National Library of Energy BETA

Sample records for liquid waste treatment

  1. Waste Treatment Plant Liquid Effluent Treatability Evaluation

    SciTech Connect (OSTI)

    LUECK, K.J.

    2001-06-07

    Bechtel National, Inc. (BNI) provided a forecast of the radioactive, dangerous liquid effluents expected to be generated by the Waste Treatment Plant (WTP). The forecast represents the liquid effluents generated from the processing of 25 distinct batches of tank waste through the WTP. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Fluor Hanford, Inc. (FH) evaluated the treatability of the WTP liquid effluents in the LERFIETF. The evaluation was conducted by comparing the forecast to the LERFIETF treatability envelope, which provides information on the items that determine if a liquid effluent is acceptable for receipt and treatment at the LERFIETF. The WTP liquid effluent forecast is outside the current LERFlETF treatability envelope. There are several concerns that must be addressed before the WTP liquid effluents can be accepted at the LERFIETF.

  2. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    SciTech Connect (OSTI)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  3. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    SciTech Connect (OSTI)

    LUECK, K.J.

    2004-10-18

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department of Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document.

  4. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

    2006-07-01

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  5. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    SciTech Connect (OSTI)

    Del Signore, John C.

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  6. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect (OSTI)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  7. Use of chemical precipitation processes in practice of liquid radioactive waste treatment

    SciTech Connect (OSTI)

    Zabrodsky, V.N.; Prokshin, N.E.; Efremenkov, V.M.; Shunkevich, A.A.

    1995-12-31

    In this work information is presented on the installation which is being developed for treatment of liquid radioactive waste. The characteristics of liquid waste generated during decontamination of industrial facilities in Republic of Belarus are also presented. The results of treatment of simulated liquid waste for {sup 137}Cs removal using the method of chemical coprecipitation at different ratios of sedimenting reagents are described. The received data are juxtaposed with the results of sedimentation kinetics of nickel ferrocyanide at the same conditions. The last-named data were obtained by the methods of optical spectrophotometry and radioactive tracers. Methodology of synthesis and properties of cation-exchange fiber FIBAN K-1 modified by cobalt ferrocyanide is described. This sorbent has high sorption ability towards {sup 137}Cs and may be used at the liquid waste treatment facility.

  8. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  9. Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001

    SciTech Connect (OSTI)

    Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W.

    2013-07-01

    A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

  10. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  11. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  12. EA-1115: Liquid Waste Treatment at the Nevada Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to treat low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the U.S. Department of Energy Nevada...

  13. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect (OSTI)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

  14. Development of US Navy Shipboard Systems for solid and liquid waste thermal treatment. Report for July 1995-April 1996

    SciTech Connect (OSTI)

    Gullet, B.K.

    1996-07-01

    The paper describes the U.S. Navy`s shipboard environmental challenges and a few of its research programs for meeting its needs for solid and liquid waste treatment. This objective is particularly important in environmentally sensitive areas, such as the Mediterranean Sea, where fleet deployment time is significant. Prohibitions on ocean dumping and anticipated requirements on effluent discharge quality have led the Navy to continue the research, development, and demonstration of shipboard systems to treat their unpreventable wastes. For solid, non-hazardous wastes, post-minimization efforts are geared toward long-term development of systems to thermally pyrolyze and oxidize the wastes into significantly reduced volume and weight.

  15. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    #12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

  16. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect (OSTI)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

  17. Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory 

    E-Print Network [OSTI]

    Selvage, Ronald Derek

    1995-01-01

    Radioactive Liquid Waste Treatment Facility. The PSID documents risk analysis for the proposed facility and some of the alternatives, accident analysis, radioactive and hazardous material doses to off-site individuals, and the cumulative safety risk from...

  18. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  19. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

  20. New Standards in Liquid Waste Treatment at Fukushima Dai-ichi - 13134

    SciTech Connect (OSTI)

    Sylvester, Paul; Milner, Tim; Ruffing, Jennifer; Poole, Scott; Townson, Paul; Jensen, Jesse

    2013-07-01

    The earthquake and tsunami on March 11, 2011 severely damaged the Fukushima Dai-ichi nuclear plant leading to the most severe nuclear incident since Chernobyl. Ongoing operations to cool the damaged reactors at the site have led to the generation of highly radioactive coolant water. This is currently mainly treated to remove Cs-137 and Cs-134 and passed through a reverse osmosis (RO) unit to reduce the salinity before being cycled back to the reactors. Because only the Cs isotopes are removed, the RO reject water still contains many radioactive isotopes and this has led to the accumulation of over 200,000 cubic meters (52 million gallons) of extremely contaminated water which is currently stored on site in tanks. EnergySolutions, in partnership with Toshiba, were contracted to develop a system to reduce 62 isotopes in this waste down to allowable levels. This was a significant technical challenge given the high background salt content of the wastewater, the variation in aqueous chemistry of the radioactive isotopes and the presence of non-active competing ions (e.g. Ca and Mg) which inhibit the removal of isotopes such as Sr-89 and Sr-90. Extensive testing was performed to design a suitable system that could meet the required decontamination goals. These tests were performed over a 6 month period at facilities available in the nearby Fukushima Dai-ni laboratory using actual waste samples. This data was then utilized to design a Multi Radioactive Nuclides Removal System (MRRS) for Fukushima which is a modified version of EnergySolutions' proprietary Advanced Liquid Processing System (ALPS)'. The stored tank waste is fed into a preliminary precipitation system where iron flocculation is performed to remove a number of isotopes, including Sb-125, Ru-106, Mn-54 and Co-60. The supernatant is then fed into a second precipitation tank where the pH is adjusted and the bulk of the Mg, Ca and Sr precipitated out as carbonates and hydroxides. After passing through a cross-flow ultrafiltration membrane, the permeate then goes through a total of 14 fixed ion exchange and adsorbent columns followed by a disposable polishing column to polish the residual isotopes down to allowable levels. At the end of the system, the effluent is filtered for a final time to removal any particulates that may have been picked up from the media columns and then stored prior to analysis. (authors)

  1. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    SciTech Connect (OSTI)

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  2. Method for treating liquid wastes

    DOE Patents [OSTI]

    Katti, Kattesh V. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Singh, Prahlad (Columbia, MO); Ketring, Alan R. (Columbia, MO)

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  3. Method for treating liquid wastes

    DOE Patents [OSTI]

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  4. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Mixed Waste Before generating mixed waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534-2753. * Disinfectants other than bleach mustBiohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

  5. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  6. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  7. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (858

  8. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    SciTech Connect (OSTI)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  9. Commercial waste treatment program annual progress report for FY 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Burkholder, H.C. (comps.)

    1984-02-01

    This annual report describes progress during FY 1983 relating to technologies under development by the Commercial Waste Treatment Program, including: development of glass waste form and vitrification equipment for high-level wastes (HLW); waste form development and process selection for transuranic (TRU) wastes; pilot-scale operation of a radioactive liquid-fed ceramic melter (LFCM) system for verifying the reliability of the reference HLW treatment proces technology; evaluation of treatment requirements for spent fuel as a waste form; second-generation waste form development for HLW; and vitrification process control and product quality assurance technologies.

  10. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility...

  11. Independent Oversight Activity Report, Hanford Waste Treatment...

    Office of Environmental Management (EM)

    2013 More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...

  12. Waste treatment at the La Hague and Marcoule sites

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In this report, an overview of waste treatment and solidification facilities located at the La Hague and Marcoule sites, which are owned and/or operated by Cogema, provided. The La Hague facilities described in this report include the following: The STE3 liquid effluent treatment facility (in operation); the AD2 solid waste processing facility (also in operation); and the UCD alpha waste treatment facility (under construction). The Marcoule facilities described in this report, both of which are in operation, include the following: The STEL-EVA liquid effluent treatment facilities for the entire site; and the alpha waste incinerator of the UPI plant. This report is organized into four sections: this introduction, low-level waste treatment at La Hague, low-level waste treatment at Marcoule, and new process development. including the solvent pyrolysis process currently in the development stage for Cogema`s plants.

  13. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    3 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction...

  14. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    2 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project...

  15. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality...

  16. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant...

  17. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant...

  18. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    May 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - May 2013 May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction...

  19. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant...

  20. Independent Oversight Assessment, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

  1. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the results of an...

  2. Independent Oversight Review, Sodium Bearing Waste Treatment...

    Office of Environmental Management (EM)

    2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the results of an...

  3. Independent Oversight Review, Advanced Mixed Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation Protection...

  4. Waste Treatment Facility Passes Federal Inspection, Completes...

    Office of Environmental Management (EM)

    Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins...

  5. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect (OSTI)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  6. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  7. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect (OSTI)

    Gilmore, Walter E.; Stender, Kerith K.

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  8. Report: EM Tank Waste Subcommittee Full Report for Waste Treatment...

    Office of Environmental Management (EM)

    meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment Plant; Report Number EMAB EM-TWS WTP-001,...

  9. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August...

  10. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    SciTech Connect (OSTI)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  11. Independent Oversight Activity Report, Hanford Waste Treatment...

    Energy Savers [EERE]

    - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities...

  12. Overview of Integrated Waste Treatment Unit

    Office of Environmental Management (EM)

    Environmental Management Integrated Waste Treatment Unit Overview Overview for the DOE High Level Waste Corporate Board March 5, 2009 safety performance cleanup closure...

  13. 8-Waste treatment and disposal A. Responsibility for waste management

    E-Print Network [OSTI]

    8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

  14. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    SciTech Connect (OSTI)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  15. Treatability study of absorbent polymer waste form for mixed waste treatment

    SciTech Connect (OSTI)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  16. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  17. Aqueous Waste Treatment Plant at Aldermaston

    SciTech Connect (OSTI)

    Keene, D. [RWE NUKEM, Ltd, 424 Harwell, Didcot, Oxfordshire, OX 110GJ (United Kingdom); Fowler, J.; Frier, S. [AWE plc, Aldermaston, Berkshire RG7 4PR (United Kingdom)

    2006-07-01

    For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

  18. Ventilation System to Improve Savannah River Site's Liquid Waste Operations

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site are improving salt waste disposition work and preparing for eventual operations of the Salt Waste Processing Facility (SWPF) currently being constructed.

  19. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  20. Independent Oversight Activity Report, Hanford Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation HIAR-WTP-2013-05-13 This...

  1. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  2. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  3. UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal at the University of Washington is coordinated by the EH&S Environmental Programs Office

    E-Print Network [OSTI]

    Wilcock, William

    solid waste, use the approved facilities listed below. This document is primarily intended & sludge Seattle, WA Ventilation Power Cleaning Vactor & parking garage waste Seattle, WA King County Treatment Plant Liquids & sludge Seattle, WA La Farge Cement Kiln Liquids & sludge Seattle, WA Cemex Liquids

  4. Onsite Wastewater Treatment Systems: Liquid Chlorination 

    E-Print Network [OSTI]

    Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

    2008-10-23

    This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

  5. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  6. Independent Oversight Review, Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Project - October 2010 Independent Oversight Review, Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford...

  7. Waste Treatment and Immobilation Plant Pretreatment Facility

    Office of Environmental Management (EM)

    7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by...

  8. Washington Environmental Permit Handbook - Dangerous Waste Treatment...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Dangerous Waste Treatment Storage Disposal Facility New Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  9. Independent Oversight Review, Waste Treatment and Immobilization...

    Broader source: Energy.gov (indexed) [DOE]

    November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality This report documents the results of an independent oversight review...

  10. Implementation of Treatment Systems for Low and Intermediate Radioactive Waste at Site Radwaste Treatment Facility (SRTF), PR China - 12556

    SciTech Connect (OSTI)

    Lohmann, Peter; Nasarek, Ralph; Aign, Joerg

    2012-07-01

    The AP1000 reactors being built in the People's Republic of China require a waste treatment facility to process the low and intermediate radioactive waste produced by these nuclear power stations. Westinghouse Electric Germany GmbH was successful in being awarded a contract as to the planning, delivery and commissioning of such a waste treatment facility. The Site Radwaste Treatment Facility (SRTF) is a waste treatment facility that can meet the AP1000 requirements and it will become operational in the near future. The SRTF is situated at the location of Sanmen, People's Republic of China, next to one of the AP1000 and is an adherent building to the AP1000 comprising different waste treatment processes for radioactive spent filter cartridges, ion-exchange resins and radioactive liquid and solid waste. The final product of the SRTF-treatment is a 200 l drum with cemented waste or grouted waste packages for storage in a local storage facility. The systems used in the SRTF are developed for these special requirements, based on experience from similar systems in the German nuclear industry. The main waste treatment systems in the SRTF are: - Filter Cartridge Processing System (FCS); - HVAC-Filter and Solid Waste Treatment Systems (HVS); - Chemical Liquid Treatment Systems (CTS); - Spent Resin Processing Systems (RES); - Mobile Treatment System (MBS). (authors)

  11. Radioactive waste treatment technologies and environment

    SciTech Connect (OSTI)

    HORVATH, Jan; KRASNY, Dusan [JAVYS, PLc. - Nuclear and Decommisioning Company, PLc. (Slovakia)

    2007-07-01

    The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

  12. NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT

    E-Print Network [OSTI]

    biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

  13. DOE Selects Seven Contractors for Waste Treatment Basic Ordering...

    Office of Environmental Management (EM)

    Selects Seven Contractors for Waste Treatment Basic Ordering Agreements DOE Selects Seven Contractors for Waste Treatment Basic Ordering Agreements June 4, 2015 - 12:00pm Addthis...

  14. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Environmental Management (EM)

    Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the...

  15. Advanced Mixed Waste Treatment Project Achieves Impressive Safety...

    Office of Environmental Management (EM)

    Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks Advanced Mixed Waste Treatment Project Achieves Impressive Safety and Production Marks June...

  16. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer...

  17. Independent Oversight Review, Hanford Site Waste Treatment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Treatment and Immobilization Plant - June 2014 June 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the...

  18. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Energy Savers [EERE]

    Site Waste Treatment and Immobilization Plant Construction Quality - June 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant...

  19. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids

    E-Print Network [OSTI]

    Chen, M; Huang, J; Ogunseitan, OA; Zhu, N; Wang, YM

    2015-01-01

    liquid acids. Waste Management (2015), http://dx.doi.org/Agency. Electronics Waste Management in the United Statesliquid acids. Waste Management (2015), http://dx.doi.org/

  20. Detection of free liquid in containers of solidified radioactive waste

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  1. Accelerated carbonation treatment of industrial wastes

    SciTech Connect (OSTI)

    Gunning, Peter J., E-mail: gunning_peter@hotmail.co [Centre for Contaminated Land Remediation, University of Greenwich, Chatham Maritime (United Kingdom); Hills, Colin D.; Carey, Paula J. [Centre for Contaminated Land Remediation, University of Greenwich, Chatham Maritime (United Kingdom)

    2010-06-15

    The disposal of industrial waste presents major logistical, financial and environmental issues. Technologies that can reduce the hazardous properties of wastes are urgently required. In the present work, a number of industrial wastes arising from the cement, metallurgical, paper, waste disposal and energy industries were treated with accelerated carbonation. In this process carbonation was effected by exposing the waste to pure carbon dioxide gas. The paper and cement wastes chemically combined with up to 25% by weight of gas. The reactivity of the wastes to carbon dioxide was controlled by their constituent minerals, and not by their elemental composition, as previously postulated. Similarly, microstructural alteration upon carbonation was primarily influenced by mineralogy. Many of the thermal wastes tested were classified as hazardous, based upon regulated metal content and pH. Treatment by accelerated carbonation reduced the leaching of certain metals, aiding the disposal of many as stable non-reactive wastes. Significant volumes of carbon dioxide were sequestrated into the accelerated carbonated treated wastes.

  2. Waste water treatment cuts plant's pollution

    SciTech Connect (OSTI)

    Not Available

    1984-01-09

    New waste water treatment facilities at the U.S. Oil and Refining Co. refinery, Tacoma, Wash., have allowed that plant to exceed NPDES (National Pollution Discharge Elimination System) standards for effluent discharge. This comes in an area where maintaining water quality is a sensitive public issue. The waste treatment system at the 25,000 b/d refinery enables it to discharge negligible quantities of waterborne pollutants, according to Envirex Inc. Envirex designed and built the activated sludge waste treatment system at the refinery (Fig. 1). The system utilizes large rotating vertical discs for aeration of the waste water. These discs churn air into the waste water. They also keep the solidsladen water moving in an orbital path in a specially constructed treatment basin. The rotating discs and flowing water facilitate formation of large floc particles which are conducive to solids capture. A higher concentration of mixed-liquor suspended solids (MLSS) is therefore possible, enhancing the efficient removal of waste materials from the water.

  3. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect (OSTI)

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  4. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    SciTech Connect (OSTI)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  5. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect (OSTI)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.

  6. Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford...

    Office of Environmental Management (EM)

    More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility EMAB Reports and Recommendations - September 2010 System Planning for...

  7. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant...

  8. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review of the Hanford Site Waste Treatment and Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015...

  9. Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...

    Office of Environmental Management (EM)

    2 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities L....

  10. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - June 2015 Enterprise Assessments Review of the Hanford Site Waste...

  11. Hydrophilization of Liquid Surfaces by Plasma Treatment

    E-Print Network [OSTI]

    Victor Multanen; Gilad Chaniel; Roman Grynyov; Ron Yosef Loew; Naor Siany; Edward Bormashenko

    2014-09-01

    The impact of the cold radiofrequency air plasma on the surface properties of silicone oils (polydimethylsiloxane) was studied. Silicone oils of various molecular masses were markedly hydrophilized by the cold air plasma treatment. A pronounced decrease of the apparent water contact angles was observed after plasma treatment. A general theoretical approach to the calculation of apparent contact angles is proposed. The treated liquid surfaces demonstrated hydrophobic recovery. The characteristic time of the hydrophobic recovery grew with the molecular mass of the silicone oil.

  12. Medical waste treatment and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  13. Removal of Radioactive Nuclides from Mo-99 Acidic Liquid Waste - 13027

    SciTech Connect (OSTI)

    Hsiao, Hsien-Ming; Pen, Ben-Li

    2013-07-01

    About 200 liters highly radioactive acidic liquid waste originating from Mo-99 production was stored at INER (Institute of Nuclear Energy Research). A study regarding the treatment of the radioactive acidic liquid waste was conducted to solve storage-related issues and allow discharge of the waste while avoiding environmental pollution. Before discharging the liquid waste, the acidity, NO{sub 3}{sup -} and Hg ions in high concentrations, and radionuclides must comply with environmental regulations. Therefore, the treatment plan was to neutralize the acidic liquid waste, remove key radionuclides to reduce the dose rate, and then remove the nitrate and mercury ions. Bench tests revealed that NaOH is the preferred solution to neutralize the high acidic waste solution and the pH of solution must be adjusted to 9?11 prior to the removal of nuclides. Significant precipitation was produced when the pH of solution reached 9. NaNO{sub 3} was the major content in the precipitate and part of NaNO{sub 3} was too fine to be completely collected by filter paper with a pore size of approximately 3 ?m. The residual fine particles remaining in solution therefore blocked the adsorption column during operation. Two kinds of adsorbents were employed for Cs-137 and a third for Sr-90 removal to minimize cost. For personnel radiation protection, significant lead shielding was required at a number of points in the process. The final process design and treatment facilities successfully treated the waste solutions and allowed for environmentally compliant discharge. (authors)

  14. TRAITEMENT DES EFFLUENTS WASTE TREATMENT

    E-Print Network [OSTI]

    Boyer, Edmond

    residence time the production of biogas (7l-78 p. 100 CH,) was 237 1 per kg dry matter, i.e. 479 1 of CH to obtain the same amount of biogas four times quicklier. The treatment yield was improved (65 p. 100 COD). The mean production was 4931 biogas/kg degraded COD. It seems to be possible to apply that procedure

  15. Zinc Bromide Waste Solution Treatment Options

    SciTech Connect (OSTI)

    Langston, C.A.

    2001-01-16

    The objective of this effort was to identify treatment options for 20,000 gallons of low-level radioactively contaminated zinc bromide solution currently stored in C-Area. These options will be relevant when the solutions are declared waste.

  16. Waste treatment by dialysis. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    The bibliography contains citations concerning the use of dialysis in the treatment of wastewaters. Techniques for the removal of metals, ammonia, waste acids, nitrates, and phosphates are described. Special attention is given to the desalination of liquid wastes. Applications of this technology to the treatment of effluent from the agrochemical, petrochemical, tanning, and electroplating industries are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Waste treatment by dialysis. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-01-01

    The bibliography contains citations concerning the use of dialysis in the treatment of wastewaters. Techniques for the removal of metals, ammonia, waste acids, nitrates, and phosphates are described. Special attention is given to the desalination of liquid wastes. Applications of this technology to the treatment of effluent from the agrochemical, petrochemical, tanning, and electroplating industries are discussed. (Contains a minimum of 60 citations and includes a subject term index and title list.)

  18. The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes 

    E-Print Network [OSTI]

    Davol, Phebe

    1987-01-01

    compounds in the environment. Dibble and Bartha (1979) observed an increase in concentration of condensed ring fractions as oily wastes degrade in soil. The accumulation of PNAs in the soil at a land treatment facility is of concern since many... pentachlorophenol and creosote as preservative agents. The effluent from the treatment process was pumped from a concrete storage basin to a large lagoon where the solids were allowed to settle while the liquids evaporated. At the ti me the waste was collected...

  19. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  20. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    AIKEN, S.C. – Officials with the EM program at Savannah River Site (SRS) recently announced a key milestone in preparation for the startup of the Salt Waste Processing Facility (SWPF): workers installed more than 1,200 feet of new transfer lines that will eventually connect existing liquid waste facilities to SWPF.

  1. Voluntary Protection Program Onsite Review, Waste Treatment Plant...

    Office of Environmental Management (EM)

    More Documents & Publications Voluntary Protection Program Onsite Review, Intermech Inc., Waste Treatment Plant Construction Site - November 2013 Voluntary Protection Program...

  2. Independent Oversight Review, Hanford Waste Treatment and Immobilizati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment and Immobilization Plant - March 2014 March 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the...

  3. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

  4. A Canadian Solution for Management of Mixed Liquid Waste - 13384

    SciTech Connect (OSTI)

    Suryanarayan, Sriram; Husain, Aamir [Kinectrics Inc., 800 Kipling Ave. Unit 2, Toronto, ON M8Z 5G5 (Canada)] [Kinectrics Inc., 800 Kipling Ave. Unit 2, Toronto, ON M8Z 5G5 (Canada)

    2013-07-01

    Mixed liquid wastes (MLW) from Canadian nuclear facilities consist of solvents, PCB (Poly Chlorinated Biphenyls) and non-PCB contaminated oils and aqueous wastes. Historically, MLW drums were shipped to a licensed US facility for destruction via incineration. This option is relatively expensive considering the significant logistics and destruction costs involved. In addition, commercial waste destruction facilities in US cannot accept PCB wastes from non-US jurisdictions. Because of this, Kinectrics has recently developed a novel and flexible process for disposing both PCB as well as non-PCB contaminated MLW within Canada. This avoids the need for cross-border shipments which significantly reduces the complexity and cost for waste disposal. This paper presents an overview of the various approaches and activities undertaken to date by Kinectrics for successfully processing and disposing the MLW drums. A summary of the results, challenges and how they were overcome are also presented. (authors)

  5. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect (OSTI)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  6. Process for immobilizing radioactive boric acid liquid wastes

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1984-05-10

    Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  7. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  8. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  9. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  10. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  11. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect (OSTI)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E. [SUE MosSIA 'Radon', 7th Rostovsky lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  12. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Office of Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality June 2015 Office of Nuclear Safety and Environmental...

  13. Review of the Hanford Site Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of...

  14. Review of the Hanford Site Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management...

  15. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Engineering Processes - October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes - October 2015...

  16. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit with form History ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search...

  17. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Oregon Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  18. Independent Oversight Review, Hanford Waste Treatment and Immobilizati...

    Office of Environmental Management (EM)

    and Immobilization Plant - December 2013 December 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the...

  19. Voluntary Protection Program Onsite Review, Waste Treatment Project...

    Office of Environmental Management (EM)

    Hanford Site - June 2010 Voluntary Protection Program Onsite Review, Intermech Inc., Waste Treatment Plant Construction Site - November 2013 Voluntary Protection Program...

  20. Enterprise Assessments Review, Hanford Waste Treatment and Immobilizat...

    Energy Savers [EERE]

    and Immobilization Plant - January 2015 January, 2015 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of...

  1. Enterprise Assessments Review, Hanford Site Waste Treatment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Immobilization Plant - September 2014 September 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of...

  2. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    SciTech Connect (OSTI)

    Motojima, K.; Kawamura, F.

    1984-05-15

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time.

  3. 327 Building liquid waste handling options modification project plan

    SciTech Connect (OSTI)

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  4. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect (OSTI)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  5. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  6. An evaluation of neutralization for processing sodium-bearing liquid waste

    SciTech Connect (OSTI)

    Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

    1989-01-01

    This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

  7. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  8. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  9. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  10. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and...

  11. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  12. Method for aqueous radioactive waste treatment

    DOE Patents [OSTI]

    Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  13. Cold Spring Harbor Laboratory Waste Water Treatment Plant [The Inhabited Landscape: An Exhibition

    E-Print Network [OSTI]

    Architects, Centerbrook

    1988-01-01

    Spring Harbor Laboratory Waste Water Treatment Plant JuryThe Cold Spring Harbor Waste Water Treatment Plant makes aA Cold Spring Harbor Waste Water Treatment Plant Photograph

  14. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    SciTech Connect (OSTI)

    Hamel, W. F. [Office of River Protection, U.S. Department of Energy, 2400 Stevens Drive, Richland, WA 99354 (United States); Gerdes, K. [U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874 (United States); Holton, L. K. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Pegg, I.L. [Vitreous State Laboratory, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Bowan, B.W. [Duratek, Inc., 10100 Old Columbia Road, Columbia, Maryland 21046 (United States)

    2006-07-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  15. Independent Oversight Activity Report, Hanford Waste Treatment...

    Energy Savers [EERE]

    and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities HIAR-WTP-2014-01-27 This Independent...

  16. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  17. SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

    Office of Environmental Management (EM)

    Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment Harry D. Harmon Joan B. Berkowitz John C. DeVine, Jr. Herbert G. Sutter Joan K. Young...

  18. Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford...

    Office of Environmental Management (EM)

    NO. DE-AC27-01RV14136 - REPORT OF EXTERNAL FLOWSHEET REVIEW TEAM FOR THE HANFORD TANK WASTE TREATMENT AND IMMOBILIZATION PLANT - FINAL REPORT TITLED: "COMPREHENSIVE REVIEW OF THE...

  19. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  20. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls – In order to further meet the U.S. Department of Energy’s commitments to the citizens of the state of Idaho, the DOE today announced that it has selected Idaho Treatment Group, LLC (ITG) to perform waste processing at the Advanced Mixed Waste Treatment Project (AMWTP) at DOE’s Idaho Site near Idaho Falls.

  1. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste Isolation

  2. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

  3. Treatment studies of paint stripping waste from plastic media blasting

    SciTech Connect (OSTI)

    Spence, R.D.

    1995-12-31

    Blasting with plastic media is used to strip paint and decontaminate surfaces. For disposal the plastic media is pulverized into a plastic dust. About 10 wt % of the waste from plastic media blasting is pulverized paint, which makes the waste a characteristically hazardous waste because of the presence of barium, cadmium, chromium and lead in the paint pigments. Four separate treatments of this hazardous waste were studied: (1) density separation to remove the paint, (2) self-encapsulation of the mix of plastic and paint dust into plastic pellets, (3) solidification/stabilization (S/S) into cementitious waste forms, and (4) low-temperature ashing to destroy the large mass of nonhazardous polymer. Two types of plast blasting wastes were studied: a urea formaldehyde thermoset polymer and an acrylic thermoplastic polymer (polymethylmethacrylate). Toxicity Characteristic Leach Procedure (TCLP) extraction concentrations for the treated and untreated wastes are listed. Density separation failed to adequately separate the paint with an aqueous carbonate solution. Self-encapsulation reduced the waste volume by about 50%, but did not meet TCLP criteria. Cementitious solidification gave the lowest TCLP concentrations, but increased the waste volume by about 50%. Low-temperature ashing at 600 C resulted in a mass decrease of 93 to 98% for the wastes; the metals remaining in the ash could be stabilized with cementitious solidification and still result in a volume decrease of 75 to 95 volume percent.

  4. Waste Treatment and Immobilization Plant Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02)Management Waste Management OakWaste

  5. Glass Development for Treatment of LANL Evaporator Bottoms Waste

    SciTech Connect (OSTI)

    DE Smith; GF Piepel; GW Veazey; JD Vienna; ML Elliott; RK Nakaoka; RP Thimpke

    1998-11-20

    Vitrification is an attractive treatment option for meeting the stabilization and final disposal requirements of many plutonium (Pu) bearing materials and wastes at the Los Alamos National Laboratory (LANL) TA-55 facility, Rocky Flats Environmental Technology Site (RFETS), Hanford, and other Department of Energy (DOE) sites. The Environmental Protection Agency (EPA) has declared that vitrification is the "best demonstrated available technology" for high- level radioactive wastes (HLW) (Federal Register 1990) and has produced a handbook of vitriilcation technologies for treatment of hazardous and radioactive waste (US EPA, 1992). This technology has been demonstrated to convert Pu-containing materials (Kormanos, 1997) into durable (Lutze, 1988) and accountable (Forsberg, 1995) waste. forms with reduced need for safeguarding (McCulhun, 1996). The composition of the Evaporator Bottoms Waste (EVB) at LANL, like that of many other I%-bearing materials, varies widely and is generally unpredictable. The goal of this study is to optimize the composition of glass for EVB waste at LANL, and present the basic techniques and tools for developing optimized glass compositions for other Pu-bearing materials in the complex. This report outlines an approach for glass formulation with fixed property restrictions, using glass property-composition databases. This approach is applicable to waste glass formulation for many variable waste streams and vitrification technologies.. Also reported are the preliminary property data for simulated evaporator bottom glasses, including glass viscosity and glass leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP).

  6. DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY

    SciTech Connect (OSTI)

    Adamson, D.; Poirier, M.; Steeper, T.

    2009-12-03

    In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was reduced to 5 gpm (14 ft/s nozzle velocity, U{sub o}D = 0.315 ft{sup 2}/s) to each pump, dead zones formed in the tank, resulting in fewer solids being transferred in each batch to the Receipt Tanks. The larger, denser particles were displaced (preferentially to the smaller particles) to one of the two dead zones and not re-suspended for the duration of the test. As the liquid level dropped in the MDT, re-suspending the particles became less effective (6th batch). The poor consistency of the solids transferred in the 6th batch was due to low liquid level in the MDT, thus poor mixing by the MJPs. Of the twelve tests conducted the best transfer of solids occurred during Test 6 and 8 where the MJP rotation was reduced to 1.0 rpm.

  7. Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

    2014-01-27

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

  8. Logistics modeling of future solid waste storage, treatment, and disposal

    SciTech Connect (OSTI)

    Holter, G.M.; Stiles, D.L.; Shaver, S.R.; Armacost, L.L.

    1993-11-01

    Logistics modeling is a powerful analytical technique for effective planning of waste storage, treatment, and disposal activities. Logistics modeling facilitates analyses of alternate scenarios for future waste flows, facility schedules, and processing or handling capacities. These analyses provide an increased understanding of the specific needs for waste storage, treatment, and disposal while adequate time remains to plan accordingly. They also help to determine the sensitivity of these needs to various system parameters. This paper discusses a logistics modeling system developed by the Pacific Northwest Laboratory (PNL) to aid in solid waste planning for a large industrial complex managing many different types and classifications of waste. The basic needs for such a system are outlined, and the approach adopted in developing the system is described. A key component of this approach is the development of a conceptual model that provides a flexible framework for modeling the waste management system and addressing the range of logistics and economic issues involved. Developing an adequate description of the waste management system being analyzed is discussed. Examples are then provided of the types of analyses that have been conducted. The potential application of this modeling system to different settings is also examined.

  9. Waste Treatment Plant Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE. regulators02-03HeatWaste

  10. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  11. Radioactive waste management treatments: A selection for the Italian scenario

    SciTech Connect (OSTI)

    Locatelli, G. [Univ. of Lincoln, Lincoln School of Engineering, Brayford Pool - Lincoln LN6 7TS (United Kingdom); Mancini, M. [Politecnico di Milano, Dept. of Management, Economics and Industrial Engineering, Via Lambruschini 4/B, Milano (Italy); Sardini, M. [Politecnico di Milano, Dept. of Energy, Via Lambruschini 4, Milano (Italy)

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonable according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)

  12. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...

    Office of Environmental Management (EM)

    Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

  13. Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M; Corcoran, Connie

    2012-11-15

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

  14. Simultaneous determination of Ni-63 and Ni-59 in radioactive wastes by liquid scintillation spectrometry 

    E-Print Network [OSTI]

    Kim, Esther Miyeun

    1988-01-01

    SIMULTANEOUS DETERMINATION OF Ni-63 AND Ni-59 IN RADIOACTIVE WASTES BY LIQUID SCINTILLATION SPECTROMETRY A Thesis by ESTHER MIYEUN KIM Submitted to the Office of Graduate Studies of Texas AgtM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Health Physics SIMULTANEOUS DETERMINATION OF Ni-63 AND Ni-59 IN RADIOACTIVE WASTES BY LIQUID SCINTILLATION SPECTROMETRY A Thesis by ESTHER MIYEUN KIM Approved as to style...

  15. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect (OSTI)

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  16. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect (OSTI)

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  17. Sodium-Bearing Waste Treatment, Applied Technology Plan

    SciTech Connect (OSTI)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  18. Waste form development for use with ORNL waste treatment facility sludge

    SciTech Connect (OSTI)

    Abotsi, G.M.K.; Bostick, W.D.

    1996-05-01

    A sludge that simulates Water Softening Sludge number 5 (WSS number 5 filtercake) at Oak Ridge National Laboratory was prepared and evaluated for its thermal behavior, volume reduction, stabilization, surface area and compressive strength properties. Compaction of the surrogate waste and the calcium oxide (produced by calcination) in the presence of paraffin resulted in cylindrical molds with various degrees of stability. This work has demonstrated that surrogate WSS number 5 at ORNL can be successfully stabilized by blending it with about 35 percent paraffin and compacting the mixture at 8000 psi. This compressive strength of the waste form is sufficient for temporary storage of the waste while long-term storage waste forms are developed. Considering the remarkable similarity between the surrogate and the actual filtercake, the findings of this project should be useful for treating the sludge generated by the waste treatment facility at ORNL.

  19. Apparatus and method for ultrasonic treatment of a liquid

    DOE Patents [OSTI]

    Chandler, Darrell P [Richland, WA; Posakony, Gerald J [Richland, WA; Bond, Leonard J [Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA

    2003-01-14

    The present invention is an apparatus and method for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  20. Apparatus and method for ultrasonic treatment of a liquid

    DOE Patents [OSTI]

    Chandler, Darrell P.; Posakony, Gerald J.; Bond, Leonard J.; Bruckner-Lea, Cynthia J.

    2006-04-04

    The present invention is an apparatus for ultrasonically treating a liquid to generate a product. The apparatus is capable of treating a continuously-flowing, or intermittently-flowing, liquid along a line segment coincident with the flow path of the liquid. The apparatus has one or more ultrasonic transducers positioned asymmetrically about the line segment. The ultrasonic field encompasses the line segment and the ultrasonic energy may be concentrated along the line segment. Lysing treatments have been successfully achieved with efficiencies of greater than 99% using ultrasound at MHz frequencies without erosion or heating problems and without the need for chemical or mechanical pretreatment, or contrast agents. The present invention overcomes drawbacks of current ultrasonic treatments beyond lysing and opens up new sonochemical and sonophysical processing opportunities.

  1. Best Demonstrated Available Technology (BDAT) for pollution control and waste treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the most advanced equipment and processes for pollution control and waste treatment according to the guidelines set by the Environmental Protection Agency (EPA). Citations discuss biological, thermal, physical, and chemical prosesses for the technology innovation, economic productivity, and environmental protection. Standards and regulations for gaseous, liquid, and solid pollution are included. Also discussed are water pollution control, food and pharmaceutical wastes, effluent treatment, and materials recovery. (Contains a minimum of 184 citations and includes a subject term index and title list.)

  2. Use of Novel Highly Selective Ion Exchange Media for Minimizing the Waste Arising from Different NPP and Other Liquids

    SciTech Connect (OSTI)

    Tusa, Esko; Harjula, Risto; Lehto, Jukka

    2003-02-25

    Highly selective inorganic ion exchangers give new possibilities to implement and operate new innovative treatment systems for radioactive liquids. Because of high selectivity these ion exchangers can be used even in liquids of high salt concentrations. Only selected target nuclides will be separated and inactive salts are left in the liquid, which can be released or recategorized. Thus, it is possible to reduce the volume of radioactive waste dramatically. On the other hand, only a small volume of highly selective material is required in applications, which makes it possible to design totally new types of compact treatment systems. The major benefit of selective ion exchange media comes from the very large volume reduction of radioactive waste in final disposal. It is also possible to save in investment costs, because small ion exchanger volumes can be used and handled in a very small facility. This paper describes different applications of these highly selective ion exchangers, both commercial fullscale applications and laboratory tests, to give the idea of their efficiency for different liquids.

  3. Stabilization of liquid low-level and mixed wastes: a treatability study

    SciTech Connect (OSTI)

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  4. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong; Sundaram, S.K.; Westsik, Joseph H.

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation was observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.

  5. Mixed and low-level waste treatment facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  6. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    SciTech Connect (OSTI)

    Brown, D.F.

    1994-10-17

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  7. Verification and validation of the decision analysis model for assessment of tank waste remediation system waste treatment strategies

    SciTech Connect (OSTI)

    Awadalla, N.G.; Eaton, S.C.F.

    1996-09-04

    This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model.

  8. Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim. The harvested Li metal could then be an energy source for Li-Liquid flow batteries by using water as the cathode in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li

  9. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  10. System for removing liquid waste from a tank

    DOE Patents [OSTI]

    Meneely, T.K.; Sherbine, C.A.

    1994-04-26

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

  11. System for removing liquid waste from a tank

    DOE Patents [OSTI]

    Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

    1994-01-01

    A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

  12. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    SciTech Connect (OSTI)

    MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  13. Low level mixed waste thermal treatment technical basis report

    SciTech Connect (OSTI)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  14. Advanced Fuel Cycle Treatment, Recycling, and Disposal of Nuclear Waste

    SciTech Connect (OSTI)

    Collins, Emory D [ORNL; Jubin, Robert Thomas [ORNL; DelCul, Guillermo D [ORNL; Spencer, Barry B [ORNL; Renier, John-Paul [ORNL

    2009-01-01

    Nuclear waste, in the form of used and spent nuclear fuel, is currently being stored in the U.S., mostly at reactor sites to await future direct disposal or treatment to permit recycle of re-usable components and minimization of wastes requiring geologic disposal. The used fuel is currently accumulating at a rate of over 2,000 tons per year and a total of over 60,000 tons is in storage. New dry storage capacity is estimated to cost {approx} $0.6 B per year. Technologies have been developed and deployed worldwide to treat only a portion of the nuclear waste that is generated. Recent research, development, and systems analysis studies have shown that nuclear waste treatment could be done at the rate of generation in a safe, environmentally friendly, and cost-effective manner. These studies continue to show that major benefits can be obtained by allowing the used fuel assemblies to remain in safe storage for 30 years or longer before treatment. During this time, the radioactivity and decay heat generation decrease substantially, such that the separations process can be simplified and made less costly, waste gases containing {sup 85}Kr can be released below regulatory limits, and the solid fission product wastes containing {sup 137}Cs and {sup 90}Sr require decay storage for a much shorter time-period before geologic disposal. In addition, the need for separating curium from americium and for extra purification cycles for the uranium and uranium-plutonium-neptunium products is greatly diminished. Moreover, during the 30+ years of storage prior to treatment, the quality of the recyclable fuel is only degraded by less than 5 percent. The 30+ year storage period also enables recycle of long-lived transuranic actinides to be accomplished in existing light water reactors without waiting on and incurring the cost of the development, licensing, and deployment of future Gen IV reactors. Overall, the safety, environmental, and cost benefits of treating the longer aged used nuclear wastes are substantial.

  15. CLASSIFICATION OF THE MGR WASTE TREATMENT BUILDING VENTILATION SYSTEM

    SciTech Connect (OSTI)

    S.E. Salzman

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste treatment building ventilation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  16. Sodium Recycle Economics for Waste Treatment Plant Operations

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.

    2008-08-31

    Sodium recycle at the Hanford Waste Treatment Plant (WTP) would reduce the number of glass canisters produced, and has the potential to significantly reduce the cost to the U.S. Department of Energy (DOE) of treating the tank wastes by hundreds of millions of dollars. The sodium, added in the form of sodium hydroxide, was originally added to minimize corrosion of carbon-steel storage tanks from acidic reprocessing wastes. In the baseline Hanford treatment process, sodium hydroxide is required to leach gibbsite and boehmite from the high level waste (HLW) sludge. In turn, this reduces the amount of HLW glass produced. Currently, a significant amount of additional sodium hydroxide will be added to the process to maintain aluminate solubility at ambient temperatures during ion exchange of cesium. The vitrification of radioactive waste is limited by sodium content, and this additional sodium mass will increase low-activity waste-glass mass. An electrochemical salt-splitting process, based on sodium-ion selective ceramic membranes, is being developed to recover and recycle sodium hydroxide from high-salt radioactive tank wastes in DOE’s complex. The ceramic membranes are from a family of materials known as sodium (Na)—super-ionic conductors (NaSICON)—and the diffusion of sodium ions (Na+) is allowed, while blocking other positively charged ions. A cost/benefit evaluation was based on a strategy that involves a separate caustic-recycle facility based on the NaSICON technology, which would be located adjacent to the WTP facility. A Monte Carlo approach was taken, and several thousand scenarios were analyzed to determine likely economic results. The cost/benefit evaluation indicates that 10,000–50,000 metric tons (MT) of sodium could be recycled, and would allow for the reduction of glass production by 60,000–300,000 MT. The cost of the facility construction and operation was scaled to the low-activity waste (LAW) vitrification facility, showing cost would be roughly $150 million to $400 million for construction and $10 million to $40 million per year for operations. Depending on the level of aluminate supersaturation allowed in the storage tanks in the LAW Pretreatment Facility, these values indicate a return on investment of up to 25% to 60%.

  17. Leaching behavior of copper from waste printed circuit boards with Brřnsted acidic ionic liquid

    SciTech Connect (OSTI)

    Huang, Jinxiu; Chen, Mengjun Chen, Haiyan; Chen, Shu; Sun, Quan

    2014-02-15

    Highlights: • A Brřnsted acidic ILs was used to leach Cu from WPCBs for the first time. • The particle size of WPCBs has significant influence on Cu leaching rate. • Cu leaching rate was higher than 99% under the optimum leaching conditions. • The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brřnsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior of copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 °C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.

  18. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect (OSTI)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  19. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOE Patents [OSTI]

    Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  20. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOE Patents [OSTI]

    Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  1. Secondary Low-Level Waste Treatment Strategy Analysis

    SciTech Connect (OSTI)

    D.M. LaRue

    1999-05-25

    The objective of this analysis is to identify and review potential options for processing and disposing of the secondary low-level waste (LLW) that will be generated through operation of the Monitored Geologic Repository (MGR). An estimate of annual secondary LLW is generated utilizing the mechanism established in ''Secondary Waste Treatment Analysis'' (Reference 8.1) and ''Secondary Low-Level Waste Generation Rate Analysis'' (Reference 8.5). The secondary LLW quantities are based on the spent fuel and high-level waste (HLW) arrival schedule as defined in the ''Controlled Design Assumptions Document'' (CDA) (Reference 8.6). This analysis presents estimates of the quantities of LLW in its various forms. A review of applicable laws, codes, and standards is discussed, and a synopsis of those applicable laws, codes, and standards and their impacts on potential processing and disposal options is presented. The analysis identifies viable processing/disposal options in light of the existing laws, codes, and standards, and then evaluates these options in regard to: (1) Process and equipment requirements; (2) LLW disposal volumes; and (3) Facility requirements.

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  3. LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Nash, C.; McCabe, D.

    2014-09-29

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

  4. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

  5. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    SciTech Connect (OSTI)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  6. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    MacDonal, Digby D.; Marx, Brian M.; Ahn, Sejin; Ruiz, Julio de; Soundararajan, Balaji; Smith, Morgan; Coulson, Wendy

    2005-06-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO3, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair.

  7. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  8. THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION

    SciTech Connect (OSTI)

    Wilmarth, B; Sheryl Bush, S

    2008-10-31

    The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the transition metal hydroxides that precipitate when the spent acidic process solutions are rendered alkaline with sodium hydroxide. The sludges contain Sr-90 and transuranic elements. The wastes stored at each site have been generated and stored for over fifty years. Although the majority of the wastes were generated to support nuclear weapons production and reprocessing, the wastes differ substantially between the sites. Table 5 shows the volumes and total radioactivity (including decay daughters) of the waste phases stored in tanks at each site. At Hanford, there are 177 tanks that contain 56.5 Mgal of waste. SRS has 51 larger tanks, of which 2 are closed, that contain 36.5 Mgal. Mainly due to recovery operations, the waste stored at Hanford has less total curies than that stored at Savannah River. The total radioactivity of the Hanford wastes contains approximately 190 MCi, and the total radioactivity of the Savannah River wastes contains 400 MCi.

  9. Sodium-bearing Waste Treatment Technology Evaluation Report

    SciTech Connect (OSTI)

    Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

    2004-05-01

    Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

  10. Standard guide for characterization of radioactive and/or hazardous wastes for thermal treatment

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide identifies methods to determine the physical and chemical characteristics of radioactive and/or hazardous wastes before a waste is processed at high temperatures, for example, vitrification into a homogeneous glass ,glass-ceramic, or ceramic waste form. This includes waste forms produced by ex-situ vitrification (ESV), in-situ vitrification (ISV), slagging, plasma-arc, hot-isostatic pressing (HIP) and/or cold-pressing and sintering technologies. Note that this guide does not specifically address high temperature waste treatment by incineration but several of the analyses described in this guide may be useful diagnostic methods to determine incinerator off-gas composition and concentrations. The characterization of the waste(s) recommended in this guide can be used to (1) choose and develop the appropriate thermal treatment methodology, (2) determine if waste pretreatment is needed prior to thermal treatment, (3) aid in development of thermal treatment process control, (4) develop surrogate wa...

  11. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  12. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect (OSTI)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  13. On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010

    SciTech Connect (OSTI)

    OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

    2013-07-01

    This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

  14. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect (OSTI)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  15. CAST STONE TECHNOLOGY FOR TREATMENT & DISPOSAL OF IODINE RICH CAUSTIC WASTE DEMONSTRATION FINAL REPORT

    SciTech Connect (OSTI)

    LOCKREM, L.L.

    2005-07-14

    CH2M HILL is working to develop, design, and construct low-activity waste (LAW) treatment and imcholization systems to supplement the LAW capacity provided by the Waste Treatment and Immobilization Plant. CH2M HILL is investigating use of cast stone technology for treatment and immobilization of caustic solutions containing high concentrations of radioactive Iodine-129.

  16. Integrated Waste Treatment Unit GFSI Risk Management Plan

    SciTech Connect (OSTI)

    W. A. Owca

    2007-06-21

    This GFSI Risk Management Plan (RMP) describes the strategy for assessing and managing project risks for the Integrated Waste Treatment Unit (IWTU) that are specifically within the control and purview of the U.S. Department of Energy (DOE), and identifies the risks that formed the basis for the DOE contingency included in the performance baseline. DOE-held contingency is required to cover cost and schedule impacts of DOE activities. Prior to approval of the performance baseline (Critical Decision-2) project cost contingency was evaluated during a joint meeting of the Contractor Management Team and the Integrated Project Team for both contractor and DOE risks to schedule and cost. At that time, the contractor cost and schedule risk value was $41.3M and the DOE cost and schedule risk contingency value is $39.0M. The contractor cost and schedule risk value of $41.3M was retained in the performance baseline as the contractor's management reserve for risk contingency. The DOE cost and schedule risk value of $39.0M has been retained in the performance baseline as the DOE Contingency. The performance baseline for the project was approved in December 2006 (Garman 2006). The project will continue to manage to the performance baseline and change control thresholds identified in PLN-1963, ''Idaho Cleanup Project Sodium-Bearing Waste Treatment Project Execution Plan'' (PEP).

  17. Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

  18. Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  19. Voluntary Protection Program Onsite Review, Advanced Mixed Waste Treatment Project- May 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Mixed Waste Treatment Project is continuing to perform at a level deserving DOE-VPP Star recognition.

  20. Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

  1. Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching

    SciTech Connect (OSTI)

    Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

    1997-12-31

    Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

  2. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  3. Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants

    SciTech Connect (OSTI)

    Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

    1985-07-01

    This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m/sup 3//MTU for no treatment to as low as 0.02 m/sup 3//MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs.

  4. Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312

    SciTech Connect (OSTI)

    Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR5257 CEA-CNRS-UM2-ENSCM, BP17171, 30207 Bagnols sur Ceze (France); Prevost, T.; Valery, J.F. [AREVA NC, Paris La Defense (France); Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette (France)

    2012-07-01

    Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in standard effluents resulting from nuclear activities; - To develop reversible solid adsorbents for cartridge-type applications in order to minimize wastes. (authors)

  5. Plasma-chemical waste treatment of acid gases

    SciTech Connect (OSTI)

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  6. Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging

    SciTech Connect (OSTI)

    Arne J. Pearlstein; Alexander Scheeline

    2002-08-30

    Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

  7. Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460

    SciTech Connect (OSTI)

    Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

    2013-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

  8. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  9. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    SciTech Connect (OSTI)

    Gemar, D.W.; O'Leary, C.D.

    1984-03-23

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins.

  10. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  11. Safety analysis report for packaging a DOT 7A specification container for tritiated liquid wastes

    SciTech Connect (OSTI)

    Alford, E.

    1980-08-01

    This Safety Analysis Report for Packaging (SARP) was prepared in accordance with ERDA (DOE) Appendix 5201 for DOE/ALO review and approval of packaging of tritiated liquid wastes to be shipped from Sandia National Laboratories, Livermore, (SNLL) California. This report presents information pertinent to the construction of tritiated liquid waste shipping containers. It contains design and development considerations, explains tests and evaluations required to prove the container can withstand normal transportation conditions, and demonstrates that the Sandia container-and-radioactive-material shipment package is in compliance with DOE and Department of Transportation (DOT) safety requirements. An internal review of this SARP has been performed in compliance with the ERDA (DOE) Manual, 5201 Appendix V.

  12. MEASUREMENT AND MODELLING OF AMMONIA EMISSIONS AT WASTE TREATMENT LAGOON-ATMOSPHERIC INTERFACE

    E-Print Network [OSTI]

    Aneja, Viney P.

    . Keywords: ammonia, emission, mass transfer, modelling, swine waste storage and treatment system 1MEASUREMENT AND MODELLING OF AMMONIA EMISSIONS AT WASTE TREATMENT LAGOON-ATMOSPHERIC INTERFACE of ammonia are approximately 75 Tg N/yr (1 Tg = 1012g). The major global source is excreta from domestic

  13. RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Nash, C.; Duignan, M.

    2010-01-14

    A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

  14. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    SciTech Connect (OSTI)

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  15. Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...

    Broader source: Energy.gov (indexed) [DOE]

    Articles A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Innovative Technique Accelerates Waste Disposal at Idaho Site Only the...

  16. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 250 citations and includes a subject term index and title list.)

  17. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains a minimum of 245 citations and includes a subject term index and title list.)

  18. DEVELOPMENT OF THE BULK VITRIFICATION TREATMENT PROCESS FOR THE LOW ACTIVITY FRACTION OF HANFORD SINGLE SHELL TANK WASTES

    SciTech Connect (OSTI)

    Thompson, L.E.; Lowery, P.S.; Arrowsmith, H.W.; Snyder, T.; McElroy, J.L.

    2003-02-27

    AMEC Earth & Environmental, Inc. and RWE NUKEM Corporation have teamed to develop and apply a waste pre-treatment and bulk vitrification process for low activity waste (LAW) from Hanford Single Shell Tanks (SSTs). The pretreatment and bulk vitrification process utilizes technologies that have been successfully deployed to remediate both radioactive and chemically hazardous wastes at nuclear power plants, DOE sites, and commercial waste sites in the US and abroad. The process represents an integrated systems approach. The proposed AMEC/NUKEM process follow the extraction and initial segregation activities applied to the tank wastes carried out by others. The first stage of the process will utilize NUKEM's concentrate dryer (CD) system to concentrate the liquid waste stream. The concentrate will then be mixed with soil or glass formers and loaded into refractory-lined steel containers for bulk vitrification treatment using AMEC's In-Container Vitrification (ICV) process. Following the vitrification step, a lid will be placed on the container of cooled, solidified vitrified waste, and the container transported to the disposal site. The container serves as the melter vessel, the transport container and the disposal container. AMEC and NUKEM participated in the Mission Acceleration Initiative Workshop held in Richland, Washington in April 2000 [1]. An objective of the workshop was to identify selected technologies that could be combined into viable treatment options for treatment of the LAW fraction from selected Hanford waste tanks. AMEC's ICV process combined with NUKEM's CD system and other remote operating capabilities were presented as an integrated solution. The Team's proposed process received some of the highest ratings from the Workshop's review panel. The proposed approach compliments the Hanford Waste Treatment Plant (WTP) by reducing the amount of waste that the WTP would have to process. When combined with the capabilities of the WTP, the proposed approach will accelerate the tank waste remediation program plan and facilitate meeting the regulatory requirements for the remediation of the Hanford tank wastes. Consequently, the DOE Office of River Protection and CH2MHill Hanford Group identified bulk vitrification as one of the technologies to be investigated in FY03 through a demonstration program [2]. In October 2002, CH2MHill issued a request for proposal for the process development testing, engineering and data package for a non-radioactive (cold) pilot bulk vitrification process, and pre-conceptual engineering of a production bulk vitrification system. With AMEC in the lead, AMEC and NUKEM responded with a proposal. Pacific Northwest National Laboratory (PNNL) will support the proposed project as a key subcontractor by providing equipment, facilities, and personnel to support small-scale testing, including the testing on samples of actual tank wastes. This paper will provide an overview of the pre-treatment and bulk vitrification process, summarize the technical benefits the approach offers, and describe the demonstration program that has been developed for the project.

  19. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    SciTech Connect (OSTI)

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

  20. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    SciTech Connect (OSTI)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  1. Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant

    SciTech Connect (OSTI)

    Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

    2014-01-21

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

  2. Compositions and methods useful for ionic liquid treatment of biomass

    DOE Patents [OSTI]

    Dibble, Dean C.; Cheng, Aurelia; George, Anthe

    2014-07-29

    The present invention provides for novel compositions and methods for recycling or recovering ionic liquid used in IL pretreated cellulose and/or lignocellulosic biomass (LBM).

  3. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  4. Documentation on currently operating low-level radioactive waste treatment systems: National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    In May 1985, the US Department of Energy issued a Program Research and Development Announcement requesting documentation on currently operating low-level radioactive waste treatment systems. Six grants were awarded to support that documentation. Final reports for the following grants and grantees are compiled in this document: Shredder/Compactor Report by Impell Corp., Volume Reduction and Solidification System for Low-Level Radwaste Treatment by Waste Chem Corp., Low-Level Radioactive Waste Treatment Systems in Northern Europe by Pacific Nuclear Services/Nuclear Packaging Inc., The University of Missouri Research Reactor Facility Can Melter System by the University of Missouri, Drying of Ion-Exchange Resin and Filter Media by Nuclear Packaging Inc., and Operational Experience with Selective Ion-Exchange Media in Sluiceable Pressurized Demineralizers at Nuclear Power Plants by Analytical Resources Inc. 65 refs., 4 figs., 7 tabs.

  5. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect (OSTI)

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  6. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect (OSTI)

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  7. Hanford Tank Waste Retrieval, Treatment and Disposition Framework...

    Office of Environmental Management (EM)

    the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's...

  8. Hanford Waste Treatment Plant completes critical system design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trips. They are scheduled to arrive later this fall. "The LAW melters are the largest waste-processing melters ever built, and there's been considerable work dedicated to...

  9. DOE Issues Draft RFP for Waste Treatment Services | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restricted and Unrestricted RecyclingReuse, Low Activity Waste (LAW) Services, Ancillary Services, and support in establishing authorized release limits. This requirement...

  10. Melton Valley liquid low-level radioactive waste storage tanks evaluation

    SciTech Connect (OSTI)

    1995-06-01

    The Melton Valley Liquid Low-Level Radioactive Waste Storage Tanks (MVSTs) store the evaporator concentrates from the Liquid Low-Level Radioactive Waste (LLLW) System at the Oak Ridge National Laboratory (ORNL). The eight stainless steel tanks contain approximately 375,000 gallons of liquid and sludge waste. These are some of the newer, better-designed tanks in the LLLW System. They have been evaluated and found by the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation to comply with all Federal Facility Agreement requirements for double containment. The operations and maintenance aspects of the tanks were also reviewed by the Defense Nuclear Facilities Safety Board (DNFSB) in September 1994. This document also contains an assessment of the risk to the public and ORNL workers from a leak in one of the MVSTs. Two primary scenarios were investigated: (1) exposure of the public to radiation from drinking Clinch River water contaminated by leaked LLLW, and (2) exposure of on-site workers to radiation by inhaling air contaminated by leaked LLLW. The estimated frequency of a leak from one of the MVSTs is about 8 {times} 10{sup {minus}4} events per year, or about once in 1200 years (with a 95% confidence level). If a leak were to occur, the dose to a worker from inhalation would be about 2.3 {times} 10{sup {minus}1} mrem (with a 95% confidence level). The dose to a member of the public through the drinking water pathway is estimated to be about 7 {times} 10{sup {minus}1} mrem (with a 95% confidence level). By comparison with EPA Safe Drinking Water regulations, the allowable lifetime radiation dose is about 300 mrem. Thus, a postulated LLLW leak from the MVSTs would not add appreciably to an individual`s lifetime radiation dose.

  11. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  12. Application of pulse combustion to incineration to liquid hazardous waste. Final report, September 1991-August 1993

    SciTech Connect (OSTI)

    DeBenedictis, C.

    1994-04-01

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combuster burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. The fuel oil was doped with surrogate principal organic hazardous constituents (POHCs). For each test condition, the burner was operated in both a pulsing and nonpulsing mode. Large amplitude acoustic pulses were generated by adjusting the burner frequency to match the natural frequency of the combustion chamber. The combustion gases were sampled to quantify organic and particulate emissions. The results showed destruction and removal efficiency (DRE) values that were greater than six nines (99.9999%) for both pulsing and nonpulsing operations. The pulse combustor for the study was equipped with a fuel vaporization unit which may have enhanced the destruction capabilities of the burner.

  13. Asit Nema\\Foundation Green-Ensys 1 RISK FACTORS ASSOCIATED WITH SOLID WASTE TREATMENT

    E-Print Network [OSTI]

    Columbia University

    to closure of the facilities within a rather short period after commissioning. Key Words MSW treatment, waste to energy/wealth, entropy, risk factors, landfill. INTRODUCTION A case study of 11 municipal solid waste landfill facility. Among the composting plants three were running at varying levels of capacity utilisation

  14. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect (OSTI)

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  15. Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons

    E-Print Network [OSTI]

    Aneja, Viney P.

    Characterization of atmospheric ammonia emissions from swine waste storage and treatment lagoons, North Carolina State University, Raleigh Abstract. Fluxes of atmospheric ammonia-nitrogen (NH3-N, where NH3-N (14/17)NH3) from an anaerobic 2.5 ha (1 ha 10,000 m2 ) commercial hog waste storage lagoon were

  16. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  17. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.

    SciTech Connect (OSTI)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-02-03

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.

  18. Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Morrell, D.K.; Fischer, D.K.

    1995-01-01

    This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

  19. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  20. EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State...

  1. EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

  2. U.S. Department of Energy (DOE) initiated performance enhancements to the Hanford waste treatment and immobilization plant (WTP) high-level waste vitrification (HLW) system

    SciTech Connect (OSTI)

    Bowan, Bradley [Energy Solutions, LLC (United States); Gerdes, Kurt [United States Department of Energy (United States); Pegg, Ian [Vitreous State Laboratory, Catholic University of America, 400 Hannan Hall 620 Michigan Avenue, NE Washington, DC 20064 (United States); Holton, Langdon [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The U.S Department of Energy is currently constructing, at the Hanford, Washington Site, a Waste Treatment and Immobilization Plant (WTP) for the treatment and immobilization, by vitrification, of stored underground tank wastes. The WTP is comprised of four major facilities: a Pretreatment facility to separate the tank waste into high level waste (HLW) and low activity waste (LAW); a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction and an analytical Laboratory to support the treatment facilities. DOE has strategic objectives to optimize the performance of the WTP facilities, and waste forms, in order to reduce the overall schedule and cost for the treatment of the Hanford tank wastes. One key part of this strategy is to maximize the loading of inorganic waste components in the final glass product (waste loading). For the Hanford tank wastes, this is challenging because of the compositional diversity of the wastes generated over several decades. This paper presents the results of an initial series of HLW waste loading enhancement tests, using diverse HLW compositions that are projected for treatment at the WTP. Specifically, results of glass formulation development and melter testing with simulated Hanford HLW containing high concentrations of troublesome components such as bismuth, aluminum, aluminum-sodium, and chromium will be presented. (authors)

  3. Pyrolysis Autoclave Technology Demonstration Program for Treatment of DOE Solidified Organic Wastes

    SciTech Connect (OSTI)

    Roesener, W.S.; Mason, J.B.; Ryan, K.; Bryson, S.; Eldredge, H.B.

    2006-07-01

    In the summer of 2005, MSE Technologies Applications, Inc. (MSE) and THOR Treatment Technologies, LLC (TTT) conducted a demonstration test of the Thermal Organic Reduction (THOR{sup sm}) in-drum pyrolysis autoclave system under contract to the Department of Energy. The purpose of the test was to demonstrate that the THOR{sup sm} pyrolysis autoclave system could successfully treat solidified organic waste to remove organics from the waste drums. The target waste was created at Rocky Flats and currently resides at the Radioactive Waste Management Complex (RWMC) at the Idaho National Laboratory (INL). Removing the organics from these drums would allow them to be shipped to the Waste Isolation Pilot Plant for disposal. Two drums of simulated organic setup waste were successfully treated. The simulated waste was virtually identical to the expected waste except for the absence of radioactive components. The simulated waste included carbon tetrachloride, trichloroethylene, perchloroethylene, Texaco Regal oil, and other organics mixed with calcium silicate and Portland cement stabilization agents. The two-stage process consisted of the THOR{sup sm} electrically heated pyrolysis autoclave followed by the MSE off gas treatment system. The treatment resulted in a final waste composition that meets the requirements for WIPP transportation and disposal. There were no detectable volatile organic compounds in the treated solid residues. The destruction and removal efficiency (DRE) for total organics in the two drums ranged from >99.999% to >99.9999%. The operation of the process proved to be easily controllable using the pyrolysis autoclave heaters. Complete treatment of a fully loaded surrogate waste drum including heat-up and cooldown took place over a two-day period. This paper discusses the results of the successful pyrolysis autoclave demonstration testing. (authors)

  4. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    SciTech Connect (OSTI)

    Tolvanen, Outi K. . E-mail: outolvan@bytl.jyu.fi; Haenninen, Kari I.

    2006-07-01

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxins and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment.

  5. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect (OSTI)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A. [Oak Ridge National Lab., TN (United States); Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  6. Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process

    SciTech Connect (OSTI)

    Finucane, K.G. [AMEC Nuclear Holdings Ltd., GeoMelt Div., Richland, WA (United States); Thompson, L.E. [Capto Group LLC, Dallas, TX (United States); Abuku, T. [ISV Japan Ltd., Yokohama-city (Japan); Nakauchi, H. [Mie Chuo Kaihatsu Co. Ltd., Hachiya, Iga City (Japan)

    2008-07-01

    The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements. However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes are outlined. (authors)

  7. Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

    2014-01-07

    The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

  8. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  9. Activated sludge process: Waste treatment. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  10. Activated-sludge process: Waste treatment. (Latest citations from the biobusiness database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The bibliography contains citations concerning the use of the activated sludge process in waste and wastewater treatment. Topics include biochemistry of the activated sludge process, effects of various pollutants on process activity, effects of environmental variables such as oxygen and water levels, and nutrient requirements of microorganisms employed in activated sludge processes. The citations also explore use of the process to treat specific wastes, such as halocarbons, metallic wastes, and petrochemical effluents; and wastes from pharmaceutical and dairy processes. (Contains 250 citations and includes a subject term index and title list.)

  11. Summary - Savannah River Site Tank 48H Waste Treatment Project

    Office of Environmental Management (EM)

    and t ess Level (TRL) on Process: stem (TRL3) atment System RA reports, please v govPagesExternal nology Readiness A ng a systematic, me er SiteSRS H Waste Treatm nt of...

  12. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Energy Savers [EERE]

    by ORP. The mission of the WTP is to process and immobilize the Hanford high-level tank waste into a stable glass form suitable for permanent 2 disposal. The LAW facility is...

  13. Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286

    SciTech Connect (OSTI)

    Onishi, Takashi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Koyama, Shin-ichi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)] [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)

    2013-07-01

    Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

  14. Development and demonstration of treatment technologies for the processing of US Department of Energy mixed waste

    SciTech Connect (OSTI)

    Berry, J.B.; Bloom, G.A. [Oak Ridge National Lab., TN (United States); Kuchynka, D.J. [Science Applications International Corp., Gaithersburg, MD (United States)

    1994-06-01

    Mixed waste is defined as waste contaminated with chemically hazardous (governed by the Resource Conservation and Recovery Act) and radioactive species [governed by US Department of Energy (DOE) orders]. The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. The Program also provides a forum for stakeholder and customer involvement in the technology development process. MWIP is composed of six technical areas that support a mixed-waste treatment system: (1) systems analysis, (2) materials handling, (3) chemical/physical separation, (4) waste destruction and stabilization, (5) off-gas treatment, and (6) final waste form stabilization. The status of the technical initiatives and the current research, development, and demonstration in each of these areas is described in this paper.

  15. Choosing solidification or vitrification for low-level radioactive and mixed waste treatment

    SciTech Connect (OSTI)

    Gimpel, R.F.

    1992-02-14

    Solidification (making concrete) and vitrification (making glass) are frequently the treatment methods recommended for treating inorganic or radioactive wastes. Solidification is generally perceived as the most economical treatment method. Whereas, vitrification is considered (by many) as the most effective of all treatment methods. Unfortunately, vitrification has acquired the stigma that it is too expensive to receive further consideration as an alternative to solidification in high volume treatment applications. Ironically, economic studies, as presented in this paper, show that vitrification may be more competitive in some high volume applications. Ex-situ solidification and vitrification are the competing methods for treating in excess of 450 000m{sup 3} of low-level radioactive and mixed waste at the Fernald Environmental Management Project (FEMP or simply, Fernald) located near Cincinnati, Ohio. This paper summarizes how Fernald is choosing between solidification and vitrification as the primary waste treatment method.

  16. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  17. Treatment technologies for hazardous ashes generated from possible incineration of navy waste. Technical note

    SciTech Connect (OSTI)

    Torres, T.

    1990-10-01

    The Navy recognizes that thermal treatment of Navy hazardous wastes (HW) should, under the terms of the Resource Conservation and Recovery Act of 1976, be avoided. Combustion waste disposal may nonetheless become unavoidable in certain cases, even after all possible process enhancements that avoid HW production are implemented. Even then, some toxic constituents that may be present in the waste will not be destroyed by incineration and will persist in the ash residue produced by incineration. Such incinerator ashes will have to be disposed of in HW landfills. The Navy is thus evaluating methods of treatment of such ash to remove or immobilize the toxic constituents that persist following incineration in order to render the waste treatment residue nonhazardous. Appropriate technology identified in this work can be applied to ash produced by HW combuster operated by the Navy, if any, or be required for ash produced by commercial generators handling Navy HWs.

  18. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  19. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids

    E-Print Network [OSTI]

    Chen, M; Huang, J; Ogunseitan, OA; Zhu, N; Wang, YM

    2015-01-01

    Agency. Electronics Waste Management in the United StatesWaste Management 41 (2015) 142–147at ScienceDirect Waste Management journal homepage:

  20. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  1. Application of thermogravimetric analysis to study the thermal degradation of solid and liquid organic wastes

    SciTech Connect (OSTI)

    E.S. Lygina; A.F. Dmitruk; S.B. Lyubchik; V.F. Tret'yakov

    2009-07-01

    In this work, the thermolysis of composite binary mixtures of refinery or coal-processing waste with waste biomass and D-grade (long-flame) coal was analyzed in order to increase the efficiency of the cothermolysis of chemically different organic wastes mainly because of the synergism of the thermolysis of mixture components and, correspondingly, the selectivity of formation of high-quality by-products (solid, gaseous, or liquid). A new approach to the analysis of thermogravimetric data was proposed and developed as applied to complex binary mixtures of carbon-containing materials. This approach was based on (1) the preliminary separation of the thermal degradation of individual carbon-containing mixture components into individual structural constituents and (2) the monitoring of the conversion of each particular structure fragment as a constituent of the mixtures in the course of the cothermolysis of the mixtures of starting components. Based on the approach developed, data on the main synergism effects in the course of cothermolysis in the binary test systems were obtained: the temperature regions of the appearance of these effects were distinguished, the main conclusions were made with respect to particular structure fragments in complex organic wastes responsible for the interaction of components in composite systems, and the directions (positive or negative) of changes in the yields of solid by-products and the degrees of effects (difference between the yields of cothermolysis by-products in each particular region of the appearance of synergistic effects in the systems) were determined. Additionally, the influence of alkali metal carbonate additives on synergistic effects in the interaction between binary system components under the process conditions of cothermolysis was analyzed.

  2. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect (OSTI)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  3. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  4. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool f

  5. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids

    E-Print Network [OSTI]

    Chen, M; Huang, J; Ogunseitan, OA; Zhu, N; Wang, YM

    2015-01-01

    the technology acceptance for dismantling of waste printedL.L. , 2013. A novel dismantling process of waste printed

  8. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    SciTech Connect (OSTI)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of these tests are presented in the paper.

  9. A Cultural Resources Survey for the Type V GG Liquid Waste Processing Facility in Washington County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-31

    A Phase I cultural resources survey for a proposed type V GG liquid waste processing facility on a 7.73 acre site in south-central Washington County, Texas was performed by Brazos Valley Research Associates on December 28, 2011. The project area...

  10. INITIAL SELECTION OF SUPPLEMENTAL TREATMENT TECHNOLOGIES FOR HANFORDS LOW ACTIVITY TANK WASTE

    SciTech Connect (OSTI)

    RAYMOND, R.E.

    2004-02-20

    In 2002, the U.S. Department of Energy (DOE) documented a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified specific technologies to be evaluated for supplemental treatment of as much as 70% of the low-activity waste (LAW). In concert with this acceleration plan, DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology proposed to accelerate--from 2014 to 2006--the Hanford Federal Facility Agreement and Consent Order milestone (M-62-11) associated with a final decision on the balance of tank waste that is beyond the capacity of the WTP. The DOE Office of River Protection tank farm contractor, CH2M HILL Hanford Group, Inc. (CH2M HILL), was tasked with testing and evaluating selected supplemental technologies to support final decisions on tank waste treatment. Three technologies and corresponding vendors were selected to support an initial technology selection in 2003. The three technologies were containerized grout called cast stone (Fluor Federal Services); bulk vitrification (AMEC Earth and Environmental, Inc.); and steam reforming (THOR Treatment Technologies, LLC.). The cast stone process applies an effective grout waste formulation to the LAW and places the cement-based product in a large container for solidification and disposal. Unlike the WTP LAW treatment, which applies vitrification within continuous-fed joule-heated ceramic melters, bulk vitrification produces a glass waste form using batch melting within the disposal container. Steam reforming produces a granular denitrified mineral waste form using a high-temperature fluidized bed process. An initial supplemental technology selection was completed in December 2003, enabling DOE and CH2M HILL to focus investments in 2004 on the testing and production-scale demonstrations needed to support the 2006 milestone.

  11. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect (OSTI)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

  12. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  13. RCRA information on hazardous wastes for publicly owned treatment works. Technical report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The guidance manual provides guidance to municipal personnel in understanding hazardous waste requirements of the Resource Conservation and Recovery Act (RCRA) and the implications of these RCRA requirements for the wastewater treatment plant operated by your municipality, for your local pretreatment program, and for local industries served by the treatment plant. The primary purpose of the manual is the RCRA notification requirement specified in the General Pretreatment Regulations. The manual focuses on Subtitle C requirements. (Subtitle C is directly applicable to industries since this program regulates generators, transporters, and disposers of hazardous waste). The manual also provides a general understanding of how federal RCRA requirements for hazardous waste affect industrial users. The manual also will be helpful in complying with any applicable federal requirements incumbent upon your POTW under Subtitle C of RCRA. The appendices contain lists of hazardous wastes regulated by federal requirements; selected EPA-approved forms for hazardous waste facilities to use; RCRA information brochure which briefly outlines the Act's impact on industries that generate or transport hazardous wastes; and EPA pamphlets summarizing information for generators of small quantities of hazardous waste.

  14. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs -Immobilization Plant Low-Activity Waste

  15. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of Energy Hanford Tank Waste

  16. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  17. The Treatment of Mixed Waste with GeoMelt In-Container Vitrification

    SciTech Connect (OSTI)

    Finucane, K.G.; Campbell, B.E.

    2006-07-01

    AMEC's GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} has been used to treat diverse types of mixed low-level radioactive waste. ICV is effective in the treatment of mixed wastes containing polychlorinated biphenyls (PCBs) and other semi-volatile organic compounds, volatile organic compounds (VOCs) and heavy metals. The GeoMelt vitrification process destroys organic compounds and immobilizes metals and radionuclides in an extremely durable glass waste form. The process is flexible allowing for treatment of aqueous, oily, and solid mixed waste, including contaminated soil. In 2004, ICV was used to treat mixed radioactive waste sludge containing PCBs generated from a commercial cleanup project regulated by the Toxic Substances Control Act (TSCA), and to treat contaminated soil from Rocky Flats Environmental Technology Site. The Rocky Flats soil contained cadmium, PCBs, and depleted uranium. In 2005, AMEC completed a treatability demonstration of the ICV technology on Mock High Explosive from Sandia National Laboratories. This paper summarizes results from these mixed waste treatment projects. (authors)

  18. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    SciTech Connect (OSTI)

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  19. Future waste treatment and energy systems – examples of joint scenarios

    SciTech Connect (OSTI)

    Münster, M., E-mail: maem@dtu.dk [System Analysis Division, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Finnveden, G. [KTH Royal Institute of Technology, School of Architecture and the Built Environment, Department of Planning and Environment, Division of Environmental Strategies Research – fms, 100 44 Stockholm (Sweden); Wenzel, H. [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark)

    2013-11-15

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

  20. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong; Sundaram, S. K.; Westsik, Joseph H.

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find the correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.

  1. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

  2. Integrated Waste Treatment Facility Fact Sheet | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergy Copyrights ASite InspectionDepartmentTrainingWaste

  3. Waste treatment facility passes federal inspection, completes final

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02)Management Waste Managementmilestone,

  4. Waste Treatment and Immobilation Plant Pretreatment Facility | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste Isolationof Energy Pretreatment

  5. Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste Isolationof Energy

  6. Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington , DC 20585 AprilWasteEnergy

  7. Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes

    SciTech Connect (OSTI)

    Sebesta, F.; John, J.; Motl, A.; Stamberg, K.

    1995-11-01

    The chemical and radiation stability of polyacrylonitrile (PAN) in the form of beads (B-PAN), similar to the beads of composite absorbers, and one selected composite absorber (ammonium molybdophosphate, the active component in PAN binder [AMP-PAN], a prospective candidate for the treatment of acidic wastes) were studied. Aqueous 1M HNO{sub 3} + 1M NaNO{sub 3}, 1M NaOH + 1M NaNO{sub 3}, and 1M NaOH were chosen as simulants of DOE acidic and alkaline wastes. In addition,radiation stability was determined indistilled water. The chemical stability of B-PAN and AMP-PAN beads was tested for a period up to one month of contact with the solution at ambient temperature. The radiation stability of the beads was checked in a radiation dose range 10{sup 3}--10{sup 6} Gy (10{sup 5}--10{sup 8} rads). In acidic solutions the stability of PAN binder was proved not to be limited by either chemical or radiation decomposition. PAN binder may thus be used for preparing composite absorbers for treatment of acid wastes from DOE facilities. The same conclusion is valid for alkaline solutions with pH up to 13. In highly alkaline solutions (concentration of NAOH higher than I M) and in the presence of NaNO{sub 3}, the stability of the tested polyacrylonitrile polymer was sufficient for applications not extending over 10 days. Cross-linking of the polymer caused by ionizing radiation was found to have a positive influence on chemical stability. This effect enables a longer period of applicability of PAN-based composite absorbers. Because of the high sorption rate achievable with PAN-based absorbers, the stability achieved is sufficient for most applications in the DOE complex. The chemical stability of binding polymer may also be further improved by testing another, more suitable type of polymer from the broad family of polyacrylonitrile polymers.

  8. High-tech waste treatment plant to open in Ho Chi Min City (20-07-2005)

    E-Print Network [OSTI]

    Columbia University

    High-tech waste treatment plant to open in Ho Chi Min City (20-07-2005) by Pham Hoang Nam HCM City will recycle waste products into either high quality, low-sulphur synthetic coal or synthetic "scrubbed gas". Pyrolysis, a thermal process that uses high temperatures to break down any waste containing carbon, uses

  9. DESIGN OF THE DEMOSNTRATION BULK VITRIFICATION SYSTEM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    SciTech Connect (OSTI)

    VAN BEEK JE

    2008-02-14

    In June 2004, the Demonstration Bulk Vitrification System (DBVS) was initiated with the intent to design, construct, and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford Tank 241-S-109. The DBVS facility uses In-Container Vitrification{trademark} (ICV{trademark}) at the core of the treatment process. The basic process steps combine liquid low-activity waste (LAW) and glassformers; dry the mixture; and then vitrify the mixture in a batch feed-while-melt process in a refractory lined steel container. Off-gases are processed through a state-of-the-art air pollution control system including sintered-metal filtration, thermal oxidation, acid gas scrubbing, and high-efficiency particulate air (HEPA) and high-efficiency gas adsorber (HEGA) filtration. Testing has focused on development and validation of the waste dryer, ICV, and sintered-metal filters (SMFs) equipment, operations enhancements, and glass formulation. With a parallel testing and design process, testing has allowed improvements to the DBVS equipment configuration and operating methodology, since its original inception. Design improvements include optimization of refractory panels in the ICV, simplifying glassformer addition equipment, increasing the number of waste feed chutes to the ICV, and adding capability for remote clean-out of piping, In addition, the U.S. Department of Energy (DOE) has provided an independent review of the entire DBVS process. While the review did not find any fatal flaws, some technical issues were identified that required a re-evaluation of the DBVS design and subsequent changes to the design. A 100 percent design package for the pilot plant will be completed and submitted to DOE for review in early 2008 that incorporates process improvements substantiated through testing and reviews. This paper provides a description of the bulk vitrification process and a discussion of major equipment design changes that have occurred based on full-scale testing over the past two years and DOE reviews.

  10. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  11. Advances in the Glass Formulations for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Kruger, Albert A.; Vienna, John D.; Kim, Dong Sang

    2015-01-14

    The Department of Energy-Office of River Protection (DOE-ORP) is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to treat radioactive waste currently stored in underground tanks at the Hanford site in Washington. The WTP that is being designed and constructed by a team led by Bechtel National, Inc. (BNI) will separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW) fractions with the majority of the mass (~90%) directed to LAW and most of the activity (>95%) directed to HLW. The pretreatment process, envisioned in the baseline, involves the dissolution of aluminum-bearing solids so as to allow the aluminum salts to be processed through the cesium ion exchange and report to the LAW Facility. There is an oxidative leaching process to affect a similar outcome for chromium-bearing wastes. Both of these unit operations were advanced to accommodate shortcomings in glass formulation for HLW inventories. A by-product of this are a series of technical challenges placed upon materials selected for the processing vessels. The advances in glass formulation play a role in revisiting the flow sheet for the WTP and hence, the unit operations that were being imposed by minimal waste loading requirements set forth in the contract for the design and construction of the plant. Another significant consideration to the most recent revision of the glass models are the impacts on resolution of technical questions associated with current efforts for design completion.

  12. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  13. US DOE Initiated Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant (WTP) Low-activity Waste Vitrification (LAW) System

    SciTech Connect (OSTI)

    Hamel, William F.; Gerdes, Kurt D.; Holton, Langdon K.; Pegg, Ian L.; Bowen, Brad W.

    2006-03-03

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE’s initial assessment, which is based on the work reported in this paper, is that the capacity of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing both processing time and cost.

  14. Volatilization of selected organic compounds from a creosote-waste land-treatment facility. Master's thesis

    SciTech Connect (OSTI)

    Scott, E.J.

    1989-01-01

    The purpose of this research was to evaluate the emissions of volatile and semi-volatile compounds which are constituents of a complex creosote waste from laboratory simulations of a land treatment system to assess the potential human exposure to hazardous compounds from this source. In addition, the Thibodeaux-Hwang Air Emission Release Rate (AERR) model was evaluated for its use in predicting emission rates of hazardous constituents of creosote wood preservative waste from land treatment facilities. A group of hazardous volatile and semi-volatile constituents present in the creosote waste was selected for evaluation in this study and included a variety of polynuclear aromatic hydrocarbons (PNA's), phenol, and chlorinated and substituted phenols.

  15. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment

    E-Print Network [OSTI]

    Angenent, Lars T.

    Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment February 2009 Accepted 20 February 2009 Published online 6 March 2009 Keywords: Ammonia Anaerobic digesters­378), the methane yield was 0.31 L CH4/g volatile solids (VS) for all digesters (with no statistical differences

  16. Method and apparatus for treating gaseous effluents from waste treatment systems

    DOE Patents [OSTI]

    Flannery, Philip A. (Ramsey, MT); Kujawa, Stephan T. (Butte, MT)

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  17. Application of Microbial Fuel Cell technology for a Waste Water Treatment Alternative

    E-Print Network [OSTI]

    = mg/s #12;Microbial Fuel Cell technology Zielke 1 1 Introduction Renewable energy is an increasing need in our society. Microbial fuel cell (MFC) technology represents a new form of renewable energyApplication of Microbial Fuel Cell technology for a Waste Water Treatment Alternative Eric A

  18. Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    N /A

    1999-05-06

    The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

  19. CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    MINWALL HJ

    2011-04-08

    Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

  20. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  1. Flocculation studies on freshly precipitated copper ferrocyanide for the removal of cesium from radioactive liquid waste

    SciTech Connect (OSTI)

    Sinha, P.K.; Amalraj, R.V. (Bhabha Atomic Research Centre, Kalpakkam (India)); Krishnasamy, V. (Anna Univ., Madras (India))

    1993-01-01

    Flocculation of copper ferrocyanide precipitate, used for the removal of Cs-isotopes from low-level and intermediate-level radioactive liquid waste, has been studied. Application of optimum dosages of flocculants, such as Polyelectrolytes and Fe[sup 3+] ions, is observed to enhance the removal of Cs and aid the separation of solid and liquid phases. Electrophoretic measurements have been used as a tool to determine the optimum dose of ferric ions by finding out the reversal of charge concentration (RCC) for Cu-ferrocyanide, precipitated in effluents of different specific conductances. The optimum requirement of Fe[sup 3+] ions increases with increasing specific conductances of the effluents. Presence of a complexing agent like EDTA affects the removal of Cs and also the separation of phases. The problem can be solved, at least for low concentration of EDTA, by lowering the pH to an optimum value, which has again been determined through electrophoretic measurements. It is inferred that uptake of Fe[sup 3+] ions by Cu-ferrocyanide proceeds through adsorption and ion-exchange with Cu[sup 2+] ions. When Cs[sup +] is present at very low concentration, for example as a radiopollutant, its removal is favored on addition of Fe[sup 3+] as flocculant, but at higher concentrations, the Cs[sup +] ions also partially undergo exchange with the Cu[sup 2+] ions, thus participating in the formation of precipitate. Addition of Fe[sup 3+], then, may not be desirable, as it may exchange with both Cu[sup 2+] and Cs[sup +] ions, releasing them into solution.

  2. The newest achievements of studies on the reutilization, treatment, and disposal technology of hazardous wastes

    SciTech Connect (OSTI)

    Liu Peizhe [Chinese Research Academy of Environmental Sciences, Beijing (China)

    1996-12-31

    From 1991 to 1996, key studies on the reutilization, treatment, and disposal technology of hazardous wastes have been incorporated into the national plan for environmental protection science and technology. At present, the research achievements have been accomplished, have passed national approval, and have been accepted. The author of this paper, as leader of the national group for this research work, expounds the newest achievements of the studies involving four parts: (1) the reutilization technology of electroplating sludge, including the ion-exchange process for recovering the sludge and waste liquor for producing chromium tanning agent and extracting chromium and colloidal protein from tanning waste residue; on the recovery of heavy metals from the electroplating waste liquor with microbic purification; on the demonstration project of producing modified plastics from the sludge and the waste plastics; and on the demonstration of the recovery of heavy metals from waste electroplating sludge by using the ammonia-leaching process; (2) the demonstrative research of reutilization technology of chromium waste residues, including production of self-melting ore and smelting of chromium-containing pig iron, and of pyrolytic detoxification of the residue with cyclone furnace; (3) the incineration technology of hazardous wastes with successful results of the industrial incinerator system for polychlorinated biphenyls; and (4) the safety landfill technology for disposal of hazardous wastes, with a complete set of technology for pretreatment, selection of the site, development of the antipercolating materials, and design and construction of the landfill. Only a part of the achievements is introduced in this paper, most of which has been built and is being operated for demonstration to further spreading application and accumulate experience. 6 refs., 7 figs., 6 tabs.

  3. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

  4. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  5. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  6. STATISTICAL SAMPLING FOR IN-SERVICE INSPECTION OF LIQUID WASTE TANKS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Harris, S.; Baxter, L.

    2011-04-07

    Savannah River Remediation, LLC (SRR) is implementing a statistical sampling strategy for In-Service Inspection (ISI) of Liquid Waste (LW) Tanks at the United States Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. As a component of SRS's corrosion control program, the ISI program assesses tank wall structural integrity through the use of ultrasonic testing (UT). The statistical strategy for ISI is based on the random sampling of a number of vertically oriented unit areas, called strips, within each tank. The number of strips to inspect was determined so as to attain, over time, a high probability of observing at least one of the worst 5% in terms of pitting and corrosion across all tanks. The probability estimation to determine the number of strips to inspect was performed using the hypergeometric distribution. Statistical tolerance limits for pit depth and corrosion rates were calculated by fitting the lognormal distribution to the data. In addition to the strip sampling strategy, a single strip within each tank was identified to serve as the baseline for a longitudinal assessment of the tank safe operational life. The statistical sampling strategy enables the ISI program to develop individual profiles of LW tank wall structural integrity that collectively provide a high confidence in their safety and integrity over operational lifetimes.

  7. Treatment of high-level wastes from the IFR fuel cycle

    SciTech Connect (OSTI)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-08-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  8. Treatment of high-level wastes from the IFR fuel cycle

    SciTech Connect (OSTI)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-01-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  9. Waste Treatment & Immobilization Plant Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos and Videos/01/2012 Page 1 ofTreatment Plant

  10. Supplemental Treatment Technologies Hanford Advisory Board Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore National Lab onSupercriticalVehiclesTreatment

  11. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria (Houston, TX); Mo, Weijian (Sugar Land, TX); Muylle, Michel Serge Marie (Houston, TX); Mandema, Remco Hugo (Houston, TX); Nair, Vijay (Katy, TX)

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  12. Distribution of radionuclides and water in Bandelier Tuff beneath a former Los Alamos liquid waste disposal site after 33 years

    SciTech Connect (OSTI)

    Nyhan, J.W.; Drennon, B.J.; Abeele, W.V.; Trujillo, G.; Herrera, W.J.; Wheeler, M.L.; Booth, J.W.; Purtymun, W.D.

    1984-07-01

    The distribution of radionuclides and water in Bandelier Tuff beneath a former liquid waste disposal site at Los Alamos was investigated. The waste use history of the site was described, as well as several pertinent laboratory and field studies of water and radionuclide migration in Bandelier Tuff. The distribution of plutonium, /sup 241/Am, and water was determined in a set of about 800 tuff samples collected to sampling depths of 30 m beneath two absorption beds. These data were then related to site geohydrologic data. Water and radionuclide concentrations found after 33 years were compared with the results of similar studies previously performed at this site, and the implications of these comparisons are discussed relative to nuclear waste management. 19 references, 6 figures, 4 tables.

  13. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  14. EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this environmental impact statement to analyze the environmental and socioeconomic impacts resulting from the Department’s proposed action to construct and operate facilities necessary to solidify the liquid high-level wastes currently stored in underground tanks at West Valley, New York.

  15. Nuclear Waste Treatment Program annual report for FY 1988

    SciTech Connect (OSTI)

    Brouns, R.A.; Powell, J.A.

    1989-11-01

    Much emphasis continues to be on the transfer of remote design technology for components integral to the West Valley Demonstration Project's (WVDP) vitrification process. In addition to preparing equipment specifications and drawings, Pacific Northwest Laboratory (PNL) staff also participated in numerous design coordination meetings and reviews of drawings prepared by other WVDP contractors. Nearly 200 jumper drawings for the vitrification cell were prepared by this program in FY 1988. The remote jumpers connect vessels in the cell to each other for the transfer of solutions and provide for the flow of materials, instrumentation signals, and power from outside the cell. Analysis required in preparing the jumper designs involved balance, thermal stress, seismic, set-down stress, and displacement calculations. Design efforts were begun on the canister decontamination and swipe station and on the remote maintenance station. Equipment selection and layouts of the vitrification off-gas treatment system, including a reamer to remotely clean the melter off-gas line, were finalized. Also finalized were the designs for the high-efficiency particulate air (HEPA) filter assemblies for heating, cooling and air conditioning of the vitrification cell.

  16. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect (OSTI)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has the advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.

  17. Quantification and Physics of Cold Plasma Treatment of Organic Liquid Surfaces

    E-Print Network [OSTI]

    Edward Bormashenko; Victor Multanen; Gilad Chaniel; Roman Grynyov; Evgeny Shulzinger; Roman Pogreb; Hadas Aharoni; Yakir Nagar

    2015-03-02

    Plasma treatment increases the surface energy of condensed phases: solids and liquids. Two independent methods of the quantification of the influence imposed by a cold radiofrequency air plasma treatment on the surface properties of silicone oils (polydimethylsiloxane) of various molecular masses and castor oil are introduced. Under the first method the water droplet coated by oils was exposed to the cold air radiofrequency plasma, resulting in an increase of oil/air surface energy. An expression relating the oil/air surface energy to the apparent contact angle of the water droplet coated with oil was derived. The apparent contact angle was established experimentally. Calculation of the oil/air surface energy and spreading parameter was carried out for the various plasma-treated silicone and castor oils. The second method is based on the measurement of the electret response of the plasma-treated liquids.

  18. Lessons Learned In Technology Development for Supplemental Treatment of Low-Activity Waste at Hanford

    SciTech Connect (OSTI)

    Biyani, R.K. [Washington State Department of Ecology, Richland, WA (United States)

    2008-07-01

    Hanford needs supplemental technology treatment of low-activity waste (LAW) in addition to the Waste Treatment Plant (WTP). The Washington State Department of Ecology requires that supplemental technology provide the same protection to human health and the environment as WTP LAW glass. In 2002, the U.S. Department of Energy (US DOE) evaluated supplemental treatment technologies for LAW treatment and looked more closely at three: bulk vitrification (BV), steam reforming, and tailored cementitious stabilization. US DOE with Ecology's support chose to design and test BV because it believed BV would offer rapid deployment, low cost, and waste stream versatility. This paper will describe the path taken in choosing and developing technologies for additional LAW treatment capacity and, more importantly, the lessons learned along the way. In conclusion: Contractors' off-the-shelf vitrification technology that worked elsewhere may not apply easily to Hanford's waste challenges. The BV development process could have been improved by first identifying and then focusing on primary areas of concern. Continuing integrated tests at the Horn Rapids facility offers a convenient option to test both the dryer and the SMF. But the plan for development of the SMF must be short term with well defined success criteria. US DOE has the responsibility to carefully evaluate each proposal and make critical decisions that will make optimum use of limited funds. The ERP provided valuable technical guidance on improving BV's design. This must be complemented by a similar study of cost effectiveness of a process. We must have a better understanding of life cycle costs before a path for supplemental treatment is chosen. US DOE has now gained five years of experience in developing BV. It is time for US DOE to make defensible economic evaluations before further funding towards developing supplemental treatment. It must reevaluate if the projected advantages of rapid deployment, low cost, and waste stream versatility are still valid. The decision-making methodology US DOE uses to approve designs as part of its Critical Decision Process appears rigorous and useful. Looking ahead, Ecology expects US DOE will use lessons learned from BV and other testing in a concerted manner as part of their decision-making process. The success of Hanford's cleanup depends on it. (authors)

  19. Waste treatment capacity of raft hydroponic lettuce production in an integrated fish culture system and the contribution of lettuce to treatment capacity 

    E-Print Network [OSTI]

    Gloger, Kelly C

    1995-01-01

    Two experiments were conducted to determine: 1.) the waste treatment capacity of raft hydroponic lettuce production in an integrated fish culture system and 2.) the contribution of lettuce plants, Lactuca saliva, cv. Paris ...

  20. Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263

    SciTech Connect (OSTI)

    Arm, Stuart T.; Pell, Michael J.; Van Meighem, Jeffery S.; Duncan, Garth M.; Harrington, Christopher C.

    2012-11-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

  1. Energy implications of mechanical and mechanical–biological treatment compared to direct waste-to-energy

    SciTech Connect (OSTI)

    Cimpan, Ciprian Wenzel, Henrik

    2013-07-15

    Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.

  2. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    SciTech Connect (OSTI)

    NONE

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP`s mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP`s LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility.

  3. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    SciTech Connect (OSTI)

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)

  4. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    SciTech Connect (OSTI)

    TEDESCHI AR

    2008-01-23

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process.

  5. Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility

    Broader source: Energy.gov [DOE]

    Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

  6. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  7. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    SciTech Connect (OSTI)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  8. Secondary Waste Form Development and Optimization—Cast Stone

    SciTech Connect (OSTI)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  9. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect (OSTI)

    Jacobsen, P.H.

    1997-09-23

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  10. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the national geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (?9 × 10E2 TBq or ?2.5 × 104 Ci or ?1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater. Long-term corrosion of glass waste forms is an area of current interest to the DOE, but attention to the release of Tc from glass has been little explored. It is expected that the release of Tc from glass should be highly dependent on the local glass structure as well as the chemistry of the surrounding environment, including groundwater pH. Though the speciation of Tc in glass has been previously studied, and the Tc species present in waste glass have been previously reported, environmental Tc release mechanisms are poorly understood. The recent advances in Tc chemistry that have given rise to an understanding of incorporation in the glass giving rise to significantly higher single-pass retention during vitrification are presented. Additionally, possible changes to the baseline flowsheet that allow for relatively minor volumes of Tc reporting to secondary waste treatment will be discussed.

  11. Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Goyette, M.L.; Dolak, D.A.

    1996-12-01

    This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

  12. The Polymers for Liquid Radioactive Waste Solidification: a Lost Chapter in the History of Engineering or a Step Forward? - 13529

    SciTech Connect (OSTI)

    Pokhitonov, Yury [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)] [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Kelley, Dennis [Pacific Nuclear Solutions, Indianapolis, Indiana (United States)] [Pacific Nuclear Solutions, Indianapolis, Indiana (United States)

    2013-07-01

    Ideas on the application of polymers for the liquid radioactive waste immobilization go a way back, and the first studies in the area were published 30-40 years ago. One should admit that regardless of the fairly large number of publications appeared in the past years currently the interest in this work came down greatly. It was the successful assimilation and worldwide implementation of the LRW cementation technology caused a slump in the interest in polymers. But today it's safe to say that the situation slowly changes, particularly due to the market appearance of the high-tech polymers manufactured by Nochar Company, and unique properties of these polymers gradually raise the demand in various countries. The results of multiple experiments performed with the simulated solutions have passed the comprehensive tests with actual waste. The economic effect from the implementation of the new technology is defined by the volume reduction of waste coming onto the repository, by the decline in the cost of transportation and of the repository construction on account of cutting down the construction volume. Interesting results have been obtained during the search for the technical decisions that would allow using the polymer materials in the processing technology of the industrial toxic waste. One more promising area of the possible application of polymers should be pointed out. It is the application of polymer materials as the assets for the emergency damage control when the advantages of the polymers become obvious. (authors)

  13. Evaluation of density separation and other treatment methods for plastic media blasting (PMB) waste

    SciTech Connect (OSTI)

    Spence, R.D.; Morgan, I.L.; Trotter, D.R.

    1995-05-01

    The United States Air Force has developed plastic media blasting (PMB) to replace solvent paint stripping of its aircraft. This paint blasting operation generates a waste stream of mainly pulverized plastic, but the stream also contains enough paint pigments to make the PMB waste RCRA hazardous. A Phase I study identified density separation as the preferred treatment alternative to land disposal of the entire PMB waste stream in a hazardous landfill. This study found density separation to be a less attractive alternative to self-encapsulation, solidification/stabilization (S/S), and low-temperature ashing. Self-encapsulation resulted in a volume decrease but only moderate improvement in Toxicity Characteristic Leaching Procedure (TCLP) performance Solidification/Stabilization (S/S) into cementiaous waste for resulted in excellent TCLP performances, but volume increases. Low-temperature ashing resulted in dramatic volume decreases, but off-gas control is required to contain all the RCRA metals. The resulting ash must be stabilized (e.g., S/S) to meet TCLP limits.

  14. Characterization of Irradiated Metal Waste from the Pyrometallurgical Treatment of Used EBR-II Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; K.C. Marsden; W.M. McCartin; S.M. Frank; D.D. Keiser, Jr.; T.S. Yoo; D. Vaden; D.G. Cummings; K.J. Bateman; J. J. Giglio; T. P. O'Holleran; P. A. Hahn; M. N. Patterson

    2013-03-01

    As part of the pyrometallurgical treatment of used Experimental Breeder Reactor-II fuel, a metal waste stream is generated consisting primarily of cladding hulls laden with fission products noble to the electrorefining process. Consolidation by melting at high temperature [1873 K (1600 degrees C)] has been developed to sequester the noble metal fission products (Zr, Mo, Tc, Ru, Rh, Te, and Pd) which remain in the iron-based cladding hulls. Zirconium from the uranium fuel alloy (U-10Zr) is also deposited on the hulls and forms Fe-Zr intermetallics which incorporate the noble metals as well as residual actinides during processing. Hence, Zr has been chosen as the primary indicator for consistency of the metal waste. Recently, the first production-scale metal waste ingot was generated and sampled to monitor Zr content for Fe-Zr intermetallic phase formation and validation of processing conditions. Chemical assay of the metal waste ingot revealed a homogeneous distribution of the noble metal fission products as well as the primary fuel constituents U and Zr. Microstructural characterization of the ingot confirmed the immobilization of the noble metals in the Fe-Zr intermetallic phase.

  15. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect (OSTI)

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  16. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    SciTech Connect (OSTI)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

  17. Hanford waste treatment plant Immobilized High Level Waste (IHLW) canister radiation dose rate and radiolytic heat load analysis

    SciTech Connect (OSTI)

    PIERSON, R.M.

    2003-09-02

    This document provides an analysis of anticipated radiation dose rates and heat loads for immobilized high level waste (IHW) canisters

  18. Treatment of contaminated waste-site runoff at the Seymour Recycling Site, Seymour, Indiana

    SciTech Connect (OSTI)

    Traver, R.P.

    1985-01-01

    The Environmental Emergency Response Unit (EERU) is the U.S. Environmental Protection Agency's (EPA) hazardous-material-spill response and control organization for situations where the use of complex cleanup equipment and techniques are required. EERU is engaged in the shakedown and field demonstration of protypical equipment and techniques developed under the direction and sponsorship of EPA's Hazardous Waste Engineering Research Laboratory (HWERL). In March 1983, EERU was requested by the EPA Region V On-Scene-Coordinator to provide an on-site water-treatment system at the Seymour Recycling Site, Seymour, Indiana, the largest uncontrolled waste site in the state. The system was to be on-site and operational by April 1983. A few of the limiting factors in choosing a system were speed of mobilization, plus short-term and intermittent use.

  19. XRF and leaching characterization of waste glasses derived from wastewater treatment sludges

    SciTech Connect (OSTI)

    Ragsdale, R.G., Jr

    1994-12-01

    Purpose of this study was to investigate use of XRF (x-ray fluorescence spectrometry) as a near real-time method to determine melter glass compositions. A range of glasses derived from wastewater treatment sludges associated with DOE sites was prepared. They were analyzed by XRF and wet chemistry digestion with atomic absorption/inductively coupled emission spectrometry. Results indicated good correlation between these two methods. A rapid sample preparation and analysis technique was developed and demonstrated by acquiring a sample from a pilot-scale simulated waste glass melter and analyzing it by XRF within one hour. From the results, XRF shows excellent potential as a process control tool for waste glass vitrification. Glasses prepared for this study were further analyzed for durability by toxicity characteristic leaching procedure and product consistency test and results are presented.

  20. Waste Treatment Plant Support Program: Summaries of Reports Produced During Fiscal Years 1999-2010

    SciTech Connect (OSTI)

    Beeman, Gordon H.

    2010-08-12

    The Waste Treatment Plant (WTP) being built on the U.S. Department of Energy (DOE) Hanford Site will be the largest chemical processing plant in the United States. Bechtel National Inc. (BNI) is the designer and constructor for the WTP. The Pacific Northwest National Laboratory (PNNL) has provided significant research and testing support to the WTP. This report provides a summary of reports developed initially under PNNL’s “1831” use agreement and later PNNL’s “1830” prime contract with DOE in support of the WTP. In March 2001, PNNL under its “1831” use agreement entered into a contract with BNI to support their research and testing activities. However, PNNL support to the WTP predates BNI involvement. Prior to March 2001, PNNL supported British Nuclear Fuels Ltd. in its role as overall designer and constructor. In February 2007, execution of PNNL’s support to the WTP was moved under its “1830” prime contract with DOE. Documents numbered “PNWD-XXXX” were issued under PNNL’s “1831” use agreement. Documents numbered “PNNL-XXXX” were issued under PNNL’s “1830” prime contract with DOE. The documents are sorted by fiscal year and categorized as follows: ? Characterization ? HLW (High Level Waste) ? Material Characterization ? Pretreatment ? Simulant Development ? Vitrification ? Waste Form Qualification. This report is intended to provide a compendium of reports issued by PNWD/PNNL in support of the Waste Treatment Plant. Copies of all reports can be obtained by clicking on http://www.pnl.gov/rpp-wtp/ and downloading the .pdf file(s) to your computer.

  1. Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263

    SciTech Connect (OSTI)

    Arm, Stuart T.; Van Meighem, Jeffery S. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States); Duncan, Garth M.; Pell, Michael J. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States)] [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Harrington, Christopher C. [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)] [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)

    2013-07-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

  2. Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels

    SciTech Connect (OSTI)

    Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

    2010-03-07

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for “just-suspended velocity”, solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

  3. Identification of the source of methane at a hazardous waste treatment facility using isotopic analysis

    SciTech Connect (OSTI)

    Hackley, K.C.; Liu, C.L. (Illinois State Geological Survey, Peabody, IL (United States)); Trainor, D.P. (Dames and Moore, Madison, WI (United States))

    1992-01-01

    Isotopic analyses have been used to determine the source of methane in subsurface sediments at a hazardous waste treatment facility in the Lake Calumet area of Chicago, Illinois. The study area is surrounded by landfills and other waste management operations and has a long history of waste disposal. The facility property consists of land constructed of approximately 15 feet of fill placed over lake sediments. The fill is underlain by successively older lacustrine and glacial till deposits to a maximum depth of approximately 80 feet. During a subsurface investigation of the site performed for a RCRA Facility Investigation of former solid waste management units (SWMUs) in the fill, significant quantities of methane were encountered in the natural deposits. Gas samples were collected from the headspace of 11 piezometers screened at depths of approximately 30, 40, and 50 feet beneath the surface. Methane concentrations up to 75% by volume were observed in some of the piezometers. Stable isotope analyses were completed on methane and associated CO[sub 2] separated from the gas samples. Radiocarbon (C-14) analyses were also completed on several of the samples. The delta C-13 results for the intermediate and deep zones are indicative of methane produced by microbial reduction of CO[sub 2]. The methane occurring in the shallow zone appears to be a mixture of methane from the intermediate zone and methane produced by microbial fermentation of naturally (nonanthropogenic) buried organic matter within the shallow lacustrine sediments. According to the isotopic and chemical results, the methane does not appear to be related to gas generation from nearby landfills or from organic wastes previously placed in the former facility SWMUs.

  4. Time and motion study for alternative mixed low-level waste treatment systems

    SciTech Connect (OSTI)

    Biagi, C.; Vetromile, J.; Teheranian, B.

    1997-02-01

    The time and motion study was developed to look at time-related aspects of the technologies and systems studied in the Integrated Thermal Treatment Systems (ITTS) and Integrated Nonthermal Treatment Systems (INTS) studies. The INTS and ITTS studies combined technologies into systems and subsystems for evaluation. The system approach provides DOE a method of measuring advantages and disadvantages of the many technologies currently being researched. For example, technologies which are more likely to create secondary waste or require extensive pretreatment handling may be less desirable than technologies which require less support from other processes. The time and motion study was designed to address the time element in the INTS and ITTS systems studies. Previous studies have focused on material balance, cost, technical effectiveness, regulatory issues, community acceptance, and operability. This study looks at system dynamics by estimating the treatment time required for a unit of waste, from receipt to certification for shipping. Labor estimates are also developed, based on the time required to do each task for each process. This focus on time highlights critical path processes and potential bottlenecks in the INTS and ITTS systems.

  5. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology

    SciTech Connect (OSTI)

    Islam, M.R.; Joardder, M.U.H.; Hasan, S.M.; Takai, K.; Haniu, H.

    2011-09-15

    In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

  6. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    SciTech Connect (OSTI)

    Witwer, Keith; Woosley, Steve; Campbell, Brett [Kurion, Inc., GeoMelt Division, 3015 Horn Rapids Road, Richland, Washington (United States)] [Kurion, Inc., GeoMelt Division, 3015 Horn Rapids Road, Richland, Washington (United States); Wong, Martin; Hill, Joanne [AMEC Inc., Birchwood Park, 601 Faraday Street, Birchwood, Warrington, WA3 6GN (United Kingdom)] [AMEC Inc., Birchwood Park, 601 Faraday Street, Birchwood, Warrington, WA3 6GN (United Kingdom)

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers, plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)

  7. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  8. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  9. DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding Low-Cost Ground8Department ofMixed Waste Treatment

  10. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  11. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  12. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  13. Separation and Purification and Beta Liquid Scintillation Analysis of Sm-151 in Savannah River Site and Hanford Site DOE High Level Waste

    SciTech Connect (OSTI)

    Dewberry, R.A.

    2001-02-13

    This paper describes development work to obtain a product phase of Sm-151 pure of any other radioactive species so that it can be determined in US Department of Energy high level liquid waste and low level solid waste by liquid scintillation {beta}-spectroscopy. The technique provides separation from {mu}Ci/ml levels of Cs-137, Pu alpha and Pu-241 {beta}-decay activity, and Sr-90/Y-90 activity. The separation technique is also demonstrated to be useful for the determination of Pm-147.

  14. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  15. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    SciTech Connect (OSTI)

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  16. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, Thomas M.; Rohay, Alan C.; Youngs, Robert R.; Costantino, Carl J.; Miller, Lewis F.

    2008-02-28

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy’s (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were re-evaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary’s approval of the final seismic criteria this past summer, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities.

  17. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    SciTech Connect (OSTI)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  18. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    SciTech Connect (OSTI)

    Sawada, Kayo [EcoTopia Science Institute (Japan)] [EcoTopia Science Institute (Japan); Hirabayashi, Daisuke; Enokida, Youichi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)] [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  19. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  20. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    SciTech Connect (OSTI)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  1. Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  2. Proposal for the award of a contract for the collection, transport, removal and treatment of conventional waste produced on the CERN sites

    E-Print Network [OSTI]

    2012-01-01

    Proposal for the award of a contract for the collection, transport, removal and treatment of conventional waste produced on the CERN sites

  3. Proposal for the award of a contract for the design, supply, installation, commissioning and maintenance of a compressing and shearing machine for the CERN Radioactive Waste Treatment Centre

    E-Print Network [OSTI]

    2013-01-01

    Proposal for the award of a contract for the design, supply, installation, commissioning and maintenance of a compressing and shearing machine for the CERN Radioactive Waste Treatment Centre

  4. THERMAL TREATMENT REVIEW . WTE I THERMAL TREATMENT Since the beginning of this century, global waste-to-energy capacity

    E-Print Network [OSTI]

    Columbia University

    of new waste-to gasification process at an industrial scale The Waste-To-Energy Research and Technology Council (WTERT), headquartered at Columbia University in New York City, keeps a close watch on the thermal waste-to-energy capacity has increased steadily at the rate of about four million tonnes of MSW per year

  5. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Missimer, David M.; Guenther, Chris P.; Shekhawat, Dushyant; VanEssendelft, Dirk T.; Means, Nicholas C.

    2015-04-23

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processing simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion in process piping and materials, in excessive off-gas absorbent loading, and in undesired process emissions. The ash content of the coal is important as the ash adds to the DMR and other vessel products which affect the final waste product mass and composition. The amount and composition of the ash also affects the reaction kinetics. Thus ash content and composition contributes to the mass balance. In addition, sodium, potassium, calcium, sulfur, and maybe silica and alumina in the ash may contribute to wall-scale formation. Sodium, potassium, and alumina in the ash will be overwhelmed by the sodium, potassium, and alumina from the feed but the impact from the other ash components needs to be quantified. A maximum coal particle size is specified so the feed system does not plug and a minimum particle size is specified to prevent excess elutriation from the DMR to the Process Gas Filter (PGF). A vendor specification was used to procure the calcined coal for IWTU processing. While the vendor supplied a composite analysis for the 22 tons of coal (Appendix A), this study compares independent analyses of the coal performed at the Savannah River National Laboratory (SRNL) and at the National Energy Technology Laboratory (NETL). Three supersacks a were sampled at three different heights within the sack in order to determine within bag variability and between bag variability of the coal. These analyses were also compared to the vendor’s composite analyses and to the coal specification. These analyses were also compared to historic data on Bestac coal analyses that had been performed at Hazen Research Inc. (HRI) between 2004-2011.

  6. Effect of ionic liquid treatment on the structures of lignins in solutions

    SciTech Connect (OSTI)

    Cheng, Gang [Joint Bioenergy Institute; Kent, Michael S [ORNL; He, Lilin [ORNL; Varanasi, Patanjali [Joint Bioenergy Institute; Dibble, Dean [Joint Bioenergy Institute; Melnichenko, Yuri B [ORNL; Simmons, Blake [Sandia National Laboratories (SNL); Singh, Seema [Joint Bioenergy Institute

    2012-01-01

    The solution structures of three types of isolated lignin - organosolv (OS), Kraft (K), and low sulfonate (LS) - before and after treatment with 1-ethyl-3-methylimidazolium acetate were studied using small-angle neutron scattering (SANS) and dynamic light scattering (DLS) over a concentration range of 0.3-2.4 wt %. The results indicate that each of these lignins is comprised of aggregates of well-defined basal subunits, the shapes and sizes of which, in D{sub 2}O and DMSO-d{sub 6}, are revealed using these techniques. LS lignin contains a substantial amount of nanometer-scale individual subunits. In aqueous solution these subunits have a well-defined elongated shape described well by ellipsoidal and cylindrical models. At low concentration the subunits are highly expanded in alkaline solution, and the effect is screened with increasing concentration. OS lignin dissolved in DMSO was found to consist of a narrow distribution of aggregates with average radius 200 {+-} 30 nm. K lignin in DMSO consists of aggregates with a very broad size distribution. After ionic liquid (IL) treatment, LS lignin subunits in alkaline solution maintained the elongated shape but were reduced in size. IL treatment of OS and K lignins led to the release of nanometer-scale subunits with well-defined size and shape.

  7. Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

    1996-12-01

    Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

  8. A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site

    SciTech Connect (OSTI)

    Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

    2010-12-01

    This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

  9. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  10. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore »FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  11. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and...

  12. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect (OSTI)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  13. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    SciTech Connect (OSTI)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  14. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak

    2003-08-06

    The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.

  15. Engineering design and test plan for demonstrating DETOX treatment of mixed wastes

    SciTech Connect (OSTI)

    Goldblatt, S.; Dhooge, P.

    1995-03-01

    DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit, and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).

  16. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect (OSTI)

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  17. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect (OSTI)

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  18. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  19. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    SciTech Connect (OSTI)

    RYAN GW

    2008-04-25

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

  20. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  1. This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures

    E-Print Network [OSTI]

    Mease, Kenneth D.

    This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures · Always manage hazardous waste as the highest ranked waste in the hazardous waste hierarchy Waste Solids Place in solid radioactive waste box. Radioactive Waste Liquids Place in liquid radioactive

  2. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment

    SciTech Connect (OSTI)

    Sandoval Lozano, Claudia Johanna Vergara Mendoza, Marisol; Carreno de Arango, Mariela; Castillo Monroy, Edgar Fernando

    2009-02-15

    This study presents the microbiological characterization of the anaerobic sludge used in a two-stage anaerobic reactor for the treatment of organic fraction of urban solid waste (OFUSW). This treatment is one alternative for reducing solid waste in landfills at the same time producing a biogas (CH{sub 4} and CO{sub 2}) and an effluent that can be used as biofertilizer. The system was inoculated with sludge from a wastewater treatment plant (WWTP) (Rio Frio Plant in Bucaramanga-Colombia) and a methanogenic anaerobic digester for the treatment of pig manure (Mesa de los Santos in Santander). Bacterial populations were evaluated by counting groups related to oxygen sensitivity, while metabolic groups were determined by most probable number (MPN) technique. Specific methanogenic activity (SMA) for acetate, formate, methanol and ethanol substrates was also determined. In the acidogenic reactor (R1), volatile fatty acids (VFA) reached values of 25,000 mg L{sup -1} and a concentration of CO{sub 2} of 90%. In this reactor, the fermentative population was predominant (10{sup 5}-10{sup 6} MPN mL{sup -1}). The acetogenic population was (10{sup 5} MPN mL{sup -1}) and the sulphate-reducing population was (10{sup 4}-10{sup 5} MPN mL{sup -1}). In the methanogenic reactor (R2), levels of CH{sub 4} (70%) were higher than CO{sub 2} (25%), whereas the VFA values were lower than 4000 mg L{sup -1}. Substrate competition between sulphate-reducing (10{sup 4}-10{sup 5} MPN mL{sup -1}) and methanogenic bacteria (10{sup 5} MPN mL{sup -1}) was not detected. From the SMA results obtained, acetoclastic (2.39 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) and hydrogenophilic (0.94 g COD-CH{sub 4} g{sup -1} VSS{sup -1} day{sup -1}) transformations as possible metabolic pathways used by methanogenic bacteria is suggested from the SMA results obtained. Methanotrix sp., Methanosarcina sp., Methanoccocus sp. and Methanobacterium sp. were identified.

  3. Department of Energy Idaho Operations Office evaluation of feasibility studies for private sector treatment of alpha and TRU mixed wastes

    SciTech Connect (OSTI)

    NONE

    1995-05-01

    The Idaho National Engineering Laboratory (INEL) is currently storing a large quantity of alpha contaminated mixed low level waste which will require treatment prior to disposal. The DOE Idaho Operations Office (DOE-ID) recognized that current knowledge and funding were insufficient to directly pursue services for the requisite treatment. Therefore, it was decided that private sector studies would be funded to clarify cost, regulatory, technology, and contractual issues associated with procuring treatment services. This report analyzes the three private sector studies procured and recommends a path forward for DOE in procuring retrieval, assay, characterization, and treatment services for INEL transuranic and alpha contaminated mixed low level waste. This report was prepared by a team of subject matter experts from the INEL referred to as the DOE-ID Evaluation Team.

  4. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  5. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOE Patents [OSTI]

    Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  6. Home and community composting for on-site treatment of urban organic waste: perspective for Europe and Canada

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Home and community composting for on-site treatment of urban organic waste: perspective for Europe practice (Base Sce), this paper examines on-site UOW composting strategies using a combination of centralized composting facilities (CCF), community composting centres (CCC) and home composting (HC) (Sce 1, 2

  7. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  8. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  9. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect (OSTI)

    Onishi, Yasuo; Recknagle, Kurtis P.; Wells, Beric E.

    2000-08-09

    This report evaluates how two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102. It also assesses and confirms the adequacy of a 3-inch pipeline to transfer the resulting mixed waste slurry to the AP Tank Farm and ultimately to a planned waste treatment/vitrification plant on the Hanford Site.

  10. Vaporization of actinide oxides in thermal treatment processes for mixed waste

    SciTech Connect (OSTI)

    Ebbinghaus, B.B.; Krikorian, O.H.; Adamson, M.G.

    1994-10-04

    The purpose of this study is to evaluate the volatilities of U, Pu, and Am in thermal treatment processes for mixed wastes. The thermodynamics of vaporization U and Pu oxides in the presence of oxygen and water vapor and of U oxide in the presence of oxygen and chlorine were studied. Experimental studies of U oxide volatilities by previous authors have also been reviewed. For species where data are unavailable estimation methods were used to obtain free energies of formation of the gaseous species, The data are applied to thermal treatment processes in general and then more specifically to conditions representative of the Rocky Flats Plant Fluidized Bed Unit. (RFP FBU), molten salt oxidizer, and an incinerator. U volatilities are greatest ranging from 2.67 x 10{sup -7} gU/h in the RFP FBU to 4. 00 gU/h for typical incinerator conditions. Pu volatilities are almost 5 orders of magnitude less than U and Am volatilities are about 3 orders of magnitude less than Pu.

  11. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    William Linak

    2004-12-16

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

  12. Development of the Diamex Process for Treating PHWR High-Level Liquid Waste

    SciTech Connect (OSTI)

    Kumbhare, L.B.; Prabhu, D.R.; Mahajan, G.R.; Sriram, S.; Manchanda, V.K.; Badheka, L.P. [Bhabha Atomic Research Centre (India)

    2002-09-15

    The extraction behavior of actinides like U(VI), Pu(IV), and Am(III) as well as of fission products like Tc(VII), Zr(IV), Eu(III), and structural material Fe(III) using nitric acid/simulated pressurized heavy water reactor-high-level waste solution as aqueous phase and N,N'-dimethyl-N,N'dibutyl tetra decyl malonamide (DMDBTDMA) in n-dodecane as solvent was investigated. The present work contributes significantly toward the development of nonphosphorous (environmentally friendly) extractant capable of partitioning long-lived actinides and fission products like {sup 99}Tc from relatively short lived fission products like {sup 90}Sr and {sup 137}Cs as well as inactive components present in high-level waste. The D{sub Am} values determined in the temperature range between 15 and 45 deg. C showed a gradual decrease with increase in temperature throughout the acidity range. The effect of N,N di-2-ethylhexyl acetamide (D2EHAA) as phase modifier on the physicochemical properties of DMDBTDMA/n-dodecane solvent was investigated and could be correlated with parameters like the limiting organic concentration value of HNO{sub 3}, D{sub Am}, or phase disengagement time. Overall comparison of diamide extraction (Diamex) and transuranium extraction (Truex) solvents has been made.

  13. Application of the Sorption-Membrane Technologies for Liquid Radioactive Waste Processing at Kursk NPP

    SciTech Connect (OSTI)

    Slepokon, Y.I. [Kursk NPP, Kurchatov City (Russian Federation); Milyutin, V.V.; Kozlitin, E.A.; Gelis, V.M. [Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, 31 Leninsky Prospect, 119991 Moscow (Russian Federation); Cherkasov, A.P. [CJSC 'SPA Energokhimproekt', 5/1 Posledniy Side-street, 103045 Moscow (Russian Federation)

    2006-07-01

    Experimental tests of the technology for NPP wastewater processing were conducted in the beginning of 2005. Wastewater effluents contained anion-active surface-active substances (SAS) in the concentration of 5-10 mg/L; total salt bearing of the effluents was about 0.8 g/L; specific activity of the {sup 95}Zr, {sup 95}Nb, {sup 60}Co, {sup 59}Fe, {sup 54}Mn, {sup 51}Cr, and {sup 137}Cs was within the range of 50-200 Bq/L; gross specific activity amounted 700-800 Bq/L. The experimental facility for wastewater processing consists of the following modules and units: - ozonizing module; - micro-filtration module based on a cross-flow filtering unit equipped with the metal-ceramic Trumem membranes; - sorption end-polishing unit loaded with the cesium-selective sorbent and conventional cation and anion exchange resins. After all SAS and other organic contaminants were destroyed at the ozonizing stage, all radionuclides except {sup 137}Cs were retained at the micro-filtration stage. The end-polishing selective sorption unit provided further removal of {sup 137}Cs radionuclide to the level of 2-3 Bq/L. Total volume of various wastewater effluents processed at the experimental facility amounted 670 L. The volume of the secondary waste concentrate was 0.3% of the feed, i.e. the waste concentrating factor reached 350. (authors)

  14. Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant

    SciTech Connect (OSTI)

    Herman, Connie C.

    2013-09-30

    The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

  15. Title Flood Assessment at the Proposed Area 6 Liquid Waste Treatment System - DOE/NV Test

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6 5 1 6Five-PartyProposed

  16. The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The6,Category 2 NuclearRadioactive

  17. The Use of Induction Melting for the Treatment of Metal Radioactive Waste - 13088

    SciTech Connect (OSTI)

    Zherebtsov, Alexander; Pastushkov, Vladimir; Poluektov, Pavel; Smelova, Tatiana; Shadrin, Andrey

    2013-07-01

    The aim of the work is to assess the efficacy of induction melting metal for recycling radioactive waste in order to reduce the volume of solid radioactive waste to be disposed of, and utilization of the metal. (authors)

  18. Wetland treatment of oil and gas well waste waters. Final report

    SciTech Connect (OSTI)

    Kadlec, R.; Srinivasan, K.

    1995-08-01

    Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

  19. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, T.M.; Rohay, A.C. [Pacific Northwest National Laboratory, Richland, WA (United States); Youngs, R.R. [Geomatrix Consultants, Inc., Oakland, CA (United States); Costantino, C.J. [C.J. Costantino and Associates, Valley, NY (United States); Miller, L.F. [U.S. Department of Energy, Office of River Protection, Richland, WA (United States)

    2008-07-01

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy's (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were reevaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary's approval of the final seismic criteria in the summer of 2007, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities. The technical basis for the certification of seismic design criteria resulted from a two-year Seismic Boreholes Project that planned, collected, and analyzed geological data from four new boreholes drilled to depths of approximately 1400 feet below ground surface on the WTP site. A key uncertainty identified in the 2005 analyses was the velocity contrasts between the basalt flows and sedimentary interbeds below the WTP. The absence of directly-measured seismic shear wave velocities in the sedimentary interbeds resulted in the use of a wider and more conservative range of velocities in the 2005 analyses. The Seismic Boreholes Project was designed to directly measure the velocities and velocity contrasts in the basalts and sediments below the WTP, reanalyze the ground motion response, and assess the level of conservatism in the 2005 seismic design criteria. The characterization and analysis effort included 1) downhole measurements of the velocity properties (including uncertainties) of the basalt/interbed sequences, 2) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core-hole and data collected through geophysical logging of each borehole, and 3) prediction of ground motion response to an earthquake using newly acquired and historic data. The data and analyses reflect a significant reduction in the uncertainty in shear wave velocities below the WTP and result in a significantly lower spectral acceleration (i.e., ground motion). The updated ground motion response analyses and corresponding design response spectra reflect a 25% lower peak horizontal acceleration than reflected in the 2005 design criteria. These results provide confidence that the WTP seismic design criteria are conservative. (authors)

  20. SARDINIA2003_2_Infrastructure.doc 1 Waste Treatment Infrastructure in North Rhine-Westphalia,

    E-Print Network [OSTI]

    Columbia University

    commercial and industrial waste management sector. For the turn of the year 2001/2002, this infrastructure Environmental Office of NRW (www.lua.nrw.de). 1. Introduction, characteristics of waste management in North responsibility and investment risk for appropriate waste management facilities. Favorable for the development

  1. Method for solidification of radioactive and other hazardous waste

    DOE Patents [OSTI]

    Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Voskresenskaya, Elena N. (Krasnoyarsk, RU); Kostin, Eduard M. (Zheleznogorsk, RU); Pavlov, Vyacheslav F. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Sapozhnikova, Natalia V. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  2. Savannah River Site Tank 48H Waste Treatment Project Technology Readiness Assessment

    SciTech Connect (OSTI)

    Harmon, H.D.; Young, J.K.; Berkowitz, J.B.; DeVine, Jr.J.C.; Sutter, H.G.

    2008-07-01

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F and H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Desk-book. The TRA consists of three parts: - Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. - Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. - Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy. (authors)

  3. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-10-25

    ABSTRACT One of U.S. Department of Energy’s (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents – approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes – are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC’s ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates – WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: • Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. • Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. • Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  4. SAVANNAH RIVER SITE TANK 48H WASTE TREATMENT PROJECT TECHNOLOGY READINESS ASSESSMENT

    SciTech Connect (OSTI)

    Harmon, Harry D.; Young, Joan K.; Berkowitz, Joan B.; Devine, John C.; Sutter, Herbert G.

    2008-03-18

    One of U.S. Department of Energy's (DOE) primary missions at Savannah River Site (SRS) is to retrieve and treat the high level waste (HLW) remaining in SRS tanks and close the F&H tank farms. At present, a significant impediment to timely completion of this mission is the presence of significant organic chemical contamination in Tank 48H. Tank 48H is a 1.3 million gallon tank with full secondary containment, located and interconnected within the SRS tank system. However, the tank has been isolated from the system and unavailable for use since 1983, because its contents - approximately 250,000 gallons of salt solution containing Cs-137 and other radioisotopes - are contaminated with nearly 22,000 Kg of tetraphenylborate, a material which can release benzene vapor to the tank head space in potentially flammable concentrations. An important element of the DOE SRS mission is to remove, process, and dispose of the contents of Tank 48H, both to eliminate the hazard it presents to the SRS H-Tank Farm and to return Tank 48H to service. Tank 48H must be returned to service to support operation of the Salt Waste Processing Facility, to free up HLW tank space, and to allow orderly tank closures per Federal Facility Agreement commitments. The Washington Savannah River Company (WSRC), the SRS prime contractor, has evaluated alternatives and selected two processes, Wet Air Oxidation (WAO) and Fluidized Steam Bed Reforming (FBSR) as candidates for Tank 48H processing. Over the past year, WSRC has been testing and evaluating these two processes, and DOE is nearing a final technology selection in late 2007. In parallel with WSRC's ongoing work, DOE convened a team of independent qualified experts to conduct a Technology Readiness Assessment (TRA). The purpose of the TRA was to determine the maturity level of the Tank 48H treatment technology candidates - WAO and FBSR. The methodology used for this TRA is based on detailed guidance for conducting TRAs contained in the Department of Defense (DoD), Technology Readiness Assessment Deskbook. The TRA consists of three parts: (1) Determination of the Critical Technology Elements (CTEs) for each of the candidate processes. (2) Evaluation of the Technology Readiness Levels (TRLs) of each CTE for each process. (3) Defining of the technology testing or engineering work necessary to bring immature technologies to the appropriate maturity levels. The TRA methodology assigns a TRL to a technology based on the lowest TRL assigned to any CTE of that technology. Based on the assessment, the overall TRL for WAO was 2 and the TRL for FBSR was 3. WAO was limited by the current lack of definition for the off-gas treatment system (TRL of 2). The FBSR Product Handling had little or no test work and therefore received the lowest score (TRL of 3) for the FBSR CTEs. In summary, both FBSR and WAO appear to be viable technologies for treatment of Tank 48H legacy waste. FBSR has a higher degree of maturity than WAO, but additional technology development will be required for both technologies. However, the Assessment Team believes that sufficient information is available for DOE to select the preferred or primary technology. Limited testing of the backup technology should be conducted as a risk mitigation strategy.

  5. ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage and

    E-Print Network [OSTI]

    Mukhtar, Saqib

    as fertilizer. Effluent also can be recycled for manure handling in a flush system. Efficiency To be efficient a single-stage system and improves treatment efficiency by produc- ing higher quality effluent for reuse design volume. Diverted surface water and roof drainage may be used to add water to the lagoon. Warm

  6. Integrated chemical/biological treatment of paint stripper mixed waste: Metals toxicity and separation

    SciTech Connect (OSTI)

    Vanderberg-Twary, L.; Grumbine, R.K.; Foreman, T.; Hanners, J.L.; Brainard, J.R.; Sauer, N.N.; Unkefer, P.J.

    1995-05-01

    The DOE complex has generated vast quantities of complex heterogeneous mixed wastes. Paint stripper waste (PSW) is a complex waste that arose from decontamination and decommissioning activities. It contains paint stripper, cheesecloth, cellulose-based paints with Pb and Cr, and suspect Pu. Los Alamos National Laboratory has 150--200 barrels of PSW and other national laboratories such as Rocky Flats Plant have many more barrels of heterogeneous waste. Few technologies exist that can treat this complex waste. Our approach to solving this problem is the integration of two established technologies: biodegradation and metals chelation.

  7. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    SciTech Connect (OSTI)

    Not Available

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  8. Implementation plan for liquid low-level radioactive waste systems under the FFA for fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-06-01

    This document is the fourth annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). In addition, this document lists FFA activities planned for FY 1997. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service.

  9. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  10. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-21

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

  11. Microwave technology for waste management applications: Treatment of discarded electronic circuitry

    SciTech Connect (OSTI)

    Wicks, G.G. [Westinghouse Savannah River Technology Center, Aiken, SC (United States); Clark, D.E.; Schulz, R.L. [Univ. of Florida, Gainesville, FL (United States)

    1997-01-01

    Significant quantities of hazardous wastes are generated from a multitude of processes and products in today`s society. This waste inventory is not only very large and diverse, but is also growing at an alarming rate. In order to minimize the dangers presented by constituents in these wastes, microwave technologies are being investigated to render harmless the hazardous components and ultimately, to minimize their impact to individuals and the surrounding environment.

  12. Environmental Assessment and Finding of No Significant Impact: On-Site Treatment of Low Level Mixed Waste

    SciTech Connect (OSTI)

    N /A

    1999-03-22

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1292) to evaluate the proposed treatment of low level mixed waste (LLMW) at the Rocky Flats Environmental Technology Site (Site). The purpose of the action is to treat LLMW in order to meet the Land Disposal Restrictions specified by the Resource Conservation and Recovery Act and the waste acceptance criteria of the planned disposal site(s). Approximately 17,000 cubic meters (m{sup 3}) of LLMW are currently stored at the Site. Another 65,000 m{sup 3}of LLMW are likely to be generated by Site closure activities (a total of 82,000 m{sup 3} of LLMW). About 35,000 m{sup 3} can be directly disposed of off-site without treatment, and most of the remaining 47,000 m{sup 3} of LLMW can be treated at off-site treatment, storage, and disposal facilities. However, some LLMW will require treatment on-site, either because it does not meet shipping requirements or because off-site treatment is not available for these particular types of LLMW. Currently, this LLMW is stored at the Site pending the development and implementation of effective treatment processes. The Site needs to treat this LLMW on-site prior to shipment to off-site disposal facilities, in order to meet the DOE long-term objective of clean up and closure of the Site. All on-site treatment of LLMW would comply with applicable Federal and State laws designed to protect public health and safety and to enhance protection of the environment. The EA describes and analyzes the environmental effects of the proposed action (using ten mobile treatment processes to treat waste on-site), and the alternatives of treating waste onsite (using two fixed treatment processes), and of taking no action. The EA was the subject of a public comment period from February 3 to 24, 1999. No written or other comments regarding the EA were received.

  13. Laboratory Report on Performance Evaluation of Key Constituents during Pre-Treatment of High Level Waste Direct Feed

    SciTech Connect (OSTI)

    Huber, Heinz J.

    2013-06-24

    The analytical capabilities of the 222-S Laboratory are tested against the requirements for an optional start up scenario of the Waste Treatment and Immobilization Plant on the Hanford Site. In this case, washed and in-tank leached sludge would be sent directly to the High Level Melter, bypassing Pretreatment. The sludge samples would need to be analyzed for certain key constituents in terms identifying melter-related issues and adjustment needs. The analyses on original tank waste as well as on washed and leached material were performed using five sludge samples from tanks 241-AY-102, 241-AZ-102, 241-AN-106, 241-AW-105, and 241-SY-102. Additionally, solid phase characterization was applied to determine the changes in mineralogy throughout the pre-treatment steps.

  14. Influence of mechanical-biological waste pre-treatment methods on the gas formation in landfills

    SciTech Connect (OSTI)

    Bockreis, A. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)]. E-mail: a.bockreis@iwar.tu-darmstadt.de; Steinberg, I. [Technische Universitaet Darmstadt, Darmstadt University of Technology, Institute for Water Supply and Groundwater Protection, Wastewater Technology, Waste Management, Industrial Material Flows and Environmental Planning (Institute WAR), Chair of Waste Management and Waste Technology, Darmstadt (Germany)

    2005-07-01

    In order to minimise emissions and environmental impacts, only pre-treated waste should be disposed of. For the last six years, a series of continuous experiments has been conducted at the Institute WAR, TU Darmstadt, in order to determine the emissions from pre-treated waste. Different kinds of pre-treated waste were incubated in several reactors and various data, including production and composition of the gas and the leachate, were collected. In this paper, the interim results of gas production and the gas composition from different types of waste after a running time of six years are presented and discussed.

  15. Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.

    SciTech Connect (OSTI)

    Ehst, D.; Nuclear Engineering Division

    2010-08-04

    It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

  16. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect (OSTI)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)

  17. Characterization of residuals from novel anaerobic digestion of organic municipal solid waste for application as liquid fertilizer

    E-Print Network [OSTI]

    Karceski, Julie (Julie Katherine)

    2015-01-01

    Management of organic municipal solid waste presents numerous challenges in India. Anaerobic digestion is one technology that can be used to address this problem, by transforming organic waste into methane via microbial ...

  18. Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal

    E-Print Network [OSTI]

    Hunt, Andrew Robert

    2007-01-01

    Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

  19. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    KELLY SE

    2011-04-07

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

  20. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  1. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  2. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, March 30, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.; Neufeld, R.D.; Blachere, J.R. [and others

    1998-04-01

    Progress is described on the use of by-products form clean coal technologies for the treatment of hazardous wastes. During the third quarter of Phase 2, work continued on evaluating Phase 1 samples (including evaluation of a seventh waste), conducting scholarly work, preparing for field work, preparing and delivering presentations, and making additional outside contacts.

  3. EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

  4. Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E. [Oak Ridge National Lab., TN (United States); Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J. [Rockwell International Corp., Canoga Park, CA (United States)

    1993-03-01

    The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored.

  5. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    SciTech Connect (OSTI)

    Youngs, Robert R.

    2007-06-29

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  6. Investigation of separation, treatment, and recycling options for hazardous paint blast media waste. Final report

    SciTech Connect (OSTI)

    Boy, J.H.; Race, T.D.; Reinbold, K.A.

    1996-02-01

    U.S. Army depot depaint operations generate over 4 million kg per year of contaminated paint blast media wastes. The objective of this work was to investigate technologies that might significantly mitigate this Army hazardous waste disposal problem. Most of the technologies investigated either failed to meet acceptable TCLP levels for hazardous metals content, or failed to meet Army disposal requirements. However, based on a review of several commercially available services, it is recommended that Army depot depaint operations consider processing hazardous blast media waste through properly regulated contractors that offer safe, effective, and economical stabilization, fixation, and recycling technologies.

  7. Potential dispositioning flowsheets for ICPP SNF and wastes

    SciTech Connect (OSTI)

    Olson, A.L. [ed.; Anderson, P.A.; Bendixsen, C.L. [and others

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

  8. Comparative analysis of composting as a municipal solid waste treatment process in India

    E-Print Network [OSTI]

    Liu, Yeqing

    2015-01-01

    A study of composting municipal solid waste (MSW) in India compared a specific facility in Muzaffarnagar, Uttar Pradesh, India to existing standards and practices documented in literature globally and in other facilities ...

  9. Expedited demonstration of molten salt mixed waste treatment technology. Final report

    SciTech Connect (OSTI)

    1995-02-02

    This final report discusses the molten salt mixed waste project in terms of the various subtasks established. Subtask 1: Carbon monoxide emissions; Establish a salt recycle schedule and/or a strategy for off-gas control for MWMF that keeps carbon monoxide emission below 100 ppm on an hourly averaged basis. Subtask 2: Salt melt viscosity; Experiments are conducted to determine salt viscosity as a function of ash composition, ash concentration, temperature, and time. Subtask 3: Determine that the amount of sodium carbonate entrained in the off-gas is minimal, and that any deposited salt can easily be removed form the piping using a soot blower or other means. Subtask 4: The provision of at least one final waste form that meets the waste acceptance criteria of a landfill that will take the waste. This report discusses the progress made in each of these areas.

  10. EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste

    Broader source: Energy.gov [DOE]

    This EIS  evaluates the potential environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue...

  11. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    SciTech Connect (OSTI)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation.

  12. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  13. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect (OSTI)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.; Onishi, Yasuo; Huckaby, James L.; Cooley, Scott K.; Burns, Carolyn A.; Buck, Edgar C.; Tingey, Joel M.; Daniel, Richard C.; Anderson, K. K.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shell tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.

  14. Development of a new process for treatment of paint sludge wastes. Final report, May 1986-December 1987

    SciTech Connect (OSTI)

    Balasco, A.A.; Bodek, I.; Goldman, M.E.; Mazrimas, M.J.; Rossetti, M.

    1987-12-31

    This report presents the results of laboratory tests performed on paint-waste samples obtained from the Letterkenny Army Depot (LEAD). The purpose of these tests was to determine if the ash residue from a thermal-treatment process such as combustion would be classified as hazardous according to the Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Procedure (TCLP). In addition, the feasibility of generating a glassified product from the ash which would be classified as non-hazardous was also tested. Finally, tests were also performed to determine if recovery of selected metals from the ash is feasible. The results of the laboratory program suggest that thermal treatment of paint waste under some conditions may be feasible for generation of non-hazardous ash residue. Further experiments on a pilot-scale are recommended, however, to investigate this approach to determine the need for subsequent treatment (e.g., glassification and/or recovery) of the ash product and the actual destruction efficiency of organic components.

  15. In Situ Grouting of Liquid Waste Disposal Trenches and Experimental Reactor Fuel Disposal Wells at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J.; Lambert, R. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Trujillo, E. [BWXT Pantex, LLC, Amarillo, TX (United States); Julius, J. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States)

    2008-07-01

    In the early to mid-1960's, liquid low-level wastes (LLLW) generated at Oak Ridge National Laboratory were disposed of in specially-constructed, gravel-filled trenches within the Melton Valley watershed at the lab. The initial selected remedy for Trenches 5 and 7 was in situ vitrification; however, an amendment to the record of decision changed the remedy to in situ grouting of the trenches. The work was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout. At the HRE fuel wells, a 1-m ring of soil surrounding the fuel wells was grouted with acrylamide. The results of the hydraulic conductivity tests ranged from 4.74 x 10{sup -6} to 3.60 x 10{sup -7} cm/sec, values that were well below the 1 x 10{sup -5} cm/sec design criterion. In summary: The ISG Project was conducted to decrease hydraulic conductivity and thereby decrease water flow and contaminate migration from the area of the trenches. The initial remedy for Trenches 5 and 7 in the Melton Valley ROD was for in situ vitrification of the trench matrix. The remedy was changed to in situ grouting of the trenches and HRE fuel wells through an amendment to the ROD after moisture was found in the trenches. The grouting of the trenches was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout to further reduce water infiltration. Soil backfill above each of the seven HRE fuel wells was removed to a depth of approximately 1 m by augering, and the soils were replaced with a cement plug to prevent water infiltration from migrating down the original borehole. Soil surrounding the fuel wells was then grouted with acrylamide to ensure water infiltration through the HRE fuel wells is prevented. A summary of the quantities used is shown. After completion of grouting, in-situ hydraulic conductivities of the grouted materials were measured to verify attainment of the design objective. The areas were then covered with multi-layer caps as part of the MV hydrologic isolation project. (authors)

  16. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  17. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect (OSTI)

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  18. Task 1.6 -- Mixed waste treatment. Semi-annual report, January 1--June 30, 1995

    SciTech Connect (OSTI)

    Rindt, J.R.

    1997-08-01

    Mixed-waste sites make up the majority of contaminated sites, yet remediation techniques used at such sites often target only the most prevalent contaminant. A better understanding of site situation (i.e., most common types of contamination), current remediation techniques, and combinations of techniques would provide insight into areas in which further research should be performed. The first half of this task program year consisted of a survey of common types of mixed-wastes sites and a detailed literature search of the remediation techniques and combinations of techniques that were currently available. From this information, an assessment of each of the techniques was made and combined into various ways appropriate to mixed-waste protocol. This activity provided insight into areas in which further research should be performed.

  19. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect (OSTI)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  20. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    SciTech Connect (OSTI)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

  1. Endpointtool: An Excel{sup R}-Based Workbook for Hanford Tank Waste Treatment Planning

    SciTech Connect (OSTI)

    Agnew, S.F. [Nuclear Waste Consulting, San Diego, CA (United States); Corbin, R.A.; Anderson, M. [Columbia Energy and Environmental Services, Inc., Richland, WA (United States)

    2008-07-01

    The EndpointTool is a Microsoft Excel{sup R}-based workbook with a set of macros and worksheets for the evaluation of Hanford Site tank treatment scenarios. This tool enables the user to determine bottlenecks in processes and storage and address regulatory issues. It also provides an avenue to evaluate new technologies, as well as changes in existing technologies and their impact to the current baseline. The EndpointTool tracks 46 radionuclides, 52 species, and 10 properties for each event. Seventeen different processes are modeled, each with its own worksheet that describes that process, has its assumptions, qualifications, and calculations, and holds the historical results of each process event. This enables the user to not only look at the big picture, but to evaluate process parameters such as flowrates, sizing, etc. The user composes an event that is a combination of a sender tank, a process tank, and a receiver tank. Each event involves one of the processes and each process can have up to a total of 81 assumptions and 180 qualifications. The starting point for all tank inventories is the Hanford tank Best-Basis Inventory (BBI). Each tank comprises up to three phases: salt-cake, sludge, and supernatant. Each of these BBI phases has an insoluble solids fraction that was derived from the embedded solubility model. Each composed event must meet a set of qualifications that are dependent on the process, as well as whether the sender tank has any inventory, whether the receiver tank has sufficient space, etc. For example, supernatant events are limited to a maximum solids specified in its assumptions, usually 5 wt%. Above this solids contents, a slurry transfer must be used. Once a qualified event is added to the Event List, the inventories of involved tanks are updated in a status worksheet and the results of that event appear in the timeline and metrics charts. Although the EndpointTool is not a true dynamic model, it provides a useful desktop capability for quite complex process sequences. While only schedule and variances are presently performed, a cost module is in development. In summary: The EndpointTool is a powerful Excel-based planning resource. It is portable and test runs have shown that about 600 Events can effectively represent the processing of all of Hanford tank waste. Since each Event takes approximately 3 seconds to run on a 1.8 GHz CPU with 512 MB ram, a complete run only takes approximately 30 minutes. As a result, extensive scenario planning and process optimization is possible with this tool. Moreover, Event List 'scenarios' can be easily shared among users and scenario planning can then be distributed among a large number of users. (authors)

  2. Zr electrorefining process for the treatment of cladding hull waste in LiCl-KCl molten salts

    SciTech Connect (OSTI)

    Lee, Chang Hwa; Lee, You Lee; Jeon, Min Ku; Kang, Kweon Ho; Choi, Yong Taek; Park, Geun Il [Korea Atomic Energy Research Institute - KAERI, 989-111 Daeduk-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2013-07-01

    Zr electrorefining for the treatment of Zircaloy-4 cladding hull waste is demonstrated in LiCl-KCl-ZrCl{sub 4} molten salts. Although a Zr oxide layer thicker than 5 ?m strongly inhibits the Zr dissolution process, pre-treatment processes increases the dissolution kinetics. For 10 g-scale experiments, the purities of the recovered Zr were 99.54 wt.% and 99.74 wt.% for fresh and oxidized cladding tubes, respectively, with no electrical contact issue. The optimal condition for Zr electrorefining has been found to improve the morphological feature of the recovered Zr, which reduces the salt incorporation by examining the effect of the process parameters such as the ZrCl{sub 4} concentration and the applied potential.

  3. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  4. Guidance manual for the identification of hazardous wastes delivered to publicly owned treatment works by truck, rail, or dedicated pipe

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    The manual is directed towards two types of facilities: First, guidance is to POTWs that wish to preclude the entry of hazardous wastes into their facilities and avoid regulation and liability under RCRA. Administrative/technical recommendations for control of such wastes is provided, many of which are already in use by POTWs. Second, the responsibilities of POTWs that choose to accept hazardous wastes from truck, rail, or dedicated pipeline are discussed, including relevant regulatory provisions, strict liability and corrective action requirements for releases, and recommended procedures for waste acceptance/management. The manual describes the RCRA regulatory status of wastes that POTW operators typically may encounter. The manual includes a Waste Monitoring Plan. Appendices give the following: RCRA lists; RCRA listed hazardous wastes; examples of POTW sewer use ordinance language, waste hauler permit; waste tracking form, notification of hazardous waste activity; uniform hazardous waste manifest; biennial hazardous waste report; and state hazardous waste contacts.

  5. Low-level waste certification plan for the WSCF Laboratory Complex

    SciTech Connect (OSTI)

    Morrison, J.A.

    1994-09-19

    The solid, low-level waste certification plan for the Waste Sampling and Characterization Facility (WSCF) describes the organization and methodology for the certification of the solid low-level waste (LLW) that is transferred to the Hanford Site 200 Areas Storage and Disposal Facilities. This plan incorporates the applicable elements of waste reduction, including up-front minimization, and end product treatment to reduce the volume or toxicity of the waste. The plan also includes segregation of different waste types. This low-level waste certification plan applies only to waste generated in, or is the responsibility of the WSCF Laboratory Complex. The WSCF Laboratory Complex supports technical activities performed at the Hanford Site. Wet Chemical and radiochemical analyses are performed to support site operations, including environmental and effluent monitoring, chemical processing, RCRA and CERCLA analysis, and waste management activities. Environmental and effluent samples include liquid effluents, ground and surface waters, soils, animals, vegetation, and air filters.

  6. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  7. Office of River Protection (DOE-ORP) Hanford Tank Waste Treatment Alternatives March 2000

    SciTech Connect (OSTI)

    WODRICH, D.D.

    2000-03-24

    The U.S. Department of Energy (DOE) is currently planning to retrieve, pretreat, immobilize and safely dispose of 53 million gallons of highly radioactive waste currently stored in underground tanks at Hanford Site. The DOE plan is a two-phased approach to privatizing the processing of hazardous and radioactive waste. Phase 1 is a proof-of-concept/commercial demonstration-scale effort whose objectives are to: demonstrate, the technical and business viability of using privatized facilities to treat Hanford tank waste; define and maintain required levels of radiological, nuclear, process and occupational safety; maintain environmental protection and compliance; and substantially reduce life-cycle costs and time required to treat Hanford tank waste. The Phase 1 effort consists of Part A and Part B. On September 25, 1996 (Reference 1), DOE signed a contract with BNFL, Inc. (BNFL) to commence with Phase 1, Part A. In August 1998, BNFL was authorized to proceed with Phase I, Part 6-1, a 24-month design phase that will-provide sufficient engineering and financial maturity to establish fixed-unit prices and financing terms for tank waste processing services in privately-owned and -operated facilities. By August 2000, DOE will decide whether to authorize BNFL to proceed with construction and operation of the proposed processing facilities, or pursue a different path. To support of the decision, DOE is evaluating alternatives to potentially enhance the BNFL tank waste processing contract, as well as, developing an alternate path forward should DOE decide to not continue the BNFL contract. The decision on whether to continue with the current privatization strategy (BNFL contract) or to pursue an alternate can not be made until the evaluation process leading up to the decision on whether to authorize BNFL to proceed with construction and operation (known as the Part 8-2 decision) is completed. The evaluation process includes reviewing and evaluating the information BNFL is scheduled to submit in April 2000, and negotiating the best mutually acceptable contract terms. The alternatives studies completed to-date are summarized in Reference 2.

  8. Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report

    SciTech Connect (OSTI)

    McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

    1995-01-10

    This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

  9. EIS-0200: Waste Management Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    00: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management...

  10. Liquid effluent/Hanford Environmental compliance FY 1995 Multi-Year Program Plan/Fiscal Year Work Plan, WBS 1.2.2.1 and 1.2.2.2

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document details the program effort to eliminate the use of the soil column for liquid effluent treatment and to manage current and future liquid effluent streams at the Hanford Site, in a safe responsible cost effective and legally compliant mannger. This should be achieved through planning, public and stakeholder interaction, definition of requiremtns for generators, and provision of timely treatment, stroage, disposal capability, and waste minimization of waste streams.

  11. Hot waste-to-energy flue gas treatment using an integrated fluidised bed reactor

    SciTech Connect (OSTI)

    Bianchini, A.; Pellegrini, M. [DIEM, Department of Mechanical Engineering, Faculty of Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy); Saccani, C. [DIEM, Department of Mechanical Engineering, Faculty of Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)], E-mail: cesare.saccani@unibo.it

    2009-04-15

    This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forli, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution.

  12. Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, March 2012

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: v2.7|Energy ResponseCall:BeyondConsequenceWasteSite

  13. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    SciTech Connect (OSTI)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from the waste form surface. Waste forms for ANS 16.1 leach testing contained appropriate amounts of rhenium and iodine as radionuclide surrogates, along with the additives silver-loaded zeolite and tin chloride. The leachability index for Re was found to range from 7.9 to 9.0 for all the samples evaluated. Iodine was below detection limit (5 ppb) for all the leachate samples. Further, leaching of sodium was low, as indicated by the leachability index ranging from 7.6-10.4, indicative of chemical binding of the various chemical species. Target leachability indices for Re, I, and Na were 9, 11, and 6, respectively. Degradation was observed in some of the samples post 90-day ANS 16.1 tests. Toxicity characteristic leaching procedure (TCLP) results showed that all the hazardous contaminants were contained in the waste, and the hazardous metal concentrations were below the Universal Treatment Standard limits. Preliminary scale-up (2-gal waste forms) was conducted to demonstrate the scalability of the Ceramicrete process. Use of minimal amounts of boric acid as a set retarder was used to control the working time for the slurry. Flexibility in treating waste streams with wide ranging compositional make-ups and ease of process scale-up are attractive attributes of Ceramicrete technology.

  14. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    SciTech Connect (OSTI)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  15. Assessment of sludge management options in a waste water treatment plant

    E-Print Network [OSTI]

    Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

    2012-01-01

    This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

  16. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  17. Savannah River Site Achieves Waste Transfer First

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F Tank Farm to H Tank Farm using a central control room.

  18. Development of Site-Specific Soil Design Basis Earthquake (DBE) Parameters for the Integrated Waste Treatment Unit (IWTU)

    SciTech Connect (OSTI)

    Payne, Suzette

    2008-08-01

    Horizontal and vertical PC 3 (2,500 yr) Soil Design Basis Earthquake (DBE) 5% damped spectra, corresponding time histories, and strain-compatible soil properties were developed for the Integrated Waste Treatment Unit (IWTU). The IWTU is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Laboratory (INL). Mean and 84th percentile horizontal DBE spectra derived from site-specific site response analyses were evaluated for the IWTU. The horizontal and vertical PC 3 (2,500 yr) Soil DBE 5% damped spectra at the 84th percentile were selected for Soil Structure Interaction (SSI) analyses at IWTU. The site response analyses were performed consistent with applicable Department of Energy (DOE) Standards, recommended guidance of the Nuclear Regulatory Commission (NRC), American Society of Civil Engineers (ASCE) Standards, and recommendations of the Blue Ribbon Panel (BRP) and Defense Nuclear Facilities Safety Board (DNFSB).

  19. Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste

    SciTech Connect (OSTI)

    Niessen, W.R.; Marks, C.H.; Sommerlad, R.E.

    1996-08-01

    This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

  20. Technical area status report for chemical/physical treatment. Volume 1

    SciTech Connect (OSTI)

    Brown, C.H. Jr.; Schwinkendorf, W.E.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs and activities throughout the DOE Complex. The Mixed Waste Integrated Program (MWIP) was created by the DOE Office of Technology Development (OTD) to develop, deploy, and complete appropriate technologies for the treatment of an DOE low-level mixed waste (LLMW). The MWIP mission includes development of strategies related to enhanced waste form production, improvements to and testing of the EM-30 baseline flowsheet for mixed waste treatment, programmatic oversight for ongoing technical projects, and specific technical tasks related to the site specific Federal Facilities Compliance Agreement (FFCA). The MWIP has established five Technical Support Groups (TSGs) based on primary functional areas of the Mixed Waste Treatment Plant) identified by EM-30. These TSGs are: (1) Front-End Waste Handling, (2) Chemical/Physical Treatment, (3) Waste Destruction and Stabilization, (4) Second-stage Destruction and Offgas Treatment, and (5) Final Waste Forms. The focus of this document is the Chemical/Physical Treatment System (CPTS). The CPTS performs the required pretreatment and/or separations on the waste streams passing through the system for discharge to the environment or efficient downstream processing. Downstream processing can include all system components except Front-End Waste Handling. The primary separations to be considered by the CPTS are: (1) removal of suspended and dissolved solids from aqueous and liquid organic streams, (2) separation of water from organic liquids, (3) treatment of wet and dry solids, including separation into constituents as required, for subsequent thermal treatment and final form processing, (4) mercury removal and control, and (5) decontamination of equipment and waste classified as debris.

  1. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  2. Description of recommended non-thermal mixed waste treatment technologies: Version 1.0

    SciTech Connect (OSTI)

    1995-08-01

    This document contains description of the technologies selected for inclusions in the Integrated Nonthermal Treatment Systems (INTS) Study. The purpose of these descriptions is to provide a more complete description of the INTS technologies. It supplements the summary descriptions of candidate nonthermal technologies that were considered for the INTS.

  3. EFFICIENCY OF THREE REACTIVE MIXTURES OF ORGANIC WASTES FOR THE TREATMENT OF

    E-Print Network [OSTI]

    Aubertin, Michel

    ACID MINE DRAINAGE C. Neculita 1 , G.J. Zagury 1 , B. Bussičre 2,3 1 Department of Civil, Geological-reducing bacteria (SRB) are a reasonable alternative technology for acid mine drainage (AMD) treatment drainage minier acide (DMA). Afin d'ętre efficaces, ils nécessitent une source de carbone organique

  4. Secondary Waste Form Down Selection Data Package – Ceramicrete

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.

  5. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOE Patents [OSTI]

    Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  6. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval,...

  7. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  8. Vitrified waste option study report

    SciTech Connect (OSTI)

    Lopez, D.A.; Kimmitt, R.R.

    1998-02-01

    A {open_quotes}Settlement Agreement{close_quotes} between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032.

  9. THE SUCCESSFUL UTILIZATION OF COMMERCIAL TREATMENT CAPABILITIES TO DISPOSITION HANFORD NO-PATH-FORWARD SUSPECT TRANSURANIC WASTES

    SciTech Connect (OSTI)

    BLACKFORD LT; CATLOW RL; WEST LD; COLLINS MS; ROMINE LD; MOAK DJ

    2012-01-30

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as ''no-path-forward waste.'' A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from Hanford's Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed and are currently being implemented.

  10. Thermal denitration and mineralization of waste constituents

    SciTech Connect (OSTI)

    Nenni, J.A.; Boardman, R.D.

    1997-08-01

    In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions.

  11. Waste treatment by ion-exchange. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The bibliography contains citations concerning wastewater treatment by ion-exchange techniques. Methods for removing metals, nitrates, phosphates, fluorides, and organic pollutants are described. Applications of this technology to the electroplating, metal finishing, pulp, paper, and other industries are included. The citations examine the commercial feasibility of using ion-exchange methods for pollutant reduction when the process is used alone or in combination with various pretreatment techniques. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Waste treatment by ion-exchange. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    The bibliography contains citations concerning wastewater treatment by ion-exchange techniques. Methods for removing metals, nitrates, phosphates, fluorides, and organic pollutants are described. Applications of this technology to the electroplating, metal finishing, pulp, paper, and other industries are included. The citations examine the commercial feasibility of using ion-exchange methods for pollutant reduction when the process is used alone or in combination with various pretreatment techniques. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. The effect of high pH chemical hydrolysis on biological waste treatment 

    E-Print Network [OSTI]

    Smullen, Richard Frederick

    1971-01-01

    CO&. The reduction in plant size makes the cost with regeneration comparable to an activated sludge plant that must incinerate its sludge. It should also be noted that Buzzell and Sawyer (4) reported that lime sludge stored 4-7 days at pH greater than 11. 0 did... helpful suggestions throughout the study. Dr. William D. Langley, and Dr. Chia Shun Shih, for serving on my my committee. Vi TABLE OF CONTENTS INTRODUCTION REVIEW OF LITFRATURE Chemical Treatment . Lime Sludge Characteristics Non...

  14. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, June 30--September 30, 1996

    SciTech Connect (OSTI)

    Cobb, J.T.; Neufeld, R.D.; Blachere, J.R. [and others

    1996-12-31

    During the fourth quarter of Phase 2, work continued on evaluating treatment of the seventh residue of Phase 1, conducting scholarly work, preparing for field work, preparing and delivering presentations, and making additional outside contacts. The work consisted of further testing of the solidification of the seventh hazardous waste--the sandblast residue from paint removal in a building--and examining the microstructure of the products of solidification. There were two treated waste mixtures which demonstrated immediate stabilization, the sandblast residue w/30% spray drier residue (CONSOL) and the sandblast residue w/50% PFBC residue (Tidd).

  15. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, December 30, 1996--March 30, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The objective of this project is to utilize coal ashes to process hazardous materials such as industrial waste water treatment residues, contaminated soils, and air pollution control dusts from the metal industry and municipal waste incineration. This report describes the activities of the project team during the reporting period. The principal work has focused upon continuing evaluation of aged samples from Phase 1, planning supportive laboratory studies for Phase 2, completing scholarly work, reestablishing MAX Environmental Technologies, Inc., as the subcontractor for the field work of Phase 2, proposing two presentations for later in 1997, and making and responding to several outside contacts.

  16. Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication, Environmental Protection Agency Number ID4890008952

    SciTech Connect (OSTI)

    Holzemer, Michael J.; Hart, Edward

    2015-04-01

    Hazardous Waste Management Act/Resource Conservation and Recovery Act Storage and Treatment Permit Reapplication for the Idaho National Laboratory Materials and Fuels Complex Hazardous Waste Management Act/Resource Conservation and Recovery Act Partial Permit, PER-116. This Permit Reapplication is required by the PER-116 Permit Conditions I.G. and I.H., and must be submitted to the Idaho Department of Environmental Quality in accordance with IDAPA 58.01.05.012 [40 CFR §§ 270.10 and 270.13 through 270.29].

  17. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    SciTech Connect (OSTI)

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixed waste.

  18. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    SciTech Connect (OSTI)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  19. Parametric Optimization of the MEO Process for Treatment of Mixed Waste Residues

    SciTech Connect (OSTI)

    Cournoyer, M.E.; Smith, W.H.

    1999-02-28

    A series of bench-scale experiments were conducted to determine the optimum reaction conditions for destruction of styrene-divinyl benzene based cation resin and methylene chloride by the mediated electrochemical oxidation (MEO) process. Reaction parameters examined include choice of electron transfer mediator, reaction temperature and solvent system. For the cation exchange resins, maximum destruction efficiencies were obtained using cerium (IV) as mediator in nitric acid at a temperature of 70 C. Reasonable efficiencies were also realized with silver(II) and cobalt (III) at ambient temperature in the same solvent. Use of sulfuric acid as the solvent yielded much lower efficiencies under equivalent conditions. Methylene chloride was found to react only with silver (II) at ambient temperature in nitric acid media, cobalt (III) and cerium (IV) were totally ineffective. These results demonstrate a need to perform bench-scale experiments to determine optimum operating conditions for each organic substrate targeted for treatment by the MEO process.

  20. Evaluation of melter system technologies for vitrification of high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Wilson, C.N.

    1994-03-21

    Westinghouse Hanford Company (WHC) is conducting a two-phased demonstration testing and evaluation of candidate melter system technologies for vitrification of Hanford Site low-level tank wastes. The testing is to be performed by melter equipment and vitrification technology commercial suppliers. This Statement of Work is for Phases 1 and 2 of the demonstration testing program. The primary objective of the demonstration testing is to identify the best available melter system technology for the Hanford Site LLW vitrification facility. Data obtained also will support various WHC engineering studies and conceptual design of the LLW vitrification facility. Multiple technologies will be selected for demonstration and evaluation. Testing will be conducted using non-radioactive LLW simulants in Seller-specified pilot/testing facilities.

  1. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    SciTech Connect (OSTI)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

  2. WRPS MEETING THE CHALLENGE OF TANK WASTE

    SciTech Connect (OSTI)

    BRITTON JC

    2012-02-21

    Washington River Protection Solutions (WRPS) is the Hanford tank operations contractor, charged with managing one of the most challenging environmental cleanup projects in the nation. The U.S. Department of Energy hired WRPS to manage 56 million gallons of high-level radioactive waste stored in 177 underground tanks. The waste is the legacy of 45 years of plutonium production for the U. S. nuclear arsenal. WRPS mission is three-fold: safely manage the waste until it can be processed and immobilized; develop the tools and techniques to retrieve the waste from the tanks, and build the infrastructure needed to deliver the waste to the Waste Treatment Plant (WTP) when it begins operating. WTP will 'vitrify' the waste by mixing it with silica and other materials and heating it in an electric melter. Vitrification turns the waste into a sturdy glass that will isolate the radioactivity from the environment. It will take more than 20 years to process all the tank waste. The tank waste is a complex highly radioactive mixture of liquid, sludge and solids. The radioactivity, chemical composition of the waste and the limited access to the underground storage tanks makes retrieval a challenge. Waste is being retrieved from aging single-shell tanks and transferred to newer, safer double-shell tanks. WRPS is using a new technology known as enhanced-reach sluicing to remove waste. A high-pressure stream of liquid is sprayed at 100 gallons per minute through a telescoping arm onto a hard waste layer several inches thick covering the waste. The waste is broken up, moved to a central pump suction and removed from the tank. The innovative Mobile Arm Retrieval System (MARS) is also being used to retrieve waste. MARS is a remotely operated, telescoping arm installed on a mast in the center of the tank. It uses multiple technologies to scrape, scour and rake the waste toward a pump for removal. The American Reinvestment and Recovery Act (ARRA) provided nearly $326 million over two-and-a-half years to modernize the infrastructure in Hanford's tank farms. WRPS issued 850 subcontracts totaling more than $152 million with nearly 76 percent of that total awarded to small businesses. WRPS used the funding to upgrade tank farm infrastructure, develop technologies to retrieve and consolidate tank waste and extend the life of two critical operating facilities needed to feed waste to the WTP. The 222-S Laboratory analyzes waste to support waste retrievals and transfers. The laboratory was upgraded to support future WTP operations with a new computer system, new analytical equipment, a new office building and a new climate-controlled warehouse. The 242-A Evaporator was upgraded with a control-room simulator for operator training and several upgrades to aging equipment. The facility is used to remove liquid from the tank waste, creating additional storage space, necessary for continued waste retrievals and WTP operation. The One System Integrated Project Team is ajoint effort ofWRPS and Bechtel National to identify and resolve common issues associated with commissioning, feeding and operating the Waste Treatment Plant. Two new facilities are being designed to support WTP hot commlsslomng. The Interim Hanford Storage project is planned to store canisters of immobilized high-level radioactive waste glass produced by the vitrification plant. The facility will use open racks to store the 15-foot long, two-foot diameter canisters of waste, which require remote handling. The Secondary Liquid Waste Treatment Project is a major upgrade to the existing Effluent Treatment Facility at Hanford so it can treat about 10 million gallons of liquid radioactive and hazardous effluent a year from the vitrification plant. The One System approach brings the staff of both companies together to identify and resolve WTP safety issues. A questioning attitude is encouraged and an open forum is maintained for employees to raise issues. WRPS is completing its mission safely with record-setting safety performance. Since WRPS took over the Hanford Tank Operations Contract in October 2

  3. CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45)

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. 'explainsBurrell,C: LI c1

  4. TREATMENT SYSTEMS AN INTEGRATED APPROACH

    E-Print Network [OSTI]

    for on-site management and treatment of effluent and solid waste 3. Provide for surface water attenuationECOLOGICAL TREATMENT SYSTEMS AN INTEGRATED APPROACH TO THE TREATMENT OF WASTE AND WASTE WATER In nature there is no waste, because the waste of one organism is food for another Inherent

  5. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  6. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  7. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01

    H. H. Peters, Shale Oil Waste Water Recovery by Evaporation,treatment of oil shale waste products. Consequently, bothmost difficult and costly oil shale waste stream requiring

  8. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  9. ARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas liquid interface

    E-Print Network [OSTI]

    Aneja, Viney P.

    ARTICLE IN PRESS Modeling hydrogen sulfide emissions across the gas­ liquid interface-film theory Hydrogen sulfide Process-based model Lagoon flux Mass transfer a b s t r a c t Hydrogen sulfide (H waste treatment lagoons are widely used to store and treat hog excreta at commercial hog farms. Hydrogen

  10. The effect of chemical composition on the PCT durability of mixed waste glasses from wastewater treatment sludges

    SciTech Connect (OSTI)

    Resce, J.L.; Ragsdale, R.G.; Overcamp, T.J.; Bickford, D.F.; Cicero, C.A.

    1995-01-25

    An experimental program has been designed to examine the chemical durability of glass compositions derived from the vitrification of simulated wastewater treatment sludges. These sludges represent the majority of low-level mixed wastes currently in need of treatment by the US DOE. The major oxides in these model glasses included SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, Na{sub 2}O, CaO and Fe{sub 2}O{sub 3}. In addition, three minor oxides, BaO, NiO, and PbO, were added as hazardous metals. The major oxides were each varied at two levels resulting in 32 experimental glasses. The chemical durability was measured by the 7-Day Product Consistency Test (PCT). The normalized sodium release rates (NRR{sub Na}) of these glasses ranged from 0.01 to 4.99 g/m{sup 2}. The molar ratio of the glass-former to glass-modifier (F/M) was found to have the greatest effect on PCT durability. Glass-formers included SiO{sub 2}, Al{sub 2}O{sub 3}, and B{sub 2}O{sub 3}, while Na{sub 2}O, CaO, BaO, NiO, and PbO were glass-modifiers. As this ratio increased from 0.75 to 2.0, NRR{sub Na} was found to decrease between one and two orders of magnitude. Another important effect on NRR{sub Na} was the Na{sub 2}O/CaO ratio. As this ratio increased from 0.5 to 2.0, NRR{sub Na} increased up to two orders of magnitude for the glasses with the low F/M ratio but almost no effect was observed for the glasses with the high F/M ratio. Increasing the iron oxide content from 2 to 18 mole% was found to decrease NRR{sub Na} one order of magnitude for the glasses with low F/M but iron had little effect on the glasses with the high F/M ratio. The durability also increased when 10 mole percent Al{sub 2}O{sub 3} was included in low iron oxide glasses but no effect was observed with the high iron glasses. The addition of B{sub 2}O{sub 3} had little effect on durability. The effects of other composition parameters on durability are discussed as well.

  11. Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant - 8280

    SciTech Connect (OSTI)

    Mahoney, Lenna A.; Alzheimer, James M.; Arm, Stuart T.; Guzman-Leong, Consuelo E.; Jagoda, Lynette K.; Stewart, Charles W.; Wells, Beric E.; Yokuda, Satoru T.

    2008-06-03

    The Hanford Waste Treatment Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Prior testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was up to 10 times that in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a Ľ-scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas gen geration rates. Results from the Ľ-scale test stand showed that, contrary to the small-scale impeller-mixed tests, gas holdup in clay without AFA is comparable to that in the chemical waste simulant with AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions.

  12. Large-Scale Testing of Effects of Anti-Foam Agent on Gas Holdup in Process Vessels in the Hanford Waste Treatment Plant

    SciTech Connect (OSTI)

    Mahoney, L.A.; Alzheimer, J.M.; Arm, S.T.; Guzman-Leong, C.E.; Jagoda, L.K.; Stewart, C.W.; Wells, B.E.; Yokuda, S.T. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2008-07-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will vitrify the radioactive wastes stored in underground tanks. These wastes generate and retain hydrogen and other flammable gases that create safety concerns for the vitrification process tanks in the WTP. An anti-foam agent (AFA) will be added to the WTP process streams. Previous testing in a bubble column and a small-scale impeller-mixed vessel indicated that gas holdup in a high-level waste chemical simulant with AFA was as much as 10 times higher than in clay simulant without AFA. This raised a concern that major modifications to the WTP design or qualification of an alternative AFA might be required to satisfy plant safety criteria. However, because the mixing and gas generation mechanisms in the small-scale tests differed from those expected in WTP process vessels, additional tests were performed in a large-scale prototypic mixing system with in situ gas generation. This paper presents the results of this test program. The tests were conducted at Pacific Northwest National Laboratory in a 1/4-scale model of the lag storage process vessel using pulse jet mixers and air spargers. Holdup and release of gas bubbles generated by hydrogen peroxide decomposition were evaluated in waste simulants containing an AFA over a range of Bingham yield stresses and gas generation rates. Results from the 1/4-scale test stand showed that, contrary to the small-scale impeller-mixed tests, holdup in the chemical waste simulant with AFA was not so greatly increased compared to gas holdup in clay without AFA. The test stand, simulants, scaling and data-analysis methods, and results are described in relation to previous tests and anticipated WTP operating conditions. (authors)

  13. The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams

    E-Print Network [OSTI]

    for nearly 45% of the natural gas produced in the U.S. by 2035 [6,7]. As production in- creases and new complex and difficult liquid streams Bryan D. Coday a , Pei Xu b , Edward G. Beaudry c , Jack Herron c Oasys Water, Boston, MA, USA H I G H L I G H T S · Highly impaired liquid streams can be sustainably

  14. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  15. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, November 1994--February 1995

    SciTech Connect (OSTI)

    1995-03-01

    This second quarterly report describes work during the second three months of the University of Pittsburgh`s (Pitt`s) project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quotes} Participating with Pitt on this project are Dravo Lime Company (DLC), Mill Service, Inc. (MSI) and the Center for Hazardous Materials Research (CHMR). The report describes the activities of the project team during the reporting period. The principal work has focussed upon the acquisition of by-product samples and their initial analysis. Other efforts during the second quarter have been directed toward identifying the first hazardous waste samples and preparing for their treatment and analysis. Relatively little data has yet been collected. Major presentation of technical details and data will appear for the first time in the third quarterly report. The activity on the project during the second quarter of Phase One, as presented in the following sections, has fallen into seven areas: (1) Acquiring by-products, (2) Analyzing by-products, (3) Identifying, analyzing and treating suitable hazardous wastes, (4) Carrying out the quality assurance/quality control program, (5) Developing background, and (6) Initiating public relations

  16. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    SciTech Connect (OSTI)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  17. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  18. Voluntary Protection Program Onsite Review, Intermech Inc., Waste...

    Office of Environmental Management (EM)

    Intermech Inc., Waste Treatment Plant Construction Site - November 2013 Voluntary Protection Program Onsite Review, Intermech Inc., Waste Treatment Plant Construction Site -...

  19. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  20. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.