Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recoveryÖ (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

2

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network [OSTI]

of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

3

EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING  

SciTech Connect (OSTI)

One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercuryís IDLH or PAC-III levels for future cleaning initiatives.

Brown, A.

2014-04-27T23:59:59.000Z

4

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Tsien, Roger Y.

5

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

6

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

7

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

2003-04-22T23:59:59.000Z

8

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ďRadioactive Waste Management Manual.Ē This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

2003-04-01T23:59:59.000Z

9

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

1995-12-26T23:59:59.000Z

10

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

Katti, Kattesh V. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Singh, Prahlad (Columbia, MO); Ketring, Alan R. (Columbia, MO)

1995-01-01T23:59:59.000Z

11

The Polymers for Liquid Radioactive Waste Solidification: a Lost Chapter in the History of Engineering or a Step Forward? - 13529  

SciTech Connect (OSTI)

Ideas on the application of polymers for the liquid radioactive waste immobilization go a way back, and the first studies in the area were published 30-40 years ago. One should admit that regardless of the fairly large number of publications appeared in the past years currently the interest in this work came down greatly. It was the successful assimilation and worldwide implementation of the LRW cementation technology caused a slump in the interest in polymers. But today it's safe to say that the situation slowly changes, particularly due to the market appearance of the high-tech polymers manufactured by Nochar Company, and unique properties of these polymers gradually raise the demand in various countries. The results of multiple experiments performed with the simulated solutions have passed the comprehensive tests with actual waste. The economic effect from the implementation of the new technology is defined by the volume reduction of waste coming onto the repository, by the decline in the cost of transportation and of the repository construction on account of cutting down the construction volume. Interesting results have been obtained during the search for the technical decisions that would allow using the polymer materials in the processing technology of the industrial toxic waste. One more promising area of the possible application of polymers should be pointed out. It is the application of polymer materials as the assets for the emergency damage control when the advantages of the polymers become obvious. (authors)

Pokhitonov, Yury [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)] [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Kelley, Dennis [Pacific Nuclear Solutions, Indianapolis, Indiana (United States)] [Pacific Nuclear Solutions, Indianapolis, Indiana (United States)

2013-07-01T23:59:59.000Z

12

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ďRadioactive Waste Management Manual.Ē This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey W.

2010-08-12T23:59:59.000Z

13

Newly Generated Liquid Waste Processing Alternatives Study, Volume 1  

SciTech Connect (OSTI)

This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

2002-09-01T23:59:59.000Z

14

DOE Selects Savannah River Remediation, LLC for Liquid Waste...  

Energy Savers [EERE]

objective of the Liquid Waste contract is to achieve closure of the SRS liquid waste tanks in compliance with the Federal Facilities Agreement, utilizing the Defense Waste...

15

Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

far will integrate SWPF with current liquid waste facilities, such as the DWPF and the tanks farms." EM is pleased with the spirit of integration. "A key objective for us over the...

16

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric...

17

Solidification of Simulated Liquid Effluents Originating From Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center, FY-03 Report  

SciTech Connect (OSTI)

In this report, the mechanism and methods of fixation of acidic waste effluents in grout form are explored. From the variations in the pH as a function of total solids addition to acidic waste effluent solutions, the stages of gellation, liquefaction, slurry formation and grout development are quantitatively revealed. Experimental results indicate the completion of these reaction steps to be significant for elimination of bleed liquid and for setting of the grout to a dimensionally stable and hardened solid within a reasonable period of about twenty eight days that is often observed in the cement and concrete industry. The reactions also suggest increases in the waste loading in the direction of decreasing acid molarity. Consequently, 1.0 molar SBW-180 waste is contained in higher quantity than the 2.8 molar SBW-189, given the same grout formulation for both effluents. The variations in the formulations involving components of slag, cement, waste and neutralizing agent are represented in the form of a ternary formulation map. The map in turn graphically reveals the relations among the various formulations and grout properties, and is useful in predicting the potential directions of waste loading in grouts with suitable properties such as slurry viscosity, Vicat hardness, and mechanical strength. A uniform formulation for the fixation of both SBW-180 and SBW-189 has emerged from the development of the formulation map. The boundaries for the processing regime on this map are 100 wt% cement to 50 wt% cement / 50 wt% slag, with waste loadings ranging from 55 wt% to 68 wt%. Within these compositional bounds all the three waste streams SBW-180, SBW-189 and Scrub solution are amenable to solidification. A large cost advantage is envisaged to stem from savings in labor, processing time, and processing methodology by adopting a uniform formulation concept for fixation of compositionally diverse waste streams. The experimental efforts contained in this report constitute the first attempt at developing a uniform methodology.

S. V. Raman; A. K. Herbst; B. A. Scholes; S. H. Hinckley; R. D. Colby

2003-09-01T23:59:59.000Z

18

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

19

Savannah River Site's Liquid Waste Operations Adds Multi-Functional...  

Office of Environmental Management (EM)

now been filled. The SDUs play an essential role in the closure of the 45 liquid waste tanks on the site. About 90 percent of the waste in these tanks is salt waste that must be...

20

CRAD, Engineering - Los Alamos National Laboratory Waste Characterizat...  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging...

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

Randall, V.C.; Sims, A.M.

1993-08-01T23:59:59.000Z

22

Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1993 and record to date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1993. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

Sims, A.M.; Taylor, K.A.

1994-08-01T23:59:59.000Z

23

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl  

E-Print Network [OSTI]

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li* and Nina MahootcheianAsl Richard Lugar Center for Renewable Energy, Department of Mechanical Engineering

Zhou, Yaoqi

24

A Regulatory Analysis and Reassessment of U.S. Environmental Protection Agency Listed Hazardous Waste Numbers for Applicability to the INTEC Liquid Waste System  

SciTech Connect (OSTI)

This report concludes that there are four listed hazardous waste numbers (F001, F002, F005, and U134) applicable to the waste in the Process Equipment Waste Evaporator (PEWE) liquid waste system at the Idaho National Engineering and Environmental Laboratory. The chemical constituents associated with these listed hazardous waste numbers, including those listed only for ignitability are identified. The RCRA Part A permit application hazardous waste numbers identify chemical constituents that may be treated or stored by the PEWE liquid waste system either as a result of a particular characteristic (40 CFR, Subpart C) or as a result of a specific process (40 CFR 261, Subpart D). The RCRA Part A permit application for the PEWE liquid waste system identifies the universe of Environmental Protection Agency (EPA) hazardous waste numbers [23 characteristic (hazardous waste codes) numbers and 105 listed numbers (four F-listed hazardous waste numbers, 20 P-listed hazardous waste numbers, and 81 U-listed hazardous waste numbers)] deemed acceptable for storage and treatment. This evaluation, however, identifies only listed wastes (and their chemical constituents) that have actually entered the PEWE liquid waste system and would, therefore, be assigned to the PEWE liquids and treatment residuals.

Gilbert, K.L.; Venneman, T.E.

1998-12-01T23:59:59.000Z

25

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

2000-11-01T23:59:59.000Z

26

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

2000-10-31T23:59:59.000Z

27

Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan K.

2002-01-02T23:59:59.000Z

28

Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan Keith

2002-01-01T23:59:59.000Z

29

Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms  

SciTech Connect (OSTI)

To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

2011-09-23T23:59:59.000Z

30

Future radioactive liquid waste streams study  

SciTech Connect (OSTI)

This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

Rey, A.S.

1993-11-01T23:59:59.000Z

31

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

M. D. Staiger

2007-06-01T23:59:59.000Z

32

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents [OSTI]

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

33

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents [OSTI]

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

34

Existing data on the 216-Z liquid waste sites  

SciTech Connect (OSTI)

During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing data together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.

Owens, K.W.

1981-05-01T23:59:59.000Z

35

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

1999-09-30T23:59:59.000Z

36

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

1999-10-01T23:59:59.000Z

37

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation: Caterpillar Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel...

38

2014 Course Description Solid Waste Engineering -CE 477  

E-Print Network [OSTI]

2014 Course Description Solid Waste Engineering - CE 477 Engineering Principles of Solid Waste on course web site http://people.engr.ncsu.edu/barlaz/ Solid Waste Technology & Management by Christensen et al (eBook available through NCSU libraries) Solid waste management must be addressed by virtually

Barlaz, Morton A.

39

Detection of free liquid in containers of solidified radioactive waste  

DOE Patents [OSTI]

A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

Greenhalgh, Wilbur O. (Richland, WA)

1985-01-01T23:59:59.000Z

40

Ionic Liquids as Novel Engine Lubricants or Lubricant Additives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additives Ionic Liquids as Novel Engine Lubricants or Lubricant Additives Bench test results showed that compared with fully-formulated engine oils, selected low-viscosity...

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Membrane Treatment of Liquid Salt Bearing Radioactive Wastes  

SciTech Connect (OSTI)

The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

2003-02-25T23:59:59.000Z

42

Engineering-Scale Liquid Cadmium Cathode Experiments  

SciTech Connect (OSTI)

Recovery of transuranic actinides (TRU) using electrorefining is a process being investigated as part of the Department of Energy (DOE) Advanced Fuel Cycle Initiative (AFCI). TRU recovery via electrorefining onto a solid cathode is very difficult as the thermodynamic properties of transuranics are not favourable for them to remain in the metal phase while significant quantities of uranium trichloride exist in the electrolyte. Theoretically, the concentration of transuranics in the electrolyte must be approximately 106 greater than the uranium concentration in the electrolyte to produce a transuranic deposit on a solid cathode. Using liquid cadmium as a cathode contained within a LiCl-KCl eutectic salt, the co-deposition of uranium and transuranics is feasible because the activity of the transuranics in liquid cadmium is very small. Depositing transuranics and uranium in a liquid cadmium cathode (LCC) theoretically requires the concentration of transuranics to be two to three times the uranium concentration in the electrolyte. Three LCC experiments were performed in an Engineering scale elecdtrorefiner, which is located in the argon hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex on the Idaho National Laboratory. Figure 1 contains photographs of the LCC assembly in the hot cell prior to the experiment and a cadmium ingot produced after the first LCC test. Figure 1. Liquid Cadmium Cathode (left) and Cadmium Ingot (right) The primary goal of the engineering-scale liquid cadmium cathode experiments was to electrochemically collect kilogram quantities of uranium and plutonium via a LCC. The secondary goal was to examine fission product contaminations in the materials collected by the LCC. Each LCC experiment used chopped spent nuclear fuel from the blanket region of the Experimental Breeder Reactor II loaded into steel baskets as the anode with the LCC containing 26 kg of cadmium metal. In each experiment, between one and two kilograms of heavy metal was collected in the LCC after passing an integrated current over 500 amp hours. Analysis of samples from the liquid cadmium cathode ingots showed detectable amounts of transuranics and rare-earth elements. Acknowledgements K. B. Davies and D. M. Pace for the mechanical and electrical engineering needed to prepare the equipment for the engineering-scale liquid cadmium cathode experiments.

D Vaden; B. R. Westphal; S. X. Li; T. A. Johnson; K. B. Davies; D. M. Pace

2006-08-01T23:59:59.000Z

43

ICPP radioactive liquid and calcine waste technologies evaluation. Interim report  

SciTech Connect (OSTI)

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m{sup 3}) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements.

Murphy, J.A.; Pincock, L.F.; Christiansen, I.N.

1994-06-01T23:59:59.000Z

44

Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

45

Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993  

SciTech Connect (OSTI)

This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered.

Maddox, J.J.; Scott, C.B.

1994-02-01T23:59:59.000Z

46

Studien-und Prfungsordnung der Universitt Stuttgart fr den auslandsorientierten Studiengang Air Quality Control, Solid Waste and Waste Water Process Engineering  

E-Print Network [OSTI]

Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE) mit Abschluss Master Quality Control, Solid Waste and Waste Water Process Engineering" (WASTE) beschlossen. Der Rektor hat Control, Solid Waste and Waste Water Process Engineering" (WASTE) √ľberblickt werden, die F√§higkeit

Reyle, Uwe

47

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams  

SciTech Connect (OSTI)

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

COZZI, ALEX

2004-02-18T23:59:59.000Z

48

Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

Staiger, M. Daniel, Swenson, Michael C.

2011-09-01T23:59:59.000Z

49

BEE 476. Solid Waste Engineering Spring Semester 2008  

E-Print Network [OSTI]

1 BEE 476. Solid Waste Engineering Spring Semester 2008 Credit: 3 hours Catalogue description: Planning and design of processes and facilities for management of municipal solid wastes. Source: To develop 1. An understanding of the problems, issues and trade-offs involved in municipal solid waste (MSW

Walter, M.Todd

50

Department of Environmental Engineering Leaching from Municipal Solid Waste  

E-Print Network [OSTI]

Department of Environmental Engineering Leaching from Municipal Solid Waste Incineration Residues Ji í Hyk s #12;#12;Leaching from Municipal Solid Waste Incineration Residues Ji í Hyks Ph.D. Thesis Municipal Solid Waste Incineration Residues Cover: Torben Dolin & Julie Camilla Middleton Printed by: Vester

51

BEE 4760. Solid Waste Engineering Spring Semester 2010  

E-Print Network [OSTI]

1 BEE 4760. Solid Waste Engineering Spring Semester 2010 Credit: 3 hours Catalogue description: Planning and design of processes and facilities for management of municipal solid wastes. Source: To develop 1. An understanding of the problems, issues and trade-offs involved in municipal solid waste (MSW

Walter, M.Todd

52

Process for immobilizing radioactive boric acid liquid wastes  

DOE Patents [OSTI]

A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

Greenhalgh, Wilbur O. (Richland, WA)

1986-01-01T23:59:59.000Z

53

Process for immobilizing radioactive boric acid liquid wastes  

DOE Patents [OSTI]

Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

Greenhalgh, W.O.

1984-05-10T23:59:59.000Z

54

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect (OSTI)

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01T23:59:59.000Z

55

Waste Technology Engineering Laboratory (324 building)  

SciTech Connect (OSTI)

The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

Kammenzind, D.E.

1997-05-27T23:59:59.000Z

56

Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination  

SciTech Connect (OSTI)

U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

Jacobson, Victor Levon

2002-08-01T23:59:59.000Z

57

Modelling of the dynamics of a low-speed gas-liquid heat engine  

SciTech Connect (OSTI)

This paper deals with the simulation model of a gas-liquid heat engine which is characterized by very low speeds (1-3 rpm) and relatively high torque. The engine operates according to the Minto Thermal Wheel' principle. It is based on the conversion of thermal energy from the heat source, through gas expansion, into mechanical work, by means of the fall of a mass of liquid. A prototype has already been constructed showing great ability to operate at very low temperature differences between the heat source and heat sink. This makes the engine quite suitable to the utilization of low temperature heat sources such as solar energy and waste heat. On the other hand, the number of moving parts is kept to a minimum, since the piston of traditional positive displacement engines (PDE) is now replaced simply by a mass of liquid. The mathematical model consists of applying the energy equation, in it time-derivative form, to representative engine control volumes, resulting in a set of linear ordinary differential equations. Their integration provides the time variation of pressure and temperature of the working fluid. The engine performance can thus be predicted as a function of engine operating conditions and geometric characteristics. In this paper, the engine dynamics (i.e., variable angular speed) have been taken into account, as well as heat losses in the engine structure. Results and further design considerations are discussed.

Cunha, C.M.P.; Parise, J.A.R. (Pontificia Univ. Catolica do Rio de Janeiro (Brazil))

1992-01-01T23:59:59.000Z

58

Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178  

SciTech Connect (OSTI)

In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order to support the enhancement program in DWPF by providing unified metrics to measure plant performances, identify bottleneck location, and rank the most time consuming causes from objective data shared between the different groups belonging to the organization. Beyond OEE, the Visual Management tool adapted from the one used at La Hague were also provided in order to further enhance communication within the operating teams. As a result of all the initiatives implemented on DWPF, achieved production has been increased to record rates from FY10 to FY11. It is expected that thanks to the performance management tools now available within DWPF, these results will be sustained and even improved in the future to meet system plan targets. (authors)

Prod'homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

2012-07-01T23:59:59.000Z

59

HWMA/RCRA Closure Plan for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System (VES-SFE-106)  

SciTech Connect (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Radioactive Solid and Liquid Waste Storage Tank System located in the adjacent to the Sludge Tank Control House (CPP-648), Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, was developed to meet the interim status closure requirements for a tank system. The system to be closed includes a tank and associated ancillary equipment that were determined to have managed hazardous waste. The CPP-648 Radioactive Solid and Liquid Waste Storage Tank System will be "cleaned closed" in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act and 40 Code of Federal Regulations 265. This closure plan presents the closure performance standards and methods of acheiving those standards for the CPP-648 Radioactive Solid and Liquid Waste Storage Tank System.

S. K. Evans

2006-08-15T23:59:59.000Z

60

Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record  

SciTech Connect (OSTI)

This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

NONE

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

1999-03-01T23:59:59.000Z

62

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

1999-03-01T23:59:59.000Z

63

Idaho Nuclear Technology and Engineering Center Sodium-Bearing Waste Treatment Research and Development FY-2002 Status Report  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering several optional processes for disposal of liquid sodium-bearing waste. During fiscal year 2002, immobilization-related research included of grout formulation development for sodium-bearing waste, absorption of the waste on silica gel, and off-gas system mercury collection and breakthrough using activated carbon. Experimental results indicate that sodium-bearing waste can be immobilized in grout at 70 weight percent and onto silica gel at 74 weight percent. Furthermore, a loading of 11 weight percent mercury in sulfur-impregnated activated carbon was achieved with 99.8% off-gas mercury removal efficiency.

Herbst, Alan Keith; Deldebbio, John Anthony; Mc Cray, John Alan; Kirkham, Robert John; Olson, Lonnie Gene; Scholes, Bradley Adams

2002-09-01T23:59:59.000Z

64

Engineered waste-package-system design specification  

SciTech Connect (OSTI)

This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

Not Available

1983-05-01T23:59:59.000Z

65

An evaluation of neutralization for processing sodium-bearing liquid waste  

SciTech Connect (OSTI)

This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

1989-01-01T23:59:59.000Z

66

Independent engineering review of the Hanford Waste Vitrification System  

SciTech Connect (OSTI)

The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

Not Available

1991-10-01T23:59:59.000Z

67

Liquid and gaseous waste operations section. Annual operating report CY 1997  

SciTech Connect (OSTI)

This document presents information on the liquid and gaseous wastes operations section for calendar year 1997. Operating activities, upgrade activities, and maintenance activities are described.

Maddox, J.J.; Scott, C.B.

1998-03-01T23:59:59.000Z

68

Voluntary Protection Program Onsite, Liquid Waste Contract Savannah River Site- February 2011  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Liquid Waste Contract Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

69

EA-1115: Liquid Waste Treatment at the Nevada Test Site, Nye County, Nevada  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to treat low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the U.S. Department of Energy Nevada...

70

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTSSeparationHelping toLiquid Waste Tank

71

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network [OSTI]

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

72

High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

Wessman, D. L.; Quigley, K. D.

2002-02-27T23:59:59.000Z

73

SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY  

SciTech Connect (OSTI)

This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

2009-12-28T23:59:59.000Z

74

Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610  

SciTech Connect (OSTI)

The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)

Rosenberger, Kent H. [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Building 705-1C, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

75

Developments Towards a Liquid Piston Stirling Engine Tracking # 132055  

E-Print Network [OSTI]

continuous combustion of sustainable fuels, solar energy, factory waste heat, geothermal energy, or numerous 01609 USA The Stirling engine possesses numerous natural benefits such as functioning from any heat a conventional piston. Creating near-isothermal operation in the working chambers eliminates the need for costly

Van de Ven, James D.

76

Waste heat recovery in automobile engines : potential solutions and benefits  

E-Print Network [OSTI]

Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

Ruiz, Joaquin G., 1981-

2005-01-01T23:59:59.000Z

77

Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

2010-01-30T23:59:59.000Z

78

active liquid wastes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations A number of specific recommendations for achieving cost-effective waste policies can be made...

79

active liquid waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations A number of specific recommendations for achieving cost-effective waste policies can be made...

80

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov [DOE]

Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

82

Liquid and Gaseous Waste Operations Department annual operating report, CY 1995  

SciTech Connect (OSTI)

This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support.

Maddox, J.J.; Scott, C.B.

1996-03-01T23:59:59.000Z

83

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect (OSTI)

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

Not Available

1992-04-01T23:59:59.000Z

84

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

SciTech Connect (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

85

Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator  

SciTech Connect (OSTI)

Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

Deckers, Jan; Mols, Ludo [Belgoprocess NV, Operations Department, Gravenstraat 73, B-2480 Dessel (Belgium)

2007-07-01T23:59:59.000Z

86

Engineered photocatalysts for detoxification of waste water  

SciTech Connect (OSTI)

This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A. [Sandia National Lab., Albuquerque, NM (United States); Khan, S.U.M. [Duquesne Univ., Pittsburgh, PA (United States). Dept. of Chemistry and Biochemistry] [and others

1996-12-01T23:59:59.000Z

87

ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage and  

E-Print Network [OSTI]

L ivestock and poultry operations frequently use anaerobic lagoons as liquid waste storage and treatment structures. In a lagoon, organic waste is diluted with water and bacteria decompose the organic as fertilizer. Effluent also can be recycled for manure handling in a flush system. Efficiency To be efficient

Mukhtar, Saqib

88

Modeling of transport and reaction in an engineered barrier for radioactive waste confinement  

E-Print Network [OSTI]

Modeling of transport and reaction in an engineered barrier for radioactive waste confinement G bentonite; Radioactive waste; Modelling; KIRMAT code; Chemical transformations; Mass transport 0169;1. Introduction A particular radioactive waste disposal design proposes to store waste in deep geological layers

Montes-Hernandez, German

89

Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

2007-07-01T23:59:59.000Z

90

Biological Information Document, Radioactive Liquid Waste Treatment Facility  

SciTech Connect (OSTI)

This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

Biggs, J.

1995-12-31T23:59:59.000Z

91

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect (OSTI)

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

92

Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan  

SciTech Connect (OSTI)

Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

Van Hoesen, S.D.

2003-09-09T23:59:59.000Z

93

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

1994-01-01T23:59:59.000Z

94

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

Meneely, T.K.; Sherbine, C.A.

1994-04-26T23:59:59.000Z

95

Tank waste remediation system process engineering instruction manual  

SciTech Connect (OSTI)

The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees.

ADAMS, M.R.

1998-11-04T23:59:59.000Z

96

Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

97

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect (OSTI)

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

98

Idaho National Engineering Laboratory Waste Management Operations Roadmap Document  

SciTech Connect (OSTI)

At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

Bullock, M.

1992-04-01T23:59:59.000Z

99

Liquid and Gaseous Waste Operations Project Annual Operating Report CY 1999  

SciTech Connect (OSTI)

A total of 5.77 x 10 7 gallons (gal) of liquid waste was decontaminated by the Process Waste Treatment Complex (PWTC) - Building 3544 ion exchange system during calendar year (CY) 1999. This averaged to 110 gpm throughout the year. An additional 3.94 x 10 6 gal of liquid waste (average of 8 gpm throughout the year) was decontaminated using the zeolite treatment system due to periods of high Cesium levels in the influent wastewater. A total of 6.17 x 10 7 gal of liquid waste (average of 118 gpm throughout the year) was decontaminated at Building 3544 during the year. During the year, the regeneration of the ion exchange resins resulted in the generation of 8.00 x 10 3 gal of Liquid Low-Level Waste (LLLW) concentrate and 9.00 x 10 2 gal of LLLW supernate. See Table 1 for a monthly summary of activities at Building 3544. Figure 1 shows a diagram of the Process Waste Collection and Transfer System and Figure 2 shows a diagram of the Building 3544 treatment process. Figures 3, 4 5, and 6 s how a comparison of operations at Building 3544 in 1997 with previous years. Figure 7 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1995.

Maddox, J.J.; Scott, C.B.

2000-03-01T23:59:59.000Z

100

Treatment of Bottled Liquid Waste During Remediation of the Hanford 618-10 Burial Ground - 13001  

SciTech Connect (OSTI)

A problematic waste form encountered during remediation of the Hanford Site 618-10 burial ground consists of bottled aqueous waste potentially contaminated with regulated metals. The liquid waste requires stabilization prior to landfill disposal. Prior remediation activities at other Hanford burial grounds resulted in a standard process for sampling and analyzing liquid waste using manual methods. Due to the highly dispersible characteristics of alpha contamination, and the potential for shock sensitive chemicals, a different method for bottle processing was needed for the 618-10 burial ground. Discussions with the United States Department of Energy (DOE) and United States Environmental Protection Agency (EPA) led to development of a modified approach. The modified approach involves treatment of liquid waste in bottles, up to one gallon per bottle, in a tray or box within the excavation of the remediation site. Bottles are placed in the box, covered with soil and fixative, crushed, and mixed with a Portland cement grout. The potential hazards of the liquid waste preclude sampling prior to treatment. Post treatment verification sampling is performed to demonstrate compliance with land disposal restrictions and disposal facility acceptance criteria. (authors)

Faulk, Darrin E.; Pearson, Chris M.; Vedder, Barry L.; Martin, David W. [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)] [Washington Closure Hanford, LLC, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

aqueous liquid waste: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Majda 2005-01-01 18 Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets CERN Preprints...

102

Engineered sorbent barriers for low-level waste disposal.  

SciTech Connect (OSTI)

The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

1986-12-01T23:59:59.000Z

103

Systems engineering identification and control of mixed waste technology development  

SciTech Connect (OSTI)

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper.

Beitel, G.A.

1997-08-01T23:59:59.000Z

104

Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing  

SciTech Connect (OSTI)

This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

Lee, V.E. [ed.; Watts, R.L.

1993-04-01T23:59:59.000Z

105

Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids  

SciTech Connect (OSTI)

Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

1994-12-01T23:59:59.000Z

106

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01T23:59:59.000Z

107

Department of ENENG/ME Spring 2012 Waste Heat Recovery for Small Engine Applications  

E-Print Network [OSTI]

PENNSTATE Department of ENENG/ME Spring 2012 Waste Heat Recovery for Small Engine Applications Overview The purpose of this capstone project is to research, test, and apply waste heat recovery, engine temperatures, and various applications. These explored heat recovery technologies were

Demirel, Melik C.

108

Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?  

SciTech Connect (OSTI)

During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

Horwitz, E. P.; Schulz, W. W.

1998-06-18T23:59:59.000Z

109

Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent  

DOE Patents [OSTI]

The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

2001-01-01T23:59:59.000Z

110

Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes  

DOE Patents [OSTI]

The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

Romanovskiy, Valeriy Nicholiavich (St. Petersburg, RU); Smirnov, Igor V. (St. Petersburg, RU); Babain, Vasiliy A. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID)

2002-01-01T23:59:59.000Z

111

PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION  

SciTech Connect (OSTI)

Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

JOHNSTON GA

2008-01-15T23:59:59.000Z

112

Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet  

SciTech Connect (OSTI)

The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

1996-05-01T23:59:59.000Z

113

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

SciTech Connect (OSTI)

This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: ē MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis ē expected process scale required for favorable economics ē the availability of MSW in quantities sufficient to meet process scale requirements ē the state-of-the-art of MSW gasification technology.

Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

2008-12-01T23:59:59.000Z

114

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

115

Dilution and dispersion of liquid wastes in the Gulf of Mexico  

E-Print Network [OSTI]

4459924 ABSTRACT Dilution and Dispersion of Liouid Mastes in the Gulf of Nexico (December, 1974) Daniel Edward Beckett, B. S. , Texas ASM University Chairman of Advisory Comm1ttee: Dr. Tom D. Reynolds Ocean disposal of liquid industrial wastes has... of the wastes, barge speed, and discharge rate. The validity of using dye as a tracer in ocean dumping studies was in- vestigated through dye/waste d1fferential stud1es. Observat1ons and recommendations were made on the basis of the work conducted...

Beckett, Daniel Edward

2012-06-07T23:59:59.000Z

116

Value Engineering Study for Closing Waste Packages Containing TAD Canisters  

SciTech Connect (OSTI)

The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

Colleen Shelton-Davis

2005-11-01T23:59:59.000Z

117

HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY  

SciTech Connect (OSTI)

The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

Quigley, K.D.; Wessman, D

2003-02-27T23:59:59.000Z

118

Treatment of liquid radioactive waste using combination of chemical processes with ultrafiltration  

SciTech Connect (OSTI)

A combination of chemical processes and ultrafiltration was used for treatment of liquid radioactive wastes containing Cs, Sr, Pu by using large amounts of surfactants and complexing substances. The nature of carriers and conditions of complete separation of Cs and Sr are reported. The mechanisms of the processes are discussed.

Zabrodsky, V.N.; Davidov, Y.P.; Toropov, I.G.; Glushko, A.S. [Academy of Sciences of Belarus, Minsk (Belarus). Inst. of Radioecological Problems; Efremenkov, V.M. [State Committee on Supervision of Industrial and Nuclear Safety, Minsk (Belarus)

1993-12-31T23:59:59.000Z

119

THE ROLE OF LIQUID WASTE PRETREATMENT TECHNOLOGIES IN SOLVING THE DOE CLEAN-UP MISSION  

SciTech Connect (OSTI)

The objective of this report is to describe the pretreatment solutions that allow treatment to be tailored to specific wastes, processing ahead of the completion schedules for the main treatment facilities, and reduction of technical risks associated with future processing schedules. Wastes stored at Hanford and Savannah River offer challenging scientific and engineering tasks. At both sites, space limitations confound the ability to effectively retrieve and treat the wastes. Additionally, the radiation dose to the worker operating and maintaining the radiochemical plants has a large role in establishing the desired radioactivity removal. However, the regulatory requirements to treat supernatant and saltcake tank wastes differ at the two sites. Hanford must treat and remove radioactivity from the tanks based on the TriParty Agreement and Waste Incidental to Reprocessing (WIR) documentation. These authorizing documents do not specify treatment technologies; rather, they specify endstate conditions. Dissimilarly, Waste Determinations prepared at SRS in accordance with Section 3116 of the 2005 National Defense Authorization Act along with state operating permits establish the methodology and amounts of radioactivity that must be removed and may be disposed of in South Carolina. After removal of entrained solids and site-specific radionuclides, supernatant and saltcake wastes are considered to be low activity waste (LAW) and are immobilized in glass and disposed of at the Hanford Site Integrated Disposal Facility (IDF) or formulated into a grout for disposal at the Savannah River Site Saltstone Disposal Facility. Wastes stored at the Hanford Site or SRS comprise saltcake, supernate, and sludges. The supernatant and saltcake waste fractions contain primarily sodium salts, metals (e.g., Al, Cr), cesium-137 (Cs-137), technetium-99 (Tc-99) and entrained solids containing radionuclides such as strontium-90 (Sr-90) and transuranic elements. The sludges contain many of the transition metal hydroxides that precipitate when the spent acidic process solutions are rendered alkaline with sodium hydroxide. The sludges contain Sr-90 and transuranic elements. The wastes stored at each site have been generated and stored for over fifty years. Although the majority of the wastes were generated to support nuclear weapons production and reprocessing, the wastes differ substantially between the sites. Table 5 shows the volumes and total radioactivity (including decay daughters) of the waste phases stored in tanks at each site. At Hanford, there are 177 tanks that contain 56.5 Mgal of waste. SRS has 51 larger tanks, of which 2 are closed, that contain 36.5 Mgal. Mainly due to recovery operations, the waste stored at Hanford has less total curies than that stored at Savannah River. The total radioactivity of the Hanford wastes contains approximately 190 MCi, and the total radioactivity of the Savannah River wastes contains 400 MCi.

Wilmarth, B; Sheryl Bush, S

2008-10-31T23:59:59.000Z

120

Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems  

SciTech Connect (OSTI)

The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

2009-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

122

On-Site Decontamination System for Liquid Low Level Radioactive Waste - 13010  

SciTech Connect (OSTI)

This study is based on an evaluation of purification methods for liquid low-level radioactive waste (LLLW) by using natural zeolite. Generally the volume of liquid low-level waste is relatively large and the specific activity is rather low when compared to other radioactive waste types. In this study, a pilot scale column was used with natural zeolite as an ion exchanger media. Decontamination and minimization of LLLW especially at the generation site decrease operational cost in waste management operations. Portable pilot scale column was constructed for decontamination of LLW on site. Effect of temperature on the radionuclide adsorption of the zeolite was determined to optimize the waste solution temperature for the plant scale operations. In addition, effect of pH on the radionuclide uptake of the zeolite column was determined to optimize the waste solution pH for the plant scale operations. The advantages of this method used for the processing of LLLW are discussed in this paper. (authors)

OSMANLIOGLU, Ahmet Erdal [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)] [Cekmece Nuclear Research and Training Center, Kucukcekmece Istanbul (Turkey)

2013-07-01T23:59:59.000Z

123

Treatment of Liquid Radioactive Waste with High Salt Content by Colloidal Adsorbents - 13274  

SciTech Connect (OSTI)

Treatment processes have been fully developed for most of the liquid radioactive wastes generated during the operation of nuclear power plants. However, a process for radioactive liquid waste with high salt content, such as waste seawater generated from the unexpected accident at nuclear power station, has not been studied extensively. In this study, the adsorption efficiencies of cesium (Cs) and strontium (Sr) in radioactive liquid waste with high salt content were investigated using several types of zeolite with different particle sizes. Synthesized and commercial zeolites were used for the treatment of simulated seawater containing Cs and Sr, and the reaction kinetics and adsorption capacities of colloidal zeolites were compared with those of bulk zeolites. The experimental results demonstrated that the colloidal adsorbents showed fast adsorption kinetic and high binding capacity for Cs and Sr. Also, the colloidal zeolites could be successfully applied to the static adsorption condition, therefore, an economical benefit might be expected in an actual processes where stirring is not achievable. (authors)

Lee, Keun-Young; Chung, Dong-Yong; Kim, Kwang-Wook; Lee, Eil-Hee; Moon, Jei-Kwon [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)] [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

124

Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371  

SciTech Connect (OSTI)

SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E. [SUE MosSIA 'Radon', 7th Rostovsky lane 2/14, Moscow 119121 (Russian Federation)

2012-07-01T23:59:59.000Z

125

Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559  

SciTech Connect (OSTI)

Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

Schmitz, Mark A.; Crouse, Thomas N. [Savannah River Remediation, Aiken, South Carolina 29808 (United States)

2012-07-01T23:59:59.000Z

126

Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching  

SciTech Connect (OSTI)

Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

1997-12-31T23:59:59.000Z

127

Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312  

SciTech Connect (OSTI)

Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in standard effluents resulting from nuclear activities; - To develop reversible solid adsorbents for cartridge-type applications in order to minimize wastes. (authors)

Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR5257 CEA-CNRS-UM2-ENSCM, BP17171, 30207 Bagnols sur Ceze (France); Prevost, T.; Valery, J.F. [AREVA NC, Paris La Defense (France); Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette (France)

2012-07-01T23:59:59.000Z

128

Department of Energy and Mineral Engineering Spring 2013 Solar Innovations -HVAC and Waste Stream Analysis  

E-Print Network [OSTI]

PENNSTATE Department of Energy and Mineral Engineering Spring 2013 Solar Innovations - HVAC and Waste Stream Analysis Overview There are two problems that were voiced by Solar Innovations, HVAC system

Demirel, Melik C.

129

EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

130

Waste Form Degradation Model Integration for Engineered Materials...  

Broader source: Energy.gov (indexed) [DOE]

models of glass waste form and metallic waste form degradation and the major corrosion products expected from these processes (e.g., gel and secondary phases such as clays...

131

Engineered barrier development for a nuclear waste repository in basalt: an integration of current knowledge  

SciTech Connect (OSTI)

This document represents a compilation of data and interpretive studies conducted as part of the engineered barriers program of the Basalt Waste Isolation Project. The overall objective of these studies is to provide information on barrier system designs, emplacement and isolation techniques, and chemical reactions expected in a nuclear waste repository located in the basalts underlying the Hanford Site within the state of Washington. Backfills, waste-basalt interactions, sorption, borehole plugging, etc., are among the topics discussed.

Smith, M.J.

1980-05-01T23:59:59.000Z

132

Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging  

SciTech Connect (OSTI)

Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

Arne J. Pearlstein; Alexander Scheeline

2002-08-30T23:59:59.000Z

133

Identification and differentiation of individual beta emitters in waste mixtures by liquid scintillation spectrometry  

E-Print Network [OSTI]

carbon-14, tritium, and iodine-125 liquid scintillation wastes, provided that the activity and isotopes present can be documented. This legislation has generated a significant interest in developing a quick, cost efficient method of identificatior.... Differentiation of various components within a two isotope mixture, and the detection level of a small activity of one nuclide in a large activity of a second radioisotope was examined. A catalogue of spectra, including the isotopic ratio of each component...

Siskel, Robin Lynn

1988-01-01T23:59:59.000Z

134

Modeling and Control of a Free Liquid-Piston Engine Compressor  

E-Print Network [OSTI]

Modeling and Control of a Free Liquid-Piston Engine Compressor Chao Yong, Eric J. Barth, José A Nashville, TN, USA ABSTRACT This paper presents the modeling and control of a prototype compact free liquid-piston of the free piston, and 6) the compression and pumping dynamics. The model is then utilized to design

Barth, Eric J.

135

Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system  

SciTech Connect (OSTI)

The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

Stabnikova, O. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: costab@ntu.edu.sg; Liu, X.Y.; Wang, J.Y. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2008-07-01T23:59:59.000Z

136

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect (OSTI)

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

137

Selection of liquid-level monitoring method for the Oak Ridge National Laboratory inactive liquid low-level waste tanks, remedial investigation/feasibility study  

SciTech Connect (OSTI)

Several of the inactive liquid low-level waste (LLLW) tanks at Oak Ridge National Laboratory contain residual wastes in liquid or solid (sludge) form or both. A plan of action has been developed to ensure that potential environmental impacts from the waste remaining in the inactive LLLW tank systems are minimized. This document describes the evaluation and selection of a methodology for monitoring the level of the liquid in inactive LLLW tanks. Criteria are established for comparison of existing level monitoring and leak testing methods; a preferred method is selected and a decision methodology for monitoring the level of the liquid in the tanks is presented for implementation. The methodology selected can be used to continuously monitor the tanks pending disposition of the wastes for treatment and disposal. Tanks that are empty, are scheduled to be emptied in the near future, or have liquid contents that are very low risk to the environment were not considered to be candidates for installing level monitoring. Tanks requiring new monitoring equipment were provided with conductivity probes; tanks with existing level monitoring instrumentation were not modified. The resulting data will be analyzed to determine inactive LLLW tank liquid level trends as a function of time.

Not Available

1994-11-01T23:59:59.000Z

138

RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management program based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.

Schulz, C.; Givens, C.; Bhatt, R.; Whitworth, J.

2003-02-24T23:59:59.000Z

139

Engineering report of plasma vitrification of Hanford tank wastes  

SciTech Connect (OSTI)

This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System.

Hendrickson, D.W.

1995-05-12T23:59:59.000Z

140

Preliminary Waste Form Compliance Plan for the Idaho National Engineering and Environmental Laboratory High-Level Waste  

SciTech Connect (OSTI)

The Department of Energy (DOE) has specific technical and documentation requirements for high-level waste (HLW) that is to be placed in a federal repository. This document describes in general terms the strategy to be used at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that vitrified HLW, if produced at the INEEL, meets these requirements. Waste form, canister, quality assurance, and documentation specifications are discussed. Compliance strategy is given, followed by an overview of how this strategy would be implemented for each specification.

B. A. Staples; T. P. O'Holleran

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Treatment requirements for decontamination of ORNL low-level liquid waste  

SciTech Connect (OSTI)

Experimental studies have been made to provide data for the development of improved processes for decontaminating low-level liquid wastes (LLLWs) that exist and continue to be generated at Oak Ridge National Laboratory. The concept underlying this work is that there is a net benefit if the major radionuclides ({sup 137}Cs, {sup 134}Cs, {sup 90}Sr, and actinides) can be separated into small volumes, thereby reducing the activity of the bulk of the waste so that it can be disposed of or managed at a lower total cost. Data-base calculations on the LLLW supernate and sludges contained in the active Melton Valley Storage Tanks and evaporator storage and service tanks are essential in order to define and determine the extent of the problem. These calculations indicate to what extent alpha- and beta-gamma-emitting radionuclides must be removed and/or treated before final disposition of the waste can be made. They also show that many of the inorganic constitutents (e.g., regulated metals and nitrate) and minor radionuclides such as {sup 14}C and actinides (in terms of quantity present) must be removed before the LLLW can be disposed of as either liquid to the environment or solidified and disposed of as solid NUS Class L-1 or L-2 LLW. 25 refs., 31 tabs.

Lee, D.D.; Campbell, D.O.

1991-10-01T23:59:59.000Z

142

Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

NONE

1997-01-01T23:59:59.000Z

143

Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario Hydro`s Bruce Nuclear Generating Station `A`  

SciTech Connect (OSTI)

Ontario Hydro at the Bruce Nuclear Generating Station `A` has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants to satisfy regulatory requirements for emissions. The system will remove radionuclide and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

Day, J.E.; Baker, R.L.

1995-05-01T23:59:59.000Z

144

Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103  

SciTech Connect (OSTI)

A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

Pool, K.H.; Bean, R.M.

1994-03-01T23:59:59.000Z

145

Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect (OSTI)

A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

M. D. Staiger

1999-06-01T23:59:59.000Z

146

Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

147

Processing liquid radioactive waste by centrifuge and indrum dehydration facility at NPP Philippsburg  

SciTech Connect (OSTI)

Until 1989 the evaporator and filter concentrates have been treated by concreting. The centrifuge facility is used for the liquid waste from laundry, showers and also for processing filter concentrates and evaporator feedwater. The hot high pressure compacting of filter concentrates gives a volume reduction by a factor of 6. The evaporator concentrate is drained in a 200 l drum and this drum is heated by an external heating device. The indrum-dehydration facility reduces the treated volume by a factor of 12 compared with the former cementation.

Grundke, E.; Blaser, W. [NPP Philippsburg (Germany)

1993-12-31T23:59:59.000Z

148

Use of tangential filtration unit for processing liquid waste from nuclear laundries  

SciTech Connect (OSTI)

Nuclear facilities produce large quantities of weakly contaminated effluents charged with insoluble and soluble products. In collaboration with CEA, TECHNICATOME has developed an ultrafiltration process for liquid waste from nuclear facilities associated with prior insolubilization of radiochemical activity. This process, seeded ultrafiltration, is based on the use of a decloggable mineral filter media and combines very high separation efficiency with long membrane life. The efficiency of the tangential filtration unit which has been processing effluents from the Cadarache Nuclear Research Center (CEA-France) nuclear facility since mid-1988, has been confirmed on several sites.

Augustin, X.; Buzonniere, A. de [Technicatome, Gif-sur-Yvette (France); Barnier, H. [CEA Cadarache, St. Paul-lez-Durance (France)

1993-12-31T23:59:59.000Z

149

The Mochovce final treatment center for liquid radioactive waste introduced to active trial operation  

SciTech Connect (OSTI)

The Final Treatment Centre (FTC) for Mochovce Nuclear Power Plant (NPP) have been designed for treatment and final conditioning of radioactive liquid and wet waste produced by named NPP equipped with Russian VVER-440 type of reactors. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. During the realisation of project the future operator of Centre required the contractor to solve the treatment of wastes produced in the process of NPP A-1 decommissioning. On the basis of this requirement the project was modified in order to enable manipulations with waste products from A-1 NPP transported to Centre in steel drums. The initial project was prepared in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC civil works started in August 2004. Initial nonradioactive testing of the system parts were carried out from April to September 2006, then the tests of systems started with model concentrates and non-radioactive resins. After the processes evaluation the radioactive test performed from February 2007. A one-year trial operation of facility is planned for completion during 2007 and 2008. The company JAVYS, Inc. is responsible for radioactive waste and spent fuel treatment in the Slovak republic and will operate the FTC during trial operation and after its completion. This Company has also significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 820 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization on Thin Film Evaporator with rotating wiping blades. Spent resin and sludge are decanted, dried and mixed with bitumen in blade homogeniser. The bitumen product is discharged into 200 dm{sup 3} steel drums. Drums with bitumen product or drums originated from A-1 NPP are loaded into Fibre Reinforced Concrete containers (FRC) and grouted with cement. Cement grout is prepared from the mixture of cement, additive and radioactive over-concentrate. By formulating the cement grout with evaporator concentrates the maximum radioactivity is fixed in cement matrix and volume of final waste product is minimized. A batch mixer with rotating blades is used to produce the cement grout. The grouted FRC containers are stored in the expedition hall and after 28 days of curing are transported to final disposal. After the start of routine operation, the FTC provides treatment for all liquid and wet LLW produced from the operation of the Mochovce NPP. The final product of the FTC is a FRC loaded with bitumen product in drums and filled with radioactive cement product. This container meets all limits for final disposal in the National Radioactive Waste Repository at Mochovce. This paper introducing the main parts of FTC and describes the technological procedures including the basic technological parameters for both used technologies, their working capacity and the overall waste flow. The evaluation of experience gained in the phases of Centre construction and commissioning and partially trial operation as well is a part of this paper (Evaluation of completion works process and time schedule, the process of individual system parts testing, testing of systems using model media, radioactive testing and trial operation). (authors)

Krajc, T.; Stubna, M.; Kravarik, K.; Zatkulak, M. [VUJE Trnava, Inc. (Slovakia); Slezak, M.; Remias, V. [Javys - Jadrova a vyradovacia spolocnost, a.s. - Nuclear and Decommissioning Company, plc., Tomasikova 22, 821 02 Bratislava (Slovakia)

2007-07-01T23:59:59.000Z

150

Project 2B: Free Liquid-Piston Engine Compressor  

E-Print Network [OSTI]

's Auxiliary Components O-Rings Electromagnet Permanent Magnet Push-Solenoid for Exhaust Valve Solenoid Mount Chamber (Liquid Piston) Compression/Pump Chamber Permanent Magnet Magnetic Gap Adjustment Screw Exhaust and compact, and coupling to power dense pneumatic actuators (relative to electromagnetic actuators

Barth, Eric J.

151

Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington  

SciTech Connect (OSTI)

This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.

Freeman-Pollard, J.R.

1994-03-02T23:59:59.000Z

152

Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia  

SciTech Connect (OSTI)

The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m{sup 3}/year of concentrates and 40 m{sup 3}/year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a roller conveyor. After the drums cool, they are capped and removed from the conveyor and placed in a storage hall. Drums with bitumen product are loaded into Fiber Reinforced Concrete containers (FRC) and grouted with cement. Cement grout is prepared from mixture of cement, additive and radioactive concentrates. By formulating the cement grout with evaporator concentrates the maximum radioactivity is fixed in cement matrix and volume of final waste product is minimized. A batch mixer with rotating blades is used produce the cement grout. FRCs loaded with bitumen drums are placed on roller conveyor and moved along the cementation line. Grouted FRCs are stored in the expedition hall for 28 days of curing and then transported to final disposal. After placed in operation the FTC provides treatment for all liquid and wet LLW produced from the operation of the Mochovce NPP. The final product of the FTC is a FRC loaded with 7 drums of waste fixed in bitumen and the space between the drums is grouted with cement. This container meets all limits for final disposal in the National Radioactive Waste Repository at Mochovce. (authors)

Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z. [VUJE, Inc., Okruzna 5, 918 64 Trnava (Slovakia); Slezak, M. [SE - VYZ, 919 31 Jaslovske Bohunice (Slovakia)

2006-07-01T23:59:59.000Z

153

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect (OSTI)

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

154

Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program  

SciTech Connect (OSTI)

The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

1993-03-01T23:59:59.000Z

155

CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

156

REDUCING PISTON MASS IN A FREE PISTON ENGINE COMPRESSOR BY EXPLOITING THE INERTANCE OF A LIQUID PISTON  

E-Print Network [OSTI]

REDUCING PISTON MASS IN A FREE PISTON ENGINE COMPRESSOR BY EXPLOITING THE INERTANCE OF A LIQUID PISTON Joel A. Willhite Eric J. Barth Department of Mechanical Engineering Vanderbilt University Nashville, TN 37235-1592 eric.j.barth@vanderbilt.edu ABSTRACT A dynamic model of a free liquid piston

Barth, Eric J.

157

Nanjing Green Waste Recovery Engineering Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator29 JumpNamaNanjing Green Waste

158

Buried waste integrated demonstration human engineered control station. Final report  

SciTech Connect (OSTI)

This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

Not Available

1994-09-01T23:59:59.000Z

159

Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste  

SciTech Connect (OSTI)

Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool f

Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

2008-01-15T23:59:59.000Z

160

Use of engineered soils and other site modifications for low-level radioactive waste disposal  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

Not Available

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Engine Waste Heat Recovery Concept Demonstration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste Heat Recovery Concept

162

Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

2008-07-01T23:59:59.000Z

163

Surveillance and maintenance plan for the inactive liquid low-level waste tanks at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

ORNL has a total of 54 inactive liquid low-level waste (ILLLW) tanks. In the past, these tanks were used to contain radioactive liquid wastes from various research programs, decontamination operations, and reactor operations. The tanks have since been removed from service for various reasons; the majority were retired because of their age, some due to integrity compromises, and others because they did not meet the current standards set by the Federal Facilities Agreement (FFA). Many of the tanks contain residual radioactive liquids and/or sludges. Plans are to remediate all tanks; however, until remediation of each tank, this Surveillance and Maintenance (S&M) Plan will be used to monitor the safety and inventory containment of these tanks.

Not Available

1994-11-01T23:59:59.000Z

164

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect (OSTI)

This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

Gerke, Frank G.

2001-08-05T23:59:59.000Z

165

222-S radioactive liquid waste line replacement and 219-S secondary containment upgrade, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is proposing to: (1) replace the 222-S Laboratory (222-S) radioactive liquid waste drain lines to the 219-S Waste Handling Facility (219-S); (2) upgrade 219-S by replacing or upgrading the waste storage tanks and providing secondary containment and seismic restraints to the concrete cells which house the tanks; and (3) replace the transfer lines from 219-S to the 241-SY Tank Farm. This environmental assessment (EA) has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and the DOE Implementing Procedures for NEPA (10 CFR 1021). 222-S is used to perform analytical services on radioactive samples in support of the Tank Waste Remediation System and Hanford Site environmental restoration programs. Activities conducted at 222-S include decontamination of analytical processing and support equipment and disposal of nonarchived radioactive samples. These activities generate low-level liquid mixed waste. The liquid mixed waste is drained through pipelines in the 222-S service tunnels and underground concrete encasements, to two of three tanks in 219-S, where it is accumulated. 219-S is a treatment, storage, and/or disposal (TSD) unit, and is therefore required to meet Washington Administrative Code (WAC) 173-303, Dangerous Waste Regulations, and the associated requirements for secondary containment and leak detection. The service tunnels are periodically inspected by workers and decontaminated as necessary to maintain as low as reasonably achievable (ALARA) radiation levels. Although no contamination is reaching the environment from the service tunnels, the risk of worker exposure is present and could increase. 222-S is expected to remain in use for at least the next 30 years to serve the Hanford Site environmental cleanup mission.

NONE

1995-01-01T23:59:59.000Z

166

The effect of concentration on the structure and crystallinity of a cementitious waste form for caustic wastes  

SciTech Connect (OSTI)

Cement-based waste forms have long been considered economical technologies for disposal of various types of waste. A solidified cementitious waste form, Cast Stone, was developed to immobilize the radioactive secondary waste from vitrification processes. In this work, Cast Stone was considered for a Na-based caustic liquid waste, and its physical properties were analyzed as a function of liquid waste loading up to 2 M Na. Differences in crystallinity (phase composition), microstructure, mesostructure (pore size distribution, surface area), and macrostructure (density, compressive strength) were investigated using various analytical techniques, in order to assess the suitability of Cast Stone as a chemically durable waste. It was found that the concentration of secondary waste simulant (caustic waste) had little effect on the relevant engineering properties of Cast Stone, showing that Cast Stone could be an effective and tolerant waste form for a wide range of concentrations of high sodium waste.

Chung, Chul-Woo; Turo, Laura A.; Ryan, Joseph V.; Johnson, Bradley R.; McCloy, John S.

2013-06-01T23:59:59.000Z

167

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect (OSTI)

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

Connolly, M.J.; Sayer, D.L.

1993-11-01T23:59:59.000Z

168

Engineering development of waste retrieval end effectors for the Oak Ridge gunite waste tanks  

SciTech Connect (OSTI)

The Gunite and Associated Tanks Treatability Study at Oak Ridge National Laboratory selected the waterjet scarifying end effector, the jet pump conveyance system, and the Modified Light Duty Utility Arm and Houdini Remotely Operated Vehicle deployment and manipulator systems for evaluation. The waterjet-based retrieval end effector had been developed through several generations of test articles targeted at deployment in Hanford underground storage tanks with a large robotic arm. The basic technology had demonstrated effectiveness at retrieval of simulants bounding the foreseen range of waste properties and indicated compatibility with the planned deployment systems. The Retrieval Process Development and Enhancements team was tasked with developing a version of the retrieval end effector tailored to the Oak Ridge tanks, waste and deployment platforms. The finished prototype was delivered to PNNL and subjected to a brief round of characterization and performance testing at the Hydraulic Testbed prior to shipment to Oak Ridge. It has undergone extensive operational testing in the Oak Ridge National Laboratory Tanks Technology Cold Test Facility and performed well, as expected. A second unit has been delivered outfitted with the high pressure manifold.

Mullen, O.D.

1997-05-01T23:59:59.000Z

169

P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008.  

E-Print Network [OSTI]

, Columbia University, July 2008. 1 Overview of Food Waste Composting in the U.S. According to the State of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008. 3 divert food waste

Columbia University

170

Incineration of DOE offsite mixed waste at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering and Environmental Laboratory (INEEL) is one of three incinerators in the US Department of Energy (DOE) Complex capable of incinerating mixed low-level waste (MLLW). WERF has received MLLW from offsite generators and is scheduled to receive more. The State of Idaho supports receipt of offsite MLLW waste at the WERF incinerator within the requirements established in the (INEEL) Site Treatment Plan (STP). The incinerator is operating as a Resource Conservation and Recovery Act (RCRA) Interim Status Facility, with a RCRA Part B permit application currently being reviewed by the State of Idaho. Offsite MLLW received from other DOE facilities are currently being incinerated at WERF at no charge to the generator. Residues associated with the incineration of offsite MLLW waste that meet the Envirocare of Utah waste acceptance criteria are sent to that facility for treatment and/or disposal. WERF is contributing to the treatment and reduction of MLLW in the DOE Complex.

Harris, J.D.; Harvego, L.A.; Jacobs, A.M. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Willcox, M.V. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States)

1998-01-01T23:59:59.000Z

171

Subseabed Radioactive Waste Disposal Feasibility Program: ocean engineering challenges for the 80's  

SciTech Connect (OSTI)

The objective of the Subseabed Disposal Program is to assess the feasibility of disposing of high-level radioactive wastes or spent fuel in suitable geologic formations beneath the deep ocean floor. The program is entering a phase which will address engineering feasibility. While the current phase of the program to determine the scientific and environmental feasibility of the concept is not yet complete, activities to assess the engineering aspects are being initiated in parallel to facilitate the development of the concept on a time scale commensurate with other related programs both in the United States and abroad. It is anticipated that engineering aspects will become the central focus of the program during the early 80's and will continue so through the establishment of a pilot-plant level activity which could occur by the mid-90's.

Talbert, D. M.

1980-01-01T23:59:59.000Z

172

Enclosure 3 DOE Response to EPA Question Regarding "High-Level Liquid Radioactive Waste"  

E-Print Network [OSTI]

to date, which is from the definitions in the Nuclear Waste Policy Act: The term "high-level radioactive waste" means-- (A) the highly radioactive material resulting from the reprocessing of spent nuclear fuel of waste streams as from the applicable definition of HLW in the Nuclear Waste Policy Act. 5/11/20051 #12

173

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

174

New Standards in Liquid Waste Treatment at Fukushima Dai-ichi - 13134  

SciTech Connect (OSTI)

The earthquake and tsunami on March 11, 2011 severely damaged the Fukushima Dai-ichi nuclear plant leading to the most severe nuclear incident since Chernobyl. Ongoing operations to cool the damaged reactors at the site have led to the generation of highly radioactive coolant water. This is currently mainly treated to remove Cs-137 and Cs-134 and passed through a reverse osmosis (RO) unit to reduce the salinity before being cycled back to the reactors. Because only the Cs isotopes are removed, the RO reject water still contains many radioactive isotopes and this has led to the accumulation of over 200,000 cubic meters (52 million gallons) of extremely contaminated water which is currently stored on site in tanks. EnergySolutions, in partnership with Toshiba, were contracted to develop a system to reduce 62 isotopes in this waste down to allowable levels. This was a significant technical challenge given the high background salt content of the wastewater, the variation in aqueous chemistry of the radioactive isotopes and the presence of non-active competing ions (e.g. Ca and Mg) which inhibit the removal of isotopes such as Sr-89 and Sr-90. Extensive testing was performed to design a suitable system that could meet the required decontamination goals. These tests were performed over a 6 month period at facilities available in the nearby Fukushima Dai-ni laboratory using actual waste samples. This data was then utilized to design a Multi Radioactive Nuclides Removal System (MRRS) for Fukushima which is a modified version of EnergySolutions' proprietary Advanced Liquid Processing System (ALPS)'. The stored tank waste is fed into a preliminary precipitation system where iron flocculation is performed to remove a number of isotopes, including Sb-125, Ru-106, Mn-54 and Co-60. The supernatant is then fed into a second precipitation tank where the pH is adjusted and the bulk of the Mg, Ca and Sr precipitated out as carbonates and hydroxides. After passing through a cross-flow ultrafiltration membrane, the permeate then goes through a total of 14 fixed ion exchange and adsorbent columns followed by a disposable polishing column to polish the residual isotopes down to allowable levels. At the end of the system, the effluent is filtered for a final time to removal any particulates that may have been picked up from the media columns and then stored prior to analysis. (authors)

Sylvester, Paul; Milner, Tim; Ruffing, Jennifer; Poole, Scott [EnergySolutions, 100 Center Point Circle, Suite 100, Center Point II, Columbia, SC 29210 (United States)] [EnergySolutions, 100 Center Point Circle, Suite 100, Center Point II, Columbia, SC 29210 (United States); Townson, Paul; Jensen, Jesse [EnergySolutions, 2345 Stevens Drive, Suite 240, Richland, WA 99354 (United States)] [EnergySolutions, 2345 Stevens Drive, Suite 240, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

175

Materials Science and Engineering A 447 (2007) 125133 Transient liquid phase bonding of Inconel 718 and Inconel 625  

E-Print Network [OSTI]

Materials Science and Engineering A 447 (2007) 125≠133 Transient liquid phase bonding of Inconel the time required to complete isothermal solidification during the transient liquid phase bonding, with nickel based filler alloy, BNi-2. However, unlike conventional modeling, the diffusion of solute atoms

Medraj, Mamoun

2007-01-01T23:59:59.000Z

176

Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste.

NONE

1996-06-01T23:59:59.000Z

177

Use of Novel Highly Selective Ion Exchange Media for Minimizing the Waste Arising from Different NPP and Other Liquids  

SciTech Connect (OSTI)

Highly selective inorganic ion exchangers give new possibilities to implement and operate new innovative treatment systems for radioactive liquids. Because of high selectivity these ion exchangers can be used even in liquids of high salt concentrations. Only selected target nuclides will be separated and inactive salts are left in the liquid, which can be released or recategorized. Thus, it is possible to reduce the volume of radioactive waste dramatically. On the other hand, only a small volume of highly selective material is required in applications, which makes it possible to design totally new types of compact treatment systems. The major benefit of selective ion exchange media comes from the very large volume reduction of radioactive waste in final disposal. It is also possible to save in investment costs, because small ion exchanger volumes can be used and handled in a very small facility. This paper describes different applications of these highly selective ion exchangers, both commercial fullscale applications and laboratory tests, to give the idea of their efficiency for different liquids.

Tusa, Esko; Harjula, Risto; Lehto, Jukka

2003-02-25T23:59:59.000Z

178

Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

Porter, C.L.; Widmayer, D.A.

1995-09-01T23:59:59.000Z

179

EIS-0081: Long-Term Management of Liquid High-Level Radioactive Waste Stored at Western New York Nuclear Service Center, West Valley, New York  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Terminal Waste Disposal and Remedial Action prepared this statement to analyze the environmental and socioeconomic impacts resulting from the Departmentís proposed action to construct and operate facilities necessary to solidify the liquid high level wastes currently stored in underground tanks at Wes t Valley, New York.

180

High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

Not Available

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory  

SciTech Connect (OSTI)

The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

Lockie, K. A.; McNaught, W. B.

2002-02-26T23:59:59.000Z

182

Engineering evaluation of alternatives for the disposition of Niagara Falls Storage Site, its residues and wastes  

SciTech Connect (OSTI)

The final disposition scenarios selected by DOE for assessment in this document are consistent with those stated in the Notice of Intent to prepare an Environmental Impact Statement (EIS) for the Niagara Falls Storage Site (NFSS) (DOE, 1983d) and the modifications to the alternatives resulting from the public scoping process. The scenarios are: take no action beyond interim remedial measures other than maintenance and surveillance of the NFSS; retain and manage the NFSS as a long-term waste management facility for the wastes and residues on the site; decontaminate, certify, and release the NFSS for other use, with long-term management of the wastes and residues at other DOE sites; and partially decontaminate the NFSS by removal and transport off site of only the more radioactive residues, and upgrade containment of the remaining wastes and residues on site. The objective of this document is to present to DOE the conceptual engineering, occupational radiation exposure, construction schedule, maintenance and surveillance requirements, and cost information relevant to design and implementation of each of the four scenarios. The specific alternatives within each scenario used as the basis for discussion in this document were evaluated on the bases of engineering considerations, technical feasibility, and regulatory requirements. Selected alternatives determined to be acceptable for each of the four final disposition scenarios for the NFSS were approved by DOE to be assessed and costed in this document. These alternatives are also the subject of the EIS for the NFSS currently being prepared by Argonne National Laboratory (ANL). 40 figures, 38 tables.

Not Available

1984-01-01T23:59:59.000Z

183

Waste heat recovery system for recapturing energy after engine aftertreatment systems  

SciTech Connect (OSTI)

The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

Ernst, Timothy C.; Nelson, Christopher R.

2014-06-17T23:59:59.000Z

184

In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designed to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.

Callow, R.A.; Weidner, J.R.; Loehr, C.A.; Bates, S.O. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Thompson, L.E.; McGrail, B.P. (Pacific Northwest Lab., Richland, WA (United States))

1991-08-01T23:59:59.000Z

185

Radioactive Waste Management Information for 1992 and record-to-date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on air borne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

Litteer, D.L.; Randall, V.C.; Sims, A.M.; Taylor, K.A.

1993-07-01T23:59:59.000Z

186

Simultaneous determination of Ni-63 and Ni-59 in radioactive wastes by liquid scintillation spectrometry  

E-Print Network [OSTI]

. Decontamination Factor (D. F. ) for radioisotopes. . . , LIST OF FIGURES Figure Page 3. 1 3. 2 3. 3 3. 4 3. 5 3. 6 3. 7 3. 8. 3. 9. 3. 10. 3. 11 3, 12 3. 13 3. 14 4. l. 5. 1. 5. 2. 5. 3. 5. 4. 5. 5. 5. 6. 7 10 11 S, solvent; F, solute... in the wastes and provides guidance to both fuel-cycle and non-fuel-cycle waste generators to implement the waste form requirements. Any licensee who transfers radioactive waste to a land disposal facility or to a licensed waste collector or processor must...

Kim, Esther Miyeun

1988-01-01T23:59:59.000Z

187

SUCCESSES AND EMERGING ISSUES IN SIMULATING THE MIXING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 211B  

SciTech Connect (OSTI)

Aqueous radioactive high-level waste slurries are combined during processing steps that ultimately produce a stable borosilicate glass waste form. Chemically treated waste slurries are combined with each other and with glass frit-water slurries to produce the melter feed. Understanding the evolution of the rheological properties of the slurries is an important aspect of removing and treating the stored waste. To a first approximation, combinations of colloidal waste slurry with {approx}0.1-mm mean diameter glass frit or glass beads act in an analogous matter to slurries of spherical beads in Newtonian liquids. The non-Newtonian rheological properties of the waste slurries without frit, however, add complexity to the hydrodynamic analysis. The use of shear rate dependent apparent viscosities with the modified Einstein equation was used to model the rheological properties of aqueous frit-waste slurries.

Koopman, D.; Pickenheim, B.; Lambert, D.; Stone, M.

2009-09-02T23:59:59.000Z

188

APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD  

SciTech Connect (OSTI)

A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

TEDESCHI AR; WILSON RA

2010-01-14T23:59:59.000Z

189

CONCEPTUAL DATA MODELING OF THE INTEGRATED DATABASE FOR THE RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect (OSTI)

A study of a database system that can manage radioactive waste collectively on a network has been carried out. A conceptual data modeling that is based on the theory of information engineering (IE), which is the first step of the whole database development, has been studied to manage effectively information and data related to radioactive waste. In order to establish the scope of the database, user requirements and system configuration for radioactive waste management were analyzed. The major information extracted from user requirements are solid waste, liquid waste, gaseous waste, and waste related to spent fuel. The radioactive waste management system is planning to share information with associated companies.

Park, H.S; Shon, J.S; Kim, K.J; Park, J.H; Hong, K.P; Park, S.H

2003-02-27T23:59:59.000Z

190

Volume reduction/solidification of liquid radioactive waste using bitumen at Ontario hydro`s Bruce nuclear generating station {open_quotes}A{close_quotes}  

SciTech Connect (OSTI)

Ontario Hydro at the Bruce Nuclear Generating Station {open_quotes}A{close_quotes} has undertaken a program to render the station`s liquid radioactive waste suitable for discharge to Lake Huron by removing sufficient radiological and chemical contaminants from five different plant waste streams. The contaminants will be immobilized and stored at on-site radioactive waste storage facilities and the purified streams will be discharged. The discharge targets established by Ontario Hydro are set well below the limits established by the Ontario Ministry of Environment (MOE) and are based on the Best Available Technology Economically Achievable Approach (B.A.T.E.A.). ADTECHS Corporation has been selected by Ontario Hydro to provide volume reduction/solidification technology for one of the five waste streams. The system will dry and immobilize the contaminants from a liquid waste stream in emulsified asphalt using thin film evaporation technology.

Day, J.E.; Baker, R.L. [ADTECHS Corporation, Herndon, VA (United States)

1994-12-31T23:59:59.000Z

191

STRONTIUM-90 LIQUID CONCENTRATION SOLUBILITY CORRELATION IN THE HANFORD TANK WASTE OPERATIONS SIMULATOR  

SciTech Connect (OSTI)

A new correlation was developed to estimate the concentration of strontium-90 in a waste solution based on total organic carbon. This correlation replaces the strontium-90 wash factors, and when applied in the Hanford Tank Waste Operations Simulator, significantly reduced the estimated quantity of strontium-90 in the delivered low-activity waste feed. This is thought to be a more realistic estimate of strontium-90 than using the wash-factor method.

HOHL, T.; PLACE, D.; WITTMAN, R.

2004-08-05T23:59:59.000Z

192

A delayed-neutron monitor for a liquid-waste stream with high gamma-ray intensity  

SciTech Connect (OSTI)

An instrument has been built to monitor the uranium concentration in a liquid-waste stream to avoid a criticality accident in a downstream holding tank. The measurement technique is based on the production and counting of delayed neutrons using the shuffler'' process because the waste contains enough fission products to produce a gamma-ray dose rate of 10 R/h on the surface of the assay tank. The design goal was a sensitivity of 0.034 g/L (1{sigma} = 10%) in 100 s as the stream flows at 80 L/h through the assay chamber. The instrument is to run unattended for at least three months; during this time it it to transmit assay results to the plant computer and generate warnings and alarms when necessary.

Rinard, P.M.; Crane, T.W.; Van Lyssel, T.; Kroncke, K.M.; Schneider, C.M.; Bourret, S.C. (Los Alamos National Lab., NM (USA))

1989-01-01T23:59:59.000Z

193

MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE  

SciTech Connect (OSTI)

The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

2010-01-27T23:59:59.000Z

194

International Conference on Engineering for Waste and Biomass Valorisation September 10-13, 2012 Porto, Portugal USE OF AUTO SHREDDER RESIDUES GENERATED BY POST  

E-Print Network [OSTI]

4 th International Conference on Engineering for Waste and Biomass Valorisation September 10 defined with the aim at increasing the quantity introduced in the furnaces. hal-01017124,version1-1Jul2014 Author manuscript, published in "4th International Conference on Engineering for Waste and Biomass

Paris-Sud XI, Universitť de

195

Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3  

SciTech Connect (OSTI)

The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.

NATHAN HANCOCK

2013-01-13T23:59:59.000Z

196

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect (OSTI)

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energyís Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

197

Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

Trussell, S. (Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering); Spence, R.D. (Oak Ridge National Lab., TN (United States))

1993-01-01T23:59:59.000Z

198

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

199

State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404  

SciTech Connect (OSTI)

The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

Defferding, L.J.

1980-06-01T23:59:59.000Z

200

Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste  

SciTech Connect (OSTI)

This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

NONE

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

202

Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

Wiersma, B. J.; Subramanian, K. H.

2012-11-27T23:59:59.000Z

203

Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers  

SciTech Connect (OSTI)

The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.

Molecke, M.A.; Sorensen, N.R. [eds.] [Sandia National Labs., Albuquerque, NM (US); Wicks, G.G. [ed.] [Westinghouse Savannah River Technology Center, Aiken, SC (US)

1993-08-01T23:59:59.000Z

204

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

205

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

SciTech Connect (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

206

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

SciTech Connect (OSTI)

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

207

Treatment Options for Liquid Radioactive Waste. Factors Important for Selecting of Treatment Methods  

SciTech Connect (OSTI)

The cleanup of liquid streams contaminated with radionuclides is obtained by the selection or a combination of a number of physical and chemical separations, processes or unit operations. Among those are: Chemical treatment; Evaporation; Ion exchange and sorption; Physical separation; Electrodialysis; Osmosis; Electrocoagulation/electroflotation; Biotechnological processes; and Solvent extraction.

Dziewinski, J.J.

1998-09-28T23:59:59.000Z

208

Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls  

SciTech Connect (OSTI)

In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

Rinard, P.M.; Menlove, H.O.

1996-03-01T23:59:59.000Z

209

Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors  

SciTech Connect (OSTI)

The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.

Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak

2003-08-06T23:59:59.000Z

210

FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125  

SciTech Connect (OSTI)

Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

2012-01-26T23:59:59.000Z

211

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

212

Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility  

SciTech Connect (OSTI)

Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

2000-03-01T23:59:59.000Z

213

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07T23:59:59.000Z

214

Development and results of experimental testing of electromembrane process for liquid active waste purification  

SciTech Connect (OSTI)

This paper discusses the results of studies on electromembrane purification. The concentration of salts in active wastes arising from decontamination is more than 3--5 g/l. For these investigations a solution was chosen that had arisen from the decontamination of metallic items by a two-bath method using permanganate-alkali in the first stage and nitrogen oxalic acid in the second stage. The total salt content of mixed acid and alkaline solutions was 3.0 g/l, with a pH of 8.5 and total beta-activity of 6 {times} 10{sup {minus}8} Ci/l.

Martinov, B.V.; Smirnov, V.V.; Tugolukov, B.B.; Belyakov, Y.A. [A.A. Bochvar All Russian Scientific Research, Moscow (Russian Federation). Inst. of Inorganic Materials

1993-12-31T23:59:59.000Z

215

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results  

SciTech Connect (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

216

Technical Highlights for July 2012 New Collaboration Underway to Investigate Ionic Liquids for Enhancing Engine Efficiency  

E-Print Network [OSTI]

for Enhancing Engine Efficiency A new Cooperative Research and Development Agreement (CRADA), No. NFE-12

217

Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors  

SciTech Connect (OSTI)

Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

William Linak

2004-12-16T23:59:59.000Z

218

Comparison between CMPO and DHDECMP for alpha decontamination of radioactive liquid waste  

SciTech Connect (OSTI)

Ion exchange is the major method used at Los Alamos to recover and purify plutonium from a variety of different contaminants. During this process, a high-acid (5-7M), low-activity stream is produced that presently is concentrated by evaporation, then cemented for long-term disposal. Our goal is to remove and concentrate the radioactive elements so that the remainder can be treated as low-level'' or regular industrial waste. Solvent extraction with neutral bifunctional extractants, such as DHDECMP and CMPO, has been chosen as the process to be developed. Experimental work has shown that both extractants effectively remove actinides to below the required limits, but that CMPO was much more difficult to strip. In addition, studies of plutonium and americium removal using a wide variety of ion exchangers and supported extractants including DHDECMP, CMPO, and TOPO will be reviewed. 22 refs., 10 figs., 3 tabs.

Muscatello, A.C.; Yarbro, S.L.; Marsh, S.F.

1990-01-01T23:59:59.000Z

219

Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste  

SciTech Connect (OSTI)

The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A. (DOE- ID)

2002-01-16T23:59:59.000Z

220

Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste  

SciTech Connect (OSTI)

The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Effect of in-cylinder liquid fuel films on engine-out unburned hydrocarbon emissions for SI engines  

E-Print Network [OSTI]

Nearly all of the hydrocarbon emissions from a modern gasoline-fueled vehicle occur when the engine is first started. One important contributing factor to this is the fact that, during this time, temperatures throughout ...

Costanzo, Vincent S. (Vincent Stanley), 1979-

2011-01-01T23:59:59.000Z

222

Implementation plan for liquid low-level radioactive waste systems under the FFA for fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document is the fourth annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). In addition, this document lists FFA activities planned for FY 1997. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service.

NONE

1996-06-01T23:59:59.000Z

223

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck  

SciTech Connect (OSTI)

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

2005-11-01T23:59:59.000Z

224

Fusion Engineering and Design 42 (1998) 555561 Scaling criteria for IFE liquid wall protection scheme simulation  

E-Print Network [OSTI]

scheme simulation Alice Ying *, Mohamed Abdou Mechanical and Aerospace Engineering Department, Uni6ersity Science S.A. All rights reserved. PII S0920-3796(98)00135-5 #12;A. Ying, M. Abdou / Fusion Engineering

Abdou, Mohamed

225

Adsorption of Ruthenium, Rhodium and Palladium from Simulated High-Level Liquid Waste by Highly Functional Xerogel - 13286  

SciTech Connect (OSTI)

Fission products are generated by fission reactions in nuclear fuel. Platinum group (Pt-G) elements, such as palladium (Pd), rhodium (Rh) and ruthenium (Ru), are also produced. Generally, Pt-G elements play important roles in chemical and electrical industries. Highly functional xerogels have been developed for recovery of these useful Pt-G elements from high - level radioactive liquid waste (HLLW). An adsorption experiment from simulated HLLW was done by the column method to study the selective adsorption of Pt-G elements, and it was found that not only Pd, Rh and Ru, but also nickel, zirconium and tellurium were adsorbed. All other elements were not adsorbed. Adsorbed Pd was recovered by washing the xerogel-packed column with thiourea solution and thiourea - nitric acid mixed solution in an elution experiment. Thiourea can be a poison for automotive exhaust emission system catalysts, so it is necessary to consider its removal. Thermal decomposition and an acid digestion treatment were conducted to remove sulfur in the recovered Pd fraction. The relative content of sulfur to Pd was decreased from 858 to 0.02 after the treatment. These results will contribute to design of the Pt-G element separation system. (authors)

Onishi, Takashi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Koyama, Shin-ichi [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan)] [Fukushima Fuels and Materials Department O-arai Research and Development Center Japan Atomic Energy Agency, Narita-cho 4002, O-arai-machi, Ibaraki, 311-1393 (Japan); Mimura, Hitoshi [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)] [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University Aramaki-Aza-Aoba 6-6-01-2,Aoba-ku, Sendai-shi, Miyagi-ken, 980-8579 (Japan)

2013-07-01T23:59:59.000Z

226

Fusion Engineering and Design 81 (2006) 15431548 Exploring liquid metal plasma facing component (PFC)  

E-Print Network [OSTI]

of some liquid metals like lithium to Corresponding author. Tel.: +1 310 948 5200; fax: +1 310 825 2599, pound- ing on the plasma facing components and alleviate the very serious problem of melting and erosion interest in studying the behavior of liquid lithium streams, flowing at a velocity of 10 m/s inside

Abdou, Mohamed

2006-01-01T23:59:59.000Z

227

Radioactive Waste Management information for 1994 and record-to-date  

SciTech Connect (OSTI)

This document, Radioactive Waste Management Information for 1994 and Record-To-Date, contains computerized radioactive waste data records from the Idaho National Engineering Laboratory (INEL). Data are compiled from information supplied by the US Department of Energy (DOE) contractors. Data listed are on airborne and liquid radioactive effluents and solid radioactive waste that is stored, disposed, and sent to the INEL for reduction. Data are summarized for the years 1952 through 1993. Data are detailed for the calendar year 1994.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1995-07-01T23:59:59.000Z

228

Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.  

SciTech Connect (OSTI)

It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

Ehst, D.; Nuclear Engineering Division

2010-08-04T23:59:59.000Z

229

Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal  

E-Print Network [OSTI]

Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

Hunt, Andrew Robert

2007-01-01T23:59:59.000Z

230

INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - HANDSS-55 TRANSURANIC WASTE REPACKAGING MODULE  

SciTech Connect (OSTI)

The Transuranic waste generated at the Savannah River Site from nuclear weapons research, development, and production is currently estimated to be over 10,000 cubic meters. Over half of this amount is stored in 55-gallon drums. The waste in drums is primarily job control waste and equipment generated as the result of routine maintenance performed on the plutonium processing operations. Over the years that the drums have been accumulating, the regulatory definitions of materials approved for disposal have changed. Consequently, many of the drums now contain items that are not approved for disposal at DOE Waste Isolation Pilot Plant (WIPP). The HANDSS-55 technology is being developed to allow remote sorting of the items in these drums and then repackaging of the compliant items for disposal at WIPP.

Unknown

2001-08-31T23:59:59.000Z

231

Production of biofuels and biodegradable plastics from common waste substrates in engineered Ralstonia eutropha  

E-Print Network [OSTI]

Ralstonia eutropha, a Gram-negative proteobacterium, is capable of utilizing a plethora of simple and complex carbon sources derived from common waste streams. When experiencing nutrient stress in the presence of high ...

Lu, Jingnan, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

232

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission lives. Radioactive Waste generated through wet chemistry Waste Minimization 30 Mixed waste / Liquid

233

Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5.

Not Available

1994-09-01T23:59:59.000Z

234

Engineering study of the potential uses of salts from selective crystallization of Hanford tank wastes  

SciTech Connect (OSTI)

The Clean Salt Process (CSP) is the fractional crystallization of nitrate salts from tank waste stored on the Hanford Site. This study reviews disposition options for a CSP product made from Hanford Site tank waste. These options range from public release to onsite low-level waste disposal to no action. Process, production, safety, environment, cost, schedule, and the amount of CSP material which may be used are factors considered in each option. The preferred alternative is offsite release of clean salt. Savings all be generated by excluding the material from low-level waste stabilization. Income would be received from sales of salt products. Savings and income from this alternative amount to $1,027 million, excluding the cost of CSP operations. Unless public sale of CSP products is approved, the material should be calcined. The carbonate form of the CSP could then be used as ballast in tank closure and stabilization efforts. Not including the cost of CSP operations, savings of $632 million would be realized. These savings would result from excluding the material from low-level waste stabilization and reducing purchases of chemicals for caustic recycle and stabilization and closure. Dose considerations for either alternative are favorable. No other cost-effective alternatives that were considered had the capacity to handle significant quantities of the CSP products. If CSP occurs, full-scale tank-waste stabilization could be done without building additional treatment facilities after Phase 1 (DOE 1996). Savings in capital and operating cost from this reduction in waste stabilization would be in addition to the other gains described.

Hendrickson, D.W.

1996-04-30T23:59:59.000Z

235

Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

236

Engineering/design of a co-generation waste-to-energy facility  

SciTech Connect (OSTI)

Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer.

Bajaj, K.S.; Virgilio, R.J. (Foster Wheeler USA Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

237

Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616  

SciTech Connect (OSTI)

Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

2013-07-01T23:59:59.000Z

238

Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties  

SciTech Connect (OSTI)

Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

Turner, J.P.

1991-01-01T23:59:59.000Z

239

Geologic processes in the RWMC area, Idaho National Engineering Laboratory: Implications for long term stability and soil erosion at the radioactive waste management complex  

SciTech Connect (OSTI)

The Radioactive Waste Management Complex (RWMC) is the disposal and storage facility for low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). Transuranic waste and mixed wastes were also disposed at the RWMC until 1970. It is located in the southwestern part of the INEL about 80 km west of Idaho Falls, Idaho. The INEL occupies a portion of the Eastern Snake River Plain (ESRP), a low-relief, basalt, and sediment-floored basin within the northern Rocky Mountains and northeastern Basin and Range Province. It is a cool and semiarid, sagebrush steppe desert characterized by irregular, rolling terrain. The RWMC began disposal of INEL-generated wastes in 1952, and since 1954, wastes have been accepted from other Federal facilities. Much of the waste is buried in shallow trenches, pits, and soil vaults. Until about 1970, trenches and pits were excavated to the basalt surface, leaving no sediments between the waste and the top of the basalt. Since 1970, a layer of sediment (about 1 m) has been left between the waste and the basalt. The United States Department of Energy (DOE) has developed regulations specific to radioactive-waste disposal, including environmental standards and performance objectives. The regulation applicable to all DOE facilities is DOE Order 5820.2A (Radioactive Waste Management). An important consideration for the performance assessment of the RWMC is the long-term geomorphic stability of the site. Several investigators have identified geologic processes and events that could disrupt a radioactive waste disposal facility. Examples of these {open_quotes}geomorphic hazards{close_quotes} include changes in stream discharge, sediment load, and base level, which may result from climate change, tectonic processes, or magmatic processes. In the performance assessment, these hazards are incorporated into scenarios that may affect the future performance of the RWMC.

Hackett, W.R.; Tullis, J.A.; Smith, R.P. [and others

1995-09-01T23:59:59.000Z

240

Engineering development of a lightweight high-pressure scarifier for tank waste retrieval  

SciTech Connect (OSTI)

The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad range of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.

Hatchell, B.K.

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

242

Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli  

E-Print Network [OSTI]

One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical ...

Bokinsky, Gregory

243

Engineering task plan for the 241-AZ-101 waste tank color video camera system  

SciTech Connect (OSTI)

This Engineering Task Plan (ETP) is to be distributed to communicate the design basis of the 241-AZ-101 camera system and to define system requirements and associated responsibilities.

Robinson, R.S., Westinghouse Hanford

1996-07-01T23:59:59.000Z

244

Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

Lu, X. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nakajima, K.; Sakanakura, H. [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Matsubae, K. [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan); Bai, H. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nagasaka, T., E-mail: t-nagasaka@m.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan)

2012-06-15T23:59:59.000Z

245

EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

246

"Computers may be thought of as engines for transforming free energy into waste heat and mathematical work", Charles H. Bennett [Ben82  

E-Print Network [OSTI]

Chapter 5. "Computers may be thought of as engines for transforming free energy into waste heat the PORT section to obtain the complete input port characterization of the DUT: 1. Number of ports 2. Input port names and types (clock, connected to a constant or random value) 3. Input port parameters

Todorovich, Elías

247

Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.  

SciTech Connect (OSTI)

Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.

Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

1998-02-03T23:59:59.000Z

248

Development of a test facility for the experimental evaluation of liquid and gaseous automotive engine fuels  

E-Print Network [OSTI]

of Reference [15] ---------------- 55 LIST OF TABLES IN APPENDICES PAGE Table Al: Engine Specificat1ons Table A2: Eng1ne Break-in Schedule 69 74 Table A3: Wear Metals in Engine Oil- 77 Table Cl: Values Used for Variables in Emiss1ons Calculations... important. In selecting instrumentation for the system, accuracy, speed, and versatility were considered. The cost of each piece of equipment was weighed against its accuracy, its ability to save time collecting data, and its capability for adapting...

McCanlies, John Michael

2012-06-07T23:59:59.000Z

249

Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats  

SciTech Connect (OSTI)

Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

1990-09-18T23:59:59.000Z

250

Hazard ranking system evaluation of CERCLA inactive waste sites at Hanford: Volume 2: Engineered-facility sites (HISS data base)  

SciTech Connect (OSTI)

The purpose of this report is to formally document the assessment activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that address the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program for the cleanup of inactive waste sites. The DOE orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986. This methodology includes: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the Hazard Ranking System methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 13 refs.

Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.; Stenner, R.D.; Cramer, K.H.; Higley, K.A.

1988-10-01T23:59:59.000Z

251

Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen  

SciTech Connect (OSTI)

Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

None

2010-07-15T23:59:59.000Z

252

electrical, engineering  

E-Print Network [OSTI]

and energy engineering biofuels waste conversion to energy public health-technology-environment interactions and colleagues worldwide. Contributing writers Joe Kullman Natalie Pierce Photography Jessica Slater © 2012

Zhang, Junshan

253

Department of Chemical and Mechanical Engineering Fall 2012 Wildfire Suppression Using Liquid Nitrogen  

E-Print Network [OSTI]

, these methods are not always enough to stop the fire from wreaking havoc; this is where Air Products comes inPENNSTATE Department of Chemical and Mechanical Engineering Fall 2012 Wildfire Suppression Using the team and sponsor decided that the product design which most effectively met customer needs was a ground

Demirel, Melik C.

254

Feasibility study on the solidification of liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

A literature survey was conducted to help determine the feasibility of solidifying a liquid low-level radioactive mixed waste in the inactive tank system at Oak Ridge National Laboratory (ORNL). The goal of this report is to facilitate a decision on the disposition of these wastes by identifying any waste constituents that might (1) compromise the strength or stability of the waste form or (2) be highly leachable. Furthermore, its goal is to identify ways to circumvent interferences and to decrease the leachability of the waste constituents. This study has sought to provide an understanding of inhibition of cement set by identifying the fundamental chemical mechanisms by which this inhibition takes place. From this fundamental information, it is possible to draw some conclusions about the potential effects of waste constituents, even in the absence of particular studies on specific compounds.

Trussell, S. [Texas A and M Univ., College Station, TX (United States). Dept. of Civil Engineering; Spence, R.D. [Oak Ridge National Lab., TN (United States)

1993-01-01T23:59:59.000Z

255

Low-Level Liquid Waste Processing Pilot Studies Using a Vibratory Shear Enhancing Process (VSEP) for Filtration  

SciTech Connect (OSTI)

A previous EPRI study evaluated potential treatment methods for the removal of iron from BWR waste streams. Of the methods investigated, high shear filtration using the vibratory shear-enhanced process (VSEP) showed the most promise to effectively and economically remove high iron concentrations from backwash receiving tank waste. A VSEP filter uses oscillatory vibration to create high shear at the surface of the filter membrane. This high shear force significantly improves the filter's resistance to fouling thereby enabling high throughputs with very little secondary waste generation. With a VSEP filter, the waste feed stream is split into two effluents- a permeate stream with little or no suspended solids and a concentrate stream with a suspended solids concentration much higher than that of the feed stream. To evaluate the feasibility of using a VSEP concept for processing typical high iron containing BWR radwaste, a surrogate feedstream containing up to 1,700 ppm iron oxide (as Fe2O3) was used. This surrogate waste simulates radioactive waste found at Exelon's Limerick and Peach Bottom (powdered resin condensate) plants, and in Hope Creek's (deep bed condensate) radwaste systems. Testing was done using a series L (laboratory scale) VSEP unit at the manufacturer's and contractor's laboratories. These tests successfully demonstrated the VSEP capability for producing highly concentrated waste streams with totally ''recyclable'' permeate (e.g., greater than 95% recovery).

Bushart, S.; Tran, P.; Asay, R.

2002-02-25T23:59:59.000Z

256

PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364  

SciTech Connect (OSTI)

A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

2011-02-14T23:59:59.000Z

257

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the melter handling system (LMH), the melter equipment support handling system (LSH), the radioactive solid waste handling system (RWH), and the radioactive liquid waste disposal...

258

Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste  

E-Print Network [OSTI]

1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

259

QESST Engineering Research Center: Revolutionizing  

E-Print Network [OSTI]

QESST Engineering Research Center: Revolutionizing energy for the world Power Systems Energy engineering and the built environment school of electrical, computer and energy engineering biofuels waste

Zhang, Junshan

260

Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report  

SciTech Connect (OSTI)

This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

1995-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes  

SciTech Connect (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

Reaven, S.J.

1994-08-01T23:59:59.000Z

262

High level waste facilities -- Continuing operation or orderly shutdown  

SciTech Connect (OSTI)

Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

Decker, L.A.

1998-04-01T23:59:59.000Z

263

RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT  

SciTech Connect (OSTI)

A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

Nash, C.; Duignan, M.

2010-01-14T23:59:59.000Z

264

Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996  

SciTech Connect (OSTI)

Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

1996-11-01T23:59:59.000Z

265

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Presentation from the...

266

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary  

SciTech Connect (OSTI)

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

267

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A  

SciTech Connect (OSTI)

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

268

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1  

SciTech Connect (OSTI)

This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

269

Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle  

SciTech Connect (OSTI)

The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

None

2012-01-31T23:59:59.000Z

270

Small-Scale Industrial Cogeneration: Design Using Reciprocating Engines and Absorption Chillers  

E-Print Network [OSTI]

SMALL-SCALE INDUSTRIAL COGENERATION: DESIGN USING RECIPROCATING ENGINES AND ABSORPTION CHILLER Joseph R. Wagner Mechanical Technology Incorporated Latham, ABSTRACT This paper describes a packaged cogeneration system designed for light... industrial applications (i.e., situations where a user wants a maximum of 1 MW of cogenerated electricity). The design employs reci procating engines fueled with natural gas or liquid fuels. Waste heat from the engine exhaust and jacket water is used...

Wagner, J. R.

271

Implementation plan for liquid low-level radioactive waste systems under the FFA for Fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Operations Office (DOE-ORO), the U.S. Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section IX and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review of approval. The issue of ES/ER-17&D1 Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. This document updates the plans, schedules, and strategy for achieving compliance with the FFA as presented in ES/ER-17&D I and summarizes the progress that has been made to date. This document supersedes all updates of ES/ER- 17&D 1. Chapter 1 describes the history and operation of the ORNL LLLW System and the objectives of the FFA. Chapters 2 through 5 contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

NONE

1996-10-01T23:59:59.000Z

272

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

273

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1  

SciTech Connect (OSTI)

The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

Hofmann, P.L.; Breslin, J.J. (eds.)

1981-01-01T23:59:59.000Z

274

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents [OSTI]

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

275

Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste  

DOE Patents [OSTI]

Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

Zaitsev, Boris N. (St. Petersburg, RU); Esimantovskiy, Vyacheslav M. (St. Petersburg, RU); Lazarev, Leonard N. (St. Petersburg, RU); Dzekun, Evgeniy G. (Ozersk, RU); Romanovskiy, Valeriy N. (St. Petersburg, RU); Todd, Terry A. (Aberdeen, ID); Brewer, Ken N. (Arco, ID); Herbst, Ronald S. (Idaho Falls, ID); Law, Jack D. (Pocatello, ID)

2001-01-01T23:59:59.000Z

276

Waste systems progress report, March 1983 through February 1984  

SciTech Connect (OSTI)

Preliminary design engineering for a Beryllum Electrorefining Demonstration Process has been completed and final engineering for fabrication of the process will be completed by the fourth quarter of FY-84. A remotely operated Advanced Size Reduction Facility (ASRF) is under construction and, when completed, will be used for sectioning plutonium-contaminated gloveboxes for disposal. Modification and additions were made to the 82 kg/hr Fluidized Bed Incinerator (FBI) in preparation for turning the unit over to Production. Several types of cementation processes are being developed to treat various TRU and low-level waste streams to reduce the dispersibility of the wastes. Portland cement and Envirostone gypsum cement were investigated as immobilization media for wet precipitation sludges and organic liquid wastes. Transuranic contaminated waste is being retrieved from storage at the Idaho National Engineering Laboratory for examination at Rocky Flats Plant for compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria. The removal of unreacted calcium metal from the waste salt formed during the direct oxide reduction of plutonium oxide to plutonium metal is necessary in order to comply with regulations regarding the transportation and storage of waste material containing flammable substances. Chemical methods of denitrification of simulated low-level nitrate wastes were investigated on a laboratory scale. Methods of inserting the carbon composite filters into presently stored and currently generated radioactive waste drums have been investigated and their sealing efficiencies determined. Analyses of carbon tetrachloride (CCl/sub 4/) recovered from spent lathe coolant revealed contamination levels above usable limits. A handbook covering techniques and processes that have been successfully demonstrated to minimize generation of new transuranic waste is being prepared.

Hickle, G.L.

1984-10-01T23:59:59.000Z

277

Department of Energy and Mineral Engineering Spring 2013 Preliminary Plant Design For Bitumen Separation Using Ionic Liquid  

E-Print Network [OSTI]

For Bitumen Separation Using Ionic Liquid Overview IL Fuels LLC invented a novel way to separate bitumen from of producing 5,000 barrels of bitumen per day while maximizing the recovery of ionic liquid and water of bitumen/day Maintain a maximum of 0.2% loss of ionic liquids to the cleaned sands Improve overall

Demirel, Melik C.

278

ENGINEERING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw...

279

Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes  

SciTech Connect (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

1994-12-01T23:59:59.000Z

280

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aamodt, Tor - Department of Electrical and Computer Engineering, University of British Columbia Aazhang, Behnaam -...

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Environmental Engineering  

E-Print Network [OSTI]

and human origins. Civil and Environmental Engineers create, con- struct, and manage the infrastructure water and air pollution as well as industrial and hazardous waste management. They monitor the quality, construc- tion, transportation, environmental engineering, and water resources. The Structural Engineering

Wang, Hai

282

Secondary Waste Form Down Selection Data Package Ė Ceramicrete  

SciTech Connect (OSTI)

As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratory is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.

Cantrell, Kirk J.; Westsik, Joseph H.

2011-08-31T23:59:59.000Z

283

Application of Analytical Heat Transfer Models of Multi-layered Natural and Engineered Barriers in Potential High-Level Nuclear Waste Repositories - 12435  

SciTech Connect (OSTI)

A combination of transient heat transfer analytical solutions for a finite line source, a series of point sources, and a series of parallel infinite line sources were combined with a quasi-steady-state multi-layered cylindrical solution to simulate the temperature response of a deep geologic radioactive waste repository with multi-layered natural and engineered barriers. This evaluation was performed to provide information to scientists and decision makers to compare candidate geologic media for a repository (crystalline rock [granite], clay, salt, and deep borehole), and to provide input for the future evaluation of the trade-off between pre-emplacement surface storage time, waste package size, and repository footprint. This approach was selected in favor of the finite element solution typically used to analyze the temperature response because it allowed rapid comparison of a large number of alternative disposal options and design configurations. More than 100 combinations of waste form, geologic environment, repository design configuration, and surface storage times were analyzed and compared. The analytical solution approach used to analyze the repository temperature response allowed rapid comparison of a large number of alternative disposal options and design configurations. More than 100 combinations of waste form, geologic environment, repository design configuration, and surface storage times were analyzed and compared. This approach allowed investigation of the sensitivity of the results to combinations of parameters that show that there is much flexibility to be gained in terms of spent fuel management options by varying a few key parameters. This initial analysis used representative design concepts and thermal constraints based on international design concepts, and it also included waste forms representing future fuel cycles with high burnup fuels. Unlike repository designs with large open tunnels and pre-closure ventilation, all of the disposal concepts analyzed in this study used enclosed emplacement modes, where the waste packages were in direct contact with encapsulating engineered or natural materials. The deep borehole repository concept limits the size of the SNF waste packages and may require rod consolidation to fit within the drill casing diameter. A single assembly waste package, assuming rod consolidation, was evaluated in the current analysis. Similar size restrictions apply for the HLW canisters. At this time no thermal constraints have been defined for the deep borehole repository concept. Representative EBS materials and properties were evaluated. However, changes in EBS design concepts and materials can also have significant effects on the maximum waste package surface temperature. Increased thermal conductivity of the buffer layer can be achieved by using an engineered buffer consisting of a mixture of graphite, sand, and bentonite [14]. One of the advantages of the analytical model is that it highlights the sensitivity of the results to the parameters that define the repository layout, including spacing between axial and lateral neighboring waste packages and drifts. It is clear that repository layout adjustments can be made to reduce the calculated peak temperatures. The results also show that significant reductions in required surface storage times can be achieved if higher thermal constraints can be justified Additional studies are planned to evaluate the trade-offs between surface storage times, repository layout parameters, and variations in EBS design concepts. Model validation and uncertainties will also be addressed. It is expected that shorter surface storage times and more optimized repository design configurations may be achieved. (authors)

Greenberg, Harris R.; Blink, James A.; Fratoni, Massimiliano; Sutton, Mark [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Ross, Amber D. [University of the Sciences in Philadelphia, Philadelphia, PA 19104 (United States)

2012-07-01T23:59:59.000Z

284

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B  

SciTech Connect (OSTI)

Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

Not Available

1994-06-01T23:59:59.000Z

285

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 2  

SciTech Connect (OSTI)

The twenty papers in this volume are divided into three parts: site exploration and characterization; repository development and design; and waste package development and design. These papers represent the status of technology that existed in 1981 and 1982. Individual papers were processed for inclusion in the Energy Data Base.

Hofmann, P.L. (ed.)

1982-01-01T23:59:59.000Z

286

Preliminary parametric performance assessment of potential final waste forms for alpha low-level waste at the Idaho National Engineering Laboratory. Revision 1  

SciTech Connect (OSTI)

This report presents a preliminary parametric performance assessment (PA) of potential waste disposal systems for alpha-contaminated, mixed, low-level waste (ALLW) currently stored at the Transuranic Storage Area of INEL. The ALLW, which contains from 10 to 100 nCi/g of transuranic (TRU) radionuclides, is awaiting treatment and disposal. The purpose of this study was to examine the effects of several parameters on the radiological-confinement performance of potential disposal systems for the ALLW. The principal emphasis was on the performance of final waste forms (FWFs). Three categories of FWF (cement, glass, and ceramic) were addressed by evaluating the performance of two limiting FWFs for each category. Performance at five conceptual disposal sites was evaluated to illustrate the effects of site characteristics on the performance of the total disposal system. Other parameters investigated for effects on receptor dose included inventory assumptions, TRU radionuclide concentration, FWF fracture, disposal depth, water infiltration rates, subsurface-transport modeling assumptions, receptor well location, intrusion scenario assumptions, and the absence of waste immobilization. These and other factors were varied singly and in some combinations. The results indicate that compliance of the treated and disposed ALLW with the performance objectives depends on the assumptions made, as well as on the FWF and the disposal site. Some combinations result in compliance, while others do not. The implications of these results for decision making relative to treatment and disposal of the INEL ALLW are discussed. The report compares the degree of conservatism in this preliminary parametric PA against that in four other PAs and one risk assessment. All of the assessments addressed the same disposal site, but different wastes. The report also presents a qualitative evaluation of the uncertainties in the PA and makes recommendations for further study.

Smith, T.H.; Sussman, M.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Myers, J.; Djordjevic, S.M.; DeBiase, T.A.; Goodrich, M.T.; DeWitt, D. [IT Corp., Albuquerque, NM (United States)

1995-08-01T23:59:59.000Z

287

Recommended reforms in codes and standards, quality assurance, and engineering practices for competitive liquid metal nuclear power plants  

SciTech Connect (OSTI)

Recommendations are presented on LMFBR: codes and standards; quality assurance requirements and practices; and engineering practices. (JDB)

Harms, W.O. (comp.)

1986-04-01T23:59:59.000Z

288

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

/spills and subsequent clean up costs ($20,000) Sewage Sludge Volume Reduction 234,000 Radioactive Waste $910,000 $193,400 $716,600 60,000 gallons of radioactive STP liquid waste could have been disposed of through,000) Digital Imaging System Substitution 282 Hazardous Waste / Radioactive Waste / Industrial Waste $25,000 $25

289

Savannah River Site Achieves Transuranic Waste Disposition Goal...  

Office of Environmental Management (EM)

liquid waste contractor, Savannah River Remediation (SRR): Closed two more underground tanks containing radioactive waste, helping reduce a significant environmental risk to South...

290

Engines  

SciTech Connect (OSTI)

This invention relates to Stirling engines and to improved methods of operation whereby catalytic oxidation of a major proportion of the fuel takes place in the external combustor. An external combustion unit of a Stirling engine comprises a catalytic combustor having a thermally stable and oxidation resistant monolith made from and/or carrying a catalytic material and including a multiplicity of flow paths for catalytic combustion of combustible gases and injected fuel. The use of a catalytic combustor in accordance with this invention enables a Stirling or other engine fitted therewith to be used in areas such as mines and underwater installations where conventional flame combustion is impracticable or is controlled by stringent regulations.

Enga, B.E.

1981-08-25T23:59:59.000Z

291

Vitrified waste option study report  

SciTech Connect (OSTI)

A {open_quotes}Settlement Agreement{close_quotes} between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This report investigates vitrification treatment of all ICPP calcine, including the existing and future HLW calcine resulting from calcining liquid Sodium-Bearing Waste (SBW). Currently, the SBW is stored in the tank farm at the ICPP. Vitrification of these wastes is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the calcined waste and casting the vitrified mass into stainless steel canisters that will be ready to be moved out of the Idaho for disposal by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a HLW national repository. The operating period for vitrification treatment will be from 2013 through 2032; all HLW will be treated and in storage by the end of 2032.

Lopez, D.A.; Kimmitt, R.R.

1998-02-01T23:59:59.000Z

292

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer HonoredEngineering

293

HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)  

SciTech Connect (OSTI)

This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

Gilmore, Walter E. [Los Alamos National Laboratory; Stender, Kerith K. [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

294

Completion report for the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report documents the results of the Inactive Liquid Low-Level Waste Tank Remediation Project at Oak Ridge National Laboratory (ORNL). The work performed is compared with that proposed in the statement of work and the service contract specification for the maintenance action to remediate tanks 3013, 3004-B, T-30, and 3001-B. The Federal Facility Agreement (FFA) among the U.S. Environmental Protection Agency (EPA), the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE) requires that all tanks, which have been removed from service and are designated in the FFA as Category D, must be remediated in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. The Environmental Restoration Program`s inactive tank removal program strategy and plans for remediating the inactive LLLW tanks were documented in a report issued in January 1995 (Inactive Tanks Remediation Program Strategy and Plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER-297). The inactive (Category D) tanks were initially screened for remediation according to risk, remediation technology required, level of instrumentation available, interferences with other piping and equipment, location, and available sludge removal techniques and storage requirements. On the basis of this preliminary screening, the tanks were assigned to one of five batches (I through V) for consideration of remedial action alternatives, and these batches were tentatively scheduled for remedial actions. The eight links tentatively assigned to Batch I were divided into two groups (Series I and Series II).

NONE

1996-02-01T23:59:59.000Z

295

DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste  

SciTech Connect (OSTI)

The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

Gong, W. L.; Lutz, Werner; Pegg, Ian L.

2011-07-21T23:59:59.000Z

296

Cementitious waste option scoping study report  

SciTech Connect (OSTI)

A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

Lee, A.E.; Taylor, D.D.

1998-02-01T23:59:59.000Z

297

Vehicle Fuel Economy Improvement through Thermoelectric Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

298

Supervisory General Engineer (Facility Engineering Division Director)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will lead the Facility Engineering Division by providing internal and independent safety system oversight of Waste Isolation Pilot Plant (WIPP) operations in...

299

Engineering & Science is printed on recycled paper containing a minimum of 10 percent post-consumer waste. The paper's virgin  

E-Print Network [OSTI]

-consumer waste. The paper's virgin pulp comes from trees grown in the U.S. in accordance with the Forest of Caltech research will still be told, E&S-style. on the electronic frontier, work on the new websites

300

Engineering Engineering  

E-Print Network [OSTI]

Engineering Engineering Technology & A T P E N N S T A T E 2 0 1 0 ­ 2 0 1 1 #12;2 Join us at penn state! Since 1896, Penn State has been a leader in engineering and engineering technology education varieties of engineering and engineering technology majors found anywhere in the United States. This means

Maroncelli, Mark

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Shockwave Engine: Wave Disk Engine  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engineís pistons to pump and powers the car. MSUís engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engineís rotors causing them to turn, which generates electricity. MSUís redesigned engine would be the size of a cooking pot and contain fewer moving partsóreducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

None

2010-01-14T23:59:59.000Z

302

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network [OSTI]

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

303

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

304

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

305

Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution  

SciTech Connect (OSTI)

The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

Thiesen, B.P.

1993-01-01T23:59:59.000Z

306

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer Honored

307

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is Partnershipsn eEngineering

308

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

309

Cost of meeting geothermal liquid effluent disposal regulations  

SciTech Connect (OSTI)

Background information is presented on the characteristics of liquid wastes and the available disposal options. Regulations that may directly or indirectly influence liquid waste disposal are reviewed. An assessment of the available wastewater-treatment systems is provided. A case study of expected liquid-waste-treatment and disposal costs is summarized. (MHR)

Wells, K.D.; Currie, J.W.; Price, B.A.; Rogers, E.A.

1981-06-01T23:59:59.000Z

310

Los Alamos National Laboratory Waste Management Program  

SciTech Connect (OSTI)

Los Alamos National Laboratory's (LANL) waste management program is responsible for disposition of waste generated by many of the LANL programs and operations. LANL generates liquid and solid waste that can include radioactive, hazardous, and other constituents. Where practical, LANL hazardous and mixed wastes are disposed through commercial vendors; low-level radioactive waste (LLW) and radioactive asbestos-contaminated waste are disposed on site at LANL's Area G disposal cells, transuranic (TRU) waste is disposed at the Waste Isolation Pilot Plant (WIPP), and high-activity mixed wastes are disposed at the Nevada Test Site (NTS) after treatment by commercial vendors. An on-site radioactive liquid waste treatment facility (RLWTF) removes the radioactive constituents from liquid wastes and treated water is released through an NPDES permitted outfall. LANL has a very successful waste minimization program. Routine hazardous waste generation has been reduced over 90% since 1993. LANL has a DOE Order 450.1-compliant environmental management system (EMS) that is ISO 14001 certified; waste minimization is integral to setting annual EMS improvement objectives. Looking forward, under the new LANL management and operating contractor, Los Alamos National Security (LANS) LLC, a Zero Liquid Discharge initiative is being planned that should eliminate flow to the RLWTF NPDES-permitted outfall. The new contractor is also taking action to reduce the number of permitted waste storage areas, to charge generating programs directly for the cost to disposition waste, and to simplify/streamline the waste system. (authors)

Lopez-Escobedo, G.M.; Hargis, K.M.; Douglass, C.R. [Los Alamos National Laboratory, NM (United States)

2007-07-01T23:59:59.000Z

311

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

312

Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report  

SciTech Connect (OSTI)

Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

Bern, J.; Neufeld, R. D.; Shapiro, M. A.

1980-11-30T23:59:59.000Z

313

College of Engineering Department of Civil and Environmental Engineering  

E-Print Network [OSTI]

to Geotechnical Engineering Lab 1 cr. CIVE 413 Environmental River Mechanics 3 cr. CIVE 423 Ground Water for Waste Disposal 3 cr. CIVE 575 Sustainable Water and Waste Management 3 cr. CIVE 576 EngineeringCollege of Engineering Department of Civil and Environmental Engineering Major in Environmental

314

2401-W Waste storage building closure plan  

SciTech Connect (OSTI)

This plan describes the performance standards met and closure activities conducted to achieve clean closure of the 2401-W Waste Storage Building (2401-W) (Figure I). In August 1998, after the last waste container was removed from 2401-W, the U.S. Department of Energy, Richland Operations Office (DOE-RL) notified Washington State Department of Ecology (Ecology) in writing that the 2401-W would no longer receive waste and would be closed as a Resource Conservation and Recovery Act (RCRA) of 1976 treatment, storage, and/or disposal (TSD) unit (98-EAP-475). Pursuant to this notification, closure activities were conducted, as described in this plan, in accordance with Washington Administrative Code (WAC) 173-303-610 and completed on February 9, 1999. Ecology witnessed the closure activities. Consistent with clean closure, no postclosure activities will be necessary. Because 2401-W is a portion of the Central Waste Complex (CWC), these closure activities become the basis for removing this building from the CWC TSD unit boundary. The 2401-W is a pre-engineered steel building with a sealed concrete floor and a 15.2-centimeter concrete curb around the perimeter of the floor. This building operated from April 1988 until August 1998 storing non-liquid containerized mixed waste. All waste storage occurred indoors. No potential existed for 2401-W operations to have impacted soil. A review of operating records and interviews with cognizant operations personnel indicated that no waste spills occurred in this building (Appendix A). After all waste containers were removed, a radiation survey of the 2401-W floor for radiological release of the building was performed December 17, 1998, which identified no radiological contamination (Appendix B).

LUKE, S.M.

1999-07-15T23:59:59.000Z

315

Fusion Engineering and Design 41 (1998) 561567 Combination of a self-cooled liquid metal breeder blanket with  

E-Print Network [OSTI]

with self-cooled blankets is the high chemical reactivity of lithium with water. A secondary heat transport. This goal should set the guidelines for the selection of concepts and materials for nuclear components blan- kets is the high chemical reactivity of this liquid metal with water. To avoid such a reaction

316

Chapter 30 Waste Management: General Administrative Procedures (Kentucky)  

Broader source: Energy.gov [DOE]

The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous waste defined or identified as hazardous in KRS...

317

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

318

TRU Waste Sampling Program: Volume I. Waste characterization  

SciTech Connect (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

319

FEASIBILITY AND EXPEDIENCE TO VITRIFY NPP OPERATIONAL WASTE  

SciTech Connect (OSTI)

Operational radioactive waste is generated during routine operation of NPP. Process waste is mainly generated by treatment of water from reactor or ancillaries including spent fuel storage pools and some decontamination operations. Typical process wastes of pressurized water reactors (PWR or WWER) are borated water concentrates, whereas typical process wastes of boiling and RBMK type reactors are water concentrates with no boron content. NPP operational wastes are classified as low and intermediate level waste (LILW). NPP operational waste must be solidified in order to ensure safe conditions of storage and disposal. Currently the most promising solidification method for this waste is the vitrification technology. Vitrification of NPP operational waste is a relative new option being developed for last years. Nevertheless there is already accumulated operational experience on vitrifying low and intermediate level waste in Russian Federation at Moscow SIA ''Radon'' vitrification plant. This plant uses the most advanced type induction high frequency melters that facilitate the melting process and significantly reduce the generation of secondary waste and henceforth the overall cost. The plant was put into operation by the end of 1999. It has three operating cold crucible melters with the overall capacity up to 75 kg/h. The vitrification technology comprises a few stages, starting with evaporation of excess water from liquid radioactive waste, followed by batch preparation, glass melting, and ending with vitrified waste blocks and some relative small amounts of secondary waste. First of all since the original waste contain as main component water, this water is removed from waste through evaporation. Then the remaining salt concentrate is mixed with necessary technological additives, thus a glass-forming batch is formed. The batch is fed into melters where the glass melting occurs. From here there are two streams: one is the glass melt containing the most part of radioactivity and second is the off gas flow, which contains off gaseous and aerosol airborne. The melt glass is fed into containers, which are slowly cooled in an annealing tunnel furnace to avoid accumulation of mechanical stresses in the glass. Containers with glass are the final processing product containing the overwhelming part of waste contaminants. The second stream from melter is directed to gas purification system, which is a rather complex system taking into account the necessity to remove from off gas not only radionuclides but also the chemical contaminants. Operation of this purification system leads to generation of a small amount of secondary waste. This waste stream slightly contaminated with volatilized radionuclides is recycled in the same technological scheme. As a result only non-radioactive materials are produced. They are either discharged into environment or reused. Based on the experience gained during operation of vitrification plant one can conclude on high efficiency achieved through vitrification method. Another significant argument on vitrifying NPP operational waste is the minimal impact of vitrified radioactive waste onto environment. Solidified waste shall be disposed of into a near surface disposal facility. Waste forms disposed of in a near-surface wet repository eventually come into contact with groundwater. Engineered structures used or designed to prevent or postpone such contact and the subsequent radionuclide release are complex and often too expensive. Vitrification technologies provide waste forms with excellent resistance to corrosion and gave the basic possibility of maximal simplification of engineered barrier systems. The most simple disposal option is to locate the vitrified waste form packages directly into earthen trenches provided the host rock has the necessary sorption and confinement properties. Such an approach will significantly make simpler the disposal facilities thus contributing both to enhancing safety and economic al efficiency.

LIFANOV, F.A.; OJOVAN, M.I.; STEFANOVSKY, S.V.; BURCL, R.

2003-02-27T23:59:59.000Z

320

Waste and Recycling  

ScienceCinema (OSTI)

Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

McCarthy, Kathy

2013-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bubblers Speed Nuclear Waste Processing at SRS  

SciTech Connect (OSTI)

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2010-11-14T23:59:59.000Z

322

Bubblers Speed Nuclear Waste Processing at SRS  

ScienceCinema (OSTI)

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2014-08-06T23:59:59.000Z

323

ENGINEERING ENGINEERING  

E-Print Network [OSTI]

million for Air Force project ¬∑ Biological Systems Engineering uses MRI machine to further tissue studies: Engineering Extraordinary Students Enjoy a selection of stories about some of the amazing students¬ģ ENGINEERING NEBRASKA@ ENGINEERING EXTRAORDINARY STUDENTS AlSO INSIDE: BSEN INNOVATES WITH MRI

Farritor, Shane

324

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

SciTech Connect (OSTI)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

N /A

2002-10-11T23:59:59.000Z

325

Waste Heat Boilers for Incineration Applications  

E-Print Network [OSTI]

Incineration is a widely used process for disposing of solid, liquid and gaseous wastes generated in various types of industries. In addition to destroying pollutants, energy may also be recovered from the waste gas streams in the form of steam...

Ganapathy, V.

326

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Energy Savers [EERE]

Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a)) The Office of Nuclear...

327

Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media  

SciTech Connect (OSTI)

For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

Steindler, M.J.; Ader, M.; Barletta, R.E.

1980-09-01T23:59:59.000Z

328

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

Not Available

1994-06-01T23:59:59.000Z

329

Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology  

SciTech Connect (OSTI)

Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and background locations. However, the committed effective dose equivalent estimated from the potential human consumption of the muscle and bone tissue from these rock squirrels did not suggest any human health risk. Indirect routes of tritium uptake, possibly through consumption of vegetation, are important for animals in the lagoon area.

Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson; John D. Huchton; Teralene S. Foxx

1999-11-01T23:59:59.000Z

330

INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement  

SciTech Connect (OSTI)

In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed action, significant new circumstances, or new information relevant to environmental concerns). This is not to question the previous analysis or decisions based on that analysis, but whether the environmental impact analyses are still adequate in light of programmatic changes. In addition, the information for each of the projects for which decisions were deferred in the ROD needs to be reviewed to determine if decisions can be made or if any additional NEP A analysis needs to be completed. The Supplement Analysis is required to contain sufficient information for DOE to determine whether (1) an existing EIS should be supplemented, (2) a new EIS should be prepared, or (3) no further NEP A documentation is required.

N /A

2005-06-30T23:59:59.000Z

331

Engineering scale development of the Vapor-Liquid-Solid (VLS) process for the production of silicon carbide fibrils  

SciTech Connect (OSTI)

Vapor-liquid-solid (VLS)SiC fibrils are used as reinforcement in ceramic matrix composites (CMC). A program has been completed for determining process scaleup parameters and to produce material for evaluation in a CMC. The scaleup is necessary to lower production cost and increase material availability. Scaleup parameters were evaluated in a reactor with a vertical dimension twice that of the LANL reactor. Results indicate that the scaleup will be possible. Feasibility of recycling process gas was demonstrated and the impact of postprocessing on yields determined.

Hollar, W.E. Jr. [Carborundum Co., Niagara Falls, NY (United States). Technology Div.; Mills, W.H. [BP America, Inc., Cleveland, OH (United States)

1993-09-01T23:59:59.000Z

332

Mixed waste: Proceedings  

SciTech Connect (OSTI)

This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

1993-12-31T23:59:59.000Z

333

DR. BERNARD AMADEI Professor of Civil Engineering  

E-Print Network [OSTI]

, water, transportation, materials, waste disposal, earth moving, health care, environmental cleanup for a new golden age for the engineering profession where engineering solutions are more global

Gilchrist, James F.

334

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ¬Ĺ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

335

Nuclear waste management. Quarterly progress report, January-March 1980  

SciTech Connect (OSTI)

Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-06-01T23:59:59.000Z

336

E-Print Network 3.0 - aqueous tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: by tank truck. The various wastes, when received, are pumped to storage tanks, then blended to produce... of Liquid Fluid Wastes General Description Light...

337

UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and  

E-Print Network [OSTI]

chemical waste, hazardous solid chemical waste (i.e. items that have been contaminated with hazardous are preferred for all hazardous liquid chemical waste. - Plastic bags are preferred for all hazardous solidUNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all

Northern British Columbia, University of

338

SUCCESSES AND EMERGING ISSUES IN SIMULATING THE PROCESSING BEHAVIOR OF LIQUID-PARTICLE NUCLEAR WASTE SLURRIES AT THE SAVANNAH RIVER SITE - 205E  

SciTech Connect (OSTI)

Slurries of inorganic solids, containing both stable and radioactive elements, were produced during the cold war as by-products of the production of plutonium and enriched uranium and stored in large tanks at the Savannah River Site. Some of this high level waste is being processed into a stable glass waste form today. Waste processing involves various large scale operations such as tank mixing, inter-tank transfers, washing, gravity settling and decanting, chemical adjustment, and vitrification. The rheological properties of waste slurries are of particular interest. Methods for modeling flow curve data and predicting the properties of slurry blends are particularly important during certain operational phases. Several methods have been evaluated to predict the rheological properties of sludge slurry blends from the data on the individual slurries. These have been relatively successful.

Koopman, D.; Lambert, D.; Stone, M.

2009-09-02T23:59:59.000Z

339

Thermoelectrici Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005...

340

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

Higley, B.A.

1995-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - acid liquid radioactive Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

processing liquids, electroplating solutions and radioactive tank wastes. A researcher works... solid and liquid radioactive samples. NMR research has been performed on nuclear...

342

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

343

Mechanical & Aerospace Engineering  

E-Print Network [OSTI]

in Mechanical Engineering at the School for Engineering of Matter, Transport and Energy, working in Dr. MarcusMechanical & Aerospace Engineering The atomization of a liquid jet by a high speed cross.S.E. degree in mechanical engineering from Amirkabir University of Technology in 2006 and M.S. degree

344

Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels  

SciTech Connect (OSTI)

An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

Air Products and Chemicals

2008-09-30T23:59:59.000Z

345

Environmental Engineering Is Environmental Engineering right for me?  

E-Print Network [OSTI]

Environmental Engineering Is Environmental Engineering right for me? If you are interested in the improvement of environmental conditions through the use of engineering skills then Environmental Engineering is well suited to you. An Environmental Engineering degree programme will focus on aspects such as waste

Harman, Neal.A.

346

College of Engineering Department of Civil and Environmental Engineering  

E-Print Network [OSTI]

Environmental River Mechanics 3 cr. CIVE 423 Groundwater Engineering 3 cr. CIVE 425 Soil and Water Engineering 3 Engineering 3 cr. CIVE 575 Sustainable Water and Waste Management 3 cr. Science Tech Electives Must choose oneCollege of Engineering Department of Civil and Environmental Engineering Major in Environmental

347

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

348

Liquid-Liquid Extraction Processes  

E-Print Network [OSTI]

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

349

Improvements, Evaluation, and Application of 1D Vetem Inversion and Development and Application of 3D Vetem Inversion to Waste Pits at The Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The project aim was the improvement, evaluation, and application of one dimensional (1D) inversion and development and application of three dimensional (3D) inversion to processing of data collected at waste pits at the Idaho National Engineering and Environmental Laboratory. The inversion methods were intended mainly for the Very Early Time Electromagnetic (VETEM) system which was designed to improve the state-of-the-art of electromagnetic imaging of the shallow (0 to about 5m) subsurface through electrically conductive soils.

Weng Cho Chew

2004-10-27T23:59:59.000Z

350

Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

Eaton, W.C. [ed.

1995-05-31T23:59:59.000Z

351

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

352

Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal  

E-Print Network [OSTI]

Waste Sharps Waste Solid Lab Waste Liquid Waste Any of these devices if contaminated with biohazardousBiohazardous Waste Disposal GuidelinesDescriptionStorage& packaging LabelingTreatmentDisposal Mixed container. Container must be leakproof, ridgid, puncture resistant, clearly marked for biohazardous waste

Wikswo, John

353

Independent Oversight Activity Report, Hanford Waste Treatment...  

Broader source: Energy.gov (indexed) [DOE]

Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations HIAR-HANFORD-2014-01-13 This Independent Oversight Activity Report documents...

354

Screening Level Risk Assessment for the New Waste Calcining Facility  

SciTech Connect (OSTI)

This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidify (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.

M. L. Abbott; K. N. Keck; R. E. Schindler; R. L. VanHorn; N. L. Hampton; M. B. Heiser

1999-05-01T23:59:59.000Z

355

Secondary Waste Form Down-Selection Data PackageóFluidized Bed Steam Reforming Waste Form  

SciTech Connect (OSTI)

The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

2011-09-12T23:59:59.000Z

356

Nuclear waste management. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-04-01T23:59:59.000Z

357

Black Pine Engineering  

Broader source: Energy.gov [DOE]

Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

358

Mechanical engineering Department Seminar  

E-Print Network [OSTI]

Mechanical engineering Department Seminar Domitilla Del Vecchio Department of Mechanical. A near future is envisioned in which re- engineered bacteria will turn waste into energy and kill cancer, she joined the Department of Mechanical Engineering and the Laboratory for Information and Decision

359

Mixing in a liquid metal electrode  

E-Print Network [OSTI]

Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

Kelley, Douglas H.

360

Review and Status of Solid Waste Management Practices in Multan, Pakistan  

E-Print Network [OSTI]

in management of liquid and solid waste, Multan City, JuneResource Center. (2004). Solid waste management study,The secondary data on solid waste and its management aspects

Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2014 GRADUATE STUDIES ENVIRONMENTAL ENGINEERING  

E-Print Network [OSTI]

Meteorology · Air Pollution Physics and Chemistry · Atmospheric Aerosols · Atmospheric Boundary Layer waste engineering; ground water modeling and treatment; air quality monitoring, pollution control with faculty in Earth and Atmospheric Sciences, Biology, Chemistry and Biochemistry, Biomedical Engineering

Wang, Yuhang

362

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

SciTech Connect (OSTI)

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

363

Hanford Waste Vitrification Plant technical manual  

SciTech Connect (OSTI)

A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

1996-03-01T23:59:59.000Z

364

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

365

High-Temperature Components for Rankine-Cycle-Based Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on...

366

FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS  

SciTech Connect (OSTI)

Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

2009-02-07T23:59:59.000Z

367

Direct cementitious waste option study report  

SciTech Connect (OSTI)

A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste and casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.

Dafoe, R.E.; Losinski, S.J.

1998-02-01T23:59:59.000Z

368

NDAA Section 3116 Waste Determinations with Related Disposal...  

Office of Environmental Management (EM)

The other two DOE sites with similar waste (residuals remaining after cleaning out tanks and equipment that held liquid high-level waste) are Office of River Protection and...

369

Safety evaluation for packaging (onsite) concrete-lined waste packaging  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

Romano, T.

1997-09-25T23:59:59.000Z

370

Processing results of 1800 gallons of mercury and radioactively contaminated mixed waste rinse solution  

SciTech Connect (OSTI)

Mercury-contaminated rinse solution was successfully treated at the Idaho National Engineering Laboratory. This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 reactor shield tank. Approximately 6.8 m{sup 3} (1,800 pi) of waste was generated and placed into 33 drums. Each drum contained precipitated sludge material ranging from 2--5 cm in depth, with the average depth of about 6 cm. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/mL while the average sludge contamination was about 13,800 pCi/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. The resulting solution after treatment had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml.

Thiesen, B.P.

1993-05-01T23:59:59.000Z

371

Investigation of the organic matter in inactive nuclear tank liquids  

SciTech Connect (OSTI)

Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

Schenley, R.L.; Griest, W.H.

1990-08-01T23:59:59.000Z

372

State of Tennessee Hazardous Waste Management Permit, TNHW-122  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid, semisolid,...

373

State of Tennessee Hazardous Waste Management Permit, TNHW-127  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

refuse, sludge from a waste treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, including solid, liquid, semisolid,...

374

What can I do with this degree? ENGINEERING  

E-Print Network [OSTI]

- Soil and Water Conser- vation International Consulting Environmental Control Agricultural Structures Engineering Control Systems Field Engineering Operations/Production Environmental and Waste Management Planning Construction Environmental Water Resource

Escher, Christine

375

DOE Announces Strategic Engineering and Technology Roadmap for...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era...

376

EIS-0290: Idaho National Engineering and Environmental Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

90: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP) EIS-0290: Idaho National Engineering and Environmental Laboratory...

377

Georgia Institute ofTechnology | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University | University of Illinois, Urbana-Champaign | University of Minnesota |Vanderbilt University Project 2B: Free Liquid-Piston Engine Co  

E-Print Network [OSTI]

Displacement (Experimental) Fluid Chamber (Liquid Piston) Permanent Magnet Magnetic Gap Adjustment Screw transduction efficiency to stored compressed gas, being lightweight and compact, and coupling to power dense

Barth, Eric J.

378

Advanced Natural Gas Reciprocating Engine(s)  

SciTech Connect (OSTI)

The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 Ė 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

Pike, Edward

2014-03-31T23:59:59.000Z

379

TRUEX partitioning studies applied to ICPP sodium-bearing waste  

SciTech Connect (OSTI)

The Idaho Chemical Processing Plant (ICPP), located in southeast Idaho at the USDOE Idaho National Engineering Laboratory, formerly reprocessed highly enriched spent nuclear fuel to recover fissionable uranium. The HLW raffinates from the combined PUREX/REDOX type uranium recovery process were converted to solid oxides (calcine) in a high temperature fluidized bed. Liquid effluents from the calcination process were combined with liquid sodium bearing waste (SBW) generated primarily in conjunction with decontamination activities. Due to the high sodium content in the SBW, this secondary waste stream is not directly amenable to solidification via calcination. Currently, approximately 1.5 millon gallons of liquid SBW are stored at the ICPP in large tanks. Several treatment options for the SBW are currently being considered, including the TRansUranic EXtraction (TRUEX) process developed by Horwitz and co-workers at Argonne National Laboratory (ANL), in preparation for the final disposition of SBW. Herein described are experimental results of radionuclide tracer studies with simulated SBW using the TRUEX process solvent.

Herbst, R.S.; Brewer, K.N.; Law, J.D.; Tranter, T.J.; Todd, T.A.

1994-05-01T23:59:59.000Z

380

Put only cleaned drug bottles into the same case as bottles of residential waste.  

E-Print Network [OSTI]

Put only cleaned drug bottles into the same case as bottles of residential waste. Put uncleaned aluminum foil. Put them into the drum used for residential waste. Experiment-Related Waste Committee Pharmaceutical Waste and Others Organic Waste Liquids Experiment-Relatedand ResidentialWastebyType #12;

Nakamura, Iku

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EnvironMEntAl EnginEEring AnD EnvironMEntAl QuAlity  

E-Print Network [OSTI]

and distribution, waste treatment, water and air pollution, solid waste disposal, hazardous and toxic wasteEnvironMEntAl EnginEEring AnD EnvironMEntAl QuAlity SciEncE College of Engineering and Mines management, pollution prevention, environmental impact evaluation, administration of environmental programs

Hartman, Chris

382

Engineering Technician  

Broader source: Energy.gov [DOE]

Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

383

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)  

SciTech Connect (OSTI)

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

CHANG, ROBERT

2006-02-02T23:59:59.000Z

384

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect (OSTI)

Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

385

Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

386

Remarks on Liquid Wall Research Mohamed Abdou  

E-Print Network [OSTI]

Remarks on Liquid Wall Research Mohamed Abdou Professor Mechanical and Aerospace Engineering UCLA physicists and engineering scientists · Enhances synergism between IFE and MFE · Provides excellent disciplines. #12;Several "Ideas" Have Been Proposed for Liquid Walls Fluids 1) High-conductivity, low Pr

California at Los Angeles, University of

387

Jan. 6 Introduction and course overview Waste generation and characterization EPA 2011 Waste Characterization Report (Exec. Sum., Ch. 1-  

E-Print Network [OSTI]

Policy & Global Solid Waste Management 24 Regulatory Policy & Global Solid Waste Management 27 Regulatory Policy & Global Solid Waste Management 29 Life-cycle analysis (LCA) Life-Cycle Assessment Principles Final exam at 8 AM 2014 Course Syllabus CE 477/CE 577 Solid Waste Engineering #12;

Barlaz, Morton A.

388

Remediation of oil field wastes  

SciTech Connect (OSTI)

Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

Peters, R.W.; Wentz, C.A.

1990-01-01T23:59:59.000Z

389

Solid Waste Operations Complex W-113: Preliminary design drawings. Volume 2  

SciTech Connect (OSTI)

Engineering drawings are presented for the solid waste retrieval facilities at the Hanford Site. Process flowsheets are also presented.

NONE

1995-01-01T23:59:59.000Z

390

E-Print Network 3.0 - ash waste encapsulated Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for By-Products Utilization Collection: Engineering ; Materials Science 49 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: ......

391

Waste Isolation Pilot Plant: No-migration variance petition. Figures: Volume 8, Revision 1  

SciTech Connect (OSTI)

This report is a compilation of engineering drawings concerned with seal arrangement at the Waste Isolation Pilot Plant (WIPP).

Not Available

1990-03-01T23:59:59.000Z

392

ENERGY AND ENVIRONMENTAL ENGINEERING  

E-Print Network [OSTI]

in the common-core engineering program. The Energy and Environment Specialization provides education and waste- water · Sustainable landfills · Energy sector contaminated site remediation · Nanotechnology in Canada for integrating sustainability into engineering education. For more information on applying

Calgary, University of

393

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

394

Evaluation of final waste forms and recommendations for baseline alternatives to group and glass  

SciTech Connect (OSTI)

An assessment of final waste forms was made as part of the Federal Facilities Compliance Agreement/Development, Demonstration, Testing, and Evaluation (FFCA/DDT&E) Program because supplemental waste-form technologies are needed for the hazardous, radioactive, and mixed wastes of concern to the Department of Energy and the problematic wastes on the Oak Ridge Reservation. The principal objective was to identify a primary waste-form candidate as an alternative to grout (cement) and glass. The effort principally comprised a literature search, the goal of which was to establish a knowledge base regarding four areas: (1) the waste-form technologies based on grout and glass, (2) candidate alternatives, (3) the wastes that need to be immobilized, and (4) the technical and regulatory constraints on the waste-from technologies. This report serves, in part, to meet this goal. Six families of materials emerged as relevant; inorganic, organic, vitrified, devitrified, ceramic, and metallic matrices. Multiple members of each family were assessed, emphasizing the materials-oriented factors and accounting for the fact that the two most prevalent types of wastes for the FFCA/DDT&E Program are aqueous liquids and inorganic sludges and solids. Presently, no individual matrix is sufficiently developed to permit its immediate implementation as a baseline alternative. Three thermoplastic materials, sulfur-polymer cement (inorganic), bitumen (organic), and polyethylene (organic), are the most technologically developed candidates. Each warrants further study, emphasizing the engineering and economic factors, but each also has limitations that regulate it to a status of short-term alternative. The crystallinity and flexible processing of sulfur provide sulfur-polymer cement with the highest potential for short-term success via encapsulation. Long-term immobilization demands chemical stabilization, which the thermoplastic matrices do not offer. Among the properties of the remaining candidates, those of glass-ceramics (devitrified matrices) represent the best compromise for meeting the probable stricter disposal requirements in the future.

Bleier, A.

1997-09-01T23:59:59.000Z

395

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect (OSTI)

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

396

Waste Generated from LMR-AMTEC Reactor Concept  

SciTech Connect (OSTI)

The candidate Liquid Metal Reactor-Alkali Metal Thermal -to- Electric Converter (LMR-AMTEC) is considered to be the first reactor that would use pure liquid potassium as a secondary coolant, in which potassium vapor aids in the conversion of thermal energy to electric energy. As with all energy production, the thermal generation of electricity produces wastes. These wastes must be managed in ways which safeguard human health and minimize their impact on the environment. Nuclear power is the only energy industry, which takes full responsibility for all its wastes. Based on the candidate design of the LMR-AMTEC components and the coolant types, different wastes will be generated from LMR. These wastes must be classified and characterized according to the U.S. Code of Federal Regulation, CFR. This paper defines the waste generation and waste characterization from LMR-AMTEC and reviews the applicable U.S. regulations that govern waste transportation, treatment, storage and final disposition. The wastes generated from LMR-AMTEC are characterized as: (1) mixed waste which is generated from liquid sodium contaminated by fission products and activated corrosion products; (2) hazardous waste which is generated from liquid potassium contaminated by corrosion products; (3) spent nuclear fuel; and (4) low-level radioactive waste which is generated from the packing materials (e.g. activated carbon in cold trap and purification units). The regulations and management of these wastes are summarized in this paper.

Hasan, Ahmed; Mohamed, Yasser, T.; Mohammaden, Tarek, F.

2003-02-25T23:59:59.000Z

397

Fuel gas production by microwave plasma in liquid  

SciTech Connect (OSTI)

We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Shikoku Industry and Technology Promotion Center, 2-5 Marunouchi, Takamatsu, Kagawa 760-0033 (Japan)

2006-06-05T23:59:59.000Z

398

pg. 1 of 2 Oct-13 Environmental Engineering  

E-Print Network [OSTI]

Engineering Lab 1 cr CIVE 413 Environmental River Mechanics 3 cr CIVE 423 Ground Water Engineering 3 cr +CIVE Containment Systems for Waste Disposal 3 cr CIVE 575 Sustainable Water and Waste Management 3 cr CIVE 576pg. 1 of 2 Oct-13 Environmental Engineering: Environmental Concentration Engineering Technical

399

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

Hickman, Mark

400

Engineering Electrical &  

E-Print Network [OSTI]

Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

Hickman, Mark

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams  

SciTech Connect (OSTI)

This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Mayberry, J. [Science Applications International Corp., Idaho Falls, ID (United States)] [Science Applications International Corp., Idaho Falls, ID (United States); Frazier, G. [Univ. of Tennessee, Knoxville, TN (United States)] [Univ. of Tennessee, Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

402

Waste Treatment and Immobilization Plant U. S. Department of Energy Office of River Protection Submerged Bed Scrubber Condensate Disposition Project - 13460  

SciTech Connect (OSTI)

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)

Yanochko, Ronald M. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington 99352 (United States); Corcoran, Connie [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

403

Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2  

SciTech Connect (OSTI)

This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

NONE

1998-01-23T23:59:59.000Z

404

Process for removing sulfate anions from waste water  

DOE Patents [OSTI]

A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

1997-01-01T23:59:59.000Z

405

in Engineering Sustainable Product Creation  

E-Print Network [OSTI]

aims to educate engineers who are conscious in the use of all resources, (e.g. energy efficiency, light of engineering skills. Focus on energy, environment and sustainbale growth The Master of Science in Engineering weight design, assembly time), but are also trained to develop products that minimize waste of e

van der Torre, Leon

406

Estimating heat of combustion for waste materials  

SciTech Connect (OSTI)

Describes a method of estimating the heat of combustion of hydrocarbon waste (containing S,N,Q,C1) in various physical forms (vapor, liquid, solid, or mixtures) when the composition of the waste stream is known or can be estimated. Presents an equation for predicting the heat of combustion of hydrocarbons containing some sulfur. Shows how the method is convenient for estimating the heat of combustion of a waste profile as shown in a sample calculation.

Chang, Y.C.

1982-11-01T23:59:59.000Z

407

Engineering Engineering Education  

E-Print Network [OSTI]

E School of Engineering Engineering Education in a University Setting 292 Degree Programs in Engineering 294 Special Programs 296 Honors 298 Academic Regulations 300 Courses of Study 305 Engineering of Engineering is the largest and oldest private engineering school in the South. Classes offering engineering

Simaan, Nabil

408

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

409

Overview of Fordźs Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

410

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

411

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

412

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006deerschock.pdf More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Development of Thermoelectric...

413

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

414

Vanderbilt Department of Civil and Environmental Engineering  

E-Print Network [OSTI]

engineering 4 water quality and resources 6 waste containment and management 8 multimodal transportation 17 environmental risks, sustainability and remediation 1 programs of study 18 construction management management, nuclear environmental engineering, environmental remediation and environmental management

Bordenstein, Seth

415

Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility  

SciTech Connect (OSTI)

Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

416

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

417

Materials selection for process equipment in the Hanford waste vitrification plant  

SciTech Connect (OSTI)

The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

Elmore, M R; Jensen, G A

1991-07-01T23:59:59.000Z

418

National Institutes of Health: Mixed waste minimization and treatment  

SciTech Connect (OSTI)

The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

NONE

1995-08-01T23:59:59.000Z

419

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium...

420

Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1  

SciTech Connect (OSTI)

This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

BARCOT, R.A.

2000-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "liquid waste engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Georgia Institute ofTechnology | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University | University of Illinois, Urbana-Champaign | University of Minnesota |Vanderbilt University Project 2B: Free Liquid-Piston Engine Co  

E-Print Network [OSTI]

duration. Next Steps Fluid Chamber (Liquid Piston) Permanent Magnet Magnetic Gap Adjustment Screw Exhaust, and coupling to power-dense pneumatic actuators (relative to electromagnetic actuators), the Results to Date was obtained, followed by a fast break-away of the magnetic force upon combustion and complete venting

Barth, Eric J.

422

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-01-01T23:59:59.000Z

423

Thermal processing systems for TRU mixed waste  

SciTech Connect (OSTI)

This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

1992-08-01T23:59:59.000Z

424

Thermoacoustic engines and refrigerators  

SciTech Connect (OSTI)

This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

Swift, G.

1996-12-31T23:59:59.000Z

425

Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2  

SciTech Connect (OSTI)

The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

Jacobsen, P.H.

1997-09-23T23:59:59.000Z

426

Waste Management Program management plan. Revision 1  

SciTech Connect (OSTI)

As the prime contractor to the Department of Energy Idaho Operations Office (DOE-ID), Lockheed Martin Idaho Technologies Company (LMITCO) provides comprehensive waste management services to all contractors at the Idaho National Engineering and Environmental Laboratory (INEEL) through the Waste Management (WM) Program. This Program Management Plan (PMP) provides an overview of the Waste Management Program objectives, organization and management practices, and scope of work. This document will be reviewed at least annually and updated as needed to address revisions to the Waste Management`s objectives, organization and management practices, and scope of work. Waste Management Program is managed by LMITCO Waste Operations Directorate. The Waste Management Program manages transuranic, low-level, mixed low-level, hazardous, special-case, and industrial wastes generated at or transported to the INEEL.

NONE

1997-02-01T23:59:59.000Z

427

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

428

Revision 08 (08/10) Form G Radioactive Waste Disposal Form  

E-Print Network [OSTI]

Revision 08 (08/10) Form G Radioactive Waste Disposal Form RS - 19g Proc. 9290, 9501 General Instructions: 1. Do not mix different waste forms together. Keep dry, liquid, and scintillation vials separate. 2. Do not mix waste of different isotopes. 3. Entries are to be made on this form each time waste

Nair, Sankar

429

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

430

Hazardous Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

431

A brief analysis and description of transuranic wastes in the Subsurface Disposal Area of the radioactive waste management complex at INEL  

SciTech Connect (OSTI)

This document presents a brief summary of the wastes and waste types disposed of in the transuranic contaminated portions of the Subsurface Disposal Area of the radioactive waste management complex at Idaho National Engineering Laboratory from 1954 through 1970. Wastes included in this summary are organics, inorganics, metals, radionuclides, and atypical wastes. In addition to summarizing amounts of wastes disposed and describing the wastes, the document also provides information on disposal pit and trench dimensions and contaminated soil volumes. The report also points out discrepancies that exist in available documentation regarding waste and soil volumes and make recommendations for future efforts at waste characterization. 19 refs., 3 figs., 17 tabs.

Arrenholz, D.A.; Knight, J.L.

1991-08-01T23:59:59.000Z

432