained in 1-D cylindrical pores of a mesoporous silica material MCM-41-S. By being able to suppress the homogenous nucleation process inside ...

  17. Isobaric vapor-liquid equilibria of the water + 2-propanol system at 30, 60, and 100 kPa

    SciTech Connect (OSTI)

    Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica] [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica

    1996-05-01

    Distillation is perhaps the separation process most widely used in the chemical processing industry. The correct design of distillation columns requires the availability of accurate and, if possible, thermodynamically consistent vapor-liquid equilibria (VLE) data. The present work is part of a project studying the effect of pressure on the behavior of the azeotropic point in mixtures in which at least one component is an alcohol. Isobaric vapor-liquid equilibria were obtained for the water + 2-propanol system at 30, 60, and 100 kPa. The activity coefficients were found to be thermodynamically consistent by the methods of Van Ness-Byer-Gibbs, Kojima, and Wisniak. The data were correlated with five liquid phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, and UNIQUAC).

  18. VOLUME 82, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 15 MARCH 1999 Fast and Slow Dynamics of Hydrogen Bonds in Liquid Water

    E-Print Network [OSTI]

    Stanley, H. Eugene

    of Hydrogen Bonds in Liquid Water Francis W. Starr,1 Johannes K. Nielsen,1,2 and H. Eugene Stanley1 1 Center, Denmark (Received 23 September 1998) We study hydrogen-bond dynamics in liquid water at low temperatures functions between the liquid and glassy states of water. We find that average bond lifetime 1 ps has

  19. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect (OSTI)

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  20. Spectral snow-reflectance models for grain-size and liquid-water fraction in melting snow for the solar-reflected spectrum

    E-Print Network [OSTI]

    Dozier, Jeff

    Spectral snow-reflectance models for grain-size and liquid- water fraction in melting snow.S.A. ABSTRACT. Two spectral snow-reflectance models that account for the effects of grain-size and liquid calculations are used to specify the essential optical properties of snow in the models.Two approaches

  1. FEATURE ARTICLE Investigations of the Structure and Hydrogen Bonding of Water Molecules at Liquid

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    at these two interfaces. In both cases field-induced alignment of water molecules in the double layer region, and intermolecular coupling of surface water mol- Current address: Department of Chemistry, Harvey Mudd College, 301 this laboratory that provide a wealth of information about water at the air/water and oil/water interface

  2. FURTHER MODELING OF LIQUID WATER ON CM PARENT BODIES. B. A. Cohen , Department of Planetary Sciences, 1629 E. University Blvd., The University of Arizona, Tucson AZ 85721

    E-Print Network [OSTI]

    Cohen, Barbara Anne

    FURTHER MODELING OF LIQUID WATER ON CM PARENT BODIES. B. A. Cohen 1 and R. F. Coker 2 , Department in a warmer neb- ula, the time of accretion can be delayed even further to ~5 Ma. Peak temperatures. In every

  3. Towards Macroscopic Water Integration for Zero Liquid Discharge in Industrial Complexes 

    E-Print Network [OSTI]

    Othman, Zakarya

    2015-03-02

    associated with high capital and operating cost and pose a significant economic burden to implementing industries. ZLD solutions are explored as End-of-Pipe treatment options to eliminate liquid discharges. Instead, ZLD options should be explored...

  4. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOE Patents [OSTI]

    Ackerman, Carl D. (Olympia, WA)

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  5. ARM - Measurement - Ice water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticle sizefraction ARMGeometrytypespath ARM Data

  6. Journal of Power Sources 160 (2006) 11951203 Quantification of liquid water accumulation and distribution in a

    E-Print Network [OSTI]

    Mench, Matthew M.

    2006-01-01

    water content. © 2006 Elsevier B.V. All rights reserved. Keywords: Flooding; Polymer electrolyte fuel and distribution in a polymer electrolyte fuel cell using neutron imaging A. Turhan, K. Heller, J.S. Brenizer, M cell; Solid polymer electrolyte; Neutron imaging; Water storage; Residual water 1. Introduction

  7. Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    carry-over between consecutive extractions with the same stir21 bar. Pesticide quantification in water1 Title :1 Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

  8. The Hydrated Proton at the Water Liquid/Vapor Interface Matt K. Petersen, Srinivasan S. Iyengar, Tyler J. F. Day, and Gregory A. Voth*,

    E-Print Network [OSTI]

    Iyengar, Srinivasan S.

    The Hydrated Proton at the Water Liquid/Vapor Interface Matt K. Petersen, Srinivasan S. Iyengar ReceiVed: July 23, 2004; In Final Form: August 22, 2004 The hydrated proton was studied at the water the migration of the excess proton to and about the interface through the fluctuating bond topology described

  9. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect (OSTI)

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR5257 CEA-CNRS-UM2-ENSCM, BP17171, 30207 Bagnols sur Ceze (France); Prevost, T.; Valery, J.F. [AREVA NC, Paris La Defense (France); Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette (France)

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in standard effluents resulting from nuclear activities; - To develop reversible solid adsorbents for cartridge-type applications in order to minimize wastes. (authors)

  10. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  11. Path Coupling and Aggregate Path Coupling

    E-Print Network [OSTI]

    Kovchegov, Yevgeniy

    2015-01-01

    In this survey paper, we describe and characterize an extension to the classical path coupling method applied statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, we use this aggregate path coupling method to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The parameter region for rapid mixing for the generalized Curie-Weiss-Potts model is derived as a new application of the aggregate path coupling method.

  12. Path Coupling and Aggregate Path Coupling

    E-Print Network [OSTI]

    Yevgeniy Kovchegov; Peter T. Otto

    2015-01-13

    In this survey paper, we describe and characterize an extension to the classical path coupling method applied statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, we use this aggregate path coupling method to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The parameter region for rapid mixing for the generalized Curie-Weiss-Potts model is derived as a new application of the aggregate path coupling method.

  13. Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.

    E-Print Network [OSTI]

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

    2008-01-01

    P. R. V. Extraction of fission palladium by Aliquat 336 andnitrate salt and potassium palladium chloride were used. [Copper, Mercury, Silver and Palladium Ions from Water Using

  14. A computationally efficacious free-energy functional for studies of inhomogeneous liquid water

    E-Print Network [OSTI]

    Ravishankar Sundararaman; Kendra Letchworth-Weaver; T. A. Arias

    2012-07-26

    We present an accurate equation of state for water based on a simple microscopic Hamiltonian, with only four parameters that are well-constrained by bulk experimental data. With one additional parameter for the range of interaction, this model yields a computationally efficient free-energy functional for inhomogeneous water which captures short-ranged correlations, cavitation energies and, with suitable long-range corrections, the non-linear dielectric response of water, making it an excellent candidate for studies of mesoscale water and for use in ab initio solvation methods.

  15. Thermodynamic Properties of Liquid Water: An Application of a Nonparametric Approach to Computing

    E-Print Network [OSTI]

    Berne, Bruce J.

    of Chemistry, Columbia UniVersity, New York, New York 10027 Received February 13, 2009 Abstract: Because of its entropy, and we suggest an alternative factorization of the water-water correlation function that appears interaction energy terms, and the solvation entropy is computed from an expansion of the entropy in terms

  16. Liquid-Water Uptake and Removal in PEM Fuel-Cell Components

    E-Print Network [OSTI]

    Das, Prodip K.

    2013-01-01

    the DOE EERE Funding, Office of Fuel Cell Technologies underUptake and Removal in PEM Fuel-Cell Components Prodip K. DasWater management in PEM fuel cells is critical for optimum

  17. A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water

    E-Print Network [OSTI]

    Mallamace, Francesco

    The density maximum of water dominates the thermodynamics of the system under ambient conditions, is strongly P-dependent, and disappears at a crossover pressure P[subscript cross] ~ 1.8 kbar. We study this variable across ...

  18. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOE Patents [OSTI]

    Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  19. Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator

    E-Print Network [OSTI]

    J. R. Alonso; N. Barros; M. Bergevin; A. Bernstein; L. Bignell; E. Blucher; F. Calaprice; J. M. Conrad; F. B. Descamps; M. V. Diwan; D. A. Dwyer; S. T. Dye; A. Elagin; P. Feng; C. Grant; S. Grullon; S. Hans; D. E. Jaffe; S. H. Kettell; J. R. Klein; K. Lande; J. G. Learned; K. B. Luk; J. Maricic; P. Marleau; A. Mastbaum; W. F. McDonough; L. Oberauer; G. D. Orebi Gann; R. Rosero; S. D. Rountree; M. C. Sanchez; M. H. Shaevitz; T. M. Shokair; M. B. Smy; A. Stahl; M. Strait; R. Svoboda; N. Tolich; M. R. Vagins; K. A. van Bibber; B. Viren; R. B. Vogelaar; M. J. Wetstein; L. Winslow; B. Wonsak; E. T. Worcester; M. Wurm; M. Yeh; C. Zhang

    2014-10-24

    The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS.

  20. Scalability of mass transfer in liquid-liquid flow

    E-Print Network [OSTI]

    Woitalka, A.

    We address liquid–liquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow ...

  1. Interactions between drops of molten Al-Li alloys and liquid water

    SciTech Connect (OSTI)

    Hyder, M.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Nelson, L.S. [Sandia National Labs., Albuquerque, NM (United States); Duda, P.M.; Hyndman, D.A. [Ktech Corp., Albuquerque, NM (United States)

    1993-08-01

    Sandia National Laboratories, at the request of the Savannah River Technology Center (SRTC), studied the interactions between single drops of molten aluminum-lithium alloys and water. Most experiments were performed with ``B`` alloy (3.1 w/o Li, balance A1). Objectives were to develop experimental procedures for preparing and delivering the melt drops and diagnostics for characterizing the interactions, measure hydrogen generated by the reaction between melt and water, examine debris recovered after the interaction, determine changes in the aqueous phase produced by the melt-water chemical reactions, and determine whether steam explosions occur spontaneously under the conditions studied. Although many H{sub 2} bubbles were generated after the drops entered the water, spontaneous steam explosions never occurred when globules of the ``B`` alloy at temperatures between 700 and 1000C fell freely through water at room temperature, or upon or during subsequent contact with submerged aluminum or stainless steel surfaces. Total amounts of H{sub 2} (STP) increased from about 2 to 9 cm{sup 3}/per gram of melt as initial melt temperature increased over this range of temperatures.

  2. The influence of irrigation water salinity on optimal nitrogen, phosphorus, and potassium liquid fertilizer rates 

    E-Print Network [OSTI]

    Campos Nu?n?ez, Ricardo

    1990-01-01

    of nitrogen fertilizer to compensate for leaching losses (Miyamoto, 1984). The effect of salt stress on mineral status of plants has been studied extensively for many agronomic and horticultural crops (Al-Saidi and Alawi, 1984; Al-Saidi et al. , 1985... cultivars (Al-Saidi and Alawi, 1984; Al- Saidi et al. , 1985). Ten flowering annuals were grown in saline water with electrical conductivities of 0. 8, 1. 5, 3. 0, or 4. 5 dS m from a 2:1 equivalent weight basis of CaCI2 and NaCI in tap water (Devitt...

  3. In Situ Imaging of Liquid Water and Ice Formation in an Operating PEFC during Cold Start

    E-Print Network [OSTI]

    . Cold-start capability and survivability of polymer electrolyte fuel cells PEFCs in a subzero is insufficient to contain all of the accumulated water before the cell operating temperature rises above freezing to freeze/ thaw cycling between -40 and 80°C. St-Pierre et al.5 found that if a cell was purged with dry gas

  4. Phase Transitions Induced by Nanoconfinement in Liquid Water Nicolas Giovambattista,1,2

    E-Print Network [OSTI]

    , and geometrically complex sur- faces [1], fuel cell technology, where rates of proton trans- port are controlled-like layers next to the walls. The BL-THF transition involves freezing of the two surface layers in contact, structureless walls [11­20]. The freezing of water in carbon nanotubes has been studied by Zeng

  5. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  6. Water-saving liquid-gas conditioning system (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonfor DirectSciTech Connect Wall-touchingPotentialWater-saving

  7. Design of a Shadowband Spectral Radiometer for the Retrieval of Thin Cloud Optical Depth, Liquid Water Path, and the Effective Radius

    E-Print Network [OSTI]

    Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole accuracies that strain the capabilities of traditional detectors (e.g., microwave receivers) and theoretical for LWP , 100 g m22 (Turner et al. 2007b). For example, micropulse lidars (MPLs) and microwave radiometers

  8. Comparison of Cloud Fraction and Liquid Water Path between ECMWF simulations and ARM long-term Observations at the NSA Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the following commentsMethods for Estimating Short-Term Extremeposter,

  9. Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStress New Webpage We have a newJulMonitoring of

  10. The universal path integral

    E-Print Network [OSTI]

    Seth Lloyd; Olaf Dreyer

    2013-02-12

    Path integrals represent a powerful route to quantization: they calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness, together with a method for extracting probabilities for observable quantities. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

  11. Isobaric vapor-liquid equilibria for binary and ternary systems composed of water, 1-propanol, and 2-propanol at 100 kPa

    SciTech Connect (OSTI)

    Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

    1996-11-01

    Isobaric vapor-liquid equilibria data were obtained for the 2-propanol + 1-propanol binary system and the water + 1-propanol + 2-propanol ternary system at 100 kPa. The data were found to be thermodynamically consistent according to the Van Ness-Byer-Gibbs method for the binary system and according to the McDermott-Ellis method for the ternary one. The binary system is well represented by assuming ideal behavior. The binary interaction parameters obtained from this and previous work are used to predict the vapor-liquid equilibrium for the ternary system using the UNIQUAC, NRTL, and Wilson models. The ternary system is well predicted from binary data.

  12. Systems and methods for analyzing liquids under vacuum

    DOE Patents [OSTI]

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  13. Analytical and experimental study of a liquid desiccant heat and mass exchanger operating near water freezing temperature

    E-Print Network [OSTI]

    Pineda Vargas, Sergio Manuel

    2009-01-01

    exchanger operating near water freezing temperature A Thesisoperating near water freezing temperature Copyright © 2009operating near water freezing temperature Sergio M. Pineda

  14. FESAC Development Path Meeting Draft Agenda

    E-Print Network [OSTI]

    Facility (ST, Tokamak, GDT) - M. Peng 10:50 - 11:10 Discussion 11:10 - 11:45 3) First dry wall for IFE for Demo? MFE timing issues (licensing of CTF) Interaction with IFE ETF to Demo transition? (licensing in the IFE path - Wayne Meier HIF liquid walls Z pinches Dry walls 2:30 - 2:50 Discussion 2:50 - 3:00 Break 3

  15. An Investigation of Ammonia Extraction from Liquid Manure Using a Gas-Permeable Membrane Pollution of air, soil and water caused by excessive ammonia (NH3) emission and deposition from animal

    E-Print Network [OSTI]

    Mukhtar, Saqib

    An Investigation of Ammonia Extraction from Liquid Manure Using a Gas-Permeable Membrane Summary Pollution of air, soil and water caused by excessive ammonia (NH3) emission and deposition from animal by extracting it from liquid manure and potentially using the recovered NH3 as fertilizer. For this purpose, lab

  16. Tortuous path chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  17. Energetics of Hydrogen Bond Network Rearrangements in Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly...

  18. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  19. Characterization of water-based liquid scintillator response to gammas and neutrons at varying scintillator-surfactant concentrations

    E-Print Network [OSTI]

    Chilton, Lauren (Lauren M.)

    2012-01-01

    Large scale solar neutron and neutrino flux experiments require many tons of bulk liquid organic scintillator to take spectroscopic data of these energetic particles. However, material and chemical concerns make such ...

  20. Reaction Dynamics at Liquid Interfaces

    E-Print Network [OSTI]

    Benjamin, Ilan

    2015-01-01

    ion effects at the air/water interface. Chem. Rev. 106:1259-at the nitrobenzene-water interface electrified by a commonnature of ions at the liquid water surface. Annu. Rev. Phys.

  1. Counting paths in digraphs

    SciTech Connect (OSTI)

    Sullivan, Blair D; Seymour, Dr. Paul Douglas

    2010-01-01

    Say a digraph is k-free if it has no directed cycles of length at most k, for k {element_of} Z{sup +}. Thomasse conjectured that the number of induced 3-vertex directed paths in a simple 2-free digraph on n vertices is at most (n-1)n(n+1)/15. We present an unpublished result of Bondy proving there are at most 2n{sup 3}/25 such paths, and prove that for the class of circular interval digraphs, an upper bound of n{sup 3}/16 holds. We also study the problem of bounding the number of (non-induced) 4-vertex paths in 3-free digraphs. We show an upper bound of 4n{sup 4}/75 using Bondy's result for Thomasse's conjecture.

  2. On the insights into phases of liquid water from study of its unusual glass-forming properties

    E-Print Network [OSTI]

    Francesco Mallamace; Elpidio Tombari; Giuseppe Salvetti; Gyan P. Johari

    2008-06-29

    We investigate whether an interpretation of water's thermodynamics [Science, 319, 582 (2008)] by using analogy with the binary metal alloys lambda-type ordering transition or buckminsterfullerene's orientational-ordering transition has merit. On examining the heat capacity data used for the nanoconfined water, the construction of the heat capacity peak, and the number of water molecules in nanoconfinement, we find that (i) the peak had been obtained by joining the data for emulsified water with that of the nanoconfined water and (ii) only three water molecules can be fitted across the 1.1 nm diameter pores used in the study, two of which form a cylindrical shell that is hydrogen bonded to silica. The remaining connectedness of one water molecule would not produce a metal alloy-like lambda-transition, or cooperative motions. Therefore, there is no basis for considering such an ordering in supercooled water.

  3. Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge Scheduling in Fuel Cells

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    that was observed via neutron imaging of an operational 53 cm2 PEMFC. Simulation results for the GDL and Membrane]. In the anode channel of a Proton Exchange Membrane Fuel Cell (PEMFC) operating with a Dead-Ended Anode (DEA with coupled PDEs describing liquid and gas transport through the Gas Diffusion Layer (GDL) of a PEMFC, which

  4. Path Integral for Quantum Operations

    E-Print Network [OSTI]

    Vasily E. Tarasov

    2007-06-14

    In this paper we consider a phase space path integral for general time-dependent quantum operations, not necessarily unitary. We obtain the path integral for a completely positive quantum operation satisfied Lindblad equation (quantum Markovian master equation). We consider the path integral for quantum operation with a simple infinitesimal generator.

  5. Influence of wettability on liquid water transport in gas diffusion layer of proton exchange membrane fuel cells (PEMFC)

    E-Print Network [OSTI]

    Hamza Chraibi; L. Ceballos; M. Prat; Michel Quintard; Alexandre Vabre

    2009-09-16

    Water management is a key factor that limits PEFC's performance. We show how insights into this problem can be gained from pore-scale simulations of water invasion in a model fibrous medium. We explore the influence of contact angle on the water invasion pattern and water saturation at breakthrough and show that a dramatic change in the invasion pattern, from fractal to compact, occurs as the system changes from hydrophobic to hydrophilic. Then, we explore the case of a system of mixed wettability, i.e. containing both hydrophilic and hydrophobic pores. The saturation at breakthrough is studied as a function of the fraction of hydrophilic pores. The results are discussed in relation with the water management problem, the optimal design of a GDL and the fuel cell performance degradation mechanisms. We outline how the study could be extended to 3D systems, notably from binarised images of GDLs obtained by X ray microtomography.

  6. Modifications of the hydrogen bond network of liquid water in a cylindrical SiO_2 pore

    E-Print Network [OSTI]

    C. Hartnig; W. Witschel; E. Spohr; P. Gallo; M. A. Ricci; M. Rovere

    2000-02-29

    We present results of molecular dynamics simulations of water confined in a silica pore. A cylindrical cavity is created inside a vitreous silica cell with geometry and size similar to the pores of real Vycor glass. The simulations are performed at different hydration levels. At all hydration levels water adsorbs strongly on the Vycor surface; a double layer structure is evident at higher hydrations. At almost full hydration the modifications of the confinement-induced site-site pair distribution functions are in qualitative agreement with neutron diffraction experiment. A decrease in the number of hydrogen bonds between water molecules is observed along the pore radius, due to the tendency of the molecules close to the substrate to form hydrogen-bonds with the hydrophilic pore surface. As a consequence we observe a substrate induced distortion of the H-bond tetrahedral network of water molecules in the regions close to the surface.

  7. SEASONAL SNOWMELT VERSUS IMPACT-TRIGGERED RUNOFF IN MARS' GEOLOGIC RECORD OF SURFACE LIQUID WATER. E. S. Kite1

    E-Print Network [OSTI]

    on Early Mars is retreat of water ice to planetary cold traps. (Melt- ing is also suppressed at low, forcing seasonal melting (Fig. 1b). Strong sensitivity to orbital forcing, plus the knowledge

  8. On the thermal neutron transport processes in liquid H/sub 2/O-D/sub 2/O mixtures

    SciTech Connect (OSTI)

    Barnsal, R.M.; Tewari, S.P.

    1983-06-01

    Using the recently developed thermal neutron scattering kernels for water and heavy water, which incorporate both the collective and the molecular modes present in water and heavy water, the thermal neutron transport studies of asymptotic decay constants lambda/sub 0/, diffusion coefficient D/sub 0/, diffusion cooling coefficient C, and the transport mean-free-path lambda /SUB tr/ are studied for liquid H/sub 2/O-D/sub 2/O mixtures with varying molecular contents and for various assembly sizes at 21 and 5/sup 0/C. The calculated values of the physical constants, lambda/sub 0/, D/sub 0/, C, and lambda /SUB tr/ are found to be in good agreement with the corresponding experimental results. Both the collective motion and the molecular modes present in the liquid H/sub 2/O-D/sub 2/O mixtures play significant roles in the thermal neutron transport processes.

  9. Flight Path 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast This flight path is

  10. Flight Path 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices »First ObservationFast This flight path

  11. Flight Path 5

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photoTheory05 Target 1 Flight Path 05

  12. Flight Path Target 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photoTheory05 Target 1 Flight Path90L2

  13. Tokamak with liquid metal toroidal field coil

    DOE Patents [OSTI]

    Ohkawa, Tihiro (La Jolla, CA); Schaffer, Michael J. (San Diego, CA)

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  14. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect (OSTI)

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  15. Molecular Mechanism of the Adsorption Process of an Iodide Anion into Liquid-Vapor Interfaces of Water-Methanol Mixtures

    SciTech Connect (OSTI)

    Annapureddy, Harsha V.; Dang, Liem X.

    2012-12-07

    To enhance our understanding of the molecular mechanism of ion adsorption to the interface of mixtures, we systematically carried out a free energy calculations study involving the transport of an iodide anion across the interface of a water-methanol mixture. Many body affects are taken into account to describe the interactions among the species. The surface propensities of I- at interfaces of pure water and methanol are well understood. In contrast, detailed knowledge of the molecular level adsorption process of I- at aqueous mixture interfaces has not been reported. In this paper, we explore how this phenomenon will be affected for mixed solvents with varying compositions of water and methanol. Our potential of mean force study as function of varying compositions indicated that I- adsorption free energies decrease from pure water to pure methanol but not linearly with the concentration of methanol. We analyze the computed density profiles and hydration numbers as a function of concentrations and ion positions with respect to the interface to further explain the observed phenomenon. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle. The calculations were carried out using computer resources provided by BES.

  16. 221A Lecture Notes Path Integral

    E-Print Network [OSTI]

    Murayama, Hitoshi

    221A Lecture Notes Path Integral 1 Feynman's Path Integral Formulation Feynman's formulation to reach a position xf at time tf , you integrate over all possible paths connecting the points with a weight factor given by the classical action for each path. Hence the name path integral. This is it. Note

  17. Liquid-Liquid Two-Phase Flow Systems Neima Brauner

    E-Print Network [OSTI]

    Brauner, Neima

    prediction of oil-water flow charac- teristics, such as flow pattern, water holdup and pressure gradient in the petroleum industry, where mixtures of oil and water are transported in pipes over long distances. Accurate particular extreme of two-fluid systems characterized by low-density ratio and low viscosity ratio. In liquid

  18. UNCORRECTEDPROOF Liquid Polyamorphism and the Anomalous

    E-Print Network [OSTI]

    Franzese, Giancarlo

    as temperature decreases, liquid bulk water begins to expand when its temperature drops below 4 C. Indeed at 4 C while colder layers of 0 C water "float" on top (cf., Fig. 1 of Ref. [2]). The mysterious properties of liquid bulk water be- come more pronounced in the supercooled region below 0 C [3­5]. For ex

  19. Hydrogen Education Curriculum Path at Michigan Technological...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Curriculum Path at Michigan Technological University Hydrogen Education Curriculum Path at Michigan Technological University 2009 DOE Hydrogen Program and Vehicle Technologies...

  20. COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS

    E-Print Network [OSTI]

    Hristidis, Vagelis

    COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS AND RESEARCH CHALLENGES School of Computing Undergraduate Student) #12;Computer Science Misconceptions Intro to Computer Science - Florida International University 2 Some preconceived ideas & stereotypes about Computer Science (CS) are quite common

  1. Collaborative Authoring of Walden's Paths 

    E-Print Network [OSTI]

    Li, Yuanling

    2012-10-19

    The World Wide Web contains rich collections of digital materials that can be used in education and learning settings. The collaborative authoring prototype of Walden's Paths targets two groups of users: educators and ...

  2. Water and Solute Flow in a Highly-Structured Soil 

    E-Print Network [OSTI]

    Hallmark, C. Tom; Wilding, Larry P.; McInnes, Kevin J.; Heuvelman, Willem J.

    1993-01-01

    to groundwater may be related to the degree of flow path channelization (convergence or divergence of water flow paths). This project was designed to test the feasibility of measuring the degree of channelization as water percolates through structured soils. A...

  3. Numerical simulation of the water bubble rising in a liquid column using the combination of level set and moving mesh methods in the collocated grids

    E-Print Network [OSTI]

    Frey, Pascal

    Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR). Water boils inside the BWRs. Although water in the nuclear industry, more than 90% power generated by nuclear is from water-cooled nuclear reactors either is in subcooled condition in the PWRs, the subcooled boiling occurs inside the reactor which makes the Departure

  4. ARM - Measurement - Liquid water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARM Data Discovery Browse Data

  5. Shortest Path Algorithm What is the Shortest Path Problem?

    E-Print Network [OSTI]

    Razak, Saquib

    .getNumberOfVertices(); Entry table[] = new Entry[n]; for(int v = 0; v new Entry(); table;What is the shortest path problem? · In an edge-weighted graph, the weight of an edge measures the cost represent: distance, cost or time. · Such a graph could be used to answer any of the following: ­ What

  6. Freezing of a Liquid Marble

    E-Print Network [OSTI]

    Ali Hashmi; Adam Strauss; Jie Xu

    2012-07-03

    In this study, we present for the first time the observations of a freezing liquid marble. In the experiment, liquid marbles are gently placed on the cold side of a Thermo-Electric Cooler (TEC) and the morphological changes are recorded and characterized thereafter. These liquid marbles are noticed to undergo a shape transition from a spherical to a flying-saucer shaped morphology. The freezing dynamics of liquid marbles is observed to be very different from that of a freezing water droplet on a superhydrophobic surface. For example, the pointy tip appearing on a frozen water drop could not be observed for a frozen liquid marble. In the end, we highlight a possible explanation for the observed morphology.

  7. Autonomous Ground Vehicle Path Planning for Autocross Tracks: Optimal vs an Efficient Bézier Curve Path

    E-Print Network [OSTI]

    Ash, John Patrick

    2015-01-01

    to Computationally Efficient Method . . . . . Minimizing theTracks: Optimal vs an Efficient B´ ezier Curve Path MASTERproposes a computationally efficient path planning algorithm

  8. Flight Path and Wing Optimization of Lithium-Air Battery Powered Passenger Aircraft

    E-Print Network [OSTI]

    Alonso, Juan J.

    in the design of electrically-driven aircraft, particularly in the case of fuel cells and batteries.5­7 One to implement vis. a vis. fuel cells, in particular, liquid hydrogen fuel cells. However, present-day batteryFlight Path and Wing Optimization of Lithium-Air Battery Powered Passenger Aircraft J. Michael Vegh

  9. Graphene-based battery electrodes having continuous flow paths

    DOE Patents [OSTI]

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  10. PathScale Compliers at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-800-66-NERSC, option 3 or 510-486-8611 Home For Users Software Compilers PathScale PathScale Compilers (Fortran, C, C++) Availability The Pathscale...

  11. Neutrino Mean Free Path in Neutron Star

    E-Print Network [OSTI]

    P. T. P. Hutauruk

    2010-07-22

    Have been calculated the differential cross section and mean free path of neutrino of neutrino interaction in dense matter.

  12. Improved Geothermometry Through Multivariate Reaction Path Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators Improved Geothermometry...

  13. Path to High Efficiency Gasoline Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10johansson.pdf More Documents & Publications Partially...

  14. IEEE International Conference on Dielectric Liquids (ICDL-2008), Poitiers, June 30-July 4, 2008 Drop-on-demand Extraction from a Water Meniscus by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Drop-on-demand Extraction from a Water Meniscus by a High Field Pulse P. Atten, A. Ouiguini, J. Raisin of a small drop electrically neutral. The experimental results of water drops extraction in oil are presented, France Abstract- As a part of a study of electrocoalescence of water droplets in oil, the controlled

  15. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    SciTech Connect (OSTI)

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  16. SEPARATION OF COPPER FROM METALS IN AN ALLOY BY LIQUID-LIQUID EXTRACTION

    E-Print Network [OSTI]

    Weston, Ken

    /L. Extraction. The extraction procedure is the same for the sample, standards and blank (water between sample extractions with water. The chloroform extracts at this point will normally be cloudySEPARATION OF COPPER FROM METALS IN AN ALLOY BY LIQUID-LIQUID EXTRACTION Background Reading: Harris

  17. Flight Path 60R - GEANIE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photoTheory05 Target 1 Flight Path

  18. Flight Path 90L - TPC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeature photoTheory05 Target 1 Flight Path90L

  19. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  20. Path Profile Guided Partial Dead Code Elimination Using Predication \\Lambda

    E-Print Network [OSTI]

    Gupta, Rajiv

    executed paths by reduc­ ing their critical path lengths. The paper presents a cost­benefit data flow architectures since critical path lengths along frequently executed paths can be reduced through PDE [11, 6, 13 optimization moves in­ structions that are dead along critical paths off the critical paths [19, 22]. Modern

  1. Water Resources Milind Sohoni

    E-Print Network [OSTI]

    Sohoni, Milind

    TD 603 Water Resources Milind Sohoni www.cse.iitb.ac.in/sohoni/ Lecture 2: Water cycle, stocks and flows () July 28, 2013 1 / 30 #12;The basic movement of water source: USGS. () July 28, 2013 2 / 30 #12, humidity and air flow. Formation of liquid-water in the Atmosphere-Cloud-Formation Coming Down Rain

  2. Reaction Dynamics at Liquid Interfaces

    E-Print Network [OSTI]

    Benjamin, Ilan

    2015-01-01

    dielectric semiconductor-liquid interfaces. J. Phys. Chem.rates across liquid-liquid interfaces. J. Phys. Chem.rates across liquid-liquid interfaces. 2. Relationships and

  3. Competing quantum effects in the dynamics of a flexible water model

    E-Print Network [OSTI]

    Scott Habershon; Thomas E. Markland; David E. Manolopoulos

    2010-11-04

    Numerous studies have identified large quantum mechanical effects in the dynamics of liquid water. In this paper, we suggest that these effects may have been overestimated due to the use of rigid water models and flexible models in which the intramolecular interactions were described using simple harmonic functions. To demonstrate this, we introduce a new simple point charge model for liquid water, q-TIP4P/F, in which the O--H stretches are described by Morse-type functions. We have parameterized this model to give the correct liquid structure, diffusion coefficient, and infra-red absorption frequencies in quantum (path integral-based) simulations. By comparing classical and quantum simulations of the liquid, we find that quantum mechanical fluctuations increase the rates of translational diffusion and orientational relaxation in our model by a factor of around 1.15. This effect is much smaller than that observed in all previous simulations of simple empirical water models, which have found a quantum effect of at least 1.4 regardless of the quantum simulation method or the water model employed. The small quantum effect in our model is a result of two competing phenomena. Intermolecular zero point energy and tunneling effects destabilize the hydrogen bonding network, leading to a less viscous liquid with a larger diffusion coefficient. However this is offset by intramolecular zero point motion, which changes the average water monomer geometry resulting in a larger dipole moment, stronger intermolecular interactions, and slower diffusion. We end by suggesting, on the basis of simulations of other potential energy models, that the small quantum effect we find in the diffusion coefficient is associated with the ability of our model to produce a single broad O-H stretching band in the infra-red absorption spectrum.

  4. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  5. Critical function and success path summary display

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1995-01-01

    The content of and hierarchical access to three levels of display pages containing information on critical function monitoring and success path monitoring.

  6. Personalized PageRank Solution Paths

    E-Print Network [OSTI]

    2015-04-13

    gorithms to estimate the solution path as a function of the sparsity and propose .... see shortly, we actually are describing degree normalized. PageRank values.

  7. Robust constrained shortest path problems under budgeted ...

    E-Print Network [OSTI]

    2014-09-12

    The shortest path problem with capacity constraint is denoted by CSP. Differently from the capacity constraint, time windows must be satisfied at each node ...

  8. Grabbing water

    E-Print Network [OSTI]

    P. M. Reis; J. Hure; S. Jung; J. W. M. Bush; C. Clanet

    2012-07-16

    We introduce a novel technique for grabbing water with a flexible solid. This new passive pipetting mechanism was inspired by floating flowers and relies purely on the coupling of the elasticity of thin plates and the hydrodynamic forces at the liquid interface. Developing a theoretical model has enabled us to design petal-shaped objects with maximum grabbing capacity.

  9. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water

    E-Print Network [OSTI]

    Vinh, N Q; Allen, S James; George, D K; Rahmani, A J; Plaxco, Kevin W

    2015-01-01

    Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bon...

  10. Methodology for Augmenting Existing Paths with Additional Parallel Transects

    SciTech Connect (OSTI)

    Wilson, John E.

    2013-09-30

    Visual Sample Plan (VSP) is sample planning software that is used, among other purposes, to plan transect sampling paths to detect areas that were potentially used for munition training. This module was developed for application on a large site where existing roads and trails were to be used as primary sampling paths. Gap areas between these primary paths needed to found and covered with parallel transect paths. These gap areas represent areas on the site that are more than a specified distance from a primary path. These added parallel paths needed to optionally be connected together into a single path—the shortest path possible. The paths also needed to optionally be attached to existing primary paths, again with the shortest possible path. Finally, the process must be repeatable and predictable so that the same inputs (primary paths, specified distance, and path options) will result in the same set of new paths every time. This methodology was developed to meet those specifications.

  11. Microfluidics Transport and Path Control via Programmable Electrowetting on Dielectric

    SciTech Connect (OSTI)

    Theodore W. Von Bitner, Ph.D.

    2002-08-22

    This research was conducted in collaboration with Professor Chang-Jin Kim of the University of California, Los Angeles. In phase I, the IOS-UCLA collaboration demonstrated the transport and manipulation of insulting liquid droplets using the principles of EWOD. A postage stamp sized array of electronically addressable Teflon pads, whose surface tension characteristics could be altered on command through computer algorithms, was developed and tested using deionized water as the liquid. Going beyond the tasks originally proposed for Phase I, droplet manipulation was achieved and droplet stability in the EWOD device was examined.

  12. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  13. Multi-objective stochastic path planning 

    E-Print Network [OSTI]

    Dasgupta, Sumantra

    2009-05-15

    . Provide an O (V.E+C2) heuristic for generating Pareto optimal shortest paths in presence of multiple objectives where C is the upper bound for path length. The complexity can be further reduced to O (V.E) by using graphical read-out of the Pareto frontier...

  14. PARALLEL EVOLUTIONARY ALGORITHMS FOR UAV PATH PLANNING

    E-Print Network [OSTI]

    PARALLEL EVOLUTIONARY ALGORITHMS FOR UAV PATH PLANNING Dong Jia Post-Doctoral Research Associate vehicles (UAVs). Premature convergence prevents evolutionary-based algorithms from reaching global optimal. To overcome this problem, this paper presents a framework of parallel evolutionary algorithms for UAV path

  15. At-Speed Path Delay Test 

    E-Print Network [OSTI]

    Chakraborty, Swati

    2015-04-27

    This research describes an approach to test metastability of flip-flops with help of multiple at-speed capture cycles during delay test. K longest paths per flip-flop test patterns are generated, such that a long path on one clock cycle feeds a long...

  16. Visualization of Ant Pheromone Based Path Following 

    E-Print Network [OSTI]

    Sutherland, Benjamin T.

    2010-07-14

    This thesis develops a simulation and visualization of a path finding algorithm based on ant pheromone paths created in 3D space. The simulation is useful as a demonstration of a heuristic approach to NP-complete problems and as an educational tool...

  17. CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    Agogino, Alice M.

    CALIFORNIA PATH PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERFITY OF CALIFORNIA, BERKELEY,in cooperation with the State of California Business, Transportation, and Housing Agency, Department Agogino, Kai Goebel SatnamAlag University of California,Berkeley CaliforniaPATH Research Report UCB

  18. Critical Review of Path Integral Formulation

    E-Print Network [OSTI]

    Takehisa Fujita

    2008-01-13

    The path integral formulation in quantum mechanics corresponds to the first quantization since it is just to rewrite the quantum mechanical amplitude into many dimensional integrations over discretized coordinates $x_n$. However, the path integral expression cannot be connected to the dynamics of classical mechanics, even though, superficially, there is some similarity between them. Further, the field theory path integral in terms of many dimensional integrations over fields does not correspond to the field quantization. We clarify the essential difference between Feynman's original formulation of path integral in QED and the modern version of the path integral method prevailing in lattice field theory calculations, and show that the former can make a correct second quantization while the latter cannot quantize fields at all and its physical meaning is unknown.

  19. Surface Speciation at Solid/Liquid Interfaces: A Vibrational Sum-Frequency Study of Acetate Adsorption at the Fluorite/Water Interface

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    recorded in frequency regions corresponding to vibrational modes of the adsorbate and water. Quantitative concentration of surface defects making the interpretation of the results in terms of an intact crystallineH), which generates a strong electric field (ranging up to 107 V,cm-1 4) at the interface. Except

  20. Equation of state of strongly coupled quark--gluon plasma -- Path integral Monte Carlo results

    E-Print Network [OSTI]

    V. S. Filinov; M. Bonitz; Y. B. Ivanov; V. V. Skokov; P. R. Levashov; V. E. Fortov

    2009-05-04

    A strongly coupled plasma of quark and gluon quasiparticles at temperatures from $ 1.1 T_c$ to $3 T_c$ is studied by path integral Monte Carlo simulations. This method extends previous classical nonrelativistic simulations based on a color Coulomb interaction to the quantum regime. We present the equation of state and find good agreement with lattice results. Further, pair distribution functions and color correlation functions are computed indicating strong correlations and liquid-like behavior.

  1. Cavity Ring-Down Spectroscopy as a Detector for Liquid Chromatography

    E-Print Network [OSTI]

    Zare, Richard N.

    measurements and 2 orders of magnitude (0.5 µM to 50 µM) for HPLC measurements. For the static measurements UV-vis absorption detector for the same path length. High performance liquid chromatography (HPLC and industry. Of the many detection methods for liquid chromatography, the most often employed is UV

  2. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  3. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect (OSTI)

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  4. Sewage sludge dewatering using flowing liquid metals

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  5. Environ. Sci. Technol. 1994, 28, 1331-1340 Semlempirical Thermodynamic Modeling of Liquid-Liquid Phase Equilibria

    E-Print Network [OSTI]

    Peters, Catherine A.

    of the coal tar pseudocomponent, and the calibrated liquid-phase activity coefficient equations can be usedEnviron. Sci. Technol. 1994, 28, 1331-1340 Semlempirical Thermodynamic Modeling of Liquid-Liquid Phase Equilibria: Coal Tar Dissolutionin Water-Miscible Solvents Catherine A. Peters'it and Richard 0

  6. Microscopic structure of liquid hydrogen: a neutron diffraction experiment

    E-Print Network [OSTI]

    M. Celli; U. Bafile; G. J. Cuello; F. Formisano; E. Guarini; R. Magli; M. Neumann; M. Zoppi

    2002-09-10

    We have measured the center-of-mass structure factor S(k) of liquid para-hydrogen by neutron diffraction, using the D4C diffractometer at the Institute Laue Langevin, Grenoble, France. The present determination is at variance with previous results obtained from inelastic neutron scattering data, but agrees with path integral Monte Carlo simulations.

  7. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    SciTech Connect (OSTI)

    Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

    2010-05-30

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

  8. Path Integral Representations on the Complex Sphere

    E-Print Network [OSTI]

    Christian Grosche

    2007-10-23

    In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S3C. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid.

  9. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal More Documents...

  10. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Rubel, Oliver

    2010-01-01

    A. Hakim, R¨ bel et al. Automatic Beam Path Analysis of399, 1976. R¨ bel et al. Automatic Beam Path Analysis ofAutomatic Beam Path Analysis of Laser Wake?eld Particle

  11. Development of a promising filtration method for liquid clarification in nuclear facilities. [For TMI-2 water, reprocessing dissolver solutions, ZnBr/sub 2/ shielding solutions

    SciTech Connect (OSTI)

    Collins, E.D.; Knauer, J.B.; Byrd, L.A.; Ross, R.G.; Savage, H.C.

    1982-01-01

    Conclusions reached are that deep beds of diatomaceous earths are especially attractive for clarification of radioactive solutions, or slurries containing insoluble radioactive material, because the diatomaceous material provides a noncompressible medium that is retentive for a wide variety of particle sizes. Also, the diatomaceous material, because of its inorganic composition, is resistant to degradation by radiation from the retained particulate matter. Its silicious character is especially appropriate for conversion to vitrified or cement-type waste forms. This paper studied the use of diatomaceous earth to filter synthetic TMI-2 water, reprocessing dissolver solutions, and zinc bromide solutions (hot-cell shielding).

  12. Sensor for detection of liquid spills on surfaces

    DOE Patents [OSTI]

    Davis, Brent C. (Oak Ridge, TN); Gayle, Tom M. (Oak Ridge, TN)

    1989-01-01

    A surface liquid detector is disclosed for detecting liquids spilled on surfaces such as floors. A temperature-sensitive thermistor probe is used in a bridge circuit to detect the change in resistance in the thermistor due to the change in thermal conductivity that occurs when a liquid contacts the probe. The device is characterized by the ability to detect either conductive or nonconductive liquids, such as water or oil spills.

  13. Commercial Light Water Production of Tritium: Update and Path Forward

    Broader source: Energy.gov [DOE]

    Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013.

  14. Linear water waves with vorticity: rotational features and particle paths

    E-Print Network [OSTI]

    Mats Ehrnstrom; Gabriele Villari

    2007-12-04

    Steady linear gravity waves of small amplitude travelling on a current of constant vorticity are found. For negative vorticity we show the appearance of internal waves and vortices, wherein the particle trajectories are not any more closed ellipses. For positive vorticity the situation resembles that of Stokes waves, but for large vorticity the trajectories are affected.

  15. Graphene-based battery electrodes having continuous flow paths...

    Office of Scientific and Technical Information (OSTI)

    Graphene-based battery electrodes having continuous flow paths Citation Details In-Document Search Title: Graphene-based battery electrodes having continuous flow paths Some...

  16. A CONSTRUCTION OF THE ROUGH PATH ABOVE FRACTIONAL ...

    E-Print Network [OSTI]

    2013-03-05

    Appl. 120 (2010) 1444–1472], where the construction of a rough path over B was first introduced. 1. Introduction. Rough paths analysis is a theory introduced by ...

  17. The Path to Transforming Knowledge into Energy Projects: DOE...

    Office of Environmental Management (EM)

    The Path to Transforming Knowledge into Energy Projects: DOE Tribal Renewable Energy Webinar Series 2015 The Path to Transforming Knowledge into Energy Projects: DOE Tribal...

  18. REGULAR PATHS IN SPARQL: QUERYING THE NCI THESAURUS

    E-Print Network [OSTI]

    Washington at Seattle, University of

    REGULAR PATHS IN SPARQL: QUERYING THE NCI THESAURUS University of Washington Structural Informatics path enhancements Examples NCI Thesaurus Widely used Exhibits common OWL representational patterns

  19. Variable path length spectrophotometric probe

    DOE Patents [OSTI]

    O'Rourke, Patrick E. (157 Greenwood Dr., Martiney, GA 30907); McCarty, Jerry E. (104 Recreation Dr., Aiken, SC 29803); Haggard, Ricky A. (1144 Thornwood Drive, North Augusta, SC 29891)

    1992-01-01

    A compact, variable pathlength, fiber optic probe for spectrophotometric measurements of fluids in situ. The probe comprises a probe body with a shaft having a polished end penetrating one side of the probe, a pair of optic fibers, parallel and coterminous, entering the probe opposite the reflecting shaft, and a collimating lens to direct light from one of the fibers to the reflecting surface of the shaft and to direct the reflected light to the second optic fiber. The probe body has an inlet and an outlet port to allow the liquid to enter the probe body and pass between the lens and the reflecting surface of the shaft. A linear stepper motor is connected to the shaft to cause the shaft to advance toward or away from the lens in increments so that absorption measurements can be made at each of the incremental steps. The shaft is sealed to the probe body by a bellows seal to allow freedom of movement of the shaft and yet avoid leakage from the interior of the probe.

  20. Shortest Paths, Network Design and Associated Polyhedra

    E-Print Network [OSTI]

    Magnanti, Thomas L.

    We study a specialized version of network design problems that arise in telecommunication, transportation and other industries. The problem, a generalization of the shortest path problem, is defined on an undirected network ...

  1. SOLVENT EXTRACTION OF PHENOLS FROM WATER

    E-Print Network [OSTI]

    Greminger, Douglas C.

    2012-01-01

    Waste Water Treatment by Solvent Extraction," Canadian J.A.F. Preuss, "Extraction of Phenol from Water with a Liquid1980 SOLVENT EXTRACTION OF PHENOLS FROM WATER LP,WRENCE BERv

  2. Steam Path Audits on Industrial Steam Turbines 

    E-Print Network [OSTI]

    Mitchell, D. R.

    1992-01-01

    on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits include the ability to identify... areas of performance degradation during a turbine outage. Repair priorities can then be set in accordance with quantitative results from the steam path audit. As a result of optimized repair decisions, turbine efficiency increases, emissions...

  3. Liquid Hydrogen Bubble Chambers

    E-Print Network [OSTI]

    Alvarez, Luis W.

    1956-01-01

    t No. W - 7 4 0 5 -eng-48 ,LIQUID HYDROGEN EUSBLE CHA,MBEEZSand 3erkeley to iind if liquid hydrogen could be used as thethat supezheated 'liquid hydrogen could be made to boil

  4. Liquid foams of graphene

    E-Print Network [OSTI]

    Alcazar Jorba, Daniel

    2012-01-01

    Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

  5. Rapid microwave hydrothermal synthesis of ZnGa{sub 2}O{sub 4} with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    SciTech Connect (OSTI)

    Sun Meng; Li Danzhen; Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi

    2012-06-15

    ZnGa{sub 2}O{sub 4} was synthesized from Ga(NO{sub 3}){sub 3} and ZnCl{sub 2} via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa{sub 2}O{sub 4} were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa{sub 2}O{sub 4} had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa{sub 2}O{sub 4} has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa{sub 2}O{sub 4} (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa{sub 2}O{sub 4} was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa{sub 2}O{sub 4} had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: Black-Right-Pointing-Pointer A rapid and facile M-H method to synthesize ZnGa{sub 2}O{sub 4} photocatalyst. Black-Right-Pointing-Pointer The photocatalyst exhibits high activity toward benzene and dyes. Black-Right-Pointing-Pointer The catalyst possesses more surface hydroxyl sites than TiO{sub 2} (P25). Black-Right-Pointing-Pointer Deep oxidation of different aromatic compounds and dyes over catalyst.

  6. Neutron diffraction of hydrogenous materials: measuring incoherent and coherent intensities separately from liquid water - a 40-year-old puzzle solved

    E-Print Network [OSTI]

    László Temleitner; Anne Stunault; Gabriel Cuello; László Pusztai

    2014-10-01

    (short version) Accurate determination of the coherent static structure factor of disordered materials containing proton nuclei is prohibitively difficult by neutron diffraction, due to the large incoherent cross section of $^1$H. This notorious problem has set severe obstacles to the structure determination of hydrogenous materials up to now, via introducing large uncertainties into neutron diffraction data processing. Here we present the first accurate separate measurements, using polarized neutron diffraction, of the coherent and incoherent contributions to the total static structure factor of 5 mixtures of light and heavy water, over an unprecedentedly wide momentum transfer range. The structure factors of H$_2$O and D$_2$O mixtures derived in this work may signify the beginning of a new era in the structure determination of hydrogenous materials, using neutron diffraction.

  7. Neutron diffraction of hydrogenous materials: measuring incoherent and coherent intensities separately from liquid water - a 40-year-old puzzle solved

    E-Print Network [OSTI]

    Temleitner, László; Cuello, Gabriel; Pusztai, László

    2014-01-01

    (short version) Accurate determination of the coherent static structure factor of disordered materials containing proton nuclei is prohibitively difficult by neutron diffraction, due to the large incoherent cross section of $^1$H. This notorious problem has set severe obstacles to the structure determination of hydrogenous materials up to now, via introducing large uncertainties into neutron diffraction data processing. Here we present the first accurate separate measurements, using polarized neutron diffraction, of the coherent and incoherent contributions to the total static structure factor of 5 mixtures of light and heavy water, over an unprecedentedly wide momentum transfer range. The structure factors of H$_2$O and D$_2$O mixtures derived in this work may signify the beginning of a new era in the structure determination of hydrogenous materials, using neutron diffraction.

  8. Lateral Mobility of Amphiphiles Adsorbed at the Air/Water Interface

    E-Print Network [OSTI]

    Carlson, Eric David

    2009-01-01

    Liquid/Vapor Interface of Water. J. Phys. Chem. 1996 , 100,Pratt, L. R. Molecular Dynamics of the Water Liquid/VaporInterface of Water. J. Phys. Chem. 1987 , 91, 4873–4878 21.

  9. Theory of extreme correlations using canonical Fermions and path integrals

    SciTech Connect (OSTI)

    Shastry, B. Sriram, E-mail: sriram@physics.ucsc.edu

    2014-04-15

    The  t–J  model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the Dyson–Maleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitian quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further, a transparent physical interpretation of the previously introduced auxiliary Greens function and the ‘caparison factor’, is obtained. The low energy electron spectral function in this theory, with a strong intrinsic asymmetry, is summarized in terms of a few expansion coefficients. These include an important emergent energy scale ?{sub 0} that shrinks to zero on approaching the insulating state, thereby making it difficult to access the underlying very low energy Fermi liquid behavior. The scaled low frequency ECFL spectral function, related simply to the Fano line shape, has a peculiar energy dependence unlike that of a Lorentzian. The resulting energy dispersion obtained by maximization is a hybrid of a massive and a massless Dirac spectrum E{sub Q}{sup ?}??Q??(?{sub 0}{sup 2}+Q{sup 2}), where the vanishing of Q, a momentum type variable, locates the kink minimum. Therefore the quasiparticle velocity interpolates between (??1) over a width ?{sub 0} on the two sides of Q=0, implying a kink there that strongly resembles a prominent low energy feature seen in angle resolved photoemission spectra (ARPES) of cuprate materials. We also propose novel ways of analyzing the ARPES data to isolate the predicted asymmetry between particle and hole excitations. -- Highlights: •Spectral function of the Extremely Correlated Fermi Liquid theory at low energy. •Electronic origin of low energy kinks in energy dispersion. •Non Hermitian representation of Gutzwiller projected electrons. •Analogy with Dyson–Maleev representation of spins. •Path integral formulation of extremely correlated electrons.

  10. China Energy and Emissions Paths to 2030

    E-Print Network [OSTI]

    Fridley, David

    2012-01-01

    Waste heat recovery from cooling water: Waste heat can behot strip mill Waste heat recovery from cooling water Coldmills * Waste heat recovery from cooling water * Recovery of

  11. Physically-based Models for Liquid Sounds Kees van den Doel

    E-Print Network [OSTI]

    van den Doel, Kees

    of complex liquid sounds such as produced by streams, pouring water, rivers, rain, and breaking waves: Water 1. INTRODUCTION The sounds made by liquids, especially those of water, are prevalent in our such as dripping water are more deterministic in their time domain structure. A "brute force" approach

  12. Three Models for Water ooding in a Naturally Fractured Petroleum ...

    E-Print Network [OSTI]

    The water ooding problem will be assumed to consist of a two-phase, immiseible. Page 3. 3. displacement of one incompressible liquid (oil) by another (water).

  13. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    SciTech Connect (OSTI)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

  14. Alien liquid detector and control

    SciTech Connect (OSTI)

    Potter, B.M.

    1980-09-02

    An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In one embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.

  15. SIGNAL-PATH LEVEL ASSIGNMENT FOR DUAL-Vt TECHNIQUE

    E-Print Network [OSTI]

    Wang, Yu

    be assigned to some of the transistors in the non-critical paths and a lower Vt is assigned to other to get the critical paths and non-critical paths of the circuit much faster and with more accuracy. The gates in the critical paths will remain unchanged to maintain the performance; and the gates in the non-critical

  16. An Efficient Computation of Statistically Critical Sequential Paths Under Retiming

    E-Print Network [OSTI]

    Lim, Sung Kyu

    An Efficient Computation of Statistically Critical Sequential Paths Under Retiming Mongkol the statistically critical paths under retiming, which are the paths with a high probability of becoming timing- critical after retiming. SRTA enables the designers to perform circuit optimization on these paths

  17. Comparison of the TIP4P-2005, SWM4-DP and BK3 interaction potentials of liquid water with respect to their consistency with neutron and X-ray diffraction data of pure water

    E-Print Network [OSTI]

    Z. Steinczinger; L. Pusztai

    2013-12-16

    Following a fairly comprehensive study on popular interaction potentials of water (Pusztai et al., J. Chem. Phys., 2008, 129, 184103), here two more recent polarizable potential sets, SWM4-DP (Lamoureux et al., Chem. Phys. Lett., 2006, 418, 245) and BK3 (Kiss et al., J. Chem. Phys., 2013, 138, 204507) are compared to the TIP4P-2005 water potential (Abascal et al., J. Chem. Phys., 2005, 123, 234505) that had previously appeared to be most favoravble. The basis of comparison was the compatibility with the results of neutron and X-ray diffraction experiments on pure water, using the scheme applied by Pusztai et al. (2008). The scheme combines the experimental total scattering structure factors (TSSF) and partial radial distribution functions (PRDF) from molecular dynamics simulations in a single structural model. Goodness-of-fit values to the O-O, O-H and H-H simulated PRDF-s and to the experimental neutron and X-ray TSSF provided a measure that can characterize the level of consistency between interaction potentials and diffraction experiments. Among the sets of partial RDF-s investigated here, the ones corresponding to the SWM4-DP potential parameters have proven to be the most consistent with the particular diffraction results taken for the present study, by a hardly significant margin ahead of BK3. Perhaps more importantly, it is shown that the three sets of potential parameters produce nearly equivalent PRDF-s that may all be made consistent with diffraction data at a very high level. The largest differences can be detected in terms of the O-O partial radial distribution function.

  18. Safetygram #9- Liquid Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  19. Guidance Document Cryogenic Liquids

    E-Print Network [OSTI]

    . Liquid hydrogen, liquid methane or liquefied natural gas could form an extremely flammable mixtureGuidance Document Cryogenic Liquids [This is a brief and general summary. Read the full MSDS for more details before handling.] Introduction: All cryogenic liquids are gases at normal temperature

  20. Feynman's path integral and mutually unbiased bases

    E-Print Network [OSTI]

    J Tolar; G Chadzitaskos

    2009-08-05

    Our previous work on quantum mechanics in Hilbert spaces of finite dimensions N is applied to elucidate the deep meaning of Feynman's path integral pointed out by G. Svetlichny. He speculated that the secret of the Feynman path integral may lie in the property of mutual unbiasedness of temporally proximal bases. We confirm the corresponding property of the short-time propagator by using a specially devised N x N -approximation of quantum mechanics in L^2(R) applied to our finite-dimensional analogue of a free quantum particle.

  1. 1 Introduction The shortest augmenting path flow algorithm repeatedly finds a shortest augmenting path (A-path) in the residual

    E-Print Network [OSTI]

    California at Davis, University of

    -path, success if hits t, fail if backup to s last Advance(s); // move forward from s till get stuck at last in Gf . Advance(v) // moves towards t till gets stuck, or hits t cv v; // cv represents the current While (last = s, t) // stuck partway, so backup { v pred(last); relabel(last); // can't move forward

  2. Molecular Dynamics Simulations of Charge-Transfer Reactions at Liquid Interfaces

    E-Print Network [OSTI]

    Nelson, Katherine Vanessa

    2013-01-01

    Study S N 2 Reaction at the Water–Chloroform Interface 2.1En- 6 Electronic Absorption Line Shapes at Interface 6.1at the liquid/liquid interface. The red ×s denote the

  3. Statistical analysis of liquid seepage in partially saturated heterogeneous fracture systems

    SciTech Connect (OSTI)

    Liou, T.S.

    1999-12-01

    Field evidence suggests that water flow in unsaturated fracture systems may occur along fast preferential flow paths. However, conventional macroscale continuum approaches generally predict the downward migration of water as a spatially uniform wetting front subjected to strong inhibition into the partially saturated rock matrix. One possible cause of this discrepancy may be the spatially random geometry of the fracture surfaces, and hence, the irregular fracture aperture. Therefore, a numerical model was developed in this study to investigate the effects of geometric features of natural rock fractures on liquid seepage and solute transport in 2-D planar fractures under isothermal, partially saturated conditions. The fractures were conceptualized as 2-D heterogeneous porous media that are characterized by their spatially correlated permeability fields. A statistical simulator, which uses a simulated annealing (SA) algorithm, was employed to generate synthetic permeability fields. Hypothesized geometric features that are expected to be relevant for seepage behavior, such as spatially correlated asperity contacts, were considered in the SA algorithm. Most importantly, a new perturbation mechanism for SA was developed in order to consider specifically the spatial correlation near conditioning asperity contacts. Numerical simulations of fluid flow and solute transport were then performed in these synthetic fractures by the flow simulator TOUGH2, assuming that the effects of matrix permeability, gas phase pressure, capillary/permeability hysteresis, and molecular diffusion can be neglected. Results of flow simulation showed that liquid seepage in partially saturated fractures is characterized by localized preferential flow, along with bypassing, funneling, and localized ponding. Seepage pattern is dominated by the fraction of asperity contracts, and their shape, size, and spatial correlation. However, the correlation structure of permeability field is less important than the spatial correlation of asperity contacts. A faster breakthrough was observed in fractures subjected to higher normal stress, accompanied with a nonlinearly decreasing trend of the effective permeability. Interestingly, seepage dispersion is generally higher in fractures with intermediate fraction of asperity contacts; but it is lower for small or large fractions of asperity contacts. However, it may become higher if the ponding becomes significant. Transport simulations indicate that tracers bypass dead-end pores and travel along flow paths that have less flow resistance. Accordingly, tracer breakthrough curves generally show more spreading than breakthrough curves for water. Further analyses suggest that the log-normal time model generally fails to fit the breakthrough curves for water, but it is a good approximation for breakthrough curves for the tracer.

  4. Access Paths Multi-dimensional Index Structures

    E-Print Network [OSTI]

    Mannheim, Universität

    for result TID-lists) · high cost for intersection if one of the indexes deliverse many results · But') · index.find_key(`ZH1984') · Discussion: · cost equivalent to the cost of a one-dimensional access! KeyAccess Paths Multi-dimensional Index Structures 1Freitag, 4. Juni 2010 #12;September 27, 2007

  5. Clearance Based Path Optimization for Motion Planning

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Abstract Many motion planning techniques, like the probabilistic roadmap method (PRM), gen­ erate low] and humanoid robot planning [13]. A commonly used technique for planning paths is the Probabilistic Roadmap.1 Probabilistic Roadmap Method The probabilistic roadmap method consists of two phases: a construction and a query

  6. The Path to Disaster The Deepwater Horizon

    E-Print Network [OSTI]

    Pym, David J.

    was not disconnected · The escaping gas ignited · 11 dead · The drilling rig Deepwater Horizon sank after 2 days #1221/08/2013 1 The Path to Disaster The Deepwater Horizon BP's disaster in the Gulf of Mexico Industrial Psychology Research Centre 14th August, 2013 Transocean Deepwater Horizon #12;21/08/2013 2

  7. Protecting BGP from Invalid Paths Josh Karlin

    E-Print Network [OSTI]

    New Mexico, University of

    Protecting BGP from Invalid Paths Josh Karlin University of New Mexico karlinjf@cs.unm.edu Stephanie Forrest University of New Mexico Santa Fe Institute forrest@cs.unm.edu Jennifer Rexford Princeton University jrex@cs.princeton.edu ABSTRACT The Internet's interdomain routing protocol, BGP, is vul- nerable

  8. Clearance Based Path Optimization for Motion Planning

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Abstract Many motion planning techniques, like the probabilistic roadmap method (PRM), gen- erate low] and humanoid robot planning [13]. A commonly used technique for planning paths is the Probabilistic Roadmap. 1.1 Probabilistic Roadmap Method The probabilistic roadmap method consists of two phases

  9. Folded-path optical analysis gas cell

    DOE Patents [OSTI]

    Carangelo, R.M.; Wright, D.D.

    1995-08-08

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal foci coincidence and thereby to increase the radiation energy throughput characteristic of the cell. 10 figs.

  10. Folded-path optical analysis gas cell

    DOE Patents [OSTI]

    Carangelo, Robert M. (Glastonbury, CT); Wright, David D. (Vershire, VT)

    1995-01-01

    A folded-path gas cell employs an elliptical concave mirror in confronting relationship to two substantially spherical concave mirrors. At least one of the spherical mirrors, and usually both, are formed with an added cylindrical component to increase orthogonal focii coincidence and thereby to increase the radiation energy throughput characteristic of the cell.

  11. Partition Coefficients of Some Antibiotics, Peptides and Amino Acids in Liquid-Liquid Partitioning of the

    E-Print Network [OSTI]

    Gu, Tingyue

    temperature for the acetonitrile- water binary system. When the equilibrium temperature is below its LLE critical tem- perature of À1.32 C, the top phase is acetonitrile-rich and the bottom phase water liquid phases at equi- librium when the temperature is below À1.32 C. The top phase is ACN

  12. Liquid level detector

    DOE Patents [OSTI]

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  13. Liquid level detector

    DOE Patents [OSTI]

    Grasso, Albert P. (Vernon, CT)

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  14. Shallow-water sloshing in rotating vessels undergoing prescribed rigid-body motion in two dimensions

    E-Print Network [OSTI]

    Bridges, Tom

    : the shipping of liquid natural gas, sloshing of trapped water on the deck of a ship, liquid transport along (Wiesche [65]), and transport of liquids by robots in industrial applications (Tzamtzi & Kouvakas [63

  15. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  16. Method for removing organic liquids from aqueous solutions and mixtures

    DOE Patents [OSTI]

    Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.

    2004-03-23

    A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.

  17. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  18. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect (OSTI)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  19. Hurricane jeanne Preliminary Water Levels Report

    E-Print Network [OSTI]

    Hurricane jeanne Preliminary Water Levels Report Tide Gauges within the Path of Hurricane Jeanne-OPS Hurricane JEANNE Preliminary Report #12;SUMMARY CO-OPS Tide Gauge Data for Hurricane Jeanne NOAA's Center://tidesonline.nos.noaa.gov). Storm surge is the observed water level minus the predicted water level referred to MLLW. Hurricane

  20. 1 Introduction The shortest augmenting path flow algorithm repeatedly finds a shortest augmenting path (A-path) in the residual

    E-Print Network [OSTI]

    California at Davis, University of

    -path, success if hits t, fail if backup to s last Advance(s); // move forward from s till get stuck at last of u in Gf . Advance(v) //moves towards t till gets stuck, or hits t cv v; // cv records the current While (last = s, t) // stuck partway, so backup { v pred(last); relabel(last); // can't move forward

  1. Theoretical Aspects of Liquid Crystals and Liquid Crystalline Polymers

    E-Print Network [OSTI]

    Feng, James J.

    Theoretical Aspects of Liquid Crystals and Liquid Crystalline Polymers James J. Feng Department theories and mole- cular theories separately. In addition, a theory for liquid crystalline materials has, Vancouver, British Columbia, Canada INTRODUCTION Liquid crystallinity refers to an intermediate state

  2. Electrokinetic Power Generation from Liquid Water Microjets

    E-Print Network [OSTI]

    Duffin, Andrew M.

    2008-01-01

    changing the volumetric flow rate at the pump (velocity (m/pressure and volumetric flow rate from the pump are also

  3. Water: A Complex Liquid Marcia C. Barbosa

    E-Print Network [OSTI]

    Liu, I-Shih

    Compressibility ­ More land Density ­ Rivers freeze on top Diffusion anomaly ­ Transport of nutrients #12;What

  4. High Performance Liquid Chromatography

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    HPLC MEASUREMENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN CIGARETTE SMOKE INTRODUCTION Even thoughHPLC - 1 High Performance Liquid Chromatography HPLC MEASUREMENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN CIGARETTE SMOKE Last updated: June 17, 2014 #12;HPLC - 2 High Performance Liquid Chromatography

  5. High order Chin actions in path integral Monte Carlo

    SciTech Connect (OSTI)

    Sakkos, K.; Casulleras, J.; Boronat, J.

    2009-05-28

    High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrary to the Takahashi-Imada action, which is accurate to the fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth-order error coefficients are finely tunable. By optimizing two free parameters entering in the new action, we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced and the efficiency improvement with respect to the primitive approximation is approximately a factor of 10. The Chin action is tested in a one-dimensional harmonic oscillator, a H{sub 2} drop, and bulk liquid {sup 4}He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid {sup 4}He.

  6. Experimental and numerical investigation of phonon mean free path distribution

    E-Print Network [OSTI]

    Zeng, Lingping

    2013-01-01

    Knowledge of phonon mean free path (MFP) distribution is critically important to engineering size effects. Phenomenological models of phonon relaxation times can give us some sense about the mean free path distribution, ...

  7. Working with Utilities: Effective Paths for Tribal Governments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working with Utilities: Effective Paths for Tribal Governments Webinar Working with Utilities: Effective Paths for Tribal Governments Webinar September 30, 2015 11:00AM to 12:30PM...

  8. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Wednesday, 25 July 2012 00:00 Hydrogen bonds are...

  9. A Potential Path to Emissions-Free Fossil Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Potential Path to Emissions-Free Fossil Energy A Potential Path to Emissions-Free Fossil Energy August 20, 2013 - 10:00am Addthis The National Energy Technology Laboratory's...

  10. Surface-adaptive and Collision-avoiding Path Planning

    E-Print Network [OSTI]

    Morik, Katharina

    that a desired workpiece is generated by remov- ing material form the stock. The tool is moved by a milling machine which is computer-controlled. The task of automatic path planning is to find a suitable path

  11. The Path a Proton Takes Through a Fuel Cell Membrane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Path a Proton Takes Through a Fuel Cell Membrane The Path a Proton Takes Through a Fuel Cell Membrane October 11, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Ram.jpg The cover...

  12. MOF Coating a Promising Path to White LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOF Coating a Promising Path to White LEDs MOF Coating a Promising Path to White LEDs Print Friday, 27 February 2015 17:11 Hu et al. designed a new yellow phosphor with high...

  13. Software-based tool path evaluation for environmental sustainability

    E-Print Network [OSTI]

    KONG, DAEYOUNG; Seungchoun Choi; Yusuke Yasui; Sushrut Pavanaskar; Dornfeld, David; Wright, Paul

    2011-01-01

    productivity, while the sustainability and energy ef?ciencyof sustainability of a tool path (i.e. energy consumption

  14. Saving the Coherent State Path Integral

    E-Print Network [OSTI]

    Yariv Yanay; Erich J. Mueller

    2013-03-19

    By returning to the underlying discrete time formalism, we relate spurious results in coherent state path integral calculations to the high frequency structure of their propagators. We show how to modify the standard expressions for thermodynamic quantities to yield correct results. These expressions are relevant to a broad range of physical problems, from the thermodynamics of Bose lattice gases to the dynamics of spin systems.

  15. Free Energy Changes, Fluctuations, and Path Probabilities

    E-Print Network [OSTI]

    William G. Hoover; Carol G. Hoover

    2011-04-20

    We illustrate some of the static and dynamic relations discovered by Cohen, Crooks, Evans, Jarzynski, Kirkwood, Morriss, Searles, and Zwanzig. These relations link nonequilibrium processes to equilibrium isothermal free energy changes and to dynamical path probabilities. We include ideas suggested by Dellago, Geissler, Oberhofer, and Schoell-Paschinger. Our treatment is intended to be pedagogical, for use in an updated version of our book: Time Reversibility, Computer Simulation, and Chaos. Comments are very welcome.

  16. The lattice path operad Clemens Berger (Nice)

    E-Print Network [OSTI]

    Berger, Clemens

    -operads. Let (X, ) be a based topological space and (Sn, ) be the n-sphere. Then nX = Top(Sn, X) is an algebra operad O in E. Let EOu. Then HomOu(, X) is a CoendO()-algebra. 6 #12;E = Top or E = Ch(Z) contains SetsThe lattice path operad Clemens Berger (Nice) Third Arolla Conference on Algebraic Topology August

  17. Driving it home: choosing the right path for fueling North America's transportation future

    SciTech Connect (OSTI)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  18. Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths

    DOE Patents [OSTI]

    Jacobs, S.D.; Cerqua, K.A.

    1987-07-14

    The spatial intensity profile of an optical beam of designated wavelengths, such as a laser beam, is shaped (the beam is apodized) by means of cholesteric liquid crystals of opposite chirality disposed successively along the path of the beam. The crystals have curved surfaces, which may be defined by a lens which defines the thickness of the liquid crystal fluid gap in a liquid crystal cell, so as to vary the selective reflection of the designated wavelength across the aperture of the beam. In this way, a soft aperture is provided. By using tandem cell pairs having liquid crystals of opposite chirality, but of different pitch, and with lenses of different curvature, beams of different wavelengths which are projected colinearly along the path may be individually tailored in spatial intensity profile. 11 figs.

  19. "Multi-machine" Strategy: The Other Path of the FESAC

    E-Print Network [OSTI]

    "Multi-machine" Strategy: The Other Path of the FESAC Burning Plasma Strategy Gerald Navratil Difference ITER Development Path FIRE Development Path `Single Machine Strategy' `Multi-machine Strategy Machine Strategy' `Multi-machine Strategy' `One Step to DEMO' Modular Strategy `Penultimate Step to DEMO

  20. United States Department of Critical Path Method AppliedAgriculture

    E-Print Network [OSTI]

    Forest and Range Experiment Station PO. Box 245, Berkeley, California 94701 August 1986 #12;Critical Path interrelated activities. One approach that has been widely used is the critical path method, in which a network of thousands of activities, such as major construction and engineering projects. In the 1950's, a critical path

  1. Modeling the Global Critical Path in Concurrent Systems

    E-Print Network [OSTI]

    Modeling the Global Critical Path in Concurrent Systems Girish Venkataramani Tiberiu Chelcea Mihai Molecular Electronics, under contract number CCR0205523. #12;Keywords: Performance modeling, critical path analysis, high-level synthesis #12;Abstract We show how the global critical path can be used as a practical

  2. Computing Along the Critical Path Dean M. Tullsen Brad Calder

    E-Print Network [OSTI]

    Sair, Suleyman

    Computing Along the Critical Path Dean M. Tullsen Brad Calder Department of Computer Science dependencies that constrain execution speed constitute the critical path of execution. To optimize the performance of the processor, we either have to reduce the critical path or execute it more efficiently

  3. Capturing Post-Silicon Variations using a Representative Critical Path

    E-Print Network [OSTI]

    Sapatnekar, Sachin

    1 Capturing Post-Silicon Variations using a Representative Critical Path Qunzeng Liu and Sachin S on measurements on a replica of the nominal critical path, whose variations are intended to reflect those of the entire circuit after manufacturing. For realistic circuits, where the number of critical paths can

  4. Multipath channels Path timing critical (versus amplitude information)

    E-Print Network [OSTI]

    Southern California, University of

    1 · Multipath channels · Path timing critical (versus amplitude information) ­ Certain modulations: PPM ­ Location/Ranging · Model ­ Delay spread ­ L paths (M choose L possible profiles) ­ Independent path amplitudes ­ Block constant channel ­ AW GN 0 100 200 300 400 500 600 -0.02 0 0.02 The Channel

  5. Reconstructing Critical Paths from Execution Traces Martijn Hendriks

    E-Print Network [OSTI]

    Vaandrager, Frits

    Reconstructing Critical Paths from Execution Traces Martijn Hendriks Embedded Systems Institute of constructing critical paths from incomplete information. In general, a directed acyclic graph of tasks with their execution times (i.e., a task graph) is necessary to extract critical paths. We assume, however, that only

  6. Accurate Critical Path Analysis via Random Trace Construction

    E-Print Network [OSTI]

    Zilles, Craig

    Accurate Critical Path Analysis via Random Trace Construction Pierre Salverda Charles Tucker Craig to their profiled behavior. We demonstrate our technique in the context of critical path analysis, showing it can achieve the same accuracy as a hardware critical path predictor, but with lower hardware requirements. Key

  7. Robot Path Planning in Uncertain Environments: A Language-Measure-

    E-Print Network [OSTI]

    Ray, Asok

    Robot Path Planning in Uncertain Environments: A Language-Measure- Theoretic Approach Devesh K. Jha the problem of goal-directed robot path planning in the presence of uncertainties that are induced by bounded, probabilistic finite state automata 1 Motivation and Introduction In general, path planning of robots (e

  8. Automatic Construction of High Quality Roadmaps for Path Planning

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Automatic Construction of High Quality Roadmaps for Path Planning D.Nieuwenhuisen A.Kamphuis M-CS-2004-068 www.cs.uu.nl #12;Automatic Construction of High Quality Roadmaps for Path Planning D on a technique from robotics, that computes a roadmap of smooth, collision-free, high-quality paths. This roadmap

  9. UNIVERSITY OF CALIFORNIA, SAN DIEGO Critical-Path Aware Processor Architectures

    E-Print Network [OSTI]

    Sair, Suleyman

    UNIVERSITY OF CALIFORNIA, SAN DIEGO Critical-Path Aware Processor Architectures A dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 C. Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 III Critical Path Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 A. General Critical-Path Analysis

  10. Quantum Mechanical Single Molecule Partition Function from Path Integral Monte Carlo Simulations

    E-Print Network [OSTI]

    Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian

    2008-01-01

    calculated from path integral Monte Carlo(PIMC) and harmoniccalculated from path integral Monte Carlo (PIMC) andFunction from Path Integral Monte Carlo Simulations Shaji

  11. A path integral approach to data assimilation in stochastic nonlinear systems

    E-Print Network [OSTI]

    Quinn, John C.

    2010-01-01

    Values as Path Integrals . . . . . . . . . . .2.3Carlo Evaluation of Path Integrals . . . . . . . . . . . 3.1Sampling . . . . . . . . . . 3.2 Path Integral Monte Carlo

  12. A Path-Integral Approach to Bayesian Inference for Inverse Problems Using the Semiclassical Approximation

    E-Print Network [OSTI]

    Chang, JC; Savage, VM; Chou, T

    2014-01-01

    CC, Buice MA (2010) Path integral methods for stochastic di?2012) Quantum mechanics and path integrals: Emended edition.15. Graham R (1977) Path integral formulation of general di?

  13. OIL DROPLET MANIPULATION USING LIQUID DIELECTROPHORESIS ON ELECTRET WITH SUPERLYOPHOBIC

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    OIL DROPLET MANIPULATION USING LIQUID DIELECTROPHORESIS ON ELECTRET WITH SUPERLYOPHOBIC SURFACES flow friction for water and oil. Charge stability of electret in liquid is much improved with new hysteresis of SLS for oil droplets are experimentally demonstrated, indicating low motion resistance

  14. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  15. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  16. NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS

    E-Print Network [OSTI]

    Lippmann, M.J.

    2010-01-01

    13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

  17. Boiling and condensation in a liquid-filled enclosure

    E-Print Network [OSTI]

    Bar-Cohen Avram

    1971-01-01

    A combined experimental and analytical investigation of boiling and condensation in a liquid-filled enclosure, with water and Freon- 113 as the working fluids, is described. The operating characteristics of a boiling system, ...

  18. Designing liquid repellent surfaces for fabrics, feathers and fog

    E-Print Network [OSTI]

    Chhatre, Shreerang S. (Shreerang Sharad)

    2013-01-01

    Omniphobicity refers to a property of surfaces which are not wetted by water, oils, alcohols and other low surface tension liquids. Robust omniphobic surfaces can be applied in many areas including fabrics with chemical / ...

  19. Synchrotrons Explore Water's Molecular Mysteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquid well beyond its typical freezing point. Researchers applied a superthin coating of water-no deeper than a few molecules-to the surface of a barium fluoride crystal....

  20. Evidence that ice forms primarily in supercooled liquid clouds at temperatures > -27C2 C. D. Westbrook and A. J. Illingworth3

    E-Print Network [OSTI]

    Reading, University of

    layer of supercooled liquid water droplets at the25 top of ice-phase clouds has been observed in several cases (Rauber and Tokay 1991), but the26 fraction of ice clouds which have liquid water at the top has case where the air35 was supersaturated with respect to ice but below liquid water saturation: ice

  1. WATER INFLOW INTO BOREHOLES DURING THE STRIPA HEATER EXPERIMENTS

    E-Print Network [OSTI]

    Nelson, P.H.

    2010-01-01

    is plotted against water extraction rate with temper­ aturei^ H 2 _ -i I Liquid water extraction rate (liters/day) XBLholi? s due to water extraction was negligible because the

  2. Improved initial guess for minimum energy path calculations

    SciTech Connect (OSTI)

    Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt

    2014-06-07

    A method is presented for generating a good initial guess of a transition path between given initial and final states of a system without evaluation of the energy. An objective function surface is constructed using an interpolation of pairwise distances at each discretization point along the path and the nudged elastic band method then used to find an optimal path on this image dependent pair potential (IDPP) surface. This provides an initial path for the more computationally intensive calculations of a minimum energy path on an energy surface obtained, for example, by ab initio or density functional theory. The optimal path on the IDPP surface is significantly closer to a minimum energy path than a linear interpolation of the Cartesian coordinates and, therefore, reduces the number of iterations needed to reach convergence and averts divergence in the electronic structure calculations when atoms are brought too close to each other in the initial path. The method is illustrated with three examples: (1) rotation of a methyl group in an ethane molecule, (2) an exchange of atoms in an island on a crystal surface, and (3) an exchange of two Si-atoms in amorphous silicon. In all three cases, the computational effort in finding the minimum energy path with DFT was reduced by a factor ranging from 50% to an order of magnitude by using an IDPP path as the initial path. The time required for parallel computations was reduced even more because of load imbalance when linear interpolation of Cartesian coordinates was used.

  3. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    E-Print Network [OSTI]

    Gostick, J. T.

    2013-01-01

    Injection and Withdrawal in PEMFC Gas Diffusion Layers J. T.has a major impact on PEMFC performance. Liquid water

  4. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  5. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  6. Characterizing the Groundwater-Surface Water Interactions in Different Subsurface Geologic Environments Using Geochemical and Isotopic Analyses

    E-Print Network [OSTI]

    Long, Molly

    2014-12-31

    -surface water interactions. Knowledge of the influence these factors have on surface water connections with groundwater will help determine possible recharge and contaminant flow paths affecting future water supply wells installed in similar alluvial...

  7. Turbid water Clear water

    E-Print Network [OSTI]

    Jaffe, Jules

    Turbid water Clear water pixel position cameraresponsecameraresponse pixel position ABSTRACT: A new underwater laser scanning system, providing microbathymetric information in coastal waters is described the backscatter component resulting in enhanced performance in turbid waters. The system is expected to provide

  8. Two formation paths for cluster dwarf galaxies?

    E-Print Network [OSTI]

    Bianca M. Poggianti; Nobunari Kashikawa; Terry Bridges; Bahram Mobasher; Yutaka Komiyama; Dave Carter; Sadanori Okamura; Masafumi Yagi

    2003-10-15

    A surprising result of our recent spectroscopic survey of galaxies in the Coma cluster has been the discovery of a possible bimodal distribution in the metallicities of faint galaxies at $M_B>-17$. We identified a group of dwarfs with luminosity-weighted metallicities around solar and a group with [M/H] around -1.5. A metallicity bimodality among galaxies of similar luminosities is unexpected and suggests that faint cluster galaxies could be an heterogeneous population that formed through more than one evolutionary path, possibly as a consequence of the cluster environment.

  9. Path integral quantization of generalized quantum electrodynamics

    SciTech Connect (OSTI)

    Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2011-02-15

    In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.

  10. ClearPath | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:New York:ClayBurnVitaCleanstarClearPath Jump to:

  11. EnerPath | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc JumpElko, Nevada:Geothermal7)EnerPath Jump to:

  12. The Flight Paths for Biojet Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths for Biojet Fuel Tony Radich

  13. A Particle-Water Based Model for Water Retention Hysteresis

    E-Print Network [OSTI]

    Yixiang Gan; Federico Maggi; Giuseppe Buscarnera; Itai Einav

    2013-12-04

    A particle-water discrete element based approach to describe water movement in partially saturated granular media is presented and tested. Water potential is governed by both capillary bridges, dominant at low saturations, and the pressure of entrapped air, dominant at high saturations. The approach captures the hysteresis of water retention during wetting and drainage by introducing the local evolution of liquid-solid contact angles at the level of pores and grains. Extensive comparisons against experimental data are presented. While these are made without the involvement of any fitting parameters, the method demonstrates relative high success by achieving a correlation coefficient of at least 82%, and mostly above 90%. For the tested materials with relatively mono-disperse grain size, the hysteresis of water retention during cycles of wetting and drainage has been shown to arise from the dynamics of solid-liquid contact angles as a function of local liquid volume changes.

  14. Liquid level detector

    DOE Patents [OSTI]

    Tshishiku, Eugene M. (Augusta, GA)

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  15. Kinetics of complex plasma with liquid droplets

    SciTech Connect (OSTI)

    Misra, Shikha; Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India); Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)] [Institute for Plasma Research (IPR), Gandhinagar 382428 (India)

    2013-12-15

    This paper provides a theoretical basis for the reduction of electron density by spray of water (or other liquids) in hot plasma. This phenomenon has been observed in a hypersonic flight experiment for relief of radio black out, caused by high ionization in the plasma sheath of a hypersonic vehicle, re-entering the atmosphere. The analysis incorporates a rather little known phenomenon for de-charging of the droplets, viz., evaporation of ions from the surface and includes the charge balance on the droplets and number cum energy balance of electrons, ions, and neutral molecules; the energy balance of the evaporating droplets has also been taken into account. The analysis has been applied to a realistic situation and the transient variations of the charge and radius of water droplets, and other plasma parameters have been obtained and discussed. The analysis through made in the context of water droplets is applicable to all liquids.

  16. Liquid Propane Injection Applications

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart.

  17. Liquid Crystal Optofluidics

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  18. Ultrasonic liquid level detector

    DOE Patents [OSTI]

    Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  19. Proton radioactivity within a generalized liquid drop model J. M. Dong,1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proton radioactivity within a generalized liquid drop model J. M. Dong,1 H. F. Zhang,1 and G. Royer) The proton radioactivity half-lives of spherical proton emitters are investigated theoretically. The potential barriers preventing the emission of proton are determined in the quasimolecular shape path within

  20. Water mist injection in oil shale retorting

    DOE Patents [OSTI]

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  1. Path Planning Algorithm for Extinguishing Forest Fires

    E-Print Network [OSTI]

    Kumar, M P Sivaram

    2012-01-01

    One of the major impacts of climatic changes is due to destroying of forest. Destroying of forest takes place in many ways but the majority of the forest is destroyed due to wild forest fires. In this paper we have presented a path planning algorithm for extinguishing fires which uses Wireless Sensor and Actor Networks (WSANs) for detecting fires. Since most of the works on forest fires are based on Wireless Sensor Networks (WSNs) and a collection of work has been done on coverage, message transmission, deployment of nodes, battery power depletion of sensor nodes in WSNs we focused our work in path planning approach of the Actor to move to the target area where the fire has occurred and extinguish it. An incremental approach is presented in order to determine the successive moves of the Actor to extinguish fire in an environment with and without obstacles. This is done by comparing the moves determined with target location readings obtained using sensors until the Actor reaches the target area to extinguish f...

  2. Apparatus and method for ultrasonic treatment of a liquid

    DOE Patents [OSTI]

    Chandler, Darrell P [Richland, WA; Posakony, Gerald J [Richland, WA; Bond, Leonard J [Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA

    2003-01-14

    The present invention is an apparatus and method for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  3. Apparatus and method for ultrasonic treatment of a liquid

    DOE Patents [OSTI]

    Chandler, Darrell P.; Posakony, Gerald J.; Bond, Leonard J.; Bruckner-Lea, Cynthia J.

    2006-04-04

    The present invention is an apparatus for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  4. New results on water in bulk, nanoconfined, and biological environments

    E-Print Network [OSTI]

    Stanley, H. Eugene

    contract as temperature decreases, liquid bulk water begins to expand when its temperature drops below 4°C remains at 4°C while colder layers of 0°C water "float" on top (cf.. Fig. 1 of Ref. [2]). The mysterious properties of liquid bulk water become more pronounced in the supercooled region below 0°C [3-5]. For example

  5. ARM - PI Product - Large Scale Ice Water Path and 3-D Ice Water Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA RelatedInhibitionProductsIn-SituProductsLarge

  6. Control of reactor coolant flow path during reactor decay heat removal

    DOE Patents [OSTI]

    Hunsbedt, Anstein N. (Los Gatos, CA)

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  7. Towards a realistic parsing of the Feynman path integral

    E-Print Network [OSTI]

    K. B. Wharton

    2015-11-29

    The Feynman path integral does not allow a "one real path" interpretation, because amplitudes contribute to probabilities in a non-separable manner. The opposite extreme, "all paths happen", is not a useful or informative account. In this paper it is shown that an intermediate parsing of the path integral, into realistic non-interfering possibilities, is always available. Each realistic possibility formally corresponds to numerous particle paths, but is arguably best interpreted as a spacetime-valued field. Notably, one actual field history can always be said to occur, although it will generally not have an extremized action. The most obvious concerns with this approach are addressed, indicating necessary follow-up research. But without obvious showstoppers, it seems plausible that the path integral might be reinterpreted to explain quantum phenomena in terms of Lorentz covariant field histories.

  8. Path Integral and Effective Hamiltonian in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Haiyun Huang; Yongge Ma; Li Qin

    2011-06-27

    We study the path integral formulation of Friedmann universe filled with a massless scalar field in loop quantum cosmology. All the isotropic models of $k=0,+1,-1$ are considered. To construct the path integrals in the timeless framework, a multiple group-averaging approach is proposed. Meanwhile, since the transition amplitude in the deparameterized framework can be expressed in terms of group-averaging, the path integrals can be formulated for both deparameterized and timeless frameworks. Their relation is clarified. It turns out that the effective Hamiltonian derived from the path integral in deparameterized framework is equivalent to the effective Hamiltonian constraint derived from the path integral in timeless framework, since they lead to same equations of motion. Moreover, the effective Hamiltonian constraints of above models derived in canonical theory are confirmed by the path integral formulation.

  9. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    DOE Patents [OSTI]

    Gaul, Christopher J. (Thornton, CO)

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  10. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  11. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, Michael E. (Albuquerque, NM); Sullivan, William H. (Albuquerque, NM)

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  12. Precision liquid level sensor

    DOE Patents [OSTI]

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  13. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  14. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  15. Remote Sensing of WaterRemote Sensing of WaterRemote Sensing of Water One of the most pressing resource issues facing humanity in the 21st

    E-Print Network [OSTI]

    moderate to high shortages in water supply. The outlook is particularly bleak for developing countries resulting from the downwelling solar (Esun) and sky (Esky) radiation. This is unwanted path radiance

  16. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  17. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOE Patents [OSTI]

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  18. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Andrew Held, Senior Director of Feedstock Development, Virent, Inc.

  19. Reduction of Emission Variance by Intelligent Air Path Control

    Broader source: Energy.gov [DOE]

    This poster describes an air path control concept, which minimizes NOx and PM emission variance while having the ability to run reliably with many different sensor configurations.

  20. ORNL thermomagnetic processing method provides path to new materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermomagnetic processing method provides path to new materials The high magnetic field environments are provided by fully recondensing commercial prototype superconducting magnet...

  1. DOE EM Landfill Workshop and Path Forward - July 2009

    Office of Environmental Management (EM)

    Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill...

  2. Office of River Protection's (ORP) Path to Reinvigorating Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Presentation from the 2015 DOE National Cleanup Workshop by Kevin Smith, Manager, Office of River Protection. ORP's Path to Reinvigorating Technology...

  3. Community-Based Forest (Natural) Resource Management: A Path...

    Open Energy Info (EERE)

    Community-Based Forest (Natural) Resource Management: A Path to Sustainable Environment and Development Jump to: navigation, search Name Community-Based Forest (Natural) Resource...

  4. Minimal paths between communities induced by geographical networks

    E-Print Network [OSTI]

    de Arruda, Henrique Ferraz; Costa, Luciano da Fontoura

    2015-01-01

    In this work we investigate the betweenness centrality in geographical networks and its relationship with network communities. We show that nodes with large betweenness define what we call characteristic betweenness paths in both modeled and real-world geographical networks. We define a geographical network model that possess a simple topology while still being able to present such betweenness paths. Using this model, we show that such paths represent pathways between entry and exit points of highly connected regions, or communities, of geographical networks. By defining a new network, containing information about community adjacencies in the original network, we describe a means to characterize the mesoscale connectivity provided by such characteristic betweenness paths.

  5. Identification of MHF Fracture Planes and Flow Paths- a Correlation...

    Open Energy Info (EERE)

    creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well...

  6. A Development Path for the Stabilized Spheromak

    SciTech Connect (OSTI)

    Fowler, T K

    2007-07-13

    In Refs. [1] - [3], I suggest a concerted computational effort to study profile control of spheromaks, in anticipation that it is timely to incorporate the q < 1 regime of RFP's and spheromaks into an integrated advanced toroidal confinement program, together with improvements in tokamaks and stellarators now being pursued. For profile control of spheromaks by neutral beam injection, with care to avoid super-Alfvenic beam instability the main issue is excitation of tearing modes that can be studied using the NIMROD code already calibrated to MST and SSPX. In this note, I show that profile control on spheromaks could be demonstrated in a device the size of SSPX, leading ultimately to a very compact ignition facility, and possibly modular fusion reactors with a shorter development path.

  7. Hot gas path component cooling system

    DOE Patents [OSTI]

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  8. Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals

    SciTech Connect (OSTI)

    Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.

    1994-06-01

    The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

  9. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    SciTech Connect (OSTI)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

  10. Cerro Prieto cold water injection: effects on nearby production wells

    E-Print Network [OSTI]

    Truesdell, A.H.

    2010-01-01

    water-dominated geothermal system: the Cerro Prieto field,liquid- dominated geothermal systems. Geothermal Resourcesof the Cerro Prieto geothermal system. Geothermal Resources

  11. Spinodal of supercooled polarizable water

    E-Print Network [OSTI]

    P. Gallo; M. Minozzi; M. Rovere

    2006-11-22

    We develop a series of molecular dynamics computer simulations of liquid water, performed with a polarizable potential model, to calculate the spinodal line and the curve of maximum density inside the metastable supercooled region. After analysing the structural properties,the liquid spinodal line is followed down to T=210 K. A monotonic decrease is found in the explored region. The curve of maximum density bends on approaching the spinodal line. These results, in agreement with similar studies on non polarizable models of water, are consistent with the existence of a second critical point for water.

  12. Water Resources Water Quality and Water Treatment

    E-Print Network [OSTI]

    Sohoni, Milind

    Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

  13. Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004 PHYSICALLY-BASED MODELS FOR LIQUID SOUNDS

    E-Print Network [OSTI]

    van den Doel, Kees

    liquid sounds such as produced by streams, pouring water, rivers, rain, and breaking waves is based be synthesized in this manner. 1. INTRODUCTION Figure 1: A photograph of a water drop falling in water. Photo courtesy of Andrew Davidhazy. The sounds made by liquids, especially those of water, are prevalent in our

  14. Liquid sampling system

    DOE Patents [OSTI]

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  15. Liquid sampling system

    DOE Patents [OSTI]

    Larson, Loren L. (Idaho Falls, ID)

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  16. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  17. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  18. NC machine tool path generation from CSG part

    E-Print Network [OSTI]

    Bobrow, James E.

    NC machine tool path generation from CSG part representations James E Bobrow Recent improvements for machine tool path generation. Current machining algorithms require that any port geometric information modelling system is used. Thispaper presents o method for generating numerically-controlled milling machine

  19. Disjoint BoundaryBoundary Paths in Critical Circular Planar Networks

    E-Print Network [OSTI]

    Morrow, James A.

    Disjoint Boundary­Boundary Paths in Critical Circular Planar Networks Ryan Sturgell December 8 that in a critical circular planar network every interior vertex has three disjoint paths to the boundary. 1, 1998 Abstract This paper explores some properties of critical circular planar net­ works. The main

  20. L1 Regularization Path Algorithm for Generalized Linear Models

    E-Print Network [OSTI]

    Hastie, Trevor

    of the paths; we suggest intuitive and flexible strategies for choosing appropriate values. We demonstrate: ^() = argmin {- log L(y; ) + 1}, (2) where > 0 is the regularization parameter. Logistic regression with L1 the most complex stage possible. By generating the regularization path rather than computing solutions

  1. Path Planning for Permutation-Invariant Multi-Robot Formations

    E-Print Network [OSTI]

    Hutchinson, Seth

    Path Planning for Permutation-Invariant Multi-Robot Formations Stephen Kloder Seth Hutchinson, IL 61801 Email: {kloder, seth}@uiuc.edu Abstract-- In this paper we demonstrate path planning for our-assign roles for each individual robot, rely on local planning and behaviors to build emergent behaviors

  2. Efficient Path Delay Test Generation with Boolean Satisfiability 

    E-Print Network [OSTI]

    Bian, Kun

    2013-12-10

    This dissertation focuses on improving the accuracy and efficiency of path delay test generation using a Boolean satisfiability (SAT) solver. As part of this research, one of the most commonly used SAT solvers, MiniSat, was integrated into the path...

  3. Cost effective path to DEMO University of Washington

    E-Print Network [OSTI]

    1 Cost effective path to DEMO By Tom Jarboe University of Washington To Fusion Power Associates December 14, 2011 #12;2 Outline · Maximizing the development-cost benefit from ITER knowledge · Getting on cost effective path · Requirements of smaller scale experiment · Cost problems are helped

  4. Efficient Static Analysis with Path Pruning using Coverage Data

    E-Print Network [OSTI]

    Jalote, Pankaj

    Efficient Static Analysis with Path Pruning using Coverage Data Vipindeep V, Pankaj Jalote,jalote}@cse.iitk.ac.in ABSTRACT Soundness and completeness are two primary concerns of a static analysis tool for finding defects in software. Exhaus- tive static analysis of the program through all paths is not always possible, especially

  5. Finding Chemical Reaction Paths with a Multilevel Preconditioning Seyit Kale,,

    E-Print Network [OSTI]

    Dinner, Aaron

    Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol Seyit Kale,, Olaseni for chemical reactions can be computationally costly owing to the level of quantum- chemical theory needed for the reaction path iteratively. These methods have yielded important insights in quantum chemical contexts9

  6. Mechanism of Ligand Exchange Studied Using Transition Path Sampling

    E-Print Network [OSTI]

    Harris, Charles B.

    Mechanism of Ligand Exchange Studied Using Transition Path Sampling Preston T. Snee, Jennifer@socrates.berkeley.edu Abstract: The mechanism of intermolecular ligand exchange has been studied using transition path sampling that there are multiple steps in the reaction mechanism. The first involves partial dissociation of the coordinated

  7. The Reaction Path in Chemistry: Current Approaches and Perspectives

    E-Print Network [OSTI]

    Quapp, Wolfgang

    , Germany UNDERSTANDING CHEMICAL REACTIVITY 16 August 1995 Hardbound 308 pp. ISBN 0-7923-3589-9 The reaction and usage of the reaction path concept; D. Heidrich. From reaction path to reaction mechanism: Fundamental. Second-order methods for the optimization of molecular potential energy surfaces; T. Helgaker et al

  8. Minimizing communication in all-pairs shortest paths Edgar Solomonik

    E-Print Network [OSTI]

    California at Berkeley, University of

    Minimizing communication in all-pairs shortest paths Edgar Solomonik Aydin Buluc James Demmel;Copyright © 2013, by the author(s). All rights reserved. Permission to make digital or hard copies of all, requires prior specific permission. #12;Minimizing communication in all-pairs shortest paths Edgar

  9. Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative Study

    E-Print Network [OSTI]

    Gavrila, Dariu M.

    Pedestrian Path Prediction with Recursive Bayesian Filters: A Comparative Study N. Schneider1 a com- parative study on recursive Bayesian filters for pedestrian path pre- diction at short time/acceleration/turn). These are applied to four typical pedestrian mo- tion types (crossing, stopping, bending in, starting). Position

  10. Pierre.Francois@UCLouvain.be BGP Path visibility

    E-Print Network [OSTI]

    Bonaventure, Olivier

    BGP NHs · Hitless planned maintenance · "Optimal" hot-potato routing · (Churn reduction / convergence the IGP tie-break to clients · Depending on which paths it advertises #12;Churn reduction ??? · Churn reduction for primary paths... · ...with internal churn increase for non-primary ones #12;Churn Reduction

  11. Path to Market for Compact Modular Fusion Power Cores

    E-Print Network [OSTI]

    Precedents? Small number of private fusion companies starting up, filing patents and finding editions Lead author Grounded in DOE program #12;12/13/11 5 Path to market 'next step' Springer Energy Brief: 'Path to Market for Compact Modular Fusion Power' Soliciting wider input from energy, business

  12. Dual Path Instruction Processing Juan L. Aragn1

    E-Print Network [OSTI]

    Acacio, Manuel

    ,joseg}@ditec.um.es 2 Dept. d'Arquitectura de Comp. Universitat Politècnica de Catalunya 08034 Barcelona (Spain) antonio@ac, and renames, but does not execute, instructions from the alternative path for low confidence predicted branches at the same time as the predicted path is being executed. All the stages of the pipeline front

  13. SPECIAL ISSUE PAPER Efficient camera path planning algorithm for human

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    , and a near-optimal path can be obtained. In addition, some COMPUTER ANIMATION AND VIRTUAL WORLDS Comp. AnimSPECIAL ISSUE PAPER Efficient camera path planning algorithm for human motion overview I-Cheng Yeh1 research topic, benefiting many animation applications. Existing optimal-based approaches are generally

  14. Improved Hardness of Approximation for Stackelberg Shortest-Path Pricing

    E-Print Network [OSTI]

    Verbrugge, Clark

    the Stackelberg shortest-path pricing problem, which is defined as follows. Given a graph G with fixed-cost on the predefined fixed costs and our prices, a customer purchases a cheapest s-t-path in G and we receive payment costs, we may assign prices to a subset of the items. Given both fixed costs and prices, a single

  15. Risk Management under Liquidity Risk: Liquidity inclusive Risk Measures

    E-Print Network [OSTI]

    Brigo, Damiano

    Risk Management under Liquidity Risk: Liquidity inclusive Risk Measures GARP Seminar, London, Nov://www.capco.com/capco-insights -- Joint work with Claudio Nordio Prof. D. Brigo (Imperial College and Capco) Risk Management under Management under Liquidity Risk GARP Seminar London 2 / 60 #12;Introduction Liquidity in Risk Measurement

  16. NIF: A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2007-06-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-{micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury uses state-of-the-art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  17. Direct liquid injection of liquid petroleum gas

    SciTech Connect (OSTI)

    Lewis, D.J.; Phipps, J.R.

    1984-02-14

    A fuel injector and injection system for injecting liquified petroleum gas (LPG) into at least one air/fuel mixing chamber from a storage means that stores pressurized LPG in its liquid state. The fuel injector (including a body), adapted to receive pressurized LPG from the storage means and for selectively delivering the LPG to the air/fuel mixing chamber in its liquified state. The system including means for correcting the injector activation signal for pressure and density variations in the fuel.

  18. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  19. Liquid scintillator sampling calorimetry 

    E-Print Network [OSTI]

    Dudgeon, R. Greg

    1994-01-01

    This research was supported by the Department of Energy to investigate a new sampling calorimeter technology for the high intensity regions of the Superconducting Supercollider. The technology involved using liquid scintillator filled glass tubes...

  20. Fractons and Luttinger liquids

    E-Print Network [OSTI]

    Wellington da Cruz

    2000-10-05

    We consider the concept of fractons as particles or quasiparticles which obey a specific fractal statistics in connection with a one-dimensional Luttinger liquid theory. We obtain a dual statistics parameter ${\\tilde{\

  1. Water Clean Water Clean

    E-Print Network [OSTI]

    Ishida, Yuko

    Keep Our Water Clean Keep Our Water Clean Home and garden pesticides and fertilizers are polluting residues wash into gutters, storm drains, and streams by rain,garden watering,or cleaning up drinking water. Follow these tips to keep our rivers, creeks, and oceans clean. What can you do to protect

  2. Water, water everywhere,

    E-Print Network [OSTI]

    Eberhard, Marc O.

    1 Water, water everywhere, but is it safe to drink? An Inquiry-based unit investigating the journey of your drinking water from source to tap of drinking water will contain different contaminants, based on surrounding land uses (guided inquiry activity

  3. Water Resources Forests & Water

    E-Print Network [OSTI]

    Water Resources Forests & Water More than half of the nation's freshwater supply originates on forestland. Healthy and sustainable forests can help ensure a continuous supply of clean and abundant water. Not only does forestland provide the cleanest water of any land use, it also helps absorb rainfall

  4. Hydrophilization of Liquid Surfaces by Plasma Treatment

    E-Print Network [OSTI]

    Victor Multanen; Gilad Chaniel; Roman Grynyov; Ron Yosef Loew; Naor Siany; Edward Bormashenko

    2014-09-01

    The impact of the cold radiofrequency air plasma on the surface properties of silicone oils (polydimethylsiloxane) was studied. Silicone oils of various molecular masses were markedly hydrophilized by the cold air plasma treatment. A pronounced decrease of the apparent water contact angles was observed after plasma treatment. A general theoretical approach to the calculation of apparent contact angles is proposed. The treated liquid surfaces demonstrated hydrophobic recovery. The characteristic time of the hydrophobic recovery grew with the molecular mass of the silicone oil.

  5. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect (OSTI)

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  6. Liquid mixing device

    SciTech Connect (OSTI)

    O'Leary, R. P.

    1985-08-06

    A mixing device for mixing at least two liquids to produce a homogenous mixture. The device includes an elongated chamber in which a vertically oriented elongated mixing cavity is located. The cavity is sealed at its lower end and it is open at its upper end and in communication with the interior of the chamber. An elongated conduit extends the length of the cavity and is adapted to receive liquids to be mixed. The conduit includes a plurality of ports located at longitudinally spaced positions therealong and which ports are directed in different directions. The ports create plural streams of liquid which interact and mix with one another within the cavity. The mixed liquids overflow the cavity and out its top end into the chamber 24. The chamber 24 includes an outlet from which the mixed liquids are withdrawn. In accordance with the preferred embodiment gas eductor means are provided in the inlet to the conduit to introduce gas bubbles within the cavity. Gas vent means are also provided in the device to vent any introduced gases from the device so that only the mixed liquids flow out the outlet.

  7. Shortest Path Set Induced Vertex Ordering and its Application to Distributed Distance Optimal Formation Path Planning and Control on Graphs

    E-Print Network [OSTI]

    LaValle, Steven M.

    Formation Path Planning and Control on Graphs Jingjin Yu Steven M. LaValle Abstract-- For the task of moving formation, it was shown that distance optimal paths can be computed to complete with a tight convergence formation. The ordering leads to a simple distributed scheduling algorithm that assures the same convergence

  8. Liquid crystalline composites containing phyllosilicates

    DOE Patents [OSTI]

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  9. NGNP Program 2013 Status and Path Forward

    SciTech Connect (OSTI)

    Hans Gougar

    2014-03-01

    High temperature gas-cooled reactor (HTGR) technology can play an important role in the energy future of the United States by extending the use of nuclear energy for non-electricity energy production missions, as well as continuing to provide a considerable base load electric power generation capability. Extending nuclear energy into the industrial and transportation sectors through the coproduction of process heat and electricity provides safe, reliable energy for these sectors in an environmentally responsible manner. The modular HTGR provides a substantial improvement in nuclear plant safety for the protection of the public and the environment, and supports collocation of the HTGRhigh temperature gas-cooled reactor with major industrial facilities. Under U.S. Department of Energy direction since 2006, the Next Generation Nuclear Plant Project at Idaho National Laboratory has been working toward commercializing the HTGR technology. However, a recent decision by the Secretary of Energy to reduce the scope of the Next Generation Nuclear Plant Project to a research and development program, considerable realignment has taken place. This report: (1) summarizes the accomplishments of the Next Generation Nuclear Plant Program from FY2011 through FY2013; (2) lays out the path forward necessary to achieve the ultimate objective of commercializing HTGR technology; and (3) discusses ongoing technical, licensing, and evaluation activities under the realigned Next Generation Nuclear Plant program considered important to preserve the significant investment made by the government to-date and to maintain some progress in meeting the objectives of the Energy Policy Act of 2005 (EPAct2005).

  10. An Electromechanical Which-Path Interferometer

    E-Print Network [OSTI]

    A. D. Armour; M. P. Blencowe

    2001-08-28

    We investigate the possibility of an electromechanical which-path interferometer, in which electrons travelling through an Aharonov-Bohm ring incorporating a quantum dot in one of the arms are dephased by an interaction with the fundamental flexural mode of a radio frequency cantilever. The cantilever is positioned so that its tip lies just above the dot and a bias is applied so that an electric field exists between the dot and the tip. This electric field is modified when an additional electron hops onto the dot, coupling the flexural mode of the cantilever and the microscopic electronic degrees of freedom. We analyze the transmission properties of this system and the dependence of interference fringe visibility on the cantilever-dot coupling and on the mechanical properties of the cantilever. The fringes are progressively destroyed as the interaction with the cantilever is turned up, in part due to dephasing arising from the entanglement of the electron and cantilever states and also due to the thermal smearing that results from fluctuations in the state of the cantilever. When the dwell time of the electron on the dot is comparable to or longer than the cantilever period, we find coherent features in the transmission amplitude. These features are washed out when the cantilever is decohered by its coupling to the environment.

  11. A New Weighted Shortest Path Tree for Convergecast Traffic Routing in WSN

    E-Print Network [OSTI]

    Boyer, Edmond

    , existing SPT approaches aim to construct a tree rooted at the sink such that the cost of the path from any to the basic one. Index Terms--Wireless Sensor Networks (WSN), Shortest Path Tree (SPT), weighted path cost such that the path cost from any node to the sink is minimal. In existing construction algorithms, the cost of a path

  12. Routing Bandwidth Guaranteed Paths with Local Restoration in Label Switched Networks

    E-Print Network [OSTI]

    Li, Li Erran

    information. We first show that joint optimization of primary and backup paths is NP-hard in all cases. We along the primary path, the source node detects path failure and activates the backup path or nodes along primary path fail. In this paper, we address the problem of distributed routing

  13. A method for finding the statically sensitized critical path in VLSI circuits 

    E-Print Network [OSTI]

    Sen, Anindita

    1995-01-01

    The longest sensitizable paths of a circuit are referred to as the critical paths of the circuit. Finding all the critical paths in a circuit is called the critical path problem. There are various methods at present to find the critical path of a...

  14. A route to explain water anomalies from results on an aqueous solution of salt

    E-Print Network [OSTI]

    D. Corradini; M. Rovere; P. Gallo

    2010-03-26

    In this paper we investigate the possibility to detect the hypothesized liquid-liquid critical point of water in supercooled aqueous solutions of salts. Molecular dynamics computer simulations are conducted on bulk TIP4P water and on an aqueous solution of sodium chloride in TIP4P water, with concentration c = 0.67 mol/kg. The liquid-liquid critical point is found both in the bulk and in the solution. Its position in the thermodynamic plane shifts to higher temperature and lower pressure for the solution. Comparison with available experimental data allowed us to produce the phase diagrams of both bulk water and the aqueous solution as measurable in experiments. Given the position of the liquid-liquid critical point in the solution as obtained from our simulations, the experimental determination of the hypothesized liquid-liquid critical point of water in aqueous solutions of salts appears possible.

  15. Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grinthal, Alison; Aizenberg, Joanna

    2013-10-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore »fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less

  16. TRANSPORT AND DYNAMICS IN SUPERCOOLED CONFINED WATER

    E-Print Network [OSTI]

    Stanley, H. Eugene

    , the existence of a sec- ond critical point. Our study of the anomalies of water below its melting tem- perature on top. The anomalous properties of liquid bulk water become moTRANSPORT AND DYNAMICS IN SUPERCOOLED CONFINED WATER FRANCESCO MALLAMACE,1,2 CARMELO CORSARO,2 SOW

  17. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOE Patents [OSTI]

    Slayzak, Steven J. (Denver, CO); Anderson, Ren S. (Broomfield, CO); Judkoff, Ronald D. (Golden, CO); Blake, Daniel M. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ryan, Joseph P. (Golden, CO)

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  18. New England Forests: The Path to Sustainability

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    on forests for the quality and abundance of our region's outstanding drinking water. Forests cool and clean could be more certain that our wood is harvested sustainably and is not contributing to environmental fossil fuels extracted from deep within the earth at great cost to our environment and the climate

  19. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    DOE Patents [OSTI]

    Hindin, Saul G. (Mendham, NJ); Roberts, George W. (Westfield, NJ)

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  20. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to...

  1. Surface layering of liquids: The role of surface tension

    E-Print Network [OSTI]

    Oleg Shpyrko; Masafumi Fukuto; Peter Pershan; Ben Ocko; Ivan Kuzmenko; Thomas Gog; Moshe Deutsch

    2004-06-24

    Recent measurements show that the free surfaces of liquid metals and alloys are always layered, regardless of composition and surface tension; a result supported by three decades of simulations and theory. Recent theoretical work claims, however, that at low enough temperatures the free surfaces of all liquids should become layered, unless preempted by bulk freezing. Using x-ray reflectivity and diffuse scattering measurements we show that there is no observable surface-induced layering in water at T=298 K, thus highlighting a fundamental difference between dielectric and metallic liquids. The implications of this result for the question in the title are discussed.

  2. Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim. The harvested Li metal could then be an energy source for Li-Liquid flow batteries by using water as the cathode in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li

  3. Controlling Low-Rate Signal Path Microdischarge for an Ultra-Low-Background Proportional Counter

    SciTech Connect (OSTI)

    Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco; Day, Anthony R.; Hoppe, Eric W.; Keillor, Martin E.; Myers, Allan W.; Overman, Cory T.; Seifert, Allen

    2013-05-01

    ABSTRACT Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) made of high purity copper. These detectors are part of an ultra-low-background counting system (ULBCS) in the newly constructed shallow underground laboratory at PNNL (at a depth of ~30 meters water-equivalent). To control backgrounds, the current preamplifier electronics are located outside the ULBCS shielding. Thus the signal from the detector travels through ~1 meter of cable and is potentially susceptible to high voltage microdischarge and other sources of electronic noise. Based on initial successful tests, commercial cables and connectors were used for this critical signal path. Subsequent testing across different batches of commercial cables and connectors, however, showed unwanted (but still low) rates of microdischarge noise. To control this noise source, two approaches were pursued: first, to carefully validate cables, connectors, and other commercial components in this critical signal path, making modifications where necessary; second, to develop a custom low-noise, low-background preamplifier that can be integrated with the ULBPC and thus remove most commercial components from the critical signal path. This integrated preamplifier approach is based on the Amptek A250 low-noise charge-integrating preamplifier module. The initial microdischarge signals observed are presented and characterized according to the suspected source. Each of the approaches for mitigation is described, and the results from both are compared with each other and with the original performance seen with commercial cables and connectors.

  4. X-rays at Solid-Liquid Surfaces

    SciTech Connect (OSTI)

    Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

    2007-05-02

    Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

  5. Path integral derivations of novel complex trajectory methods

    E-Print Network [OSTI]

    Jeremy Schiff; Yair Goldfarb; David J. Tannor

    2008-07-30

    Path integral derivations are presented for two recently developed complex trajectory techniques for the propagation of wave packets, Complex WKB and BOMCA. Complex WKB is derived using a standard saddle point approximation of the path integral, but taking into account the hbar dependence of both the amplitude and the phase of the intial wave function, thus giving rise to the need for complex classical trajectories. BOMCA is derived using a modification of the saddle point technique, in which the path integral is approximated by expanding around a near-classical path, chosen so that up to some predetermined order there is no need to add any correction terms to the leading order approximation. Both Complex WKB and BOMCA give the same leading order approximation; in Complex WKB higher accuracy is achieved by adding correction terms, while in BOMCA no additional terms are ever added -higher accuracy is achieved by changing the path along which the original approximation is computed. The path integral derivation of the methods explains the need to incorporate contributions from more than one trajectory, as observed in previous numerical work. On the other hand, it emerges that the methods provide efficient schemes for computing the higher order terms in the asymptotic evaluation of path integrals. The understanding we develop of BOMCA suggests that there should exist near-classical trajectories that give exact quantum dynamical results when used in the computation of the path integral keeping just the leading order term. We also apply our path integral techniques to give a compact derivation of the semiclassical approximation to the coherent state propagator.

  6. Path forward for dosimetry cross sections

    SciTech Connect (OSTI)

    Griffin, P.J. [Sandia National Laboratories, Albuquerque, NM 87185-1146 (United States); Peters, C.D. [Sandia Staffing Alliance, Albuquerque, NM 87110 (United States)

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data in the evaluation. (authors)

  7. Path Integral of Bianchi I models in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Xiao Liu; Fei Huang; Jian-Yang Zhu

    2013-02-01

    A path integral formulation of the Bianchi I models containing a massless scalar field in loop quantum cosmology is constructed. Following the strategy used in the homogenous and isotropic case, the calculation is extended to the simplest non-isotropic models according to the $\\bar{\\mu}$ and $\\bar{\\mu}^{\\prime}$ scheme. It is proved from the path integral angle that the quantum dynamic lacks the full invariance with respect to fiducial cell scaling in the $\\bar{\\mu}$ scheme, but it does not in the $\\bar{\\mu}^{\\prime}$ scheme. The investigation affirms the equivalence of the canonical approach and the path integral approach in loop quantum cosmology.

  8. Selecta from a Life-Long Obsession with Path Integrals

    SciTech Connect (OSTI)

    Klauder, John R.

    2008-06-18

    The definition and interpretation of canonical, phase space path integrals has evolved over many years to achieve a form that now admits a correct and rigorous formulation, which is also covariant under canonical coordinate transformations. Such formulations involve coherent state representations, which, in their modern version, were originally introduced as an alternative tool to construct phase space path integrals. Moreover, coherent state representations lead to physical interpretations that are more natural than those afforded by more traditional representations. Suitable continuous time regularization procedures lead to a covariant phase space path integral formulation that greatly clarifies the vague phrase that canonical quantization requires Cartesian coordinates.

  9. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces

    E-Print Network [OSTI]

    Starr, David E.

    2008-01-01

    ambient conditions the vapor pressure of water or aqueousrange (e.g. , the equilibrium vapor pressure of water at itsUHV conditions due to the vapor pressure of the liquids, but

  10. Disinfecting Water Wells by Shock Chlorination 

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2005-09-30

    If your well has been flooded, it must be shock chlorinated before it can be used as a source of drinking water. This publication explains how to disinfect a well using either dry chlorine or liquid household bleach....

  11. Yosemite Waters Vehicle Evaluation Report: Final Results

    SciTech Connect (OSTI)

    Eudy, L.; Barnitt, R.; Alleman, T. L.

    2005-08-01

    Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

  12. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    SciTech Connect (OSTI)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko; McLing, Travis; Neupane, Ghanashyam; Palmer, Carl; Reed, David; Thompson, Vicki

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  13. Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape

    SciTech Connect (OSTI)

    DeVault, G.P.; Bell, C.R.

    1985-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed.

  14. Isotopic mass-dependence of noble gas diffusion coefficients in water

    E-Print Network [OSTI]

    Bourg, I.C.; Sposito, G.

    2008-01-01

    of nonpolar solutes in water: Computer simulations using theof ionic species in liquid water. Geochim. Cosmochim. Acta,noble gas isotope data. Water Resour. Res. 34, 2467-2483.

  15. AHSS Stamping Project ? A/SP 050; Nonlinear Strain Paths Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paths Project ASP 061 AHSS Stamping Project ASP 050; Nonlinear Strain Paths Project ASP 061 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  16. Solution Path Clustering with Minimax Concave Penalty and Its Applications to Noisy Big Data

    E-Print Network [OSTI]

    Marchetti, Yuliya

    2014-01-01

    Path Clustering of Noisy Big Data . . . . . . . . . . . .Y. Wah, and T. Herawan. “Big Data Clustering: A Review. ” InPath Clustering of Noisy Big Data Introduction In this

  17. Energy Upgrade California in Los Angeles County-- The Flex Path Program

    Broader source: Energy.gov [DOE]

    Energy Upgrade California in Los Angeles County: The Flex Path Program. Provides an overview of the Flex Path Pilot Program, progress and next steps.

  18. The paths and characteristics of real estate entrepreneurs

    E-Print Network [OSTI]

    Kazmierski, Michael (Michael Anthony)

    2008-01-01

    What paths have real estate entrepreneurs taken to establish their own firm? Also, what characteristics did they develop and utilize in the process? This thesis gives the unique opportunity to better understand the life ...

  19. Multiphase flow and control of fluid path in microsystems

    E-Print Network [OSTI]

    Jhunjhunwala, Manish

    2005-01-01

    Miniaturized chemical-systems are expected to have advantages of handling, portability, cost, speed, reproducibility and safety. Control of fluid path in small channels between processes in a chemical/biological network ...

  20. Optimizing Path Query Performance: Graph Clustering Strategies \\Lambda

    E-Print Network [OSTI]

    information systems, fleet management, public transit, troop movement, urban planning, to name a few. Among energy­efficient path from A to B that does not use toll roads.'' Q2: ``Display all the garages reachable

  1. Navigating Roadblocks on the Path to Advanced Biofuels Deployment

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Arunas Chesonis, Chief Executive Officer and Chairman of the Board, Sweetwater Energy

  2. Alarm guided critical function and success path monitoring

    DOE Patents [OSTI]

    Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

    1994-01-01

    The use of alarm indication on the overview (IPSO) display to initiate diagnosis of challenges to critical functions or unavailability of success paths, and further alarm-based guidance toward ultimate diagnosis.

  3. Ab-initio path integral techniques for molecules

    E-Print Network [OSTI]

    Daejin Shin; Ming-Chak Ho; J. Shumway

    2006-11-09

    Path integral Monte Carlo with Green's function analysis allows the sampling of quantum mechanical properties of molecules at finite temperature. While a high-precision computation of the energy of the Born-Oppenheimer surface from path integral Monte Carlo is quite costly, we can extract many properties without explicitly calculating the electronic energies. We demonstrate how physically relevant quantities, such as bond-length, vibrational spectra, and polarizabilities of molecules may be sampled directly from the path integral simulation using Matsubura (temperature) Green's functions (imaginary-time correlation functions). These calculations on the hydrogen molecule are a proof-of-concept, designed to motivate new work on fixed-node path-integral calculations for molecules.

  4. Algorithms for an Unmanned Vehicle Path Planning Problem 

    E-Print Network [OSTI]

    Qin, Jianglei

    2013-06-25

    Unmanned Vehicles (UVs) have been significantly utilized in military and civil applications over the last decade. Path-planning of UVs plays an important role in effectively using the available resources such as the UVs and sensors as efficiently...

  5. Directional pre-verbs and the registration of path

    E-Print Network [OSTI]

    Rhodes, Richard Alan

    2005-01-01

    to paths: bi- ‘coming’, ani- ‘going’, bi'mi- ‘goingto this. The morpheme ani- away also appears in future= to-go- coming-mm (Zb) anI'- anim- ni-zlmad ‘go away‘

  6. Glider Path-Planning for Optimal Sampling of Mesoscale Eddies

    E-Print Network [OSTI]

    Smith, Ryan N.

    Glider Path-Planning for Optimal Sampling of Mesoscale Eddies Daniel Hernandez1 , Ryan Smith2 these, mesoscale eddies are of particular interest due to the relevance they have in many oceano

  7. Human-Automation Path Planning Optimization and Decision Support

    E-Print Network [OSTI]

    Cummings, M.L.

    2011-01-01

    Path planning is a problem encountered in multiple domains, including unmanned vehicle control, air traffic control, and future exploration missions to the Moon and Mars. Due to the voluminous and complex nature of the ...

  8. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  9. Path dependent receding horizon control policies for hybrid electric vehicles

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    Future hybrid electric vehicles (HEVs) may use path-dependent operating policies to improve fuel economy. In our previous work, we developed a dynamic programming (DP) algorithm for prescribing the battery state of charge ...

  10. Inquiry-based learning templates for creating online educational paths 

    E-Print Network [OSTI]

    Davis, Sarah Alice

    2006-10-30

    Walden's Paths, created by the Center for the Study of Digital Libraries, provides a mechanism for leveraging student learning with the incredible amount of educational material on the web by organizing selected web pages ...

  11. A Surprising Path for Proton Transfer Without Hydrogen Bonds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Surprising Path for Proton Transfer Without Hydrogen Bonds Print Hydrogen bonds are found everywhere in chemistry and biology and are critical in DNA and RNA. A hydrogen bond...

  12. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  13. A "Sponge" Path to Better Catalysts and Energy Materials | Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to APS Science Highlights rss feed A "Sponge" Path to Better Catalysts and Energy Materials September 6, 2013 Bookmark and Share This schematic depicts a new ORNL-developed...

  14. Helium 'balloons' offer new path to control complex materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Morgan McCorkle Communications and Media Relations 865.574.7308 Helium 'balloons' offer new path to control complex materials Inserting helium atoms (visualized as a red balloon)...

  15. Directed Polymers in Random Environment: Path Localization and Strong Disorder

    E-Print Network [OSTI]

    Directed Polymers in Random Environment: Path Localization and Strong Disorder Francis COMETS, constrained to stretch in the (d + 1)­th direction, and governed by the Hamiltonian - # j#1 (##(S j , j

  16. Automatic beam path analysis of laser wakefield particle acceleration data

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Automatic beam path analysis of laser wakefield particle acceleration data Oliver Rübel1 in a pipeline fashion to automatically locate and analyze high-energy particle bunches undergoing acceleration

  17. Software-based tool path evaluation for environmental sustainability

    E-Print Network [OSTI]

    KONG, DAEYOUNG; Seungchoun Choi; Yusuke Yasui; Sushrut Pavanaskar; Dornfeld, David; Wright, Paul

    2011-01-01

    press as: Kong D, et al. Software-based tool path evaluationArchitecture of the simulation software. Besides the studiesanalysis of machining. Software-based simulation tools have

  18. Silicon Ink Technology Offers Path to Higher Efficiency Solar...

    Broader source: Energy.gov (indexed) [DOE]

    Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost Partnering with Sunnyvale-based Innovalight, which was acquired by DuPont in July 2011, EERE...

  19. Asymptotically optimal path planning and surface reconstruction for inspection

    E-Print Network [OSTI]

    Papadopoulos, Georgios

    2014-01-01

    Motivated by inspection applications for marine structures, this thesis develops algorithms to enable their autonomous inspection. Two essential parts of the inspection problem are (1) path planning and (2) surface ...

  20. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    SciTech Connect (OSTI)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.