Sample records for liquid water content

  1. Liquid-liquid equilibrium of cyclohexane-n-hexane-methanol mixtures; Effect of water content

    SciTech Connect (OSTI)

    Alessi, P.; Fermeglia, M.; Kikic, I. (Istituto di Chimica Applicata e Industriale, University of Trieste, via Valerio 2, I-34127 Trieste (IT))

    1989-04-01T23:59:59.000Z

    Experimental liquid-liquid equilibrium data for the ternary system cyclohexane-n-hexane-methanol and for the binary systems n-hexane-methanol and cyclohexane-methanol are presented over a temperature range from 284 to 298{Kappa} at pressure of 0.1 MPa. Attention is given to the effect of the purity of methanol as far as the water content is concerned. The data are correlated by means of excess Gibbs energy models (NRTL and UNIQUAC), and the binary interaction parameters are reported.

  2. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  3. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Tellier, L. L. (Larry L.); Ho, Cheng,

    2002-01-01T23:59:59.000Z

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  4. Global cloud liquid water path simulations

    SciTech Connect (OSTI)

    Lemus, L. [Southern Hemisphere Meteorology, Clayton, Victoria (Australia)] [Southern Hemisphere Meteorology, Clayton, Victoria (Australia); Rikus, L. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia)] [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Martin, C.; Platt, R. [CSIRO, Aspendale, Victoria (Australia)] [CSIRO, Aspendale, Victoria (Australia)

    1997-01-01T23:59:59.000Z

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model`s simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model`s diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system. 40 refs., 11 figs., 1 tab.

  5. ARM - Measurement - Liquid water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow,icegovMeasurementsLightning stroke ARM

  6. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cadeddu, Maria

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  7. Proton Electrodynamics in Liquid Water

    E-Print Network [OSTI]

    A. A. Volkov; V. G. Artemov; A. V. Pronin

    2013-02-20T23:59:59.000Z

    The dielectric spectrum of liquid water, $10^{4} - 10^{11}$ Hz, is interpreted in terms of diffusion of charges, formed as a result of self-ionization of H$_{2}$O molecules. This approach explains the Debye relaxation and the dc conductivity as two manifestations of this diffusion. The Debye relaxation is due to the charge diffusion with a fast recombination rate, $1/\\tau_{2}$, while the dc conductivity is a manifestation of the diffusion with a much slower recombination rate, $1/\\tau_{1}$. Applying a simple model based on Brownian-like diffusion, we find $\\tau_{2} \\simeq 10^{-11}$ s and $\\tau_{1} \\simeq 10^{-6}$ s, and the concentrations of the charge carriers, involved in each of the two processes, $N_{2} \\simeq 5 \\times 10^{26}$ m$^{-3}$ and $N_{1} \\simeq 10^{14}$ m$^{-3}$. Further, we relate $N_{2}$ and $N_{1}$ to the total concentration of H$_{3}$O$^{+}$--OH$^{-}$ pairs and to the pH index, respectively, and find the lifetime of a single water molecule, $\\tau_{0} \\simeq 10^{-9}$ s. Finally, we show that the high permittivity of water results mostly from flickering of separated charges, rather than from reorientations of intact molecular dipoles.

  8. Reference Correlations for Thermophysical Properties of Liquid Water Jaroslav Ptek, Jan Hrub,a...

    E-Print Network [OSTI]

    Magee, Joseph W.

    of sound , viscosity, thermal con- ductivity, and static dielectric constant of liquid water as a function capacity; speed of sound; thermal conductivity; ther- modynamic properties; viscosity; water. CONTENTS 1Reference Correlations for Thermophysical Properties of Liquid Water at 0.1 MPa Jaroslav Pátek, Jan

  9. Electrokinetic Power Generation from Liquid Water Microjets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15T23:59:59.000Z

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  10. Distributed Reforming of Renewable Liquids via Water Splitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport...

  11. II. Properties of Water 1. Ice and Liquid water structure

    E-Print Network [OSTI]

    Frey, Terry

    Heat Capacity 4. Solvent Properties 5. Dissociation: Acids & Bases / pH II. Organic Chemistry A transport in plants #12;Water has a high specific heat capacity specific heat capacity = amount of energyII. Properties of Water 1. Ice and Liquid water structure 2. Cohesion / Surface Tension 3. High

  12. Liquid Water Oceans in Ice Giants

    E-Print Network [OSTI]

    Sloane J. Wiktorowicz; Andrew P. Ingersoll

    2006-09-26T23:59:59.000Z

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune's deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be ~ 0.8 g/cm^3. Such a high density is inconsistent with gravitational data obtained during the Voyager flyby. As Neptune cools, the probability of a liquid ocean increases. Extrasolar "hot Neptunes," which presumably migrate inward toward their parent stars, cannot harbor liquid water oceans unless they have lost almost all of the hydrogen and helium from their deep interiors.

  13. Liquid chromatographic determination of water

    DOE Patents [OSTI]

    Fortier, N.E.; Fritz, J.S.

    1990-11-13T23:59:59.000Z

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  14. REMOTE ANALYSIS OF HIGH-TRITIUM-CONTENT WATER

    SciTech Connect (OSTI)

    Diprete, D; Raymond Sigg, R; Leah Arrigo, L; Donald Pak, D

    2007-08-07T23:59:59.000Z

    Systems to safely analyze for tritium in moisture collected from glovebox atmospheres are being developed for use at Savannah River Site (SRS) tritium facilities. Analysis results will guide whether the material contains sufficient tritium for economical recovery, or whether it should be stabilized for disposal as waste. In order to minimize potential radiation exposures that could occur in handling and diluting high-tritium-content water, SRS sought alternatives to the process laboratory's routine analysis by liquid-scintillation counting. The newer systems determine tritium concentrations by measuring bremsstrahlung radiation induced by low-energy beta interactions. One of the systems determines tritium activity in liquid streams, the other determines tritium activity in water vapor. Topics discussed include counting results obtained by modeling and laboratory testing and corrections that are made for low-energy photon attenuation.

  15. On the Fluctuations that Order and Frustrate Liquid Water

    E-Print Network [OSTI]

    Limmer, David

    2013-01-01T23:59:59.000Z

    Most nonpolar liquids have heat capacities that range from 8the maximum liquid state heat capacity[173]. ExperimentallyLIQUID AND SOLID WATER (a) Density (b) Compressibility (c) Heat Capacity

  16. Cloud water contents and hydrometeor sizes during the FIRE Arctic Clouds Experiment

    E-Print Network [OSTI]

    Shupe, Matthew

    of radiometers at an ice station frozen into the drifting ice pack of the Arctic Ocean. The NASA/FIRE Arctic- dependent water contents and hydrometeor sizes for all-ice and all-liquid clouds. For the spring and early summer period, all-ice cloud retrievals showed a mean particle diameter of about 60 m and ice water

  17. On the Fluctuations that Order and Frustrate Liquid Water

    E-Print Network [OSTI]

    Limmer, David

    2013-01-01T23:59:59.000Z

    Quantitative water model . . . . . . . . . . . . . . . .5.3 Determining T g for water . . . . . . . . . . . . . . .iv Contents 6 Frustrating water at ordered surfaces 6.1

  18. A quantitative account of quantum effects in liquid water. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report quantum statistical mechanical simulations of liquid water with the TTM2.1-F flexible, polarizable interaction potential for water. The potential is the first...

  19. Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar

    E-Print Network [OSTI]

    Hogan, Robin

    them to generally have a greater effect on the net radiative fluxes than any ice clouds in the profileEstimate of the global distribution of stratiform supercooled liquid water clouds using the LITE layers that have a much larger radiative impact than ice clouds of the same water content because

  20. The physics of liquid water Bernard Cabane1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with extraordinary properties: it has unusually high melting and boiling temperatures, a huge heat capacity, oneThe physics of liquid water Bernard Cabane1 , Rodolphe Vuilleumier2 1 PMMH, ESPCI, 10 rue Vauquelin, France Abstract Liquid water is a liquid with extraordinary properties: it has a very high cohesion

  1. Response functions near the liquid-liquid critical point of ST2 water

    E-Print Network [OSTI]

    Stanley, H. Eugene

    speci¿c heat capacity CP and the isothermal compressibility KT . We use two different methods: (i) fromResponse functions near the liquid-liquid critical point of ST2 water Erik Lascaris , T. A, and for four different system sizes, N = 63, 73, 83, and 93. We locate the liquid-liquid phase transition line

  2. On the Fluctuations that Order and Frustrate Liquid Water

    E-Print Network [OSTI]

    Limmer, David

    2013-01-01T23:59:59.000Z

    the forces of hydrogen bonds to the properties of liquid andhydrogen bond network couples to the dynamically heterogeneous propertiesproperties of liquid water manifest how the strength of these hydrogen

  3. Liquid-liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. 3: Effect of temperature

    SciTech Connect (OSTI)

    Wagner, G. [Universitaet Karlsruhe (Germany). Institut fuer Thermische Verfahrenstechnik; Sandler, S.I. [Univ. of Delaware, Newark, DE (United States). Center for Molecular and Engineering Thermodynamics

    1995-09-01T23:59:59.000Z

    The authors have measured the ternary liquid-liquid equilibria of water + ethanol mixtures with, separately, 2,2,4-trimethylpentane and toluene at 5 and 40 C, water + tert-amyl alcohol (TAOH) mixtures with, separately, toluene and hexane at 5 and 40 C, and of water + TAOH + pentane mixtures at 5 C. The ethanol-containing systems exhibit type 1 liquid-liquid phase behavior, and the TAOH-containing systems exhibit type 2 behavior. These data, together with the data they have previously reported at 25 C, provide information on how the liquid-liquid equilibria of these systems change as a function of temperature. While the addition of ethanol is found to increase the solubility of hydrocarbons in the aqueous phase, the concentration of the hydrocarbon in the water-rich phase decreases with increasing temperature. With the exception of hydrocarbon in the water-rich phase, the experimental data could be correlated quite well with either the UNIQUAC or NRTL models. For most of the systems considered here the predictions of the phase behavior with the liquid-liquid UNIFAC group-contribution model are only qualitatively correct. However, the liquid-liquid UNIFAC model erroneously predicts type 2 phase behavior to occur for water + ethanol + 2,2,4-trimethylpentane system at 5 C.

  4. Liquid-liquid equilibria of water + methanol + 1-octanol and water + ethanol + 1-octanol at various temperatures

    SciTech Connect (OSTI)

    Arce, A.; Blanco, A.; Souza, P.; Vidal, I. (Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering)

    1994-04-01T23:59:59.000Z

    This study is part of a wider program of research on the recovery of light alcohols from dilute aqueous solutions using high molecular weight solvents. The authors report liquid-liquid equilibrium data and binodal curves for the systems water + methanol + 1-octanol and water + ethanol + 1-octanol at 25, 35, and 45 C. The data were fitted to the NRTL and UNIQUAC equations.

  5. Soil-Water Characteristic Curve Modeling at Low Water Content: Empirical and Semi-Empirical Approaches

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Soil-Water Characteristic Curve Modeling at Low Water Content: Empirical and Semi model, the Modified Kovacs (MK) model for the determination of soil-water characteristic curve at the low water contents of two horizons of a soil from Burkina Faso. Combining terms from capillary state

  6. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Minoura, Tsuyoshi [Mitui Engineering and Shipbuilding Co., Ltd., Tokyo (Japan)

    1995-05-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  7. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    ) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determinedVAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K

  8. Spectroscopic investigations of hydrogen bond dynamics in liquid water

    E-Print Network [OSTI]

    Fecko, Christopher J., 1975-

    2004-01-01T23:59:59.000Z

    Many of the remarkable physical and chemical properties of liquid water are due to the strong influence hydrogen bonds have on its microscopic dynamics. However, because of the fast timescales involved, there are relatively ...

  9. Liquid water: A very complex fluid H EUGENE STANLEY

    E-Print Network [OSTI]

    Stanley, H. Eugene

    Liquid water: A very complex fluid H EUGENE STANLEY Center for Polymer Studies and Department, M Canpolat, M Meyer, O Mishima, R Sadr-Lahijany, A Scala and F W Starr. It is also based on earlier

  10. Interferometric tomography of fuel cells for monitoring membrane water content

    E-Print Network [OSTI]

    Waller, Laura

    We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered ...

  11. A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The...

  12. The Fatty Acid Content of Ocean Water

    E-Print Network [OSTI]

    Slowey, James Frank

    1960-01-01T23:59:59.000Z

    acetate sea water ethyl acetate 28, 620 226, 750 13, 780 1Z, 500 9, 540 5, 500 89 5-1/ 2 Run 2 sea water ethyl acetate sea water ethyl acetate sea water ethyl acetate 26, 500 20Z, 500 13, 780 12, 250 8, 480 3, 750 11-1/ 2 88-1/ 2...'ters)(CIpCIpCI2C14 14(1=) 16 16(1 =) 18 18(1 =) 18(2 =) Number of Carbon Atoms t. % Wei ht of Esters mg. /I. 10 300 900 1900 0 6Q 20 4 3Q 12 11 7 35 94 0 0 0 7 6 42 15 0 22 16 Bg 14 9 0 0 0 0 0. 5 0. 4 0. 5 0. 3 23 FIGURE 2 SEPARATION...

  13. Process for blending coal with water immiscible liquid

    DOE Patents [OSTI]

    Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

    1982-10-26T23:59:59.000Z

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  14. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    E-Print Network [OSTI]

    John W. Biddle; Vincent Holten; Mikhail A. Anisimov

    2014-08-21T23:59:59.000Z

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter, to be consistent with the presence of the metastable liquid-liquid transition. We suggest an interpretation of the liquid-liquid transition in aqueous solutions of glycerol, recently observed by Murata and Tanaka, elucidating the non-conserved nature of the order parameter, its coupling with density and concentration, and the peculiarity of "spinodal decomposition without phase separation". We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  15. Information content and reliability of TOVS estimates of precipitable water

    E-Print Network [OSTI]

    Yin, Min

    1994-01-01T23:59:59.000Z

    of water vapor in the atmosphere has been accomplished by satellite sensors in both the infrared (IR) and microwave spectral regions. The radiance will be high if either the atmospheric temperature is high or the water vapor content is low. Among... hours apart. On board each satellite are channels of High Resolution Infrared Radiation Sounder (HIRS2), Microwave Sounding Unit (MSU) and Stratospheric Sounding Unit (SSU). Two infrared channels are essentially sensitive to water vapor. PW derived...

  16. Structure and Depletion at Fluoro- and Hydro-carbon/Water Liquid/Liquid Interfaces

    E-Print Network [OSTI]

    Kaoru Kashimoto; Jaesung Yoon; Binyang Hou; Chiu-hao Chen; Binhua Lin; Makoto Aratono; Takanori Takiue; Mark L. Schlossman

    2008-07-18T23:59:59.000Z

    The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vapor-like depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose super-hydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These results are consistent with the sub-angstrom proximity of water to soft hydrophobic materials.

  17. Local Structure Analysis in $Ab$ $Initio$ Liquid Water

    E-Print Network [OSTI]

    Biswajit Santra; Robert A. DiStasio Jr.; Fausto Martelli; Roberto Car

    2015-02-27T23:59:59.000Z

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate $ab$ $initio$ liquid water. At ambient conditions, the LSI probability distribution, P($I$), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P($I$) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies $among$ water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- (LDA) and high-density (HDA) amorphous phases of ice are present in the IPES of ambient liquid water. Analysis of the LSI autocorrelation function uncovered a persistence time of $\\sim$ 4 ps---a finding consistent with the fact that natural thermal fluctuations are responsible for transitions between these distinct yet transient local aqueous environments in ambient liquid water.

  18. How the Liquid-Liquid Transition Affects Hydrophobic Hydration in Deeply Supercooled Water

    E-Print Network [OSTI]

    Dietmar Paschek

    2005-03-21T23:59:59.000Z

    We determine the phase diagram of liquid supercooled water by extensive computer simulations using the TIP5P-E model [J. Chem. Phys. {\\bf 120}, 6085 (2004)]. We find that the transformation of water into a low density liquid in the supercooled range strongly enhances the solubility of hydrophobic particles. The transformation of water into a tetrahedrally structured liquid is accompanied by a minimum in the hydration entropy and enthalpy. The corresponding change in sign of the solvation heat capacity indicates a loss of one characteristic signature of hydrophobic hydration. The observed behavior is found to be qualitatively in accordance with the predictions of the information theory model of Garde et al. [Phys. Rev. Lett. {\\bf 77}, 4966 (1996)].

  19. Liquid-Liquid Phase Transition in Confined Water: A Monte Carlo Study Martin Meyer and H. Eugene Stanley*

    E-Print Network [OSTI]

    Stanley, H. Eugene

    Liquid-Liquid Phase Transition in Confined Water: A Monte Carlo Study Martin Meyer and H. Eugene Stanley* Center for Polymer Studies and Department of Physics, Boston UniVersity, Boston, Massachusetts

  20. Local Structure Analysis in $Ab$ $Initio$ Liquid Water

    E-Print Network [OSTI]

    Santra, Biswajit; Martelli, Fausto; Car, Roberto

    2015-01-01T23:59:59.000Z

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate $ab$ $initio$ liquid water. At ambient conditions, the LSI probability distribution, P($I$), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P($I$) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies $among$ water molecules with the same LSI identities, we demonstrate that the signatures of th...

  1. Glass transition in biomolecules and the liquid-liquid critical point of water

    E-Print Network [OSTI]

    P. Kumar; Z. Yan; L. Xu; M. G. Mazza; S. V. Buldyrev; S. -H. Chen; S. Sastry; H. E. Stanley

    2006-08-28T23:59:59.000Z

    Using molecular dynamics simulations, we investigate the relation between the dynamic transitions of biomolecules (lysozyme and DNA) and the dynamic and thermodynamic properties of hydration water. We find that the dynamic transition of the macromolecules, sometimes called a ``protein glass transition'', occurs at the temperature of dynamic crossover in the diffusivity of hydration water, and also coincides with the maxima of the isobaric specific heat $C_P$ and the temperature derivative of the orientational order parameter. We relate these findings to the hypothesis of a liquid-liquid critical point in water. Our simulations are consistent with the possibility that the protein glass transition results from crossing the Widom line, which is defined as the locus of correlation length maxima emanating from the hypothesized second critical point of water.

  2. Modeling water content effects in polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Springer, T.E.; Zawodzinski, T.A.; Gottesfeld, S.

    1991-01-01T23:59:59.000Z

    Water content and transport is the key factor in the one-dimensional, steady-state model of a complete polymer electrolyte fuel cell (PEFC) described here. Water diffusion coefficients, electroosmotic drag coefficients, water sorption isotherms, and membrane conductivities, all measured in our laboratory as functions of membrane water content, were used in the model. The model predicts a net-water-per-proton flux ratio of 0.2 H{sub 2}O/H{sup +} under typical operating conditions, which is much less than the measured electroosmotic drag coefficient for a fully hydrated membrane. It also predicts an increase in membrane resistance with increased current density and demonstrates the great advantage of thinner membranes in alleviating this resistance problem. Both of these predictions were verified experimentally under certain conditions. We also describe the sensitivity of the water concentration profile and associated observables to variations in the values of some of the transport parameters in anticipation of applying the model to fuel cells employing other membranes. 16 refs., 9 figs.

  3. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    SciTech Connect (OSTI)

    Kang, Misun [ORNL; Bilheux, Hassina Z [ORNL; Voisin, Sophie [ORNL; Cheng, Chu-lin [University of Tennessee, Knoxville (UTK); Perfect, Edmund [University of Tennessee, Knoxville (UTK); Horita, Juske [Texas Tech University (TTU); Warren, Jeffrey [ORNL

    2013-04-01T23:59:59.000Z

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  4. Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Measurement of Liquid Water Accumulation in a PEMFC with Dead-Ended Anode Jason B. Siegel,a, *,z, Maryland 20899, USA The operation and accumulation of liquid water within the cell structure of a polymer, accumulation of liquid water in the anode gas distribution channels was observed in most tested conditions

  5. Liquid water transport in fuel cell gas diffusion layers Aimy Ming Jii Bazylak

    E-Print Network [OSTI]

    Victoria, University of

    Liquid water transport in fuel cell gas diffusion layers by Aimy Ming Jii Bazylak Bachelor means, without the permission of the author. #12;ii Liquid water transport in fuel cell gas diffusion State University) Abstract Liquid water management has a major impact on the performance and durability

  6. Coupled cluster benchmarks of water monomers and dimers extracted from density-functional theory liquid water: The importance of monomer

    E-Print Network [OSTI]

    Alavi, Ali

    Coupled cluster benchmarks of water monomers and dimers extracted from density-functional theory functionals in simulations of liquid water, water monomers and dimers were extracted from a PBE simulation liquid water: The importance of monomer deformations Biswajit Santra,1 Angelos Michaelides,1,2,a

  7. Distributed Reforming of Renewable Liquids via Water Splitting using

    E-Print Network [OSTI]

    circuitry/power supply Non-galvanic Single material (no electrodes) Ethanol/NG Steam O2- 1/2 O2 + 2e- 1/2 O.C2H5OH + 1/2 O2 2CO + 3H2 Predominant products of ethanol reforming: H2, CO, CO2, CH4, H2O #12Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM

  8. Aircraft Measurements of Cloud Liquid Water Content using the Forward

    E-Print Network [OSTI]

    Delene, David J.

    droplets are within the laser beam long enough so they can be sized. A running average of the droplet the average, it is rejected from sizing but included in the running average. #12;The velocity acceptance ratio #12;Percentage of particle losses based on the measured FSSP activity. UND FSSP Particle Loss

  9. Gas-Liquid Coexistence in the Primitive Model for Water

    E-Print Network [OSTI]

    F. Romano; P. Tartaglia; F. Sciortino

    2007-05-08T23:59:59.000Z

    We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favored, as in the case of articles interacting via short-range attractive spherical potentials. Differently from spherical potentials, we do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in an homogeneous sample driven by bonding as opposed to packing.

  10. The influence of changes in water content on the electrical resistivity of a natural unsaturated loess

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    relationship between the water content and the electrical resistivity of soils. In this work, a new electrical The measurement of water content in soils has been performed through different non- destructive techniques authors also determined the water content from the measurement of the soil's electrical resistivity

  11. Water clusters: Untangling the mysteries of the liquid, one molecule at a time

    E-Print Network [OSTI]

    Cohen, Ronald C.

    to accurately calculate the properties of liquid water (e.g., heat capacity, density, dielectric constantWater clusters: Untangling the mysteries of the liquid, one molecule at a time Frank N. Keutsch- ative hydrogen bonding and promises to lead to a more complete molecular description of the liquid

  12. Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids.

    E-Print Network [OSTI]

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; Von Stosch, Moritz; Prausnitz, John M.

    2008-01-01T23:59:59.000Z

    for metal-ion extraction from water. All ionic liquids (useful for extraction of cations from water. 9-15 Previoussingle extraction of mercury in water with either [3MOPYR

  13. Nuclear magnetic resonance imaging of water content in the subsurface

    SciTech Connect (OSTI)

    J. Hendricks; T. Yao; A. Kearns

    1999-01-21T23:59:59.000Z

    Previous theoretical and experimental studies indicated that surface nuclear magnetic resonance (NMR) has the potential to provide cost-effective water content measurements in the subsurface and is a technology ripe for exploitation in practice. The objectives of this investigation are (a) to test the technique under a wide range of hydrogeological conditions and (b) to generalize existing NMR theories in order to correctly model NMR response from conductive ground and to assess properties of the inverse problem. Twenty-four sites with different hydrogeologic settings were selected in New Mexico and Colorado for testing. The greatest limitation of surface NMR technology appears to be the lack of understanding in which manner the NMR signal is influenced by soil-water factors such as pore size distribution, surface-to-volume ratio, paramagnetic ions dissolved in the ground water, and the presence of ferromagnetic minerals. Although the theoretical basis is found to be sound, several advances need to be made to make surface NMR a viable technology for hydrological investigations. There is a research need to investigate, under controlled laboratory conditions, how the complex factors of soil-water systems affect NMR relaxation times.

  14. Liquid-liquid equilibria of the ternary system water + acetic acid + 2-methyl-2-butanol

    SciTech Connect (OSTI)

    Fahim, M.A.; Al-Muhtaseb, S.A. [United Arab Emirates Univ., Al-Ain (United Arab Emirates). Dept. of Chemical and Petroleum Engineering] [United Arab Emirates Univ., Al-Ain (United Arab Emirates). Dept. of Chemical and Petroleum Engineering

    1996-11-01T23:59:59.000Z

    Liquid-liquid equilibria for the ternary system water + acetic acid + 2-methyl-2-butanol were measured over a temperature range of (288 to 323) K. The results were used to estimate the interaction parameters between each of the three compounds for the NRTL and UNIQUAC models and between each of the main groups of H{sub 2}O, CH{sub 2} (paraffinic CH{sub 2}), OH, and COOH for the UJNIFAC model as a function of temperature. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the three models. The NRTL equation was the most accurate model in correlating the overall equilibrium compositions of the studied system. The UNIFAC model satisfactorily predicted the equilibrium compositions.

  15. Liquid-liquid equilibria of the ternary system water + acetic acid + 1-hexanol

    SciTech Connect (OSTI)

    Fahim, M.A. [Kuwait Univ., Safat (Kuwait). Dept. of Chemical Engineering] [Kuwait Univ., Safat (Kuwait). Dept. of Chemical Engineering; Al-Muhtaseb, S.A.; Al-Nashef, I.M. [U.A.E. Univ., Al-Ain (United Arab Emirates). Dept. of Chemical and Petroleum Engineering] [U.A.E. Univ., Al-Ain (United Arab Emirates). Dept. of Chemical and Petroleum Engineering

    1997-01-01T23:59:59.000Z

    The recovery of organic acids from dilute solutions resulting from fermentation processes is important and many solvents have been tried to improve such recovery. Liquid-liquid equilibria for the ternary system water + acetic acid + 1-hexanol were measured over a temperature range of (288 to 323) K. The results were used to estimate the interaction parameters between each of the three compounds for the NRTL and UNIQUAC models and between each of the main groups of H{sub 2}O, CH{sub 2} (paraffinic CH{sub 2}), OH, and COOH for the UNIFAC model as a function of temperature. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the three models. The NRTL equation was the most accurate model in correlating the overall equilibrium compositions of the studied system. The UNIQUAC and UNIFAC models satisfactorily predicted the equilibrium compositions.

  16. Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son

    E-Print Network [OSTI]

    Yang, Vigor

    1 Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son , R.A. Yetter, V. Yang, and B: Supplemental materials submitted #12;2 Combustion of Nano-Aluminum and Liquid Water G.A. Risha, S.F. Son, R of nano-aluminum (nAl) and liquid water has been conducted. In particular, linear and mass-burning rates

  17. Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements

    SciTech Connect (OSTI)

    Turner, D.D.

    2007-10-31T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of cross-talk between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a first principles calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidars laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles o

  18. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    E-Print Network [OSTI]

    Hausrath, E.M.

    2008-01-01T23:59:59.000Z

    Basalt weathering rates on Earth and the duration of liquidCarlisle, PA 17013 Earth Sciences Division, Lawrencetime to liquid water: on Earth, mineral persistence times

  19. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01T23:59:59.000Z

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? ?r)/(?s ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  20. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    SciTech Connect (OSTI)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31T23:59:59.000Z

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  1. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  2. 1 DECEMBER 1995 Validation of Satellite Retrievals of Cloud Microphysics and Liquid Water Path

    E-Print Network [OSTI]

    Han, Quingyuan

    1 DECEMBER 1995 Validation of Satellite Retrievals of Cloud Microphysics and Liquid Water Path Using Observations from FIRE 1, Introduction Q. HAN, * W. Rossow, t R. WELCH, * A. WHITE, * * AND J Cloud effective radii (r) and cloud liquid water path (LWP) are derived from ISCCP spatially sampled

  3. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey negative radiative forcing on the global scale, mainly due to the cloud cover effect. 2013 Elsevier B

  4. Network analysis of proton transfer in liquid water

    SciTech Connect (OSTI)

    Shevchuk, Roman; Rao, Francesco, E-mail: francesco.rao@frias.uni-freiburg.de [Freiburg Institute for Advanced Studies, School of Soft Matter Research, Freiburg im Breisgau (Germany); Agmon, Noam [Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem (Israel)

    2014-06-28T23:59:59.000Z

    Proton transfer in macromolecular systems is a fascinating yet elusive process. In the last ten years, molecular simulations have shown to be a useful tool to unveil the atomistic mechanism. Notwithstanding, the large number of degrees of freedom involved make the accurate description of the process very hard even for the case of proton diffusion in bulk water. Here, multi-state empirical valence bond molecular dynamics simulations in conjunction with complex network analysis are applied to study proton transfer in liquid water. Making use of a transition network formalism, this approach takes into account the time evolution of several coordinates simultaneously. Our results provide evidence for a strong dependence of proton transfer on the length of the hydrogen bond solvating the Zundel complex, with proton transfer enhancement as shorter bonds are formed at the acceptor site. We identify six major states (nodes) on the network leading from the special pair to a more symmetric Zundel complex required for transferring the proton. Moreover, the second solvation shell specifically rearranges to promote the transfer, reiterating the idea that solvation beyond the first shell of the Zundel complex plays a crucial role in the process.

  5. Drop Simulation of 6M Drum with Locking-Ring Closure and Liquid Contents

    SciTech Connect (OSTI)

    Wu, T

    2006-04-17T23:59:59.000Z

    This paper presents the dynamic simulation of the 6M drum with a locking-ring type closure subjected to a 4.9-foot drop. The drum is filled with water to 98 percent of overflow capacity. A three dimensional finite-element model consisting of metallic, liquid and rubber gasket components is used in the simulation. The water is represented by a hydrodynamic material model in which the material's volume strength is determined by an equation of state. The explicit numerical method based on the theory of wave propagation is used to determine the combined structural response to the torque load for tightening the locking-ring closure and to the impact load due to the drop.

  6. Nitrate contents of well, raw, treated and pipe borne water in Vom, Plateau State, Nigeria

    SciTech Connect (OSTI)

    Gbodi, T.A.; Atawodi, S.E.

    1987-04-01T23:59:59.000Z

    Nitrate content of water available to man and animals in a rural community in Plateau State, Nigeria was determined. Water samples were obtained from artesian wells, raw untreated surface water, treated raw water, and pipe borne water. The examination of the samples was over a period of 3 mo at weekly intervals. Sixty percent of the artesian wells sampled had nitrate concentration above 5-50 ppm in June and August, while samples from other sources had less than 1 ppm. The proximity of pit latrines to some of the wells may have been responsible for high nitrate content of the well water.

  7. Cyclic variation in some electrolytes and the water content of ovine cervico-vaginal mucus

    E-Print Network [OSTI]

    Connor, Jack Seale

    1970-01-01T23:59:59.000Z

    CYCLIC VARIATION IN SOME ELECTROLYTES AND THE WATER CONTENT QF OVINE CERVICO-VAGINAL MUCUS A Thesis by JACK SEALE CONNOR Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE January 1969 Major Subject: Physiology of Reproduction CYCLIC VARIATION IN SOME ELECTROLYTES AND THE WATER CONTENT OF OVINE CERVICO-VAGINAL MUCUS A Thesis by JACK SEALE CONNOR Approved as to style and content by: (Chairman...

  8. Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge Scheduling in Fuel Cells

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Parameterization of GDL Liquid Water Front Propagation and Channel Accumulation for Anode Purge, and (2) accumulation and transport of liquid water in the Gas Diffusion Layer (GDL) originally presented experimentally iden- tified parameter to match the rate of liquid water accumulation in the anode channel

  9. Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network rearrangement dynamics

    E-Print Network [OSTI]

    Ramaswamy, Ram

    Long time fluctuation of liquid water: l/f spectrum of energy fluctuation in hydrogen bond network of the potential energy fluctuation of liquid water is examined and found to yield so-called l/f frequency of hydrogen bond network relaxations in liquid water. A simple model of cellular dynamics is proposed

  10. MODELING OF LIQUID WATER ON CM PARENT BODIES AND IMPLICATIONS FOR AMINO ACID RACEMIZATION. B. A. Cohen

    E-Print Network [OSTI]

    Cohen, Barbara Anne

    the most recent tem- perature-dependent expressions for thermal conductiv- ity, heat capacity, densityMODELING OF LIQUID WATER ON CM PARENT BODIES AND IMPLICATIONS FOR AMINO ACID RACEMIZATION. B. A and duration of a liquid water phase [1]. The characteris- tics of the liquid water phase are critical

  11. Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications on pre-eruptive conduit conditions

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications of the eruptive products. We used quantitative analysis of water content in residual glasses (matrix glass. To better link water content to structural level, we performed new water solubility experiments at low

  12. Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K. Bowles, Ivan Saika-Voivod, and Francesco Sciortino

    E-Print Network [OSTI]

    Sciortino, Francesco

    Free energy surface of ST2 water near the liquid-liquid phase transition Peter H. Poole, Richard K://jcp.aip.org/about/rights_and_permissions #12;THE JOURNAL OF CHEMICAL PHYSICS 138, 034505 (2013) Free energy surface of ST2 water near umbrella sampling Monte Carlo simulations to evaluate the free energy surface of the ST2 model of water

  13. Water-saving liquid-gas conditioning system

    DOE Patents [OSTI]

    Martin, Christopher; Zhuang, Ye

    2014-01-14T23:59:59.000Z

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  14. Analysing chromatographic data using data mining to monitor petroleum content in water

    E-Print Network [OSTI]

    Frank, Eibe

    Analysing chromatographic data using data mining to monitor petroleum content in water Geoffrey in environmental applications. A typical application is the monitoring of water samples to determine to determine if tanks used to store petrol are leaking into local water systems. Chromatographic techniques

  15. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect (OSTI)

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Fsica Matemtica da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal)] [Grupo de Fsica Matemtica da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Fsica Matemtica da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal) [Grupo de Fsica Matemtica da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Qumica e Bioqumica, Faculdade de Cincias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Fsica da Universidade de So Paulo, CP 66318, 05314-970 So Paulo, SP (Brazil)

    2014-04-28T23:59:59.000Z

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the OH stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  16. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2006-02-21T23:59:59.000Z

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  17. Nuclear tanker producing liquid fuels from air and water

    E-Print Network [OSTI]

    Galle-Bishop, John Michael

    2011-01-01T23:59:59.000Z

    Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

  18. Non-invasive field measurements of soil water content using a pulsed 14 MeV neutron generator

    E-Print Network [OSTI]

    Johnson, Peter D.

    Non-invasive field measurements of soil water content using a pulsed 14 MeV neutron generator S-3120, United States 1. Introduction Knowledge of soil water content is critical to agricultural, hydrological from H will be a function of the soils' water-content. To the best of our knowledge

  19. The use of a permanent magnet for water content measurements ofwood chips

    SciTech Connect (OSTI)

    Barale, P.J.; Fong, C.G.; Green, M.A.; Luft, P.A.; McInturff,A.D.; Reimer, J.A.; Yahnke, M.

    2001-09-20T23:59:59.000Z

    The Lawrence Berkeley National Laboratory has developed a device that measures the water content of wood chips, pulp and brown stock for the paper industry. This device employs a permanent magnet as the central part of a NMR measurement system. This report describes the magnet and the NMR measurement system. The results of water content measurements in wood chips in a magnetic field of 0.47 T are presented.

  20. Effects of Water Content and Alumino-Silicate Sources on the Structure and Properties of Geopolymers

    E-Print Network [OSTI]

    Lizcano, Maricela

    2012-10-19T23:59:59.000Z

    EFFECTS OF WATER CONTENT AND ALUMINO-SILICATE SOURCES ON THE STRUCTURE AND PROPERTIES OF GEOPOLYMERS A Dissertation by MARICELA LIZCANO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2011 Major Subject: Mechanical Engineering Effects of Water Content and Alumino-Silicate Sources on the Structure and Properties of Geopolymer...

  1. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu [Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

    2014-11-14T23:59:59.000Z

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  2. Liquid-liquid equilibria of the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorene (3,5,5-trimethyl-2-cyclohexen-1-one)

    SciTech Connect (OSTI)

    Colombo, A.; Battilana, P.; Ragaini, V.; Bianchi, C.L. [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry] [Milan Univ. (Italy). Dept. of Physical Chemistry and Electrochemistry; Carvoli, G. [Chemial S.p.A., Cavaglia (Italy)] [Chemial S.p.A., Cavaglia (Italy)

    1999-01-01T23:59:59.000Z

    Liquid-liquid equilibria for the ternary systems water + acetic acid + ethyl acetate and water + acetic acid + isophorone (3,5,5-trimethyl-2-cyclohexen-1-one) were measured over the temperature range (283 to 313) K. The results were used to estimate the interaction parameters between each of the three compounds of the systems studied for the NRTL and UNIQUAC models. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the two models; experimental data were successfully reproduced. The UNIQUAC model was the most accurate in correlating the overall equilibrium composition of the studied systems. Also the NRTL model satisfactorily predicted the equilibrium composition. Isophorone experimentally resulted in a better extraction capacity for acetic acid and in a lower miscibility with water.

  3. A liquid water management strategy for PEM fuel cell stacks

    E-Print Network [OSTI]

    Van Nguyen, Trung; Knobbe, M. W.

    2003-02-25T23:59:59.000Z

    Gas and water management are key to achieving good performance from a PEM fuel cell stack. Previous experimentation had found, and this experimentation confirms, that one very effective method of achieving proper gas and water management is the use...

  4. Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel

    E-Print Network [OSTI]

    Victoria, University of

    Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

  5. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect (OSTI)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15T23:59:59.000Z

    Highlights: Limited information in the literature on the use of GPR to measure in situ water content in a landfill. Developed GPR method allows measurement of in situ water content in a landfill. Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  6. The effect of water content on solute transport in unsaturated porous media

    E-Print Network [OSTI]

    to as the convection-dispersion equation (CDE), in which v is pore water velocity (v q/ , where q is the Darcy flux at lower water contents. Because the classical convection- dispersion equation does not adequately describe of these velocity variations on solute transport has generally been incorporated in the transport equation using

  7. Dual-energy synchrotron X ray measurements of rapid soil density and water content changes in swelling soils

    E-Print Network [OSTI]

    Walter, M.Todd

    content and bulk density. A number of studies have used dual-energy gamma rays to investigate soilDual-energy synchrotron X ray measurements of rapid soil density and water content changes-energy synchrotron X ray to measure, for the first time, the water content and bulk density changes during the fast

  8. Liquid-liquid equilibria for water + ethanol + 2-methylpropyl ethanoate and water + ethanol + 1,2-dibromoethane at 298. 15 K

    SciTech Connect (OSTI)

    Solimo, H.N.; Barnes de Arreguez, N.G. (Univ. Nacional de Tucuman, San Miguel de Tucuman (Argentina). Inst. de Fisica)

    1994-01-01T23:59:59.000Z

    Liquid-liquid equilibrium, distribution coefficients, and selectivities of the systems water + ethanol + 2-methylpropyl ethanoate or + 1,2-dibromoethane have been determined at 298.15 K in order to evaluate their suitability in preferentially extracting ethanol from aqueous solution. Tie-line data were satisfactorily correlated by the Othmer and Tobias method, and the plait point coordinates for the two systems were estimated. The experimental data was compared with the values calculated by the NRTL and UNIQUAC models. The water + ethanol + 2-methylpropyl ethanoate system was also compared with the values predicted by the UNIFAC model. Poor qualitative agreement was obtained with these models. From the experimental results, they can conclude that both solvents are inappropriate for ethanol extraction processes from aqueous solutions.

  9. Journal of Power Sources 180 (2008) 773783 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Mench, Matthew M.

    2008-01-01T23:59:59.000Z

    Flow-field Neutron imaging Water storage Residual water a b s t r a c t Liquid water stored of Power Sources journal homepage: www.elsevier.com/locate/jpowsour Passive control of liquid water storage. In some cases, the stored water content in the cell can be nearly double that of another design, despite

  10. The effect of soil water content on the phytotoxicity of diuron, fluridone, metribuzin and trifluralin

    E-Print Network [OSTI]

    Baumann, Paul A

    1979-01-01T23:59:59.000Z

    'HIE ~ OF SOIL WATER CONTENT ON 'IBE ~XICITY OF DIURON, FLURIDONE, NETMBUZIN AND TRIFLURALIN by Sutmitted to the Graduate College of Tom A&M University in partial fulfillnant of the requirement for the degree of MASTER OF SCIENCE August 1979... Major Subject: Agroncxny THE ~ OF SOIL KQER ~ ON 'IBE PHY'IVIOIIICITY OF DIUIrON, FLUPIDONE, NETRUKZIN AND TRII'LUHALIN A Thesis Approved as to style and content by: (Chairman of Cormittee) (Head of Departrrent) (Member) August. 1979 'Ihe Effect...

  11. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    SciTech Connect (OSTI)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States)] [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)] [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21T23:59:59.000Z

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T phase diagram for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related, both being associated with the limit of kinetic stability of LDA (HDA)

  12. Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)

    E-Print Network [OSTI]

    Manning, Norman Willis William

    1997-01-01T23:59:59.000Z

    A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

  13. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    SciTech Connect (OSTI)

    Mun, S.Y.; Lee, H.

    1999-12-01T23:59:59.000Z

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  14. Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Wood, D. L.; Yi, Y. S.; Van Nguyen, Trung

    1998-01-01T23:59:59.000Z

    Proper water management is vital to ensuring successful performance of proton exchange membrane fuel cells. The effectiveness of the direct liquid water injection scheme and the interdigitated flow field design towards providing adequate gas...

  15. Physiological changes in cultured Sorghum bicolor (L.) Moench cells in response to induced water stress: osmotic potential, relative water content, carbohydrates, organic acids, potassium, and amino acids

    E-Print Network [OSTI]

    Diquez, Ricardo

    1987-01-01T23:59:59.000Z

    UUZEZCLUUZCRL CIIEUEE IE CULTURED ~8OR ICE RICCICR IL ) MOBMCH CELLS IE RESPONSE TO INDUCED WATER STRESS OSMOTIC POTEMTZAL E RELATIVE WATER CONTENT E CARBOHYDRATES U ORGANIC ACIDS@ POTASSIUM E AED AMINO ACIDS A Thesis by RICARDO DIQUEZ... ZN RESPONSB TO IHDUCBD WATBR STRESS'- OSMOTIC POTENTIAL~ RELATIVE WATER CONTENT~ CARBOHYDRATES, ORGANIC ACIDS, POTASSIUM, AND AMINO ACIDS A Thesis by RICARDO DIQUEZ Approved as to style and content by: Roberta H. Smith (Chair of Committee...

  16. Optical Kerr effect of liquid and supercooled water: the experimental and data analysis perspective

    E-Print Network [OSTI]

    A. Taschin; P. Bartolini; R. Eramo; R. Righini; R. Torre

    2014-06-20T23:59:59.000Z

    The time-resolved optical Kerr effect spectroscopy (OKE) is a powerful experimental tool enabling accurate investigations of the dynamic phenomena in molecular liquids. We introduced innovative experimental and fitting procedures, that permit a safe deconvolution of sample response function from the instrumental function. This is a critical issue in order to measure the dynamics of sample presenting weak signal, e.g. liquid water. We report OKE data on water measuring intermolecular vibrations and the structural relaxation processes in an extended temperature range, inclusive of the supercooled states. The unpreceded data quality makes possible a solid comparison with few theoretical models; the multi-mode Brownian oscillator model, the Kubo's discrete random jump model and the schematic mode-coupling model. All these models produce reasonable good fits of the OKE data of stable liquid water, i.e. over the freezing point. The features of water dynamics in the OKE data becomes unambiguous only at lower temperatures, i.e. for water in the metastable supercooled phase. Hence this data enable a valid comparison between the model fits. We found that the schematic mode-coupling model provides the more rigorous and complete model for water dynamics, even if is intrinsic hydrodynamic approach hide the molecular information.

  17. Park City/ANS 1 ANALYSIS OF LIQUID CRYOGEN-WATER EXPERIMENTS WITH THE MELCOR CODE

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Park City/ANS 1 ANALYSIS OF LIQUID CRYOGEN-WATER EXPERIMENTS WITH THE MELCOR CODE R.C. Duckworth, J code, MELCOR. Experimental results showed that no large `shock' pressures were observed. Thus, one can to benchmark the code and show its usefulness in determining potential critical issues involving these fusion

  18. Life in the Solar System Assume we need energy, liquid water, and organic materials.

    E-Print Network [OSTI]

    Shirley, Yancy

    high pressure, no sunlight, high temperature. Not much chance of life there. Gas Giants #12;The moonsLife in the Solar System Assume we need energy, liquid water, and organic materials. #12;Size N2 Titan Thick atmo Thick atmo Thin atmo #12;Small rocky bodies are unlikely to host life: too hot

  19. Electrokinetic Hydrogen Generation from Liquid Water Microjets Andrew M. Duffin and Richard J. Saykally,*

    E-Print Network [OSTI]

    Cohen, Ronald C.

    of natural gas. These thermal methods are relatively cheap, but they do not mitigate difficulties associatedElectrokinetic Hydrogen Generation from Liquid Water Microjets Andrew M. Duffin and Richard J, 2007; In Final Form: May 31, 2007 We describe a method for generating molecular hydrogen directly from

  20. Evaluating specific error characteristics of microwave-derived cloud liquid water products

    E-Print Network [OSTI]

    Christopher, Sundar A.

    of cloud LWP products globally using concurrent data from visible/ infrared satellite sensors. The approachEvaluating specific error characteristics of microwave-derived cloud liquid water products Thomas J microwave satellite measurements. Using coincident visible/infrared satellite data, errors are isolated

  1. New Mexico cloud super cooled liquid water survey final report 2009.

    SciTech Connect (OSTI)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01T23:59:59.000Z

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  2. VALIDATION OF CLOUD LIQUID WATER PATH RETRIEVALS FROM SEVIRI ON METEOSAT-8 USING CLOUDNET OBSERVATIONS

    E-Print Network [OSTI]

    Haak, Hein

    on global cloud statistics and radiation budget #12;(Feijt et al., 2003). With the launch of Meteosat Second effective radius and Cloud Liquid Water Path (CLWP) over Europe. The CloudNET research project, supported forecast models. The radiative behavior of clouds depends predominantly on cloud properties

  3. Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2. Kaersutitic

    E-Print Network [OSTI]

    Stewart, Sarah T.

    to the experimental kaersutite compositions, means the measured hydrogen isotope enrichments are likely minima. The measured (minimum) levels of hydrogen isotope enrichment are relevant to the hydrogen isotope variabilityAssessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2

  4. ORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone

    E-Print Network [OSTI]

    DeLucia, Evan H.

    and agricultural productivity (Goldblum 2009), whereas elevated CO2 has the opposite effect (Ainsworth and LongORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone transcript induction increased atmospheric CO2 and drought in the future, possibly altering plant insect dynamics

  5. ORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone

    E-Print Network [OSTI]

    DeLucia, Evan H.

    of droughts this century (Meehl et al. 2007). Typically, drought reduces yield and agricultural productivityORIGINAL PAPER Effects of elevated CO2 and soil water content on phytohormone transcript induction Science+Business Media B.V. 2012 Abstract Plants will experience increased atmospheric CO2 and drought

  6. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    SciTech Connect (OSTI)

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01T23:59:59.000Z

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  7. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  8. Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure

    E-Print Network [OSTI]

    Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-01-01T23:59:59.000Z

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...

  9. Effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water

    SciTech Connect (OSTI)

    Polka, H.M.; Gmehling, J. (Univ. of Oldenburg (Germany). Chair of Industrial Chemistry)

    1994-07-01T23:59:59.000Z

    The effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water was studied using a Swietoslawski ebulliometer. The measurements were performed for two constant salt molalities (1 and 2 mol[center dot]kg[sup [minus]1]) under isobaric conditions at 50.66 kPa. Strong salting-out of the alcohol was observed in all cases, leading to a complete elimination of the azeotropic point at relatively low salt concentrations. The results were correlated using an extension of the NRTL equation for mixed solvent electrolyte systems proposed by Mock, Evans, and Chen.

  10. Linking Europa's plume activity to tides, tectonics, and liquid water

    E-Print Network [OSTI]

    Rhoden, Alyssa R; Roth, Lorenz; Retherford, Kurt

    2015-01-01T23:59:59.000Z

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30 - 80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and...

  11. A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems

    SciTech Connect (OSTI)

    Austgen, D.M. Jr.

    1989-01-01T23:59:59.000Z

    A physico-chemical model was developed for representing liquid phase chemical equilibria and vapor-liquid (phase) equilibria of H{sub 2}SCO{sub 2}-alkanolamine-water systems. The equilibrium composition of the liquid phase is determined by minimization of the Gibbs free energy. Activity coefficients are represented with the Electrolyte-NRTL equation treating both long-range electrostatic interactions and short-range binary interactions between liquid phase species. Vapor phase fugacity coefficients are calculated using the Redlich-Kwong-Soave Equation of State. Adjustable parameters of the model, binary interaction parameters and carbamate stability constants, were fitted on published binary system alkanolamine-water and ternary system (H{sub 2}S-alkanolamine-water, CO{sub 2}-alkanolamine-water) VLE data. The Data Regression System of ASPEN PLUS, based upon the Maximum Likelihood Principle, was used to estimate adjustable parameters. Ternary system measurements used in parameter estimation ranged in temperature from 25 to 120{degree}C in alkanolamine concentration from 1 to 5 M, in acid gas loading from 0 to 1.5 moles per mole alkanolamine, and in acid gas partial pressure from 0.1 to 1,000 kPa. Maximum likelihood estimates of ternary system H{sub 2} or CO{sub 2} equilibrium partial pressures and liquid phase concentrations were found to be in good agreement with measurements for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA), and methyldiethanolamine (MDEA) indicating that the model successfully represents ternary system data. The model was extended to represent CO{sub 2} solubility in aqueous mixtures of MDEA with MEA or DEA. The solubility was measured at 40 and 80{degree}C over a wide range of CO{sub 2} partial pressures. These measurements were used to estimate additional binary parameters of the mixed solvent systems.

  12. Radiometric Determination of Uranium in Natural Waters after Enrichment and Separation by Cation-Exchange and Liquid-Liquid Extraction

    E-Print Network [OSTI]

    I. Pashalidis; H. Tsertos

    2003-04-28T23:59:59.000Z

    The alpha-radiometric determination of uranium after its pre-concentration from natural water samples using the cation-exchange resin Chelex-100, its selective extraction by tributylphosphate and electrodeposition on stainless steel discs is reported. The validity of the separation procedure and the chemical recoveries were checked by addition of uranium standard solution as well as by tracing with U-232. The average uranium yield was determined to be (97 +- 2) % for the cation-exchange, (95 +- 2) % for the liquid-liquid extraction, and more than 99% for the electrodeposition. Employing high-resolution alpha-spectroscopy, the measured activity of the U-238 and U-234 radioisotopes was found to be of similar magnitude; i.e. ~7 mBq/L and ~35 mBq/L for ground- and seawater samples, respectively. The energy resolution (FWHM) of the alpha-peaks was 22 keV, while the Minimum Detectable Activity (MDA) was estimated to be 1 mBq/L (at the 95% confidence limit).

  13. Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo

    E-Print Network [OSTI]

    Andrea Zen; Ye Luo; Guglielmo Mazzola; Leonardo Guidoni; Sandro Sorella

    2015-04-21T23:59:59.000Z

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.

  14. Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo

    E-Print Network [OSTI]

    Andrea Zen; Ye Luo; Guglielmo Mazzola; Leonardo Guidoni; Sandro Sorella

    2014-12-09T23:59:59.000Z

    Despite liquid water is ubiquitous in chemical reactions at roots of life and climate on earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in excellent agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.

  15. A focused liquid jet formed by a water hammer in a test tube

    E-Print Network [OSTI]

    Kiyama, Akihito; Ando, Keita; Kameda, Masaharu

    2015-01-01T23:59:59.000Z

    We investigate motion of a gas-liquid interface in a test tube induced by a large acceleration via impulsive force. We conduct simple experiments in which the tube partially filled with a liquid falls under gravity and impacts a rigid floor. A curved gas-liquid interface inside the tube reverses and eventually forms an elongated jet (i.e. the so-called a focused jet). In our experiments, there arises either vibration of the interface or increment in the velocity of a liquid jet accompanied by the onset of cavitation in the liquid column. These phenomena cannot be explained by considering pressure impulse in a classical potential flow analysis, which does not account for finite speeds of sound as well as phase change. Here we model such water-hammer events as a result of one-dimensional pressure wave propagation and its interaction with boundaries through acoustic impedance mismatching. The method of characteristics is applied to describe pressure wave interactions and the subsequent cavitation. The proposed m...

  16. Physica A 257 (1998) 213232 The puzzling statistical physics of liquid water

    E-Print Network [OSTI]

    Stanley, H. Eugene

    1998-01-01T23:59:59.000Z

    Physica A 257 (1998) 213232 The puzzling statistical physics of liquid water H.E. Stanley a; , S.V. Buldyrev a , M. Canpolat a; 1 , M. Meyer a , O. Mishima b , M.R. Sadr-Lahijany a , A. Scala a , F.W. Starr-4371(98)00264-7 #12;214 H.E. Stanley et al. / Physica A 257 (1998) 213232 At a pressure of 1 atm, the maximum density

  17. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    SciTech Connect (OSTI)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29T23:59:59.000Z

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  18. Liquid polymorphism, order-disorder transitions and anomalous a Monte Carlo study of the Bell-Lavis model for water

    E-Print Network [OSTI]

    Barbosa, Marcia C. B.

    the lack of consensus concerning the origin of water-like anomalies, it is widely believed of the Bell-Lavis model for water Carlos E. Fiore Departamento de Fisica, Universidade Federal do Paran for liquid water is investigated through numerical simulations. The lattice- gas model on a triangular

  19. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    SciTech Connect (OSTI)

    Lu, Qing [Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts 02446 (United States); Kim, Jaegil; Straub, John E., E-mail: straub@bu.edu [Department of Chemistry, Boston University, Boston, Massachusetts 02215 (United States); Farrell, James D.; Wales, David J. [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2014-11-14T23:59:59.000Z

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  20. Crystalline, liquid crystalline, and isotropic phases of sodium deoxycholate in water

    SciTech Connect (OSTI)

    Su, Ziyang; Luthra, Suman; Krzyzaniak, Joseph F.; Agra-Kooijman, Dena M.; Kumar, Satyendra; Byrn, Stephen R.; Shalaev, Evgenyi Y. (Pfizer); (Purdue); (Kent)

    2012-09-06T23:59:59.000Z

    Sodium deoxycholate (NaDC) is an important example of bile salts, representing systems with complex phase behavior involving both crystalline and mesophase structures. In this study, properties of NaDC-water mixtures were evaluated as a function of composition and temperature via X-ray diffraction with synchrotron (sXRD) and laboratory radiation sources, water sorption, polarized light, hot-stage microscopy, and freezing-point osmometry. Several phases were detected depending on the composition and temperature, including isotropic solution phase, liquid crystalline (LC) phase, crystalline hydrate, and ice. The LC phase was identified as hexagonal structure by sXRD, with up to 14 high-order reflections detected. The crystalline phase was found to be nonstoichiometric hydrate, based on XRD and water sorption data. The phase diagram of NaDC-water system has been refined based on both results of this study and other reports in literature.

  1. Estimating Entropy of Liquids from Atom-Atom Radial Distribution Functions: Silica, Beryllium Fluoride and Water

    E-Print Network [OSTI]

    Ruchi Sharma; Manish Agarwal; Charusita Chakravarty

    2008-09-24T23:59:59.000Z

    Molecular dynamics simulations of water, liquid beryllium fluoride and silica melt are used to study the accuracy with which the entropy of ionic and molecular liquids can be estimated from atom-atom radial distribution function data. All three systems are known to display similar liquid-state thermodynamic and kinetic anomalies due to a region of anomalous excess entropy behaviour where entropy rises on isothermal compression. The pair correlation entropy is demonstrated to be sufficiently accurate that the density-temperature regime of anomalous behaviour as well as the strength of the entropy anomaly can be predicted reliably for both ionic melts as well as different rigid-body pair potentials for water. Errors in the total thermodynamic entropy for ionic melts due to the pair correlation approximation are of the order of 10% or less for most state points but can be significantly larger in the anomalous regime at very low temperatures. In the case of water, as expected given the rigid-body constraints for a molecular liquids, the pair correlation approximation causes significantly larger errors, between 20 and 30%, for most state points. Comparison of the excess entropy, Se, of ionic melts with the pair correlation entropy, S2, shows that the temperature dependence of Se is well described by T ??2=5 scaling across both the normal and anomalous regimes, unlike in the case of S2. As a function of density, the Se(rho) curves shows only a single maximum while the S2(rho) curves show both a maximum and a minimum. These differences in the behaviour of S2 and Se are due to the fact that the residual multiparticle entropy, delta(S) = Se - S2, shows a strong negative correlation with tetrahedral order in the anomalous regime.

  2. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12T23:59:59.000Z

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  3. Water Content Determination of Rubber Stoppers Utilized for Sealing Lyophilized Pharmaceutical Products: Assessment of Two Karl Fischer Titration Methods

    E-Print Network [OSTI]

    Voth, Laura Marie

    2013-08-31T23:59:59.000Z

    In the pharmaceutical industry, the success of a new drug product is strongly impacted by the stability of the drug formulation. For many formulations, stability is governed by the drug product's water content, thus the ...

  4. A method to predict the soil susceptibility to compaction of surface layers as a function of water content and bulk density

    E-Print Network [OSTI]

    Boyer, Edmond

    physical properties. Because the soil compaction depends on its water content, bulk density and texture was obtained between soil precompression stress, compression index, initial water content, initial bulk density, 1994). Thus, knowing the changes in soil compaction with changes in water content and bulk density

  5. New Technique for Retrieving Liquid Water Path over Land using Satellite Microwave Observations

    SciTech Connect (OSTI)

    Deeter, M.N.; Vivekanandan, J.

    2005-03-18T23:59:59.000Z

    We present a new methodology for retrieving liquid water path over land using satellite microwave observations. As input, the technique exploits the Advanced Microwave Scanning Radiometer for earth observing plan (EOS) (AMSR-E) polarization-difference signals at 37 and 89 GHz. Regression analysis performed on model simulations indicates that over variable atmospheric and surface conditions the polarization-difference signals can be simply parameterized in terms of the surface emissivity polarization difference ({Delta}{var_epsilon}), surface temperature, liquid water path (LWP), and precipitable water vapor (PWV). The resulting polarization-difference parameterization (PDP) enables fast and direct (noniterative) retrievals of LWP with minimal requirements for ancillary data. Single- and dual-channel retrieval methods are described and demonstrated. Data gridding is used to reduce the effects of instrumental noise. The methodology is demonstrated using AMSR-E observations over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during a six day period in November and December, 2003. Single- and dual-channel retrieval results mostly agree with ground-based microwave retrievals of LWP to within approximately 0.04 mm.

  6. Nanoparticle enhanced evaporation of liquids: A case study of silicone oil and water

    E-Print Network [OSTI]

    Wenbin Zhang; Rong Shen; Kunquan Lu; Ailing Ji; Zexian Cao

    2012-10-23T23:59:59.000Z

    Evaporation is a fundamental physical phenomenon, of which many challenging questions remain unanswered. Enhanced evaporation of liquids in some occasions is of enormous practical significance. Here we report the enhanced evaporation of the nearly permanently stable silicone oil by dispersing with nanopariticles including CaTiO3, anatase and rutile TiO2. The results can inspire the research of atomistic mechanism for nanoparticle enhanced evaporation and exploration of evaporation control techniques for treatment of oil pollution and restoration of dirty water.

  7. Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel cells

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting rights reserved. Keywords: Direct methanol fuel cell; Water transport; Mathematical modeling; Three

  8. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    SciTech Connect (OSTI)

    Nhan Chuong Dang

    2005-08-12T23:59:59.000Z

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (I{sub c}); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (T{sub g}). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure/dynamics of water in confined space, which has been studied, in part because of the importance of non-freezable water in biological systems.

  9. Isobaric vapor-liquid equilibria of the water + 1-propanol system at 30, 60, and 100 kPa

    SciTech Connect (OSTI)

    Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

    1996-09-01T23:59:59.000Z

    Isobaric vapor-liquid equilibria for the water + 1-propanol system are reported at 30, 60, and 100 kPa. The results were found to be thermodynamically consistent according to Van Ness-Byer-Gibbs, Kojima, and Wisniak methods. The system shows a minimum boiling azeotrope, and the azeotropic composition is scarcely shifted with pressure. Results were compared with literature values. The data were correlated with Margules, Van Laar, Wilson, NRTL, and UNIQUAC liquid-phase activity coefficient models.

  10. Electronmagnetic induction probe calibration for electrical conductivity measurements and moisture content determination of Hanford high level waste

    SciTech Connect (OSTI)

    Wittekind, W.D., Westinghouse Hanford

    1996-05-23T23:59:59.000Z

    Logic of converting EMI measured electrical conductivity to moisture with expected uncertainty. Estimates from present knowledge, assumptions, and measured data. Archie`s Law has been used since the 1940`s to relate electrical conductivity in porous media to liquid volume fraction. Measured electrical conductivity to moisture content uses: Porosity, Interstitial liquid electrical conductivity, Solid particle density,Interstitial liquid density, and interstitial liquid water content. The uncertainty of assumed values is calculated to determine the final moisture wt.% result uncertainty.

  11. A Passive Probe for Subsurface Oceans and Liquid Water in Jupiter's Icy Moons

    E-Print Network [OSTI]

    Romero-Wolf, Andrew; Maiwald, Frank; Heggy, Essam; Ries, Paul; Liewer, Kurt

    2014-01-01T23:59:59.000Z

    We describe an interferometric reflectometer method for passive detection of subsurface oceans and liquid water in Jovian icy moons using Jupiter's decametric radio emission (DAM). The DAM flux density exceeds 3,000 times the galactic background in the neighborhood of the Jovian icy moons, providing a signal that could be used for passive radio sounding. An instrument located between the icy moon and Jupiter could sample the DAM emission along with its echoes reflected in the ice layer of the target moon. Cross-correlating the direct emission with the echoes would provide a measurement of the ice shell thickness along with its dielectric properties. The interferometric reflectometer provides a simple solution to sub-Jovian radio sounding of ice shells that is complementary to ice penetrating radar measurements better suited to measurements in the anti-Jovian hemisphere that shadows Jupiter's strong decametric emission. The passive nature of this technique also serves as risk reduction in case of radar transmi...

  12. Sewage sludge dewatering using flowing liquid metals

    DOE Patents [OSTI]

    Carlson, Larry W. (Oswego, IL)

    1986-01-01T23:59:59.000Z

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  13. NEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago

    E-Print Network [OSTI]

    Carlson, Anders

    sun. Averaging 75 times the speed of sound, each impactor scorched the surface--shattering, meltingNEW VIEW of the young earth covered in oceans of liquid water as early as 4.4 billion years ago into a crust, before continents could form, be- fore the dense, steamy atmosphere could pool as liquid water

  14. Visualization of Liquid Water Transport in a PEFC X. G. Yang,* F. Y. Zhang, A. L. Lubawy, and C. Y. Wang*,z

    E-Print Network [OSTI]

    electrolyte fuel cell PEFC , the mechanics of liquid water transport, starting from droplet emergence and methanol PEFCs. Neutron beams can penetrate through a metal fuel cell to image the real-time liquid water to achieve high performance and lon- gevity of polymer electrolyte fuel cells PEFCs . At high current density

  15. Isothermal vapor-liquid equilibria for water + 2-aminoethanol + dimethyl sulfoxide and its constituent three binary systems

    SciTech Connect (OSTI)

    Tochigi, Katsumi; Akimoto, Kentarou; Ochi, Kenji [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry] [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Liu, Fangyhi; Kawase, Yasuhito [Nippon Refine Co., Ltd., Tokyo (Japan)] [Nippon Refine Co., Ltd., Tokyo (Japan)

    1999-05-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system water + 2-aminoethanol + dimethyl sulfoxide and its three constituent binary mixtures at 363.15 K. The apparatus used was a modified Rogalski-Malanoski equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  16. Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography

    E-Print Network [OSTI]

    , at shutdown, may freeze under subzero tem- peratures and makes cold start of a PEM fuel cell difficult conditions. MRI is used to visualize the transport of liquid water across a polymer electrolyte membrane opportunities for imaging pore-scale flow and multiphase transport in porous me- dia. In recent years, X

  17. Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile-water interface

    E-Print Network [OSTI]

    Eisenthal, Kenneth B.

    Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile change in an air/acetonitrile-water interface as the solution composition varies; the abruptness of which and in the polarization of the signal from the acetonitrile molecules in the interface observed using infrared + visible

  18. Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

    SciTech Connect (OSTI)

    Benz, N.

    1994-10-01T23:59:59.000Z

    A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.

  19. Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data 1 . Introduction

    E-Print Network [OSTI]

    Han, Quingyuan

    VOLUME 7 Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data 1 indicate the magnitude ofaerosol effects on clouds. A method, based on a complete radiative transfer model the radiative effects ofwater vapor and clouds and the hydrological cycle, and create several important cloud

  20. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect (OSTI)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States)

    2014-05-14T23:59:59.000Z

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup ?}, and I{sup ?}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 away from the surface.

  1. The Individual and Collective Effects of Exact Exchange and Dispersion Interactions on the Ab Initio Structure of Liquid Water

    E-Print Network [OSTI]

    Robert A. DiStasio Jr.; Biswajit Santra; Zhaofeng Li; Xifan Wu; Roberto Car

    2014-05-20T23:59:59.000Z

    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local vdW/dispersion interactions, via a fully self-consistent density-dependent dispersion correction, and approximate nuclear quantum effects (aNQE), via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx, vdW, and aNQE as resulting from a large-scale AIMD simulation of (H$_2$O)$_{128}$ at the PBE0+vdW level of theory, significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, $S_{\\rm OO}(Q)$, and corresponding oxygen-oxygen radial distribution function, $g_{\\rm OO}(r)$, that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment as demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of the PBE0 hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions.

  2. Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments

    E-Print Network [OSTI]

    Tjallingii, Rik

    of Cl as a proxy for the seawater content in the sample volume analyzed by the XRF core scanner chemistry; interstitial water; seawater. Index Terms: 1051 Geochemistry: Sedimentary geochemistry; 3094 analysis of the elements from Aluminum (Al, atomic number 13) through to Uranium (U, atomic number 92

  3. Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation

    E-Print Network [OSTI]

    Adegoke, Adesola Ayodeji

    2006-10-30T23:59:59.000Z

    The Gas-to-liquids (GTL) processes produce a large fraction of by-products whose disposal or handling ordinarily becomes a cost rather than benefit. As an alternative strategy to market stranded gas reserves, GTL...

  4. System and method for monitoring water content or other dielectric influences in a medium

    DOE Patents [OSTI]

    Cherry, Robert S. (Idaho Falls, ID); Anderson, Allen A. (Firth, ID)

    2001-01-01T23:59:59.000Z

    A sensor system is provided that measures water content or other detectable properties in a medium along the entire length of the sensor at any point in time. The sensor system includes an electromagnetic signal generator and a transmission line disposed in a medium to be monitored. Alternatively, the transmission line can be configured for movement across a medium to be monitored, or the transmission line can be fixed relative to a moving medium being monitored. A signal is transmitted along the transmission line at predetermined frequencies, and the signal is returned back along the transmission line and/or into an optional receive line in proximity to the transmission line. The returned signal is processed to generate a one-dimensional data output profile that is a function of a detectable property of the medium. The data output profile can be mapped onto a physical system to generate a two-dimensional or three-dimensional profile if desired. The sensor system is useful in a variety of different applications such as agriculture, horticulture, biofiltration systems for industrial offgases, leak detection in landfills or drum storage facilities at buried waste sites, and in many other applications.

  5. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect (OSTI)

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01T23:59:59.000Z

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  6. Isobaric vapor-liquid equilibria of the water + 2-propanol system at 30, 60, and 100 kPa

    SciTech Connect (OSTI)

    Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica] [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica

    1996-05-01T23:59:59.000Z

    Distillation is perhaps the separation process most widely used in the chemical processing industry. The correct design of distillation columns requires the availability of accurate and, if possible, thermodynamically consistent vapor-liquid equilibria (VLE) data. The present work is part of a project studying the effect of pressure on the behavior of the azeotropic point in mixtures in which at least one component is an alcohol. Isobaric vapor-liquid equilibria were obtained for the water + 2-propanol system at 30, 60, and 100 kPa. The activity coefficients were found to be thermodynamically consistent by the methods of Van Ness-Byer-Gibbs, Kojima, and Wisniak. The data were correlated with five liquid phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, and UNIQUAC).

  7. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    SciTech Connect (OSTI)

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25T23:59:59.000Z

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  8. Boson Peak in Deeply Cooled Confined Water: A Possible Way to Explore the Existence of the Liquid-to-Liquid Transition in Water

    E-Print Network [OSTI]

    Wang, Zhe

    The boson peak in deeply cooled water confined in nanopores is studied with inelastic neutron scattering. We show that in the (P, T) plane, the locus of the emergence of the boson peak is nearly parallel to the Widom line ...

  9. The use of a permanent magnet for water content measurements of wood chips

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    making machine. The black liquor left over from the pulpingchips, brownstock, and black liquor. This report describes acellulose and water) and black liquor using the bench scale

  10. Pore-scale simulation of liquid CO2 displacement of water using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. This model is then used to simulate liquid...

  11. Calculation of releases of radioactive materials in gaseous and liquid effluents from pressurized water reactors (PWR-GALE Code). Revision 1

    SciTech Connect (OSTI)

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1985-04-01T23:59:59.000Z

    This report revises the original issuance of NUREG-0017, ''Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors (PWR-GALE-Code)'' (April 1976), to incorporate more recent operating data now available as well as the results of a number of in-plant measurement programs at operating pressurized water reactors. The PWR-GALE Code is a computerized mathematical model for calculating the releases of radioactive material in gaseous and liquid effluents (i.e., the gaseous and liquid source terms). The US Nuclear Regulatory Commission uses the PWR-GALE Code to determine conformance with the requirements of Appendix I to 10 CFR Part 50.

  12. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOE Patents [OSTI]

    Ackerman, Carl D. (Olympia, WA)

    1983-03-29T23:59:59.000Z

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  13. Soil water content dependent wetting front characteristics in sands T.W.J. Bautersa

    E-Print Network [OSTI]

    Walter, M.Todd

    affects wetting front instability. A series of experiments were conducted where water was infiltrated in a 0.94 cm thick, 30 cm wide, and 55 cm long polycarbonate chamber filled with clean, 2030 (US sieve

  14. Exploration of tektite formation processes through water and metal content measurements

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    was used for water measurements and laser ablation inductively coupled plasma mass spectrometry was used data on 46 laser ablation spots from 19 tektite samples and The Meteoritical Society, 2011

  15. Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    carry-over between consecutive extractions with the same stir21 bar. Pesticide quantification in water1 Title :1 Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

  16. The Hydrated Proton at the Water Liquid/Vapor Interface Matt K. Petersen, Srinivasan S. Iyengar, Tyler J. F. Day, and Gregory A. Voth*,

    E-Print Network [OSTI]

    Iyengar, Srinivasan S.

    The Hydrated Proton at the Water Liquid/Vapor Interface Matt K. Petersen, Srinivasan S. Iyengar ReceiVed: July 23, 2004; In Final Form: August 22, 2004 The hydrated proton was studied at the water the migration of the excess proton to and about the interface through the fluctuating bond topology described

  17. Variation in DNA content of blood cells of largemouth bass from contaminated and uncontaminated waters

    SciTech Connect (OSTI)

    Lingenfelser, S.F. [Fish and Wildlife Service, White Marsh, VA (United States); Dallas, C.E. [Univ. of Georgia, Athens, GA (United States). Dept. of Pharmacology and Toxicology; Jagoe, C.H.; Smith, M.H.; Brisbin, I.L. Jr.; Chesser, R.K. [Savannah River Ecology Lab., Aiken, SC (United States)

    1997-10-01T23:59:59.000Z

    Largemouth bass (Micropterus salmoides) were collected from locations with and without documented histories of pollution in Georgia and South Carolina. Whole blood samples were collected from over 3,000 bass and analyzed by flow cytometry to measure changes in cellular DNA content and cell cycle distribution. The coefficient of variation (CV) of the cell cycle phase G{sub 0}G{sub 1} peak was used as a measure of variation in DNA content within an individual. The mean CV varied significantly among locations, and some locations with known chemical or radioactive contaminants had higher CVs. Plotting the frequency distribution of CV values for each site revealed greater skewness and kurtosis in most locations with known contaminants. In each case, a right skewness indicated higher proportions of bass with unusually high CV in these locations. Aneuploid-like patterns were detected in the DNA histograms of five fish, all from locations with histories of contamination. The percentage of cells distributed among phases of the cell cycle (G{sub 0}/G{sub 1}, S, and G{sub 2}M) varied significantly among locations, but there was no apparent relationship to contaminant distribution. Differences in CV and frequency of aneuploids among sites with and without histories of pollution were generally small, but increased variation in DNA content may be associated with contaminant exposure at some locations.

  18. A Fixed Point Charge Model for Water Optimized to the Vapor-Liquid Coexistence Properties

    E-Print Network [OSTI]

    the temperature range of the liquid. Results were compared to the SPC, SPC/E, and MSPC/E models, vapor pressures, critical parameters, and the second virial coefficient. It is inferior to the SPC interactions. Models of this type include the Bernal-Fowler1 , ST22 , TIPS23 , TIP4P4 , SPC5 , SPC/E6

  19. 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    7-31 7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

  20. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect (OSTI)

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR5257 CEA-CNRS-UM2-ENSCM, BP17171, 30207 Bagnols sur Ceze (France); Prevost, T.; Valery, J.F. [AREVA NC, Paris La Defense (France); Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette (France)

    2012-07-01T23:59:59.000Z

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in standard effluents resulting from nuclear activities; - To develop reversible solid adsorbents for cartridge-type applications in order to minimize wastes. (authors)

  1. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    E-Print Network [OSTI]

    Wen, Haidan

    2010-01-01T23:59:59.000Z

    manifesting in fewer/weaker hydrogen bonds and structuralstructures with weaker hydrogen-bonding is recorded viais characteristic of the hydrogen bond network in water. The

  2. The influence of irrigation water salinity on optimal nitrogen, phosphorus, and potassium liquid fertilizer rates

    E-Print Network [OSTI]

    Campos Nu?n?ez, Ricardo

    1990-01-01T23:59:59.000Z

    of poor quality water (high in soluble salts) and high concentrations of water-soluble fertilizers can induce salt damage in plants. The objective of this work was to investigate the effects of salinity in irrigation water on optimal fertilization rates... in salt-sensitive tropical foliage. Spafhiphyllum 'Petite' and Dieffenbachia 'Camille' were grown using 9 levels of water-soluble fertilizers (0, 25, 50, 100, 200, 400, 800, 1600, 3200 mg I N in a 3-1-2 ratio of N-P205-K20), and two levels of salinity...

  3. NATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS AND RESULTS

    E-Print Network [OSTI]

    procedure, standardized by International Standard Organization.4 On the contrary, total indicative dose in view of a large scale monitoring program. World Health Organization guidelines for drinking water

  4. Measurements of the Distribution of Solutes between Liquid Water and Steam

    SciTech Connect (OSTI)

    Palmer, D.A.; Simonson, J.M.; Ho, P.C.

    1997-12-31T23:59:59.000Z

    Direct measurements of the concentration of solutes in both liquid and steam phases in equilibrium with each other have been made in a static mode utilizing a platinum-lined autoclave to a maximum of 350 deg C. Partitioning constants were derived from these measurements based on existing experimental or estimated values of the stoichiometric mean activity coefficients for the solutes in the liquid phase. Independent measurements of the conductance of some of the solutes in dilute aqueous solutions to 600 deg C and 300MPa were also made. The combined results are discussed in terms of a speciated model and the implications of these results to industrial and natural hydrothermal processes are presented. PARTITIONING CONSTANT, ION-ASSOCIATION, CONDUCTIVITY, SPECIATION, CORROSION.

  5. On the Existence of Two-Phase Fluid in Good Communication with Liquid Water

    SciTech Connect (OSTI)

    Grant, Malcolm A.

    1980-12-16T23:59:59.000Z

    It has been argued that wells of high discharge enthalpy (two-phase wells) at Baca must be isolated from communication with an extensive liquid reservoir. It is shown that such communication has existed, and been maintained, during the history of Wairakei and Broadlands fields. Interpretation of downhole measurements in two-phase fields, and the nature of the two-phase reservoir fluid, is also treated.

  6. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect (OSTI)

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01T23:59:59.000Z

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  7. Measurements of Water and B4C Content of Rackable Can Storage Boxes for HEU Storage at the HEUMF at the Y-12 National Security Complex

    SciTech Connect (OSTI)

    Neal, JS

    2003-03-24T23:59:59.000Z

    Extensive measurements at the Oak Ridge National Laboratory (ORNL) with BoroBond{trademark} blocks of varying thickness, natural boron carbide (B{sub 4}C) content, and water content, and with a simplified mockup of the Rackable Can Storage Box (RCSB) of fixed natural B{sub 4}C and water content, have led to a method of quantifying the water content of RCSBs by fast neutron time-of-flight transmission measurements (NMIS)* and quantifying the B{sub 4}C content with gamma ray spectrometry assuming the water content is known. The time-of-flight transmission measurements results can also be used to assess the uniformity of the BoroBond{trademark} in the RCSB. The data from both measurements will be stored for future comparisons to initial measurements. These methods can also be implemented at the RCSB production site, or subsequently at the Y-12 National Security Complex during the operating lifetime of the RCSBs at the Highly Enriched Uranium Materials Facility.

  8. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOE Patents [OSTI]

    Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

    2011-08-23T23:59:59.000Z

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  9. Scalability of mass transfer in liquid-liquid flow

    E-Print Network [OSTI]

    Woitalka, A.

    We address liquidliquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow ...

  10. Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator

    E-Print Network [OSTI]

    Alonso, J R; Bergevin, M; Bernstein, A; Bignell, L; Blucher, E; Calaprice, F; Conrad, J M; Descamps, F B; Diwan, M V; Dwyer, D A; Dye, S T; Elagin, A; Feng, P; Grant, C; Grullon, S; Hans, S; Jaffe, D E; Kettell, S H; Klein, J R; Lande, K; Learned, J G; Luk, K B; Maricic, J; Marleau, P; Mastbaum, A; McDonough, W F; Oberauer, L; Gann, G D Orebi; Rosero, R; Rountree, S D; Sanchez, M C; Shaevitz, M H; Shokair, T M; Smy, M B; Strait, M; Svoboda, R; Tolich, N; Vagins, M R; van Bibber, K A; Viren, B; Vogelaar, R B; Wetstein, M J; Winslow, L; Wonsak, B; Worcester, E T; Wurm, M; Yeh, M; Zhang, C

    2014-01-01T23:59:59.000Z

    The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diff?use supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon t...

  11. Advanced Scintillator Detector Concept (ASDC): A Concept Paper on the Physics Potential of Water-Based Liquid Scintillator

    E-Print Network [OSTI]

    J. R. Alonso; N. Barros; M. Bergevin; A. Bernstein; L. Bignell; E. Blucher; F. Calaprice; J. M. Conrad; F. B. Descamps; M. V. Diwan; D. A. Dwyer; S. T. Dye; A. Elagin; P. Feng; C. Grant; S. Grullon; S. Hans; D. E. Jaffe; S. H. Kettell; J. R. Klein; K. Lande; J. G. Learned; K. B. Luk; J. Maricic; P. Marleau; A. Mastbaum; W. F. McDonough; L. Oberauer; G. D. Orebi Gann; R. Rosero; S. D. Rountree; M. C. Sanchez; M. H. Shaevitz; T. M. Shokair; M. B. Smy; A. Stahl; M. Strait; R. Svoboda; N. Tolich; M. R. Vagins; K. A. van Bibber; B. Viren; R. B. Vogelaar; M. J. Wetstein; L. Winslow; B. Wonsak; E. T. Worcester; M. Wurm; M. Yeh; C. Zhang

    2014-10-24T23:59:59.000Z

    The recent development of Water-based Liquid Scintillator (WbLS), and the concurrent development of high-efficiency and high-precision-timing light sensors, has opened up the possibility for a new kind of large-scale detector capable of a very broad program of physics. The program would include determination of the neutrino mass hierarchy and observation of CP violation with long-baseline neutrinos, searches for proton decay, ultra-precise solar neutrino measurements, geo- and supernova neutrinos including diffuse supernova antineutrinos, and neutrinoless double beta decay. We outline here the basic requirements of the Advanced Scintillation Detector Concept (ASDC), which combines the use of WbLS, doping with a number of potential isotopes for a range of physics goals, high efficiency and ultra-fast timing photosensors, and a deep underground location. We are considering such a detector at the Long Baseline Neutrino Facility (LBNF) far site, where the ASDC could operate in conjunction with the liquid argon tracking detector proposed by the LBNE collaboration. The goal is the deployment of a 30-100 kiloton-scale detector, the basic elements of which are being developed now in experiments such as WATCHMAN, ANNIE, SNO+, and EGADS.

  12. Niobium-based sputtered thin films for Corrosion Protection of proton-irradiated liquid water targets for [18F] production

    E-Print Network [OSTI]

    Skliarova, H; Dousset, O; Johnson, R R; Palmieri, V

    2013-01-01T23:59:59.000Z

    Chemically inert Coatings on Havar entrance foils of the targets for [18F] production via proton irradiation of enriched water at pressurized conditions are needed to decrease the amount of ionic contaminants released from Havar. In order to find the most effective protective coatings, the Nb-based coating microstructure and barrier properties have been correlated with deposition parameters as: substrate temperature, applied bias, deposition rate and sputtering gas pressure. Aluminated quartz used as a substrate allowed us to verify the protection efficiency of the desirable coatings as diffusion barriers. Two modeling corrosion tests based on the extreme susceptibility of aluminum to liquid gallium and acid corrosion were applied. Pure Niobium coatings have been found less effective barriers than Niobium-titanium coatings. But Niobium oxide films, according to the corrosion tests performed, showed superior barrier properties. Therefore Multi-layered Niobium-Niobium oxide films have been suggested, since they...

  13. Lithium vanadyl oxalatophosphite: Influence of the water content on the crystal structures and the dehydration scheme

    SciTech Connect (OSTI)

    Auguste, S.; Alonzo, V. [Sciences Chimiques de Rennes, UMR 6226, Ecole Nationale Suprieure de Chimie de Rennes, CNRS, 11 Alle de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Universit Europenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France); Bataille, T. [Sciences Chimiques de Rennes, UMR 6226, Universit de Rennes 1, CNRS, Campus de Beaulieu, 35042 Rennes Cedex (France); Universit Europenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France); Le Polls, L. [Sciences Chimiques de Rennes, UMR 6226, Ecole Nationale Suprieure de Chimie de Rennes, CNRS, 11 Alle de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Universit Europenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France); Can-Mancisidor, W.; Venegas-Yazigi, D. [Facultad de Quimia y Biologia, Universitad de Santiago de Chile, USACH, Casilla, 40 Correo 33, Santiago (Chile); Centro para el Desarrollo de Nanociencias y Nanotecnologa, CEDENNA (Chile); Le Fur, E., E-mail: eric.le-fur@ensc-rennes.fr [Sciences Chimiques de Rennes, UMR 6226, Ecole Nationale Suprieure de Chimie de Rennes, CNRS, 11 Alle de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Universit Europenne de Bretagne, 12 avenue Janvier, 35000 Rennes (France)

    2014-03-15T23:59:59.000Z

    Two new lithium vanadyl oxalatophosphites have been synthesized by hydrothermal treatment. The respective formula are Li{sub 2}(VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 6H{sub 2}O (1) and Li{sub 2}(VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 4H{sub 2}O (2). The structures of the compounds have been determined by single crystal X-ray diffraction. Compound 1 crystallizes in triclinic symmetry in space group P-1, a=6.3592(2) , b=8.0789(3) , c=9.1692(3) , ?=64.390(2), ?=87.277(2), ?=67.624(2) and, compound 2 in monoclinic symmetry, space group P2{sub 1}/a, a=6.3555(2) b=12.6368(7) c=9.0242(4) ?=105.167(3). The vanadium phosphite framework consists of infinite chains of corner-sharing vanadium octahedra and hydrogenophosphite tetrahedra. The oxalate groups ensure the connection between the chains. The lithium ions and the water molecules are located between the anionic [(VO){sub 2}(HPO{sub 3}){sub 2}C{sub 2}O{sub 4}]{sup 2?} layers. Thermal behavior of both compounds was carefully studied by combining thermogravimetric analyses and thermal dependant X-ray diffraction in order to study the thermal stability of the layered oxalatophosphites and to see the influence of the decomposition of the carbon-based anions into the final lithium vanadyl phosphate. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO{sub 4}. -- Graphical abstract: Two new lithium vanadyl oxalatophosphites layered compounds, Li{sub 2} (VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 6H{sub 2}O (1) and Li{sub 2} (VOHPO{sub 3}){sub 2}C{sub 2}O{sub 4} 4H{sub 2}O (2) have been hydrothermally synthesized. Lithium ions and water molecules are located between the anionic [(VO){sub 2}(HPO{sub 3}){sub 2}C{sub 2}O{sub 4}]{sup 2?} layers. Thermal behaviors were carefully studied by thermogravimetric and thermal dependant X-ray diffraction. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO{sub 4}. Highlights: The first lithium vanadium oxalatophosphite have been synthesized hydrothermally. The structure of these compounds is related to vanadium oxalato-phosphates. Hydrogen bonding in starting material influences the intermediate phase structures. Thermal decomposition evidences two Li{sub 2}[(VO){sub 2}(HPO{sub 3}){sub 2}C{sub 2}O{sub 4}] anhydrous polymorphs.

  14. Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Hawthorne, S.B.

    1997-12-31T23:59:59.000Z

    This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

  15. Life in the Solar System Assume we need energy, liquid water, and organic materials.

    E-Print Network [OSTI]

    Shirley, Yancy

    wells up and spreads over the surface. A potential mission to Europa would land on the ice pack, use in the last few years! #12;Mars PHOENIX Lander digs up apparent water ice which evaporates Ice chunks Gone, with surface ice. Callisto is heavily cratered, but may also have a deep buried ocean. #12;Enceladus An Icy

  16. Life in the Solar System Assume we need energy, liquid water, and organic materials.

    E-Print Network [OSTI]

    Shirley, Yancy

    ;Small rocky bodies are unlikely to host life: too hot or cold for water, no protective atmosphere so too. #12;Venus is hot (molten lead can exist on its surface!), high pressure (90 atmospheres), toxic, no sunlight, high temperature. Not much chance of life there. Gas Giants #12;The moons of the giant planets

  17. Liquid Water Storage, Distribution, and Removal from Diffusion Media in PEFCS

    E-Print Network [OSTI]

    Mench, Matthew M.

    . Turhan,* K. Heller, J. Brenizer, and M. M. Mench**,z Fuel Cell Dynamics and Diagnostics Laboratory media DM of polymer electrolyte fuel cells PEFCs is a function of design geometry, surface geometry. Available electronically August 28, 2006. The management of water within a polymer electrolyte fuel cell

  18. The Role of Confined Water in Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells

    E-Print Network [OSTI]

    Goddard III, William A.

    for improving the performance of IL DSSC by replacing water with additives that would play the same role Structure, Quantum Chemistry,General Theory The dye-sensitized solar cell (DSSC) proposed by Gratzel et al.1, and nonflammable. However, with current ILs, the DSSC performance is degraded due to decreased reductant rates

  19. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    SciTech Connect (OSTI)

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.; Kang, Oinjun; Oostrom, Martinus

    2014-11-01T23:59:59.000Z

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. This model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.

  20. Retrieval of Cloud Ice Water Content Profiles from Advanced Microwave Sounding Unit-B Brightness Temperatures Near the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect (OSTI)

    Seo, E-K.; Liu, G.

    2005-03-18T23:59:59.000Z

    One of the Atmospheric Radiation Measurement (ARM) Program important goals is to develop and test radiation and cloud parameterizations of climate models using single column modeling (SCMs) (Randall et al. 1996). As forcing terms, SCMs need advection tendency of cloud condensates besides the tendencies of temperature, moisture and momentum. To compute the tendency terms of cloud condensates, 3D distribution of cloud condensates over a scale much larger than the climate model's grid scale is needed. Since they can cover a large area within a short time period, satellite measurements are useful utilities to provide advection tendency of cloud condensates for SCMs. However, so far, most satellite retrieval algorithms only retrieve vertically integrated quantities, for example, in the case of cloud ice, ice water path (IWP). To fulfill the requirement of 3D ice water content field for computing ice water advection, in this study, we develop an ice water content profile retrieval algorithm by combining the vertical distribution characteristics obtained from long-term surface radar observations and satellite high-frequency microwave observations that cover a large area. The algorithm is based on the Bayesian theorem using a priori database derived from analyzing cloud radar observations at the Southern Great Plains (SGP) site. The end product of the algorithm is a 3D ice water content covering 10{sup o} x 10{sup o} surrounding the SGP site during the passage of the satellite. This 3D ice water content, together with wind field analysis, can be used to compute the advection tendency of ice water for SCMs.

  1. Isobaric vapor-liquid equilibria for binary and ternary systems composed of water, 1-propanol, and 2-propanol at 100 kPa

    SciTech Connect (OSTI)

    Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

    1996-11-01T23:59:59.000Z

    Isobaric vapor-liquid equilibria data were obtained for the 2-propanol + 1-propanol binary system and the water + 1-propanol + 2-propanol ternary system at 100 kPa. The data were found to be thermodynamically consistent according to the Van Ness-Byer-Gibbs method for the binary system and according to the McDermott-Ellis method for the ternary one. The binary system is well represented by assuming ideal behavior. The binary interaction parameters obtained from this and previous work are used to predict the vapor-liquid equilibrium for the ternary system using the UNIQUAC, NRTL, and Wilson models. The ternary system is well predicted from binary data.

  2. A system to test the effects of materials on the electron drift lifetime in liquid argon and observations on the effect of water

    SciTech Connect (OSTI)

    Andrews, R.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Pordes, S.; Tope, T.; /Fermilab; ,

    2009-07-01T23:59:59.000Z

    A materials test system (MTS) has been developed at FNAL to assess the suitability of materials for use in a large liquid argon time projection chamber. During development of the MTS, it was noted that controlling the cryostat pressure with a 'raining' condenser reduced the electron drift lifetime in the liquid argon. The effect of condensing has been investigated using a series of passive materials to filter the condensate. We report the results of these studies and of tests on different candidate materials for detector construction. The inferred reduction of electron drift lifetime by water concentrations in the parts per trillion is of particular interest.

  3. Modeling and High-Resolution-Imaging Studies of Water-Content Profiles in a Polymer-Electrolyte-Fuel-Cell Membrane-Electrode Assembly

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Weber, A.Z.; Hickner, M.A.

    2008-03-06T23:59:59.000Z

    Water-content profiles across the membrane electrode assembly of a polymer-electrolyte fuel cell were measured using high-resolution neutron imaging and compared to mathematical-modeling predictions. It was found that the membrane held considerably more water than the other membrane-electrode constituents (catalyst layers, microporous layers, and macroporous gas-diffusion layers) at low temperatures, 40 and 60 C. The water content in the membrane and the assembly decreased drastically at 80 C where vapor transport and a heat-pipe effect began to dominate the water removal from the membrane-electrode assembly. In the regimes where vapor transport was significant, the through-plane water-content profile skewed towards the cathode. Similar trends were observed as the relative humidity of the inlet gases was lowered. This combined experimental and modeling approach has been beneficial in rationalizing the results of each and given insight into future directions for new experimental work and refinements to currently available models.

  4. Acidic Ionic Liquid/Water Solution as Both Medium and Proton Source for Electrocatalytic H2 Evolution by [Ni(P2N2)2]2+ Complexes

    SciTech Connect (OSTI)

    Pool, Douglas H.; Stewart, Michael P.; O'Hagan, Molly J.; Shaw, Wendy J.; Roberts, John A.; Bullock, R. Morris; DuBois, Daniel L.

    2012-09-25T23:59:59.000Z

    The electrocatalytic reduction of protons to H2 by [Ni(PPh2NC6H4-hex2)2](BF4)2 (where PPh2NC6H4-hex2 = 1,5-di(4-n-hexylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) in the highly acidic ionic liquid dibutylformamidium bis(trifluoromethanesulfonyl)amide shows a strong dependence on added water. A turnover frequency of 43,000-53,000 s-1 has been measured for hydrogen production at 25 C when the mole fraction of water (?H2O) is 0.72. The same catalyst in acetonitrile with added dimethylformamidium trifluoromethanesulfonate and water has a turnover frequency of 720 s?1. Thus the use of an ionic liquid/aqueous solution enhances the observed catalytic rates by more than a factor of 50 compared to acids in traditional organic solvents such as acetonitrile. Complexes [Ni(PPh2NC6H4X2)2](BF4)2 (X = H, OMe, CH2P(O)(OEt)2, Br) are also catalysts in the ionic liquid/water mixture, and the observed catalytic rates correlate with the hydrophobicity of X. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  5. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    SciTech Connect (OSTI)

    Ehst, D.; Nuclear Engineering Division

    2010-08-04T23:59:59.000Z

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

  6. Solute retention in column liquid chromatography. X. Determination of solute infinite-dilution activity coefficients in methanol, water, and their mixtures, by combined gas-liquid and liquid-liquid chromatography

    SciTech Connect (OSTI)

    Djerki, R.A.; Laub, R.J.

    1988-01-01T23:59:59.000Z

    The Raoult's-law activity coefficients of 3- to 7-carbon aliphatic aldehyde, ketone, ester, and alcohol solutes at infinite dilution in methanol, water, and mixtures of the two and in polydimethysiloxane, all at 293-308 K, have been determined for the first time by appropriate combination of GLC and LLC retention data. The latter data are reported in terms of mole factions, while the former are given in concentration units of molality. However, interpretation of the data is difficult because of the multiplicity of the retention mechanisms. Nevertheless, the combined GLC/LLC technique, which had been applied previously only to pure solvents, is said to offer a number of advantages over static techniques for the determination of solute infinite-dilution activity coefficients with volatile solvents, especially with mixtures of solvents.

  7. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  8. Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids

    SciTech Connect (OSTI)

    Tran, P.X.; Soong, Yee; Chyu, M.K.

    2007-12-01T23:59:59.000Z

    Multi-pulse laser ablation of silver in deionized water was studied. The laser beams were arranged in a cross-beam configuration. In our experiments, two single-mode, Q-switched Nd-Yag lasers operating at 1064 nm, pulse duration of 5.5 ns and 10 Hz rep rate were used. The laser fluence of the second beam was 0.265 J/cm2 for all tests. Two levels of the laser fluences were used for the ablating beam: 0.09 and 0.265 J/cm2 (11,014 and 33,042 J/cm2 at the focal point, respectively). The silver target was at 50mm from the cell window and 10mm deep. The second beam was aligned parallelly with the silver target and focused at 2mm in front of the focal point of the ablating beam. For all cases, the delay time between the ablating beam and the cross-beam was 40 ms. In general, the ablated particles were almost all spherical. For fluence of 0.09 J/cm 2 and single-beam approach, the mean particle size was about 29 nm. The majority of the particles, however, were in 1935nm range and there were some big ones as large as 5060nm in size. For double-beam approach, the particles were smaller with the average size of about 18nm and the majority of the particles were in 921nm range with few big one as large as 40 nm. For the beam fluence of 0.265 J/cm2 and single-beam configuration, the particle sizes were smaller, the mean particles size was about 18nm and the majority of the particles were in the range of 1022nm with some big one as large as 40 nm. For double-beam approach, the mean particle size was larger (24.2 nm) and the majority of the particle were distributed from 14 to 35nm with some big particles can be found with sizes as big as 70 nm. Preliminary measurements of the thermal conductivity and viscosity of the produced samples showed that the thermal conductivity increased about 35% and the viscosity increased 3.7% above the base fluid viscosity even with the particle volume concentration as low as 0.01%.

  9. Energetics of Hydrogen Bond Network Rearrangements in Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energetics of Hydrogen Bond Network Rearrangements in Liquid Water Print The unique chemical and physical properties of liquid water are thought to result from the highly...

  10. Interpreting the drying kinetics of a soil using a macroscopic thermodynamic non-equilibrium of water between the liquid

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    by diffusion mechanisms within the material [1]. When modelling this second phase, the state variable chosen about liquid-gas phase change in porous media that suggest that the establishment of equilibrium, 9]. Vapour diffusion and liquid-vapour phase change are considered as the main phenomena

  11. An Investigation of Ammonia Extraction from Liquid Manure Using a Gas-Permeable Membrane Pollution of air, soil and water caused by excessive ammonia (NH3) emission and deposition from animal

    E-Print Network [OSTI]

    Mukhtar, Saqib

    An Investigation of Ammonia Extraction from Liquid Manure Using a Gas-Permeable Membrane Summary Pollution of air, soil and water caused by excessive ammonia (NH3) emission and deposition from animal by extracting it from liquid manure and potentially using the recovered NH3 as fertilizer. For this purpose, lab

  12. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  13. Characterization of water-based liquid scintillator response to gammas and neutrons at varying scintillator-surfactant concentrations

    E-Print Network [OSTI]

    Chilton, Lauren (Lauren M.)

    2012-01-01T23:59:59.000Z

    Large scale solar neutron and neutrino flux experiments require many tons of bulk liquid organic scintillator to take spectroscopic data of these energetic particles. However, material and chemical concerns make such ...

  14. The mineral content of water as a variable in the quality control of reconstituted non-fat dry milk products

    E-Print Network [OSTI]

    Kapsalis, John G.

    1959-01-01T23:59:59.000Z

    ...................... ....... 57 2 Treatment of Water and Reconstituted Milk (Mixed Commercial Lactic Cultures)........................... 16 3 The Effect of NaCl and CaS0^.2H20 of Synthetic Water on the Renneting Time and Curd Characteristics of Reconstituted Nonfat Dry... of Synthetic Water on the Renneting Time and Curd Char? acteristics of Reconstituted Nonfat Dry Milk........... 64 6 The Effect of CaCl2 and NallCC^ of Synthetic Water on the Renneting Time and Curd Characteristics of Reconstituted Nonfat Dry Milk...

  15. Liquid-Liquid Extraction Processes

    E-Print Network [OSTI]

    Fair, J. R.; Humphrey, J. L.

    1983-01-01T23:59:59.000Z

    Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

  16. Influence of age and water stress upon organic acid content and nitrogen metabolism of Gossypium hirsutum L

    E-Print Network [OSTI]

    Coon, Craig Nelson

    1970-01-01T23:59:59.000Z

    , The nitrate content of barley, sweet pea, and red kidney bean increases in relation to the amount of soil moisture tension (69, 44, 13). The soil moisture tension was increased by uniformly increasing the osmotic pressure of the nutrient solution... determined with a nitrogen analyzer. Nitrate- nitrogen was determined with a nitrate ion electrode in conjunction with an expanded scale pH meter. A Beckman Nodel 120B amino acid analyzer and a Barber-Coleman dual column, dual flame ionization ges...

  17. Acoustic attenuation, phase and group velocities in liquid-filled pipes: Theory, experiment, and examples of water and

    E-Print Network [OSTI]

    Sóbester, András

    ­311 1971 formulation, which predicts the phase speed of propagating axisymmetric modes inside a liquid speed, of the modes as a function of frequency. Measurements of the sound speeds and the attenuations investigated and the measured sound speeds and the damping of the modes were compared with the theoretical

  18. NORIA-SP: A finite element computer program for analyzing liquid water transport in porous media; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Hopkins, P.L.; Eaton, R.R.; Bixler, N.E.

    1991-12-01T23:59:59.000Z

    A family of finite element computer programs has been developed at Sandia National Laboratories (SNL) most recently, NORIA-SP. The original NORIA code solves a total of four transport equations simultaneously: liquid water, water vapor, air, and energy. Consequently, use of NORIA is computer-intensive. Since many of the applications for which NORIA is used are isothermal, we decided to ``strip`` the original four-equation version, leaving only the liquid water equation. This single-phase version is NORIA-SP. The primary intent of this document is to provide the user of NORIA-SP an accurate user`s manual. Consequently, the reader should refer to the NORIA manual if additional detail is required regarding the equation development and finite element methods used. The single-equation version of the NORIA code (NORIA-SP) has been used most frequently for analyzing various hydrological scenarios for the potential underground nuclear waste repository at Yucca Mountain in western Nevada. These analyses are generally performed assuming a composite model to represent the fractured geologic media. In this model the material characteristics of the matrix and the fractures are area weighted to obtain equivalent material properties. Pressure equilibrium between the matrix and fractures is assumed so a single conservation equation can be solved. NORIA-SP is structured to accommodate the composite model. The equations for water velocities in both the rock matrix and the fractures are presented. To use the code for problems involving a single, nonfractured porous material, the user can simply set the area of the fractures to zero.

  19. Flow at Low Water Contents: A Simple Approach for Inverse Estimation of van Genuchten-Mualem Soil Hydraulic Parameters

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Hydraulic Parameters Marcel Bawindsom Kbr1,2 , Fabien Cherblanc1 , Franois Oudraogo2 , Jean-Claude Bnet BP 7021, Burkina Faso Abstract The unsaturated soil hydraulic properties (the soil water. After a short review of alternative modeling approaches for the hydraulic functions from saturation

  20. Influence of wettability on liquid water transport in gas diffusion layer of proton exchange membrane fuel cells (PEMFC)

    E-Print Network [OSTI]

    Hamza Chraibi; L. Ceballos; M. Prat; Michel Quintard; Alexandre Vabre

    2009-09-16T23:59:59.000Z

    Water management is a key factor that limits PEFC's performance. We show how insights into this problem can be gained from pore-scale simulations of water invasion in a model fibrous medium. We explore the influence of contact angle on the water invasion pattern and water saturation at breakthrough and show that a dramatic change in the invasion pattern, from fractal to compact, occurs as the system changes from hydrophobic to hydrophilic. Then, we explore the case of a system of mixed wettability, i.e. containing both hydrophilic and hydrophobic pores. The saturation at breakthrough is studied as a function of the fraction of hydrophilic pores. The results are discussed in relation with the water management problem, the optimal design of a GDL and the fuel cell performance degradation mechanisms. We outline how the study could be extended to 3D systems, notably from binarised images of GDLs obtained by X ray microtomography.

  1. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  2. Path Integral Molecular Dynamics within the Grand Canonical-like Adaptive Resolution Technique: Quantum-Classical Simulation of Liquid Water

    E-Print Network [OSTI]

    Agarwal, Animesh

    2015-01-01T23:59:59.000Z

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however computationally this technique is very demanding. The abovementioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One possible solution to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this ...

  3. TABLE OF CONTENTS ABSTRACT . . .. . . .. . . . . . . . . . . . . . . . . . . . . . v

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ............................................... 12 Water-Source Heat Pump Performance ............................ 18 Air-Source Heat Pump QUARTZ CONTENT OF SEDIMENTARY ROCK LAYERS ........ 17 TABLE 10. PROPERTIES OF SEDIMENTARY ROCK LAYERS OF PERFORMANCE OF WATER-SOURCE HEAT PUMP .............................. ................. 23 FIGURE 2. NODAL

  4. Molecular Mechanism of the Adsorption Process of an Iodide Anion into Liquid-Vapor Interfaces of Water-Methanol Mixtures

    SciTech Connect (OSTI)

    Annapureddy, Harsha V.; Dang, Liem X.

    2012-12-07T23:59:59.000Z

    To enhance our understanding of the molecular mechanism of ion adsorption to the interface of mixtures, we systematically carried out a free energy calculations study involving the transport of an iodide anion across the interface of a water-methanol mixture. Many body affects are taken into account to describe the interactions among the species. The surface propensities of I- at interfaces of pure water and methanol are well understood. In contrast, detailed knowledge of the molecular level adsorption process of I- at aqueous mixture interfaces has not been reported. In this paper, we explore how this phenomenon will be affected for mixed solvents with varying compositions of water and methanol. Our potential of mean force study as function of varying compositions indicated that I- adsorption free energies decrease from pure water to pure methanol but not linearly with the concentration of methanol. We analyze the computed density profiles and hydration numbers as a function of concentrations and ion positions with respect to the interface to further explain the observed phenomenon. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle. The calculations were carried out using computer resources provided by BES.

  5. Effects of processing, home preparation and maturity on the mineral content of cowpeas [Vigna unguiculata (L.)

    E-Print Network [OSTI]

    Shows, Deirdre Lael

    1988-01-01T23:59:59.000Z

    ? The boil samples were cooked by gas heat for 30 minutes. Initially, water equal to 2. 5 times the weight of the beans was added for cooking as recommended by USDA (1971). However, additional amounts of water had to be added to samples that cooked dry... OF TABLES TABLE Page Amount of Water Used in Cooking of Boil Samples Mineral Content of Peas Raw and After Processing 24 Concentration of Elements in Canning Liquid 29 Phosphorus Values in Comparison with Literature Values 31 Contribution of 100...

  6. Evaluation of the tritium content in light water reactor control and absorber rods to obtain data for the fuel cycle backend

    SciTech Connect (OSTI)

    Bleier, A.; Neeb, K.H.; Gelfort, E.; Mischke, J.

    1986-08-01T23:59:59.000Z

    Tritium inventories and tritium distribution have been determined in boron glass absorber rods discharged from a pressurized water reactor first-cycle core and in spent boron carbide (B/sub 4/C) control rods from a boiling water reactor. The total tritium inventory in the boron glass absorber rods from the Stade nuclear reactor amounts to approx. =8.0 x 10/sup 10/ Bq (2.2 Ci) per rod. Of this, 99.6% was fixed in the boron glass itself and 0.4% in the Al/sub 2/O/sub 3/ pellets. The 4 x 10/sup -3/% fractions in the tube cladding and support pipe and the 1 x 10/sup -2/% fraction in the fill gas accounted for an insignificant part of the total tritium inventory of the rod. This experimentally determined tritium inventory was a factor of 5 larger than that suggested by the calculated estimate. The discrepancy between analyzed and calculated values can be explained by tritium formation from lithium impurities in the boron glass, where a 30-ppm lithium content would be adequate for this tritium inventory to be generated by the reaction /sup 6/Li(n,..cap alpha..)/sup 3/H. Evaluation of the B/sub 4/C control rods from the Lingen nuclear reactor after 3 yr of operation gave a 3.2 x 10/sup 10/Bq(0.85-Ci)tritium inventory per B/sub 4/C rod, while the total tritium inventory for a control rod assembly containing 60 B/sub 4/C rods was approx. =1.9 x 10/sup 12/ Bq (50 Ci). The tritium generated was essentially bound 100% in the B/sub 4/C, since the hulls contained only 6 x 10/sup -3/% and the fill gas only 2 x 10/sup -4/%.

  7. Earth's bulk water content likely exceeds that of all other terrestrial planets combined. Here, plate tectonics is responsible for the recycling of water between the crust and uppermost mantle. Water

    E-Print Network [OSTI]

    van der Lee, Suzan

    . Here, plate tectonics is responsible for the recycling of water between the crust and uppermost mantle of the mantle with greater than ninety percent efficiency has led to the formation of Earth's oceans [see e

  8. INEEL Liquid Effluent Inventory

    SciTech Connect (OSTI)

    Major, C.A.

    1997-06-01T23:59:59.000Z

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  9. Erasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles

    E-Print Network [OSTI]

    Loss, Daniel

    compressibility KT and the isobaric heat capacity CP . In the LLCP hypothesis, the density anomalies of waterErasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral, Sapienza, Universit´a di Roma, Piazzale Aldo Moro 2, I-00185, Roma, Italy. EFFECTS OF THE LIQUID-LIQUID

  10. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow,ice particleSize Distributiontypes

  11. This content has been downloaded from IOPscience. Please scroll...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    note that terms and conditions apply. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study View the table of contents for this issue, or...

  12. ARM - Measurement - Liquid water path

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow,icegovMeasurementsLightning stroke ARMpath

  13. A time-series study of the health effects of water-soluble and total-extractable metal content of airborne particulate matter

    E-Print Network [OSTI]

    Heal, Mathew R; Elton, Robert A; Hibbs, Leon R; Agius, Raymond M; Beverland, Iain J

    2009-01-01T23:59:59.000Z

    -soluble and total-extractable content of 11 trace metals determined in each sample. Time series were analysed using generalised additive Poisson regression models, including adjustment for minimum temperature and loess smoothing of trends. Methods were explored...

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  15. RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER AND ITS CONTENT IN GASOLINE

    E-Print Network [OSTI]

    RELATIONS BETWEEN THE DETECTION OF METHYL TERT-BUTYL ETHER (MTBE) IN SURFACE AND GROUND WATER.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly used today, the one used most commonly is MTBE. To meet the oxygen requirements of the CAA Amendments, gasoline

  16. Water and Energy Interactions

    E-Print Network [OSTI]

    McMahon, James E.

    2013-01-01T23:59:59.000Z

    storage. Power towers capture energy from the sun reflectedtower where water or molten salt is flowing to absorb the solar energy.towers or ponds). For liquid fuels, increased reliance on bioenergy will increase the correlation of water and energy

  17. Abstract--To study the lung water clearance in vivo at the time of the birth, MR experiments were conducted on newborn lamb immediately after uterine incision deliverance. Images obtained with a fast spin echo sequence enable to quantify lung liquid each

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Abstract-- To study the lung water clearance in vivo at the time of the birth, MR experiments were echo sequence enable to quantify lung liquid each 5 minutes during 30 minutes then each 10 minutes for 1.5 hour. From the lung contours, pulmonary volume, pulmonary water, and spatial gradient

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content of

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat ContentHeat

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat Content

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content of

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content ofHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeat

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeatHeat

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content of

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat ContentHeat

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat Content

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat Content

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content of

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat ContentHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat Content

  16. IEEE International Conference on Dielectric Liquids (ICDL-2008), Poitiers, June 30-July 4, 2008 Drop-on-demand Extraction from a Water Meniscus by

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Drop-on-demand Extraction from a Water Meniscus by a High Field Pulse P. Atten, A. Ouiguini, J. Raisin of a small drop electrically neutral. The experimental results of water drops extraction in oil are presented, France Abstract- As a part of a study of electrocoalescence of water droplets in oil, the controlled

  17. SEPARATION OF COPPER FROM METALS IN AN ALLOY BY LIQUID-LIQUID EXTRACTION

    E-Print Network [OSTI]

    Weston, Ken

    /L. Extraction. The extraction procedure is the same for the sample, standards and blank (water between sample extractions with water. The chloroform extracts at this point will normally be cloudySEPARATION OF COPPER FROM METALS IN AN ALLOY BY LIQUID-LIQUID EXTRACTION Background Reading: Harris

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click

  5. An ecological study examining the correlation of end-stage renal disease and ground water heavy metal content in Texas counties

    E-Print Network [OSTI]

    Bishop, Scott Alan

    1999-01-01T23:59:59.000Z

    An ecological study was conducted to examine the correlation of end-stage renal disease (ESRD) and the ground water heavy metal level of lead, arsenic, cadmium, mercury and the cumulative level of all four metals in Texas counties. The heavy meal...

  6. An Unprecedented Constraint on Water Content in the Sunlit Lunar Exosphere Seen by Lunar-Based Ultraviolet Telescope of Chang'e-3 Mission

    E-Print Network [OSTI]

    Wang, J; Qiu, Y L; Meng, X M; Cai, H B; Cao, L; Deng, J S; Han, X H; Wei, J Y

    2015-01-01T23:59:59.000Z

    The content of $\\mathrm{OH/H_2O}$ molecules in the tenuous exosphere of the Moon is still an open issue at present. We here report an unprecedented upper limit of the content of the OH radicals, which is obtained from the in-situ measurements carried out \\rm by the Lunar-based Ultraviolet Telescope, a payload of Chinese Chang'e-3 mission. By analyzing the diffuse background in the images taken by the telescope, the column density and surface concentration of the OH radicals are inferred to be $<10^{11}\\ \\mathrm{cm^{-2}}$ and $<10^{4}\\ \\mathrm{cm^{-3}}$ (by assuming a hydrostatic equilibrium with a scale height of 100km), respectively, by assuming that the recorded background is fully contributed by their resonance fluorescence emission. The resulted concentration is lower than the previously reported value by about two orders of magnitude, and is close to the prediction of the sputtering model. In addition, the same measurements and method allow us to derive a surface concentration of $<10^{2}\\ \\math...

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298 36,4875

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear JanAnnual",2014

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014 ,"Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014 ,"Release

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014Monthly","4/2015"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name or

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet%)"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground Storage

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- UndergroundTotal

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click-

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"Monthly","4/2015"

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015" ,"Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015" ,"Release

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"Annual",2014

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015" ,"Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"Annual",2014

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"Release

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"ReleaseAnnual",2014

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"Monthly","4/2015"

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release Date:","2015/06/30"

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014 ,"Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015" ,"Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and Distribution

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015" ,"Next

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"ReleaseDaily","7/20/2015"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"Monthly","4/2015","1/15/1973"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data" ,"Worksheet

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas Proved

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas ProvedCoalbed

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural Gas

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDryNonproducing

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves, Wet

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves,

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available from

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls"

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from Web

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900" ,"Data

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural Gas

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973" ,"Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2Total

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.Propane

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.PropaneMotor

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products "

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available from

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click worksheet

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"ClickPercentages

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts by

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker, Pipeline,

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil by

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof by

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of Total

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers Prices

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices -

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPricesNo.

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea" ,"Click

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"for

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users "

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End UsersAcquisition

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2 Distillate

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo.

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil Weekly

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating OilPropane

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand Petroleum

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and Petroleum

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil andDomestic

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct SuppliedMonthly","4/2015","1/15/1981"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981" ,"Data

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"Data

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"DataU.S.

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"Marketed ProductionMarketedHeat Content

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural Gas

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural GasHeat

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeatHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeat

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeatHeat

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeat

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeatHeat

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural Gas

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of NaturalHeat

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeat

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeatHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeat

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeatto

  19. Nuclear quantum effects in water

    E-Print Network [OSTI]

    Joseph A. Morrone; Roberto Car

    2008-03-25T23:59:59.000Z

    In this work, a path integral Car-Parrinello molecular dynamics simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed open path integral molecular dynamics methodology. It is shown that these results are in good agreement with neutron Compton scattering data for liquid water and ice.

  20. Orifice mixing of immiscible liquids

    E-Print Network [OSTI]

    McDonough, Joseph Aloysius

    1960-01-01T23:59:59.000Z

    solution (7). The present study of orif1ce mixing is a continuation of previous research on this project which yielded a relationship explaining the effect of operating conditions upon the format1on of 1nterfacial area for the system water-kerosene.... The experimental technique evolved by Helch (18), Vesselhoff (19), McNair (8), and Scott (IA) was changed only slightly. Their work on water-kerosene was repeated for the liquid pairs trichloroethylene-water, heptanol-water, 20 per oent aqueous sucrose-kerosene...

  1. Investigating Water

    E-Print Network [OSTI]

    Howard Jr., Ronald A.

    2002-01-02T23:59:59.000Z

    substances. It covers most of the earth?s surface, sometimes to a depth of more than a mile. It exists as a colorless gas in the atmosphere. It caps the poles with ice and occurs in the snows of winter. Liquid water fills brooks, streams, rivers, lakes, ponds...

  2. Grabbing water

    E-Print Network [OSTI]

    P. M. Reis; J. Hure; S. Jung; J. W. M. Bush; C. Clanet

    2012-07-16T23:59:59.000Z

    We introduce a novel technique for grabbing water with a flexible solid. This new passive pipetting mechanism was inspired by floating flowers and relies purely on the coupling of the elasticity of thin plates and the hydrodynamic forces at the liquid interface. Developing a theoretical model has enabled us to design petal-shaped objects with maximum grabbing capacity.

  3. A numerical method for the simulation of low Mach number liquid-gas flows.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    consisting of the air bubbles and the liquid water are investigated. They are driven by a heat supply

  4. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water

    E-Print Network [OSTI]

    Vinh, N Q; Allen, S James; George, D K; Rahmani, A J; Plaxco, Kevin W

    2015-01-01T23:59:59.000Z

    Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bon...

  5. aux interfaces liquide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (81 C), its relative safety (compared to liquids such as benzene and toluene of graphite under water and under cyclohexane will be discussed. From the results of this...

  6. Synchrotrons Explore Water's Molecular Mysteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory's Advanced Light Source, scientists observed a surprisingly dense form of water that remained liquid well beyond its typical freezing point. Researchers applied a...

  7. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  8. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    SciTech Connect (OSTI)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12T23:59:59.000Z

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and ?-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 129 ppm (5274.9 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.917.6 ppm (7987.4 71.9 Bq/kg) and 17.2 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by ?- spectrometry were 1156 ppm (4728 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 0.6% and 4.7 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  9. Water Quality Criteria Introduction ....................................................................................................................................798

    E-Print Network [OSTI]

    Pitt, Robert E.

    APPENDIX G Water Quality Criteria CONTENTS Introduction ....................................................................................................................................798 EPA's Water Quality Criteria and Standards Plan -- Priorities for the Future............................798 Compilation of Recommended Water Quality Criteria and EPA's Process for Deriving New

  10. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1994-07-05T23:59:59.000Z

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  11. Laboratory simulation of geosynthetic clay liner application in contaminated liquids evacuation

    SciTech Connect (OSTI)

    Mlynarek, J.; Vermeersch, O.G. [Geosynthetics Analysis Service, Saint-Hyacinthe, Quebec (Canada); Lemelin, D. [Hydro-Quebec, Montreal, Quebec (Canada)

    1997-11-01T23:59:59.000Z

    To prevent a contamination of soil and underground water by leaking mineral oil, recovery basins are designed and constructed in Quebec, Canada. The functions of such basins are to collect and to evacuate oil to a drainage and then to a recycled and treatment station. The material presently used for such an application is a concrete. However, due to difficult access to some of the transformers, and to the difficult low temperature conditions, engineers are looking for a new, alternate design idea. In order to evaluate the geosynthetic clay liner (GCL) hydraulic behavior in such applications, a laboratory demonstration test has been conducted. A full-scale model was designed and constructed for the purpose of measuring the rate of water flow through different layers of the proposed system. Mineral oil leaks as well as precipitation were simulated during the research program. The testing consisted of the measurements of mineral oil and water (precipitation) volumes at four levels of the demonstration model, during a period of two months. The results showed that only one percent of precipitated water and leaked mineral oil was collected underneath the geosynthetic clay liner. Further research is recommended on: techniques of seaming of GCLs joints and connections; the minimum acceptance rate of hydration of GCLs for different liquids; an influence of water content of soils on GCLs hydration; and a long term hydraulic compatibility of GCLs with different liquids and leachates.

  12. SOLVENT EXTRACTION OF PHENOLS FROM WATER

    E-Print Network [OSTI]

    Greminger, Douglas C.

    2012-01-01T23:59:59.000Z

    Waste Water Treatment by Solvent Extraction," Canadian J.A.F. Preuss, "Extraction of Phenol from Water with a Liquid1980 SOLVENT EXTRACTION OF PHENOLS FROM WATER LP,WRENCE BERv

  13. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    SciTech Connect (OSTI)

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)] [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

    2013-07-01T23:59:59.000Z

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  14. Creaming and breaking of liquid emulsions: a free boundary problem 1 / 48 Creaming and breaking of liquid

    E-Print Network [OSTI]

    Rosso, Fabio

    , as opposite to the other case called instead a water-in-oil emulsion. #12;Creaming and breaking of liquid emulsions: a free boundary problem 4 / 48 What is an emulsion? Everyday life examples (a) water-in-oil of the model 5 A priori estimates 6 Existence and uniqueness #12;Creaming and breaking of liquid emulsions

  15. Environ. Sci. Technol. 1994, 28, 1331-1340 Semlempirical Thermodynamic Modeling of Liquid-Liquid Phase Equilibria

    E-Print Network [OSTI]

    Peters, Catherine A.

    -Liquid Phase Equilibria: Coal Tar Dissolutionin Water-Miscible Solvents Catherine A. Peters'it and Richard 0 coaltar, solvent,and water using the nonrandom, two-liquid (NRTL) equation, a semi- empiricalexcessfreeenergyequation. Coaltar,a complex mixtureofpolycyclicaromatichydrocarbons(PAHs),was represented

  16. Liquid foams of graphene

    E-Print Network [OSTI]

    Alcazar Jorba, Daniel

    2012-01-01T23:59:59.000Z

    Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

  17. Rapid microwave hydrothermal synthesis of ZnGa{sub 2}O{sub 4} with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    SciTech Connect (OSTI)

    Sun Meng [School of Resources and Environment, University of Jinan, Jinan 250022 (China); Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Li Danzhen, E-mail: dzli@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China)

    2012-06-15T23:59:59.000Z

    ZnGa{sub 2}O{sub 4} was synthesized from Ga(NO{sub 3}){sub 3} and ZnCl{sub 2} via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa{sub 2}O{sub 4} were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa{sub 2}O{sub 4} had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa{sub 2}O{sub 4} has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa{sub 2}O{sub 4} (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa{sub 2}O{sub 4} was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa{sub 2}O{sub 4} had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: Black-Right-Pointing-Pointer A rapid and facile M-H method to synthesize ZnGa{sub 2}O{sub 4} photocatalyst. Black-Right-Pointing-Pointer The photocatalyst exhibits high activity toward benzene and dyes. Black-Right-Pointing-Pointer The catalyst possesses more surface hydroxyl sites than TiO{sub 2} (P25). Black-Right-Pointing-Pointer Deep oxidation of different aromatic compounds and dyes over catalyst.

  18. Interactions of Water and Energy Mediate Responses of High-Latitude Terrestrial Ecosystems to Climate Change

    E-Print Network [OSTI]

    Subin, Zachary Marc

    2012-01-01T23:59:59.000Z

    of the heat capacity of the ice mass and liquid water mass.all the ice (liquid) is melted (frozen). Heat capacities are

  19. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  20. Alien liquid detector and control

    SciTech Connect (OSTI)

    Potter, B.M.

    1980-09-02T23:59:59.000Z

    An alien liquid detector employs a monitoring element and an energizing circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. For this purpose an electronic circit controls a flow of heating current to the monitoring element. The presence of an alien liquid is detected by sensing a predetermined change in heating current flow to the monitoring element, e.g., to distinguish between water and oil. In preferred embodiments the monitoring element is a thermistor whose resistance is compared with a reference resistance and heating current through the thermistor is controlled in accordance with the difference. In one embodiment a bridge circuit senses the resistance difference; the difference may be sensed by an operational amplifier arrangement. Features of the invention include positioning the monitoring element at the surface of water, slightly immersed, so that the power required to maintain the thermistor temperature substantially above ambient temperature serves to detect presence of oil pollution at the surface.

  1. Liquid Cooling in Data Centers

    SciTech Connect (OSTI)

    Cader, Tahir; Sorell,, Vali; Westra, Levi; Marquez, Andres

    2009-05-01T23:59:59.000Z

    Semiconductor manufacturers have aggressively attacked the problem of escalating microprocessor power consumption levels. Today, server manufacturers can purchase microprocessors that currently have power consumption levels capped at 100W maximum. However, total server power levels continue to increase, with the increase in power consumption coming from the supportin chipsets, memory, and other components. In turn, full rack heat loads are very aggressivley climbing as well, and this is making it increasingly difficult and cost-prohibitive for facility owners to cool these high power racks. As a result, facilities owners are turning to alternative, and more energy efficient, cooling solutions that deploy liquids in one form or another. The paper discusses the advent of the adoption of liquid-cooling in high performance computing centers. An overview of the following competing rack-based, liquid-cooling, technologies is provided: in-row, above rack, refrigerated/enclosed rack, rear door heat exchanger, and device-level (i.e., chip-level). Preparation for a liquid-cooled data center, retroft and greenfield (new), is discussed, with a focus on the key issues that are common to all liquid-cooling technologies that depend upon the delivery of water to the rack (or in some deployments, a Coolant Distribution Unit). The paper then discusses, in some detail, the actual implementation and deployment of a liquid device-level cooled (spray cooled) supercomputer at the Pacific Northwest National Laboratory. Initial results from a successful 30 day compliance test show excellent hardware stability, operating system (OS) and software stack stability, application stability and performance, and an availability level that exceeded expectations at 99.94%. The liquid-cooled supercomputer achieved a peak performance of 9.287 TeraFlops, which placed it at number 101 in the June 2007 Top500 fastest supercomputers worldwide. Long-term performance and energy efficiency testing is currently underway, and detailed results will be reported in upcoming publications.

  2. TRANSPORT AND DYNAMICS IN SUPERCOOLED CONFINED WATER

    E-Print Network [OSTI]

    Stanley, H. Eugene

    Systems B. The Water Heat Capacity VIII. The NMR and the Configurational Heat Capacity IX. Concluding Remarks References Liquid Polymorphism: Advances in Chemical Physics, Volume 152, First Edition. Edited, inside this stable phase, water can also exist in liquid form. When this occurs, water is said

  3. Vapor-liquid equilibrium of water-acetone-air at ambient temperatures and pressures. An analysis of different VLE-fitting methods

    SciTech Connect (OSTI)

    Lichtenbelt, J.H.; Schram, B.J.

    1985-04-01T23:59:59.000Z

    The availability of accurate equilibrium data is of high importance in chemical engineering practice both for design and research purposes. It appeared that for the gas absorption system water-acetone-air in the range of special interest for absorption and desorption operations, neither literature data nor calculations following UNIFAC gave a sufficient accuracy. An experimental program was set up to determine equilibrium data with an accuracy within 2% for low acetone concentrations (up to 7 wt % gas phase) at ambient temperature (16-30/sup 0/C) and atmospheric pressure (740-860 mmHg). From experiments the activity coefficient at infinite dilution of acetone ..gamma.. is found to be 6.79 (0.01) at 20/sup 0/C and 7.28 (0.01) at 25/sup 0/C, while the total error in ..gamma.. is 1.5%. The equilibrium constant can be calculated from ..gamma.. and shows the same error. The experimental data-fitting with procedures of Margules (two parameters) and Van Laar were successful, but NRTL, Wilson, and UNIQUAC failed, probably because of the small concentration range used.

  4. Achievements and Outlook 2012 SA Water Centre for Water

    E-Print Network [OSTI]

    Mayer, Wolfgang

    Achievements and Outlook 2012 SA Water Centre for Water Management and Reuse #12;Contents Our Breaking News 35 SA Water Centre for Water Management and Reuse University of South Australia Mawson Lakes Campus Mawson Lakes SA 5095 Telephone: +61 (08) 8302 3338 Fax: +61 (08) 8302 3386 Web: unisa.edu.au/water

  5. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  6. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  7. Pressure Build-Up During the Fire Test in Type B(U) Packages Containing Water - 13280

    SciTech Connect (OSTI)

    Feldkamp, Martin; Nehrig, Marko; Bletzer, Claus; Wille, Frank [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44, 12205 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44, 12205 Berlin (Germany)

    2013-07-01T23:59:59.000Z

    The safety assessment of packages for the transport of radioactive materials with content containing liquids requires special consideration. The main focus is on water as supplementary liquid content in Type B(U) packages. A typical content of a Type B(U) package is ion exchange resin, waste of a nuclear power plant, which is not dried, normally only drained. Besides the saturated ion exchange resin, a small amount of free water can be included in these contents. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific issues. An overview of these issues is provided. The physical and chemical compatibility of the content itself and the content compatibility with the packages materials must be demonstrated for the assessment. Regarding the mechanical resistance the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vaporization. This could for example be caused by radiolysis of the liquid and must be taken into account for the storage period. If the package is stressed by the total inner pressure, this pressure leads to mechanical loads to the package body, the lid and the lid bolts. Thus, the pressure is the driving force on the gasket system regarding the activity release and a possible loss of tightness. The total pressure in any calculation is the sum of partial pressures of different gases which can be caused by different effects. The pressure build-up inside the package caused by the regulatory thermal test (30 min at 800 deg. C), as part of the cumulative test scenario under accident conditions of transport is discussed primarily. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from beginning of the thermal test until cooling-down. In this case, while calculating the temperature distribution, conduction and radiation as well as evaporation and condensation during the associated process of transport have to be considered. This paper discusses limiting amounts of water inside the cask which could lead to unacceptable pressure and takes into account saturated steam as well as overheated steam. However, the difficulties of assessing casks containing wet content will be discussed. From the authority assessment point of view, drying of the content could be an effective way to avoid the above described pressure build-up and the associated difficulties for the safety assessment. (authors)

  8. Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL; Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland

    2010-01-01T23:59:59.000Z

    Currently, chromatographic analyses are carried out by operating columns packed with sub-2 {micro}m particles under very high pressure gradients, up to 1200 bar for 5 cm long columns. This provides the high flow rates that are necessary for the achievement of high column efficiencies and short analysis times. However, operating columns at high flow rates under such high pressure gradients generate a large amount of heat due to the viscous friction of the mobile phase stream that percolates through a low permeability bed. The evacuation of this heat causes the formation of significant or even large axial and radial gradients of all the physico-chemical parameters characterizing the packing material and the mobile phase, eventually resulting in a loss of column efficiency. We previously developed and successfully applied a model combining the heat and the mass balances of a chromatographic column operated under very high pressure gradients (VHPLC). The use of this model requires accurate estimates of the dispersion coefficients at each applied mobile phase velocity. This work reports on a modification of the mass balance model such that only one measurement is now necessary to accurately predict elution peak profiles in a wide range of mobile phase velocities. The conditions under which the simple equilibrium-dispersive (ED) and transport-dispersive (TD) models are applicable in VHPLC are also discussed. This work proves that the new combination of the heat transfer and the ED model discussed in this work enables the calculation of accurate profiles for peaks eluted under extreme conditions, like when the column is thermostated in a water bath.

  9. 2010 Water & Aqueous Solutions

    SciTech Connect (OSTI)

    Dor Ben-Amotz

    2010-08-13T23:59:59.000Z

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  10. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  11. Growth of flower-like CdSe dendrites from a Brnsted acidbase ionic liquid precursor{

    E-Print Network [OSTI]

    Utrecht, Universiteit

    solution of water, ethanol and ionic liquid based on formic acid and N,N-dimethylformamide. Experimental, ethanol, an ionic liquid based on formic acid and N,N-dimethylformamide, cadmium chloride and sel

  12. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27T23:59:59.000Z

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  13. Process for converting coal into liquid fuel and metallurgical coke

    DOE Patents [OSTI]

    Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

    1994-01-01T23:59:59.000Z

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  14. Liquid soap film generates electricity

    E-Print Network [OSTI]

    Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

    2014-04-24T23:59:59.000Z

    We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

  15. Lipid extraction from microalgae using a single ionic liquid

    DOE Patents [OSTI]

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28T23:59:59.000Z

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  16. Water's Hydrogen Bond Strength

    E-Print Network [OSTI]

    Martin Chaplin

    2007-06-10T23:59:59.000Z

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperatures. The overall conclusion of this investigation is that water's hydrogen bond strength is poised centrally within a narrow window of its suitability for life.

  17. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  18. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect (OSTI)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26T23:59:59.000Z

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  19. Arkansas Water Resources Center

    E-Print Network [OSTI]

    Soerens, Thomas

    Arkansas Water Resources Center DISPOSAL OF HOUSEHOLD WASTEWATER IN SOILS OF HIGH STONE CONTENT Agricultural Engineering and Civil Engineering University of Arkansas Fayetteville, Arkansas 72701 Arkansas and D. T. Mitchell Departments of Agronomy, Agricultural Engineering and Civil Engineering, University

  20. Water: A Complex Liquid Marcia C. Barbosa

    E-Print Network [OSTI]

    Liu, I-Shih

    and Entropy (S - S )(V - V ) #12;Diffusion - SPC/E Berendsen, Grigera, Straatsma, JCP 91, 6269 (87) #12;Diffusion - SPC/E Netz, Starr, Stanley, Barbosa JCP 115, 344 (01) #12;Rotation Diffusion - SPC/E Netz, Starr) Particles make four bonds BUT they have five neighbors!!! #12;Frequency - SPC/E Netz, Starr, MCB and Stanley

  1. Damping of liquid sloshing by foams

    E-Print Network [OSTI]

    Alban Sauret; Franois Boulogne; Jean Cappello; Emilie Dressaire; Howard A. Stone

    2015-02-01T23:59:59.000Z

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  2. FINAL REPORT FOR TRITIUM WATER MONITOR

    SciTech Connect (OSTI)

    Sigg, R.; Ferguson, B.; DiPrete, D.

    2011-04-25T23:59:59.000Z

    The objective of this Plant Directed Research and Demonstration (PDRD) task was to develop a system to safetly analyze tritium in moisture collected from glovebox atmospheres in the Savannah River Site (SRS) Tritium Facility. In order to minimize potential radiation exposures that could occur in handling and diluting high-tritium-content water, SRS sought alternatives to liquid-scintillation counting. The proposed system determines tritium concentrations by measuring Bremsstrahlung radiation induced by low-energy beta interactions in liquid samples. Results show that, after a short counting period (30 seconds), detection limits are three orders of magnitude below the described concentration of tritiated water in the zeolite beds. Additionally, this report covers the analysis of process samples and the investigation of several cell window materials including beryllium, aluminum, and copper. Final tests reveal that alternate window materials and thicknesses can be used to obtain useful results. In particular, a window of stainless steel of moderate thickness (0.3 cm) can be used for counting relatively high levels of tritium.

  3. Predictions of Dynamic Behavior under Pressure for Two Scenarios to Explain Water Anomalies Pradeep Kumar,1

    E-Print Network [OSTI]

    Franzese, Giancarlo

    of maximum correlation length in the (T, P) plane. Response functions, such as the isobaric heat capacity CP crossover is independent of whether water at very low temperature is characterized by a ``liquid-liquid scenarios are commonly used to interpret the anomalies of water [1,2]: (i) The liquid-liquid critical point

  4. Equation for liquid density

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C.; Hopper, J.R.; Cawley, W.A. (Lamar Univ., Beaumont, TX (US))

    1991-01-01T23:59:59.000Z

    Saturated liquid densities for organic chemicals are given as functions of temperature using a modified Rackett equation.

  5. aux interfaces solide-liquide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (81 C), its relative safety (compared to liquids such as benzene and toluene of graphite under water and under cyclohexane will be discussed. From the results of this...

  6. OIL DROPLET MANIPULATION USING LIQUID DIELECTROPHORESIS ON ELECTRET WITH SUPERLYOPHOBIC

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    OIL DROPLET MANIPULATION USING LIQUID DIELECTROPHORESIS ON ELECTRET WITH SUPERLYOPHOBIC SURFACES flow friction for water and oil. Charge stability of electret in liquid is much improved with new hysteresis of SLS for oil droplets are experimentally demonstrated, indicating low motion resistance

  7. Liquid detection circuit

    DOE Patents [OSTI]

    Regan, Thomas O. (North Aurora, IL)

    1987-01-01T23:59:59.000Z

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  8. WATER INFLOW INTO BOREHOLES DURING THE STRIPA HEATER EXPERIMENTS

    E-Print Network [OSTI]

    Nelson, P.H.

    2010-01-01T23:59:59.000Z

    is plotted against water extraction rate with temper aturei^ H 2 _ -i I Liquid water extraction rate (liters/day) XBLholi? s due to water extraction was negligible because the

  9. NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS

    E-Print Network [OSTI]

    Lippmann, M.J.

    2010-01-01T23:59:59.000Z

    13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

  10. Boiling and condensation in a liquid-filled enclosure

    E-Print Network [OSTI]

    Bar-Cohen Avram

    1971-01-01T23:59:59.000Z

    A combined experimental and analytical investigation of boiling and condensation in a liquid-filled enclosure, with water and Freon- 113 as the working fluids, is described. The operating characteristics of a boiling system, ...

  11. Designing liquid repellent surfaces for fabrics, feathers and fog

    E-Print Network [OSTI]

    Chhatre, Shreerang S. (Shreerang Sharad)

    2013-01-01T23:59:59.000Z

    Omniphobicity refers to a property of surfaces which are not wetted by water, oils, alcohols and other low surface tension liquids. Robust omniphobic surfaces can be applied in many areas including fabrics with chemical / ...

  12. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  13. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  14. Liquid Wall Chambers

    SciTech Connect (OSTI)

    Meier, W R

    2011-02-24T23:59:59.000Z

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  15. CONTENTS ACKNOWLEDGMENTS ........................................................................................................ ix

    E-Print Network [OSTI]

    Kemner, Ken

    ......................................................................................... 15 3.1 Water Requirements for Drilling ............................................................................ 15 3.2 EGS Well Stimulation for Drilling, Stimulation, and Operation Activities ......................... 33 3.7 Water Quality Issues

  16. Journal of Power Sources 190 (2009) 216222 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Zhao, Tianshou

    2009-01-01T23:59:59.000Z

    methanol fuel cell (DMFC) Water crossover Liquid saturation Two-phase mass transport model a b s t r a c direct methanol fuel cell (DMFC) with a conventional two-phase mass transport model, a current water distribution in a liquid-feed direct methanol fuel cell W.W. Yang, T.S. Zhao , R. Chen, C. Xu

  17. Table of Contents

    Office of Environmental Management (EM)

    2,300,000 56 Sep 26, 2013 The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory (OAS-L-13-15) 57 Sep 30, 2013 The...

  18. Detection of supercooled liquid in mixedphase clouds using radar Doppler spectra

    E-Print Network [OSTI]

    Shupe, Matthew

    in the temperature range from 0 to -40°C, where both liquid and ice hydrometeor phases are sustainable of their hydrometeors (i.e., liquid or ice). Current cloud parameterizations that parti- tion water into liquid and ice 2010; published 1 October 2010. [1] Cloud phase identification from active remote sensors

  19. Applied Catalysis A: General 392 (2011) 5768 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Auerbach, Scott M.

    2011-01-01T23:59:59.000Z

    Applied Catalysis A: General 392 (2011) 5768 Contents lists available at ScienceDirect Applied Catalysis A: General journal homepage: www.elsevier.com/locate/apcata Liquid phase aldol condensation

  20. Note and calculations concerning elastic dilatancy in 2D glassglass liquid foams Francois Molino, Pierre Rognon, and Cyprien Gay #

    E-Print Network [OSTI]

    Recanati, Catherine

    Note and calculations concerning elastic dilatancy in 2D glass­glass liquid foams Fran?cois Molino: October 30, 2010) When deformed, liquid foams tend to raise their liquid contents like immersed granular dilatancy in 3D foams and in very dry foams squeezed between two solid plates (2D GG foams). Here, we