Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reimagining liquid transportation fuels : sunshine to petrol.  

SciTech Connect

Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

Johnson, Terry Alan (Sandia National Laboratories, Livermore, CA); Hogan, Roy E., Jr.; McDaniel, Anthony H. (Sandia National Laboratories, Livermore, CA); Siegel, Nathan Phillip; Dedrick, Daniel E. (Sandia National Laboratories, Livermore, CA); Stechel, Ellen Beth; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Ambrosini, Andrea; Coker, Eric Nicholas; Staiger, Chad Lynn; Chen, Ken Shuang; Ermanoski, Ivan; Kellog, Gary L.

2012-01-01T23:59:59.000Z

2

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network (OSTI)

factors that would enhance or impede development and deployment. · Review other alternative fuels MIT HAROLD SCHOBERT Pennsylvania State University CHRISTOPHER SOMERVILLE Energy BioSciences Institute biomass 085 072 Wheat straw 070 055 a2008 costs = baseline costs #12;BIOCHEMICAL CONVERSION STATUS

3

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis  

Science Journals Connector (OSTI)

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis ... An energy balance, in broad outline, is presented for the production of a high-quality liquid transportation fuel from residual crop biomass. ... That is, 40% of the initial energy in the biomass will be found in the final liquid fuel after subtracting out external energy supplied for complete processing, including transportation as well as material losses. ...

J. Manganaro; B. Chen; J. Adeosun; S. Lakhapatri; D. Favetta; A. Lawal; R. Farrauto; L. Dorazio; D. J. Rosse

2011-04-20T23:59:59.000Z

4

The economics of liquid transportation fuels from coal: Past, present and future  

SciTech Connect

This paper reviews the technologies for producing liquid transportation fuels from coal and traces their evolution. Estimates of how their economics have changed with continuing research and development are also given.

Gray, D.; Tomlinson, G.; ElSawy, A. [Mitre Corp., McLean, VA (United States)

1993-08-01T23:59:59.000Z

5

Mesoscopic modeling of liquid water transport in polymer electrolyte fuel cells  

SciTech Connect

A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water leads to the coverage of the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blockage of the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL therefore playa major role in the mass transport loss and hence in the water management of a PEFC. In this article, we present the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation to study the profound influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer.

Mukherjee, Partha P [Los Alamos National Laboratory; Wang, Chao Yang [PENNSTATE UNIV.

2008-01-01T23:59:59.000Z

6

Biomass and Natural Gas to Liquid Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

7

Integrated Catalytic Conversion of ?-Valerolactone to Liquid Alkenes for Transportation Fuels  

Science Journals Connector (OSTI)

...for Transportation Fuels 10.1126/science...Chemical and Biological Engineering, University of...synthesis of renewable fuels remains a challenging...corn ethanol and biodiesel, have the capacity...of transportation fuels from biomass: chemistry...catalysts, and engineering. Chem. Rev. 106...

Jesse Q. Bond; David Martin Alonso; Dong Wang; Ryan M. West; James A. Dumesic

2010-02-26T23:59:59.000Z

8

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network (OSTI)

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

9

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...produce liquid hydrocarbon fuel. In our proposal...production of liquid hydrocarbons. Thus, the goal...sustainable production of hydrocarbon fuel for the transportation...The resulting combustion energy not only provides heat for the endothermic...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

10

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...of liquid hydrocarbon fuels (16, 17). It can...conversion to liquid fuels using the FT process...support total current oil consumption of 13.8 Mbbl/d by the...produce liquid hydrocarbon fuel. In our proposal, the...from the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

11

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

12

Modelling transport fuel demand  

Science Journals Connector (OSTI)

Transport fuels account for an increasing share of oil ... interest to study the economics of the transport fuel market and thereby to evaluate the efficiency of the price mechanism as an instrument of policy in ...

Thomas Sterner; Carol A. Dahl

1992-01-01T23:59:59.000Z

13

Methods of producing transportation fuel  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Cherrillo, Ralph Anthony (Houston, TX); Bauldreay, Joanna M. (Chester, GB)

2011-12-27T23:59:59.000Z

14

Renewable Liquid Fuels Reforming  

Energy.gov (U.S. Department of Energy (DOE))

The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used in the mid- and long-term time frames.

15

AN ASSESSMENT OF ENERGY AND ENVIRONMENTAL ISSUES RELATED TO THE USE OF GAS-TO-LIQUID FUELS IN TRANSPORTATION  

NLE Websites -- All DOE Office Websites (Extended Search)

submitted manuscript has been submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- AC05-96OR22464. Accordingly, the U.S. Government retains a non- exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." ORNL/TM-1999/258 AN ASSESSMENT OF ENERGY AND ENVIRONMENTAL ISSUES RELATED TO THE USE OF GAS-TO-LIQUID FUELS IN TRANSPORTATION David L. Greene Center for Transportation Analysis Oak Ridge National Laboratory November 1999 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464 iii TABLE OF CONTENTS LIST OF FIGURES . .

16

Air Liquide - Biogas & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

17

The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Final report  

SciTech Connect

Amoco Oil Company, investigated a selective catalytic cracking process (FCC) to convert the Fischer-Tropsch (F-T) gasoline and wax fractions to high value transportation fuels. The primary tasks of this contract were to (1) optimize the catalyst and process conditions of the FCC process for maximum conversion of F-T wax into reactive olefins for later production of C{sub 4}{minus}C{sub 8} ethers, and (2) use the olefin-containing light naphtha obtained from FCC processing of the F-T wax as feedstock for the synthesis of ethers. The catalytic cracking of F-T wax feedstocks gave high conversions with low activity catalysts and low process severities. HZSM-5 and beta zeolite catalysts gave higher yields of propylene, isobutylene, and isoamylenes but a lower gasoline yield than Y zeolite catalysts. Catalyst selection and process optimization will depend on product valuation. For a given catalyst and process condition, Sasol and LaPorte waxes gave similar conversions and product selectivities. The contaminant iron F-T catalyst fines in the LaPorte wax caused higher coke and hydrogen yields.

Schwartz, M.M.; Reagon, W.J.; Nicholas, J.J.; Hughes, R.D.

1994-11-01T23:59:59.000Z

18

Air Liquide- Biogas & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

19

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...gasoline and 6% of its diesel demand by converting...conversion to liquid fuels using the FT process...total current oil consumption of 13.8 Mbbl/d by...conversion of syngas to diesel is 100% selective...liquid hydrocarbon fuel. In our proposal...the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

20

Algae: The Source of Reliable, Scalable, and Sustainable Liquid Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Brian Goodall (Sapphire Energy) spoke on Continental Airlines’ January 7th Biofuels Test. The flight was fueled, in part, by Sapphire’s algae-based jet fuel.

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable Liquid Transportation Fuels: The Cornerstone of the Success of Brazilian Bioenergy Program  

Science Journals Connector (OSTI)

During the 1970s OPEC decided to raise the oil price by 70 %. Countries depending on this fuel were forced to develop new sources of energy. As one of those countries, Brazil began the intensification of programs...

Veronica de Araujo Bruno; Adilson Roberto Gonçalves

2014-01-01T23:59:59.000Z

22

Alternative Fuel Transportation Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

federal federal register Monday May 17, 1999 Part II Department of Energy Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 Alternative Fuel Transportation Program; P-series Fuels; Final Rule 26822 Federal Register / Vol. 64, No. 94 / Monday, May 17, 1999 / Rules and Regulations DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 [Docket No. EE-RM-98-PURE] RIN 1904-AA99 Alternative Fuel Transportation Program; P-Series Fuels AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy (DOE). ACTION: Notice of final rulemaking. SUMMARY: In response to a petition filed by Pure Energy Corporation, DOE is amending the rules for the statutory program that requires certain alternative fuel providers and State government

23

Liquid fossil fuel technology  

SciTech Connect

Progress reports are presented under the following headings: (1) extraction (technology assessment, oil research, gas research); (2) liquid processing (characterization, thermodynamics, processing technology); (3) utilization (energy conservation); and (4) project integration and technology transfer. BETC publications are also listed. Some of the highlights for this period are: the Bartlesville Energy Technology Center was converted into NIPER, the National Institute for Petroleum and Energy Research on October 1, 1983; modelling of enthalpies, heat capacities and volumes of aqueous surfactant solutions began using a mass action model; a series of experiments were run on upgrading by hydrogenation SRC-II coal liquid at different degrees of severity and the products have been analyzed; heavy crude oil extracts were separated into fraction with high performance liquid chromatography by Lawrence Berkeley Laboratory and the mass spectra and electron spin resonance were determin ed; and particulates from exhaust gases of diesel engines using fire fuel types are being collected and will be analyzed by chemical methods and results will be compared with those obtained by biological assay. (ATT)

Not Available

1983-01-01T23:59:59.000Z

24

Solid fuel applications to transportation engines  

SciTech Connect

The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

Not Available

1980-06-01T23:59:59.000Z

25

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

26

Alternative Fuels Data Center: Alternative Fuel Public Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Public Transportation Vehicle Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

27

NREL: Transportation Research - Fuels Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

28

Alternative Fuels Data Center: Clean Transportation Fuel Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Transportation Clean Transportation Fuel Standards to someone by E-mail Share Alternative Fuels Data Center: Clean Transportation Fuel Standards on Facebook Tweet about Alternative Fuels Data Center: Clean Transportation Fuel Standards on Twitter Bookmark Alternative Fuels Data Center: Clean Transportation Fuel Standards on Google Bookmark Alternative Fuels Data Center: Clean Transportation Fuel Standards on Delicious Rank Alternative Fuels Data Center: Clean Transportation Fuel Standards on Digg Find More places to share Alternative Fuels Data Center: Clean Transportation Fuel Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon

29

Alternative Fuels Data Center: Clean Transportation Fuels for School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Transportation Clean Transportation Fuels for School Buses to someone by E-mail Share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Facebook Tweet about Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Twitter Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Google Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Delicious Rank Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Digg Find More places to share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Transportation Fuels for School Buses

30

Spent Fuel Transportation Risk Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Transportation Risk Assessment Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and Transportation 1 SFTRA Overview Contents * Project and review teams * Purpose and goals * Basic methodology * Improvements relative to previous studies * Draft NUREG structure and format * Routine shipment analysis and results * Accident condition analysis and results * Findings and conclusions * Schedule 2 SFTRA Research and Review Teams * Sandia National Laboratory Research Team [$1.8M; 9/06-9/12] - Doug Ammerman - principal investigator - Carlos Lopez - thermal - Ruth Weiner - RADTRAN * NRC's SFTRA Technical Review Team - Gordon Bjorkman - structural

31

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

32

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

33

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels from Biomass Liquid Fuels from Biomass Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel...

34

Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells  

E-Print Network (OSTI)

22 November 2013 Accepted 24 December 2013 Keywords: Fuel cells PEM Diffusion Saturation Neutron than 0.15 gPt kWÃ?1 will not be cost competitive. As a result, fuel cell researchers are exploring fuel cells Jon P. Owejan a,b, , Thomas A. Trabold c , Matthew M. Mench b a SUNY Alfred State College

Mench, Matthew M.

35

17 - Hydrogen as a fuel in transportation  

Science Journals Connector (OSTI)

Abstract: Hydrogen has attracted fresh attention in recent decades as an alternative renewable and sustainable transportation fuel. Hydrogen can fuel conventional or hybridized power trains, through highly efficient and low emission hydrogen-fueled internal combustion engines (H2ICE) and proton exchange membrane fuel cells (PEMFC). High capacity and cost-effective onboard vehicle hydrogen storage remains a major challenge, along with the affordability of building out a distributed hydrogen production, distribution, and fueling infrastructure. Current practice is to store hydrogen onboard vehicles as a compressed gas, cryogenic liquid, or in chemical form for conversion on demand. Recent hydrogen demonstrations and field trials have advanced the technology, lowered costs, and improved public perception.

J.R. Anstrom

2014-01-01T23:59:59.000Z

36

EPAct Transportation Regulatory Activities: Alternative Fuel Petitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Petitions to someone by E-mail Share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Facebook Tweet about EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Twitter Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Google Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Delicious Rank EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Digg Find More places to share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Alternative Fuel Petitions Section 301(2) of the Energy Policy Act of 1992 (EPAct 1992) defines

37

Alternative Fuels Data Center: Transportation System Efficiency  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Transportation System Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share Alternative Fuels Data Center: Transportation System Efficiency on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework

38

Transportation fuels from synthetic gas  

SciTech Connect

Twenty-five experimental Fischer-Tropsch synthesis runs were made with 14 different catalysts or combinations of catalysts using a Berty reactor system. Two catalysts showed increased selectivity to transportation fuels compared to typical Fischer-Tropsch catalysts. With a catalyst consisting of 5 wt % ruthenium impregnated on a Y zeolite (run number 24), 63 to 70 wt % of the hydrocarbon product was in the gasoline boiling range. Using a 0.5 wt % ruthenium on alumina catalyst (run number 22), 64 to 78 wt % of the hydrocarbon product was in the diesel fuel boiling range. Not enough sample was produced to determine the octane number of the gasoline from run number 24, but it is probably somewhat better than typical Fischer-Tropsch gasoline (approx. 50) and less than unleaded gasoline (approx. 88). The diesel fuel produced in run number 22 consisted of mostly straight chained paraffins and should be an excellent transportation fuel without further refining. The yield of transportation fuels from biomass via gasification and the Fischer-Tropsch synthesis with the ruthenium catalysts identified in the previous paragraph is somewhat less, on a Btu basis, than methanol (via gasification) and wood oil (PERC and LBL processes) yields from biomass. However, the products of the F-T synthesis are higher quality transportation fuels. The yield of transportation fuels via the F-T synthesis is similar to the yield of gasoline via methanol synthesis and the Mobil MTG process.

Baker, E.G.; Cuello, R.

1981-08-01T23:59:59.000Z

39

The Future of Low Carbon Transportation Fuels  

E-Print Network (OSTI)

" Nuclear" Oil resources" Unconventional:" oil shale liquid, " oil sands" Coal resources" Transport! Elec

Kammen, Daniel M.

40

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

SciTech Connect

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Air Liquide - Biogas & Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquide - Biogas & Fuel Cells Liquide - Biogas & Fuel Cells ■ Hydrogen Energy ■ Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Integrated Concept Purified Biogas 3 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Non-Integrated Concept Landfill WWTP digester Biogas membrane Pipeline quality methane CH4 Pipeline Hydrogen Production To Fuel Cell Vehicles Stationary Fuel Cells With H2 purification Stationary Fuel Cells Direct Conversion Directed Biomethane 4 Air Liquide, world leader in gases for industry, health and the environment Biogas Sources in the US ■ Landfill gas dominates (~4,000 Nm3/h typical)

42

Alternative Liquid Fuels (ALF) | Open Energy Information  

Open Energy Info (EERE)

Fuels (ALF) Jump to: navigation, search Name: Alternative Liquid Fuels (ALF) Address: P.O. Box 76 Place: McArthur, Ohio Zip: 45651 Sector: Biofuels, Renewable Energy, Services...

43

NREL: Technology Deployment - Fuels, Vehicles, and Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

technical experts, policymakers, and other transportation stakeholders in the public and private sectors Providing technical expertise on alternative fuel vehicles and fueling...

44

EIA - International Energy Outlook 2008-Liquid Fuels  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Chapter 2 - Liquid Fuels World liquids consumption increases from 84 million barrels per day in 2005 to 99 million barrels per day in 2030 in the IEO2008 high price case. In the reference case, which reflects a price path that departs significantly from prices prevailing in the first 8 months of 2008, liquids use rises to 113 million barrels per day in 2030. Figure 26. World Liquids Production in the Reference Case, 1990-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800.

45

Nuclear Fuel Storage and Transportation Planning Project Overview...  

Office of Environmental Management (EM)

Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project...

46

High Octane Fuels Can Make Better Use of Renewable Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Octane Fuels Can Make Better Use of Renewable Transportation Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Breakout Session 1C-Fostering...

47

Alternative Fuels Data Center: State Transportation Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Transportation State Transportation Plan to someone by E-mail Share Alternative Fuels Data Center: State Transportation Plan on Facebook Tweet about Alternative Fuels Data Center: State Transportation Plan on Twitter Bookmark Alternative Fuels Data Center: State Transportation Plan on Google Bookmark Alternative Fuels Data Center: State Transportation Plan on Delicious Rank Alternative Fuels Data Center: State Transportation Plan on Digg Find More places to share Alternative Fuels Data Center: State Transportation Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Transportation Plan The California Department of Transportation (Caltrans) must update the California Transportation Plan (Plan) by December 31, 2015, and every five

48

35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION  

E-Print Network (OSTI)

35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS IN CALIFORNIA INTRODUCTION The introduction of alternative fuels into California's transportation market has supply at low prices. But, with an uncertain long-term future for oil supplies and prices, alternative

49

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

50

Transportation fuels from biomass via fast pyrolysis and hydroprocessing  

SciTech Connect

Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

Elliott, Douglas C.

2013-09-21T23:59:59.000Z

51

Alternative Liquid Fuels Simulation Model (AltSim).  

SciTech Connect

The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

Baker, Arnold Barry; Williams, Ryan (Hobart and William Smith Colleges, Geneva, NY); Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

2007-10-01T23:59:59.000Z

52

Alternatives to traditional transportation fuels: An overview  

SciTech Connect

This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

Not Available

1994-06-01T23:59:59.000Z

53

Alternative Fuels Used in Transportation (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Gasoline is the most commonly used fuel for transportation; however, there are multiple alternative fuels that are making their way to the market. These alternative fuels include propane, natural gas, electric hybrids, hydrogen fuel cells, and bio-diesel. Students will probably have heard of some of these alternative fuels, but they may not understand how and why they are better then ordinary gasoline.

54

AEO 2013 Liquid Fuels Markets Working Group  

Gasoline and Diesel Fuel Update (EIA)

last year but will be this year It is a cap and trade system for Green House Gas (GHG) It is anticipated to affect prices, production and more than just liquid fuels Carbon...

55

Transportation Services Fueling Operation Transportation Services has installed a software system that will facilitate fueling of  

E-Print Network (OSTI)

Transportation Services Fueling Operation Transportation Services has installed a software system into this system. All University vehicles that wish to fuel at UH M noa Transportation Services will be required the application below and submit your application to Transportation Services before attempting to fuel your

56

Liquid Fuels Market Model (LFMM) Unveiling LFMM  

Gasoline and Diesel Fuel Update (EIA)

Implementation of the Renewable Fuel Implementation of the Renewable Fuel Standard (RFS) in the Liquid Fuels Market Module (LFMM) of NEMS Michael H. Cole, PhD, PE michael.cole@eia.gov August 1, 2012 | Washington, DC LFMM / NEMS overview 2 M. Cole, EIA Advanced Biofuels Workshop August 1, 2012 | Washington, DC * LFMM is a mathematical representation of the U.S. liquid fuels market (motor gasoline, diesel, biofuels, etc.). EIA analysts use LFMM to project motor fuel prices and production approaches through 2040. * LFMM is a cost-minimization linear program (LP). For a given set of fuel demands, LFMM will find the least-cost means of satisfying those demands, subject to various constraints (such as the RFS). * LFMM is part of the National Energy Modeling System (NEMS), which is a computer model of the U.S. energy economy. EIA uses

57

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...source of liquid hydrocarbon fuels (16, 17...gasification data provided in...produce liquid hydrocarbon fuel. In our...The resulting combustion energy not only provides heat for the endothermic...pass from the hydrocarbon conversion...well as other heat requirements...From the NRC data in Table E-23...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

58

NREL: Vehicles and Fuels Research - Sustainable Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid,...

59

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

60

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

62

Alternative Fuels Data Center: Pittsburgh Livery Company Transports  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pittsburgh Livery Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Pittsburgh

63

Clean liquid fuels from MSW  

SciTech Connect

The need for a cost effective and cleaner method of Municipal Solid Waste (MSW) disposal hardly needs emphasizing. With funding through the US EPA and US DOE-METC, EnerTech demonstrated its SlurryCarb{trademark} process for producing homogeneous, pumpable fuels from Refuse Derived Fuel (RDF) with continuous pilot plant facilities, and characterized flue gas and ash emissions from combustion of the carbonized RDF slurry fuel. Pilot scale slurry carbonization experiments with RDF produced a homogeneous pumpable slurry fuel with a Higher Heating Value up to approximately 6,600 Btu/lb at 51.7 wt% total solids. The viscosity of this carbonized RDF slurry fuel was approximately 500 cP {at} 100 Hz decreasing, and ambient temperature. Also, pilot scale slurry carbonization experiments extracted up to approximately 94% of the feed RDF chlorine content as chloride salts. Atmospheric combustion of the carbonized RDF slurry fuel produced a carbon burnout exceeding 99.9%, with excess air as low as 15%. CO emissions averaged below 16 ppm (corrected to 7% O{sub 2}), while HCl and SO{sub 2} emissions were below 17 and 40 ppm, respectively, without acid gas scrubbing. NO{sub x} emissions depended on combustion temperature and averaged between 82--211 ppm, without selective noncatalytic or catalytic reduction. In addition, mercury emissions were measured at 0.003 mg/dscm. Combustion ash was non-hazardous, with low leaching characteristics, based on a TCLP analysis.

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States)

1996-12-31T23:59:59.000Z

64

Alternative transportation fuels and air quality  

Science Journals Connector (OSTI)

Alternative transportation fuels and air quality ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ...

Tai Y. Chang; Robert H. Hammerle; Steven M. Japar; Irving T. Salmeen

1991-07-01T23:59:59.000Z

65

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

66

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

67

SEU43 fuel bundle shielding analysis during spent fuel transport  

SciTech Connect

The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

Margeanu, C. A.; Ilie, P.; Olteanu, G. [Inst. for Nuclear Research Pitesti, No. 1 Campului Street, Mioveni 115400, Arges County (Romania)

2006-07-01T23:59:59.000Z

68

Numerical simulation of laser ignition of a liquid fuel film  

Science Journals Connector (OSTI)

Numerical simulations were used to examine a set of interrelated physicochemical processes involved in the ignition of a liquid fuel film by a low-power laser beam. The delay time of ignition of a liquid fuel fil...

G. V. Kuznetsov; P. A. Strizhak

2010-08-01T23:59:59.000Z

69

Liquid Fuels from Lignins: Annual Report  

SciTech Connect

This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

Chum, H. L.; Johnson, D. K.

1986-01-01T23:59:59.000Z

70

Transportation Fuels: The Future is Today (6 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This teacher guide provides extensive background information on transportation fuels to help your students learn about conventional and alternative transportation fuels by evaluating their advantages and disadvantages.

71

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Presentation made by...

72

Production Costs of Alternative Transportation Fuels | Open Energy...  

Open Energy Info (EERE)

Production Costs of Alternative Transportation Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Production Costs of Alternative Transportation Fuels AgencyCompany...

73

Fuel Cells for Transportation - FY 2001 Progress Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells for Transportation - FY 2001 Progress Report Fuel Cells for Transportation - FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION 159.pdf More Documents &...

74

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

75

Fuel cell system for transportation applications  

DOE Patents (OSTI)

A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

1993-01-01T23:59:59.000Z

76

Fuel cell system for transportation applications  

DOE Patents (OSTI)

A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1993-09-28T23:59:59.000Z

77

Fuel Cell Technologies Office: Transport Modeling Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Modeling Transport Modeling Working Group to someone by E-mail Share Fuel Cell Technologies Office: Transport Modeling Working Group on Facebook Tweet about Fuel Cell Technologies Office: Transport Modeling Working Group on Twitter Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Google Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Delicious Rank Fuel Cell Technologies Office: Transport Modeling Working Group on Digg Find More places to share Fuel Cell Technologies Office: Transport Modeling Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

78

NREL Research on Converting Biomass to Liquid Fuels  

ScienceCinema (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2013-05-29T23:59:59.000Z

79

Progress in fuel cells for transportation applications  

SciTech Connect

The current and projected states of development of fuel cells are described in terms of availability, performance, and cost. The applicability of various fuel cell types to the transportation application is discussed, and projections of power densities, weights, and volumes of fuel cell systems are made into the early 1990s. Research currently being done to advance fuel cells for vehicular application is described. A summary of near-term design parameters for a fuel cell transit line is given, including bus performance requirements, fuel cell power plant configuration, and battery peaking requirements. The objective of this paper is to determine a fuel cell technology suitable for near-term use as a vehicular power plant. The emphasis of the study is on indirect methanol fuel cell systems.

Murray, H.S.

1986-01-01T23:59:59.000Z

80

Alternative Fuels Data Center: New Orleans Provides Green Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Orleans Provides Orleans Provides Green Transportation to someone by E-mail Share Alternative Fuels Data Center: New Orleans Provides Green Transportation on Facebook Tweet about Alternative Fuels Data Center: New Orleans Provides Green Transportation on Twitter Bookmark Alternative Fuels Data Center: New Orleans Provides Green Transportation on Google Bookmark Alternative Fuels Data Center: New Orleans Provides Green Transportation on Delicious Rank Alternative Fuels Data Center: New Orleans Provides Green Transportation on Digg Find More places to share Alternative Fuels Data Center: New Orleans Provides Green Transportation on AddThis.com... March 19, 2011 New Orleans Provides Green Transportation D iscover how New Orleans provides green transportation with electric street

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Advanced Transportation Tax Exclusion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Advanced Transportation Tax Exclusion to someone by E-mail Share Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Facebook Tweet about Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Twitter Bookmark Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Google Bookmark Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Delicious Rank Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Digg Find More places to share Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Transportation Tax Exclusion The California Alternative Energy and Advanced Transportation Financing

82

Alternative Fuels Data Center: Biobased Transportation Research Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biobased Biobased Transportation Research Funding to someone by E-mail Share Alternative Fuels Data Center: Biobased Transportation Research Funding on Facebook Tweet about Alternative Fuels Data Center: Biobased Transportation Research Funding on Twitter Bookmark Alternative Fuels Data Center: Biobased Transportation Research Funding on Google Bookmark Alternative Fuels Data Center: Biobased Transportation Research Funding on Delicious Rank Alternative Fuels Data Center: Biobased Transportation Research Funding on Digg Find More places to share Alternative Fuels Data Center: Biobased Transportation Research Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biobased Transportation Research Funding The Surface Transportation Research, Development, and Deployment (STRDD)

83

Determination of liquid and solid phase composition in partially frozen middle distillate fuels  

SciTech Connect

One of the tasks of the United States Navy Mobility Fuels program at the Naval Research Laboratory is to determine the effect of composition on the freezing properties of liquid fuels. The combination of requirements for ship and jet aircraft fuels of a low freezing point (to permit cold temperature operations around the world) and a flash point minimum (to reduce the hazard of storage and transport of liquid fuels on board ship) leads to opposing compositional needs. This is because many components of a fuel that tend to lower the freezing point (small hydrocarbons with higher vapor pressures) will also reduce the flash point. Because of these constraints, it is not always practical to produce fuels meeting these requirements from available crudes. This limits the amount of crudes and hence the amount of JP-5, the Navy fuel for carrier based aircraft, which can be produced from ''a barrel of crude.'' With increased knowledge and understanding of the components that first crystallize out of a cold fuel, it may be possible to modify refining techniques to increase the yield of Navy liquid fuels per barrel of crude without compromising either the freezing point or the flash point restrictions. This paper deals with the method used to separate the liquid filtrate from the precipitate in fuels cooled to predetermined temperatures below their freezing points, the method of analyzing the fuel and fuel fractions, and the results obtained from a study of one particular jet fuel.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Mushrush, G.W.; Hazlett, R.N.; DeGuzman, J.

1986-04-01T23:59:59.000Z

84

Alternative Fuels Data Center: Local and Public Transportation Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Local and Public Local and Public Transportation Fleet Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on AddThis.com...

85

Used Fuel Testing Transportation Model  

SciTech Connect

This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

Ross, Steven B.; Best, Ralph E.; Maheras, Steven J.; Jensen, Philip J.; England, Jeffery L.; LeDuc, Dan

2014-09-24T23:59:59.000Z

86

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

87

Driving it home: choosing the right path for fueling North America's transportation future  

SciTech Connect

North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

2007-06-15T23:59:59.000Z

88

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

SciTech Connect

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

89

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

90

Fuels Performance Group: Center for Transportation Technologies and Systems  

SciTech Connect

Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

Not Available

2008-08-01T23:59:59.000Z

91

The supply security of hydrogen as transport fuel.  

E-Print Network (OSTI)

??The impact that hydrogen and fuel cell technology can have on the security of European transport fuel supply is addressed in this paper. This impact… (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

92

Distillation of liquid fuels by thermogravimetry  

SciTech Connect

In this paper, design and operation of a custom-built thermogravimetric apparatus for the distillation of liquid fuels are reported. Using a sensitive balance with scale of 0.001 g and ASTM distillation glassware, several petroleum and petroleum-derived samples have been analyzed by the thermogravimetric distillation method. When the ASTM distillation glassware is replaced by a micro-scale unit, sample size could be reduced from 100 g to 5-10 g. A computer program has been developed to transfer the data into a distillation plot, e.g. Weight Percent Distilled vs. Boiling Point. It also generates a report on the characteristic distillation parameters, such as, IBP (Initial Boiling Point), FBP (Final Boiling Point), and boiling point at 50 wt% distilled. Comparison of the boiling point distributions determined by TG (thermogravimetry) with those by SimDis GC (Simulated-Distillation Gas Chromatography) on two liquid fuel samples (i.e. a decanted oil and a filtered crude oil) are also discussed in this paper.

Huang, He; Wang, Keyu; Wang, Shaojie; Klein, M.T.; Calkins, W.H.

1996-12-31T23:59:59.000Z

93

Desulfurization of Liquid Fuel via Fractional Evaporation and Subsequent Hydrodesulfurization Upstream a Fuel Cell System  

Science Journals Connector (OSTI)

The polymer electrolyte membrane fuel cell (PEMFC) and the solid oxide fuel cell (SOFC) are favored for application in the foreseeable future. ... For fuel cells to be fuelled with liquid fuels as per Figure 1, an upstream desulfurization step is mandatory. ... fuel?recovered ...

Markus Brune; Rainer Reimert

2005-08-17T23:59:59.000Z

94

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...replaced with gasoline hybrid electric vehicles...the use of plug-in hybrid electric vehicles (PHEVs...electricity from a PV grid could be directly used...current transportation fuel infrastructure, the efficiency improvement...through the proposed hybrid hydrogen-carbon economy...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

95

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...with gasoline hybrid electric vehicles...of plug-in hybrid electric vehicles...electricity from a PV grid could be directly...by using solar energy. There are two...transportation fuel infrastructure, the efficiency...the proposed hybrid hydrogen-carbon...material and energy balances. The...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

96

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

97

Argonne Transportation Technology R&D Center - Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Fischer-Tropsch Fuels Fischer-Tropsch Fuels SunDiesel fuel This Sun Diesel BTL fuel, made from wood chips, results in lower particulate matter and nitrogen oxide emissions. Fischer-Tropsch (F-T) fuels are synthetic diesel fuels produced by converting gaseous hydrocarbons, such as natural gas and gasified coal or biomass, into liquid fuel. These fuels are commonly categorized into the following groups: Biomass to liquids (BTL) Gas to liquids (GTL) Coal to liquids (CTL) Argonne engineers are investigating the performance and emissions data of F-T fuels for both older and newer vehicles. The goal is to provide this data to the U.S. Department of Energy, the auto industry and energy suppliers. Part of the lab's strategy also includes publishing the data to solicit ideas and input from the fuels and combustion community.

98

Environmental and economic assessment of alternative transportation fuels  

E-Print Network (OSTI)

Alternative fuels have the potential to mitigate transportation's impact on the environment and enhance energy security. In this work, we investigate two alternative fuels: liquefied natural gas (LNG) as an aviation fuel, ...

Withers, Mitch Russell

2014-01-01T23:59:59.000Z

99

Alternative Fuels Data Center: Multi-Modal Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Multi-Modal Multi-Modal Transportation to someone by E-mail Share Alternative Fuels Data Center: Multi-Modal Transportation on Facebook Tweet about Alternative Fuels Data Center: Multi-Modal Transportation on Twitter Bookmark Alternative Fuels Data Center: Multi-Modal Transportation on Google Bookmark Alternative Fuels Data Center: Multi-Modal Transportation on Delicious Rank Alternative Fuels Data Center: Multi-Modal Transportation on Digg Find More places to share Alternative Fuels Data Center: Multi-Modal Transportation on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Multi-Modal Transportation Using multiple modes of transportation is the best approach for some

100

Alternative Fuels Data Center: SmartWay Transport Partnership  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

SmartWay Transport SmartWay Transport Partnership to someone by E-mail Share Alternative Fuels Data Center: SmartWay Transport Partnership on Facebook Tweet about Alternative Fuels Data Center: SmartWay Transport Partnership on Twitter Bookmark Alternative Fuels Data Center: SmartWay Transport Partnership on Google Bookmark Alternative Fuels Data Center: SmartWay Transport Partnership on Delicious Rank Alternative Fuels Data Center: SmartWay Transport Partnership on Digg Find More places to share Alternative Fuels Data Center: SmartWay Transport Partnership on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type SmartWay Transport Partnership The SmartWay Transport Partnership is a voluntary partnership between the U.S. Environmental Protection Agency (EPA) and the domestic freight

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AEO2011: Liquid Fuels Supply and Disposition | OpenEI  

Open Energy Info (EERE)

Liquid Fuels Supply and Disposition Liquid Fuels Supply and Disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

102

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1982  

SciTech Connect

Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base - major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation. (ATT)

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

103

Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Veolia Transportation Veolia Transportation Converts Taxi Fleet to Propane to someone by E-mail Share Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Facebook Tweet about Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Twitter Bookmark Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Google Bookmark Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Delicious Rank Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Digg Find More places to share Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on AddThis.com... Aug. 17, 2013 Veolia Transportation Converts Taxi Fleet to Propane

104

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

105

Alternative Fuels Data Center: Michigan Transports Students in Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Transports Michigan Transports Students in Hybrid Electric School Buses to someone by E-mail Share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Facebook Tweet about Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Twitter Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Google Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Delicious Rank Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Digg Find More places to share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on AddThis.com...

106

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

107

EIA - International Energy Outlook 2008-Liquid Fuels Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Figure 26. World Liquids Production in the Reference Case, 1990-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. World Liquids Consumption by Sector, 2005-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 29. World Liquids Consumption by Region and Country Group, 2005 and 2030 Figure 29 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 30. Nominal World Oil Prices in three Cases, 1980-2030 Figure 30 Data. Need help, contact the National Energy Information Center at 202-586-8800.

108

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels 2009 Alternatives to Traditional Transportation Fuels 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternatives to Traditional Transportation Fuels 2009 Focus Area: Propane Topics: Policy Impacts Website: www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.p Equivalent URI: cleanenergysolutions.org/content/alternatives-traditional-transportati Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use and the amount of alternative transportation fuels consumed in the United States in 2009. References Retrieved from "http://en.openei.org/w/index.php?title=Alternatives_to_Traditional_Transportation_Fuels_2009&oldid=514311

109

Distillation of liquid fuels by thermogravimetry  

SciTech Connect

The most widely used separation technique in the petroleum industry and other liquid fuel production processes as well as in much of the chemical industry is distillation. To design and operate an appropriate commercial and laboratory distillation unit requires a knowledge of the boiling point distribution of the materials to be separated. In recognition of these needs, the ASTM developed the distillation procedures of D86, D216, D447, D850, and D1078. They are widely used in laboratories for the purposes of sample characterization, product and quality control, and distillation column design. However, the significant drawbacks of these ASTM methods include (1) close monitoring of the distillation is required. This is particularly difficult for those samples which are very toxic and/or cause any other safety problems; (2) the sample under test must be transparent and free of separated water; and (3) results obtained by these methods are not particularly precise. This motivated the development of a novel automatic distillation system based on the use of a custom-built thermogravimetric apparatus.

Huang, He; Wang, Keyu; Wang, Shaojie [Univ. of Delaware, Newark, DE (United States)] [and others

1996-12-31T23:59:59.000Z

110

Optimization of Microfluidic Fuel Cells Using Transport Principles  

Science Journals Connector (OSTI)

Optimization of Microfluidic Fuel Cells Using Transport Principles ... In this paper, we describe an approach to designing microfluidic fuel cells that optimizes the reaction?depletion boundary layer using transport principles. ... The data represented as ? or · in Figure 7 correspond to microfluidic fuel cells where the gap between consecutive electrodes was not optimized. ...

Jinkee Lee; Keng Guan Lim; G. Tayhas R. Palmore; Anubhav Tripathi

2007-08-30T23:59:59.000Z

111

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

112

EIA - AEO2010 - Liquid fuels taxes and tax credits  

Gasoline and Diesel Fuel Update (EIA)

Liquid fuels taxes and tax credits Liquid fuels taxes and tax credits Annual Energy Outlook 2010 with Projections to 2035 Liquid fuels taxes and tax credits This section provides a review of the treatment of Federal fuels taxes and tax credits in AEO2010. Excise taxes on highway fuel The treatment of Federal highway fuel taxes remains unchanged from the previous year’s AEO. Gasoline is taxed at 18.4 cents per gallon, diesel fuel at 24.4 cents per gallon, and jet fuel at 4.4 cents per gallon, consistent with current laws and regulations. Consistent with Federal budgeting procedures, which dictate that excise taxes dedicated to a trust fund, if expiring, are assumed to be extended at current rates, these taxes are maintained at their present levels, without adjustment for inflation, throughout the projection [9]. State fuel taxes are calculated on the basis of a volume-weighted average for diesel, gasoline, and jet fuels. The State fuel taxes were updated as of July 2009 [10] and are held constant in real terms over the projection period, consistent with historical experience.

113

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers (EERE)

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

114

Nuclear tanker producing liquid fuels from air and water  

E-Print Network (OSTI)

Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

Galle-Bishop, John Michael

2011-01-01T23:59:59.000Z

115

Cost Analysis of Fuel Cell Systems for Transportation  

E-Print Network (OSTI)

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge Presentation 3 A fuel cell vehicle would contain the PEMFC system modeled in this project along with additional

116

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network (OSTI)

Photosynthesis Biomass Renewable liquid fuel Fuel synthesis #12;Renewable liquid fuel Combustion CO2 separation emissions from all sectors IEA, 2012; CO2 emissions from fuel combustion: Highlights. · Solar · Wind · CO2. R. Soc. A, 368, 3343, 2010 #12;Biological renewable liquid fuel Combustion Water CO2 in air

Homes, Christopher C.

117

1 - Gasification and synthetic liquid fuel production: an overview  

Science Journals Connector (OSTI)

Abstract This chapter discusses general considerations on gasification processes and synthetic liquid fuel production. It provides an overview of state-of-the-art gasification technologies, feedstocks and applications in power generation, and synthetic fuels production, together with some recent future trends in the field.

R. Luque; J.G. Speight

2015-01-01T23:59:59.000Z

118

Liquid Transportation Fuels from Coal and Biomass  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the U.S. Department of Energy sponsored a Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

119

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

120

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reforming of Renewable Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) * U. (Balu) Balachandran, T. H. Lee, C. Y. Park, and S. E. Dorris Energy Systems Division E-mail: balu@anl.gov * Work supported by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Presented at the Bio-derived Liquids Working Group (BILIWG) Meeting, Nov. 6, 2007. BILIWG Meeting, Nov. 6, 2007 2 Objective & Rationale Objective: Develop compact dense ceramic membrane reactors that enable the efficient and cost-effective production of hydrogen by reforming renewable liquid fuels using pure oxygen produced by water splitting and transported by an OTM. Rationale: Membrane technology provides the means to attack barriers to the

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

122

Exciplex Fluorescence Thermometry of Liquid Fuel  

Science Journals Connector (OSTI)

An experimental program is described that investigates the application of exciplex fluorescence to the internal thermometry of flowing liquid decane in the temperature range 24-91°C....

Stufflebeam, John H

1989-01-01T23:59:59.000Z

123

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

new solid and liquid phase systems new solid and liquid phase systems for the containment, transport and delivery of hydrogen By Guido P. Pez Hydrogen Energy Infrastructure for Fuel Cell Vehicle Transportation Scenario A: Distributed H 2 from a Large Scale Plant (150-230 tonne/day) Large Scale H 2 Plant (300-800 psi H 2 ) H 2 Buffer Storage Tube Trailer Liquid H 2 Truck H 2 Pipeline Multi-vehicle filling stations Feedstock: N. gas, Coal, Biomass Pet. Coke, Resids. Future: Carbon sequestration Storage: Underground well? Output: Depends on the vehicle's H 2 storage technology Currently H 2 up to >6000 psi for 5000 psi tanks Scenario B: Hydrogen by a small scale reforming of pipeline natural gas and compression Natural Gas Pipeline Reformer Liquid H 2 Backup Compressor H 2 (>6000 psig) H 2 Production: 100-400 kg/day; 4-5Kg H

124

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

1995-12-31T23:59:59.000Z

125

Catalytic Reforming of Biomass Raw Fuel Gas to Syngas for FT Liquid Fuels Production  

Science Journals Connector (OSTI)

The gasification of biomass to obtain a syngas provides a competitive means for clean FT (Fischer-Tropsch) liquid fuels from renewable resources. The feasibility of the process depends on the upgrading of raw ...

Tiejun Wang; Chenguang Wang; Qi Zhang…

2009-01-01T23:59:59.000Z

126

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analyses Analyses Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analyses The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation activities within the UFDC are being developed to address issues regarding the extended storage of UNF and its subsequent

127

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50: Flambeau River BioFuels, Inc. Proposed Wood 50: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin Summary NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply

128

Argonne project turns methane to liquid fuel for hybrid fuel cells  

Science Journals Connector (OSTI)

Researchers from the US Department of Energy's Argonne National Laboratory in Illinois and the Illinois Institute of Technology (IIT) have been awarded $2 million from the Advanced Research Projects Agency–Energy (ARPA-E), for a two-year project on hybrid fuel cells, specifically on converting methane to liquid fuel.

2014-01-01T23:59:59.000Z

129

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

130

NREL: Transportation Research - Alternative Fuel Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

reduced particulate matter, carbon monoxide, and hydrocarbon emissions. Regional Transportation District Biodiesel Transit Buses In partnership with the Regional Transportation...

131

Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering  

SciTech Connect

Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

Dr. Paul A. Lessing

2012-03-01T23:59:59.000Z

132

Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks  

SciTech Connect

The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31T23:59:59.000Z

133

Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels  

SciTech Connect

). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

2011-06-01T23:59:59.000Z

134

Making Better Use of Ethanol as a Transportation Fuel With "Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout...

135

Liquid fuel resources and prospects for ligno-cellulosic ethanol: An Egyptian case study  

Science Journals Connector (OSTI)

Abstract Fossil fuels (oil, natural gas and coal) presently represent about 90% of the world’s total commercial primary energy demand. Yet, they are depletable sources of energy. Growth in the production of easily accessible oil, the main source of high energy liquid transportation fuels, will not match the projected rate of demand growth, especially in developing countries. In the transport sector, today, the only alternative to non-sustainable fossil fuels is biofuels that are produced from biomass, a stored environmentally neutral solar energy. These fuels are compatible with current vehicles and blendable with conventional fuels. Moreover, they share the long-established distribution infrastructure with little, if any, modification of equipment. The main biofuels presently in commercial production are bioethanol and biodiesel. Industrial countries started production of the 1st generation bioethanol and biodiesel from food products (grains and edible oil) since a few decades and these fuels are currently available at petrol stations. Second generation bioethanol from ligno-cellulosic materials is on the research, pilot and/or demonstration stage. This paper discusses the current situation regarding liquid fuels in Egypt which are experiencing imbalance between total production and demand for gasoline and diesel fuels. The quantified need for nonconventional sources is presented. Based on a thorough assessment of current and prospective generated agriculture residues as distributed over the political areas, mapping of the number and capacity of plants to be installed for production of bioethanol from available residues namely rice straw, sugar cane residues and cotton stalks has been developed. Annual capacities of 3000, 10,000 and 20,000 tons ethanol/year until year 2021 have been proposed. Capital and operating requirements and economic indicators have been estimated. It has been concluded that at current price of ethanol of about $0.6/kg, the simple rate of return on investments is about 2.8%, 11% and 16% for the 3000, 10,000 and 20,000 tons annual capacity ethanol respectively.

Shadia R. Tewfik; Nihal M. El Defrawy; Mohamed H. Sorour

2013-01-01T23:59:59.000Z

136

Estimation of the Transportation Risks for the Spent Fuel in Korea for Various Transportation Scenarios  

SciTech Connect

According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. Also, we estimated and compared the transportation risks for these four transportation scenarios. From the results of this study, we found that these four transportation scenarios for spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future. (authors)

Jongtae, Jeong; Cho, D.K.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of)

2008-07-01T23:59:59.000Z

137

Shell Gas to Liquids in the context of a Future Fuel Strategy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing...

138

EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for...

139

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, Director–Business Development, Energy Technologies, Southern Research Institute

140

High Octane Fuels Can Make Better Use of Renewable Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Brian West, Deputy Director, Engines and Emissions Research Center; Oak Ridge National Laboratory

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

142

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee to Diamond Green Diesel, LLC., the DOE Loan Program's first conditional commitment for an advanced biofuels plant. The loan guarantee will support the construction of a 137-million gallon per year renewable diesel facility that will produce renewable diesel fuel primarily from animal fats, used cooking oil and other waste grease

143

Transportation capabilities study of DOE-owned spent nuclear fuel  

SciTech Connect

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

144

Recent Trends in Emerging Transportation Fuels and Energy Consumption  

Science Journals Connector (OSTI)

Several recent trends indicate current developments in energy and transportation fuels. World trade in biofuels is developing in ethanol, wood chips, and vegetable oil / biodiesel with some countries being exp...

B. G. Bunting

2012-01-01T23:59:59.000Z

145

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains

146

RTP Green Fuel: A Proven Path to Renewable Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels * Pourable, storable and transportable liquid fuel * Contains approximately 50-55% energy content of fossil fuel * Meets applicable ASTM Standard for industrial use (ASTM...

147

Liquid Fossil Fuel Technology. Quarterly technical progress report, July-September 1980  

SciTech Connect

Research activities at BETC are summarized under the headings liquid fossil fuel cycle, extraction (resource assessment, production, enhanced recovery), processing (of liquids such as coal liquids, and crudes, thermodynamics), utilization (energy conversion, combustion), and project integration and technology transfer. (DLC)

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

148

Fuel Cell Technologies Office: Transport Modeling Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Modeling Working Group Transport Modeling Working Group The Transport Modeling Working Group meets twice per year to exchange information, create synergies, share experimental and computational results, and collaboratively develop methodologies for and understanding of transport phenomena in polymer electrolyte fuel cell stacks. Its members include principle investigators and supporting personnel from transport-related projects funded by the U.S. Department of Energy (DOE). Learn more about DOE research activities can be found in the Multi-Year Research, Development, and Demonstration Plan. Description Technical Targets Meetings Contacts Description Fuel cell operation relies on effective mass transport of species through individual components and across the interfaces between components. Among these species are hydrogen, oxygen, water, protons, and electrons. Transport behavior is a function of operating conditions and component properties such as microstructure and surface properties. Understanding and optimizing the controlling transport phenomena are critical to the efficient and cost-effective operation of polymer electrolyte fuel cells. A better understanding of mass transport in the fuel cell, especially of water, has the potential to lead to improved designs and more efficient systems.

149

INL Site Executable Plan for Energy and Transportation Fuels Management  

SciTech Connect

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

150

Comparative analyses of spent nuclear fuel transport modal options: Transport options under existing site constraints  

SciTech Connect

The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.

Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.

1989-08-01T23:59:59.000Z

151

An Update in the Development of Alternate Liquid Fuels  

E-Print Network (OSTI)

. It is classified by the U.S. Department of Energy as a non-critical or preferred fuel. 2. It is a cost effective high yield BTU fuel that can be produced with readily available feedstocks utilizing standard hardware and processing equipment. j 3. It has a low... for the disposal of spent industrial (flammable) liquids. 5. Certified laboratory analyses indicate that ALF feedstocks are free of all known carcinogens, and hazardous elements. 6. Utilization of ALF can provide a 20% business energy tax credit, in addition...

Rose, M. J.

1979-01-01T23:59:59.000Z

152

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

153

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

SciTech Connect

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

154

Fuel cells for electric utility and transportation applications  

SciTech Connect

This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

Srinivasan, S.

1980-01-01T23:59:59.000Z

155

Catalyst for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1986-01-01T23:59:59.000Z

156

Fuel Cells for Transportation- Research and Development: Program Abstracts  

Energy.gov (U.S. Department of Energy (DOE))

Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary and portable power applications. The potential markets are huge, but so are the R&D risks. Given the potential for PEM fuel cells to deliver large economic and environmental benefits to the Nation, DOE continues to take a leadership role in developing and validating this technology. DOE’s strategy to implement its Fuel Cells for Transportation program has three components: an R&D strategy, a fuels strategy, and a management strategy.

157

Alternative transport fuels for the future  

Science Journals Connector (OSTI)

Petroleum fuels, which are not sustainable and which contribute substantially to greenhouse gas emissions, power nearly all light-duty vehicles. We review the North American literature on alternative fuels such as natural gas, ethanol from corn and biomass, and hydrogen and electricity from renewable resources, as well as propulsion systems including internal combustion engines, electric motors, and fuel cells. Vehicle characteristics including emissions, safety and consumer attributes such as range and power are examined. Results for greenhouse gas emissions and energy use for the well-to-wheel (fuel production and vehicle operation) aspects of the life cycles of the fuel/vehicle combinations are evaluated. While fuel cells and batteries might some day be attractive, in the near term they cannot replace the internal combustion engine. We focus on ethanol and explore its potential to replace nearly all gasoline used in the United States and Canada. We conclude that ethanol produced from biomass is an attractive near/midterm fuel among those that are sustainable.

Heather L. MacLean; Lester B. Lave; W. Michael Griffin

2004-01-01T23:59:59.000Z

158

Producing liquid fuels from coal: prospects and policy issues  

SciTech Connect

The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

James T. Bartis; Frank Camm; David S. Ortiz

2008-07-01T23:59:59.000Z

159

ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS  

SciTech Connect

Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

Fox, E.

2013-06-17T23:59:59.000Z

160

Fuel Life-Cycle Analysis of Hydrogen vs. Conventional Transportation Fuels.  

E-Print Network (OSTI)

??Fuel life-cycle analyses were performed to compare the affects of hydrogen on annual U.S. light-duty transportation emissions in future year 2030. Five scenarios were developed… (more)

DeGolyer, Jessica Suzanne

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Transportation Research - Alternative Fuels Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight....

162

EPAct Alternative Fuel Transportation Program (Brochure)  

SciTech Connect

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2012/fiscal year 2013.

Not Available

2014-06-01T23:59:59.000Z

163

Systems Approach to New Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

164

Liquid transport facilitated by channels in Bacillus subtilis biofilms  

E-Print Network (OSTI)

| multicellularity | wrinkles Biofilms are dense multicellular communities of bacteria em- bedded in a self-produced remediation (10), plant protection (11), and microbial fuel cells (12). Biofilm growth and physiology rely on the transport of nutrients, waste, and sig- naling molecules, all of which are dissolved in water. For example

165

Addendum to ‘‘Heat and matter transport in binary liquid mixtures’’  

Science Journals Connector (OSTI)

We recently presented nonequilibrium molecular dynamics simulations of coupled heat and matter transport in a binary liquid mixture. While these simulations were carried out exactly as indicated, the relations given between the microscopic and macroscopic formalism were strictly wrong. Here we correct these errors and indicate how they limit the possibilities for comparison of our simulation results with experiment.

Denis J. Evans and David MacGowan

1987-07-15T23:59:59.000Z

166

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

167

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry storage have been shown to be safe options for storing used nuclear fuel (UNF), the focus of the program is on dry storage of commercial UNF at reactor or centralized locations. This report focuses on the knowledge gaps concerning extended storage identified in numerous domestic and international investigations and provides the Used Fuel Disposition Campaign"s (UFDC) gap description, any alternate gap descriptions, the rankings by the various organizations, evaluation of the priority assignment, and UFDC-recommended action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications

168

Dual fuel engine control systems for transportation applications  

SciTech Connect

Microprocessor control systems have been developed for dual fuel diesel engines intended for transportation applications. Control system requirements for transportation engines are more demanding than for stationary engines, as the system must be able to cope with variable speed and load. Detailed fuel maps were determined for both normally aspirated and turbocharged diesel engines based on the criterion that the engine did not operate in the regimes where knock or incomplete combustion occurred. The control system was developed so that the engine would follow the detailed fuel map. The input variables to the control system are engine speed and load. Based on this, the system then controls the amount of natural gas and diesel fuel supplied to the engine. The performance of the system is briefly summarized.

Gettel, L.E.; Perry, G.C.; Boisvert, J.; O'Sullivan, P.J.

1987-10-01T23:59:59.000Z

169

Solar Energy for Transportation Fuel (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

Lewis, Nate

2011-04-28T23:59:59.000Z

170

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

171

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents (OSTI)

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

172

Indirect thermal liquefaction process for producing liquid fuels from biomass  

SciTech Connect

A progress report on an indirect liquefaction process to convert biomass type materials to quality liquid hydrocarbon fuels by gasification followed by catalytic liquid fuels synthesis has been presented. A wide variety of feedstocks can be processed through the gasification system to a gas with a heating value of 500 + Btu/SCF. Some feedstocks are more attractive than others with regard to producing a high olefin content. This appears to be related to hydrocarbon content of the material. The H/sub 2//CO ratio can be manipulated over a wide range in the gasification system with steam addition. Some feedstocks require the aid of a water-gas shift catalyst while others appear to exhibit an auto-catalytic effect to achieve the conversion. H/sub 2/S content (beyond the gasification system wet scrubber) is negligible for the feedstocks surveyed. The water gas shift reaction appears to be enhanced with an increase in pyrolysis reactor temperature over the range of 1300 to 1700/sup 0/F. Reactor temperature in the Fischer-Tropsch step is a significant factor with regard to manipulating product composition analysis. The optimum temperature however will probably correspond to maximum conversion to liquid hydrocarbons in the C/sub 5/ - C/sub 17/ range. Continuing research includes integrated system performance assessment, alternative feedstock characterization (through gasification) and factor studies for gasification (e.g., catalyst usage, alternate heat transfer media, steam usage, recycle effects, residence time study) and liquefaction (e.g., improved catalysts, catalyst activity characterization).

Kuester, J.L.

1980-01-01T23:59:59.000Z

173

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...biomass for the H 2 CAR process will always...improvement in PV cell and electrolyzer efficiencies...generate electricity or hydrogen from solar cells or an alternative...energy as synthetic fuels. Comparison with...requirement for the H 2 CAR process with the...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

174

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

SciTech Connect

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

175

Visualization of Fuel Cell Water Transport and Characterization under Freezing Conditions  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on fuel cell water transport, was given by Satish Kandlikar at a DOE fuel cell meeting in February 2007.

176

Liquid Tin Anode Direct Coal Fuel Cell - CellTech Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Tin Anode Direct Coal Liquid Tin Anode Direct Coal Fuel Cell-CellTech Power Background Direct carbon solid oxide fuel cells (SOFCs) offer a theoretical efficiency advantage over traditional SOFCs operating on gasified carbon (syngas). CellTech Power LLC (CellTech) has been developing a liquid tin anode (LTA) SOFC that can directly convert carbonaceous fuels including coal into electricity without gasification. One of the most significant impediments

177

No loss fueling station for liquid natural gas vehicles  

SciTech Connect

This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1992-06-16T23:59:59.000Z

178

Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells  

SciTech Connect

Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

2000-03-20T23:59:59.000Z

179

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

SciTech Connect

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

180

Off-Highway Transportation-Related Fuel Use  

SciTech Connect

The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usage and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to include all devices that have wheels, can move or be moved from one point to another, and use fuel. An attempt has been made to exclude off-highway engines that do not meet all three of these criteria (e.g., chain saws and generators). The following approach was used to determine the current off-highway fuel use. First, a literature review was conducted to ensure that all sources with appropriate information would be considered. Secondly, the fuel use data available from each source were compiled and compared in so far as possible. Comparable data sets (i.e., same fuel type; same application) were evaluated. Finally, appropriate data sets were combined to provide a final tally.

Davis, S.C.

2004-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...United States alone, oil consumption in the transportation...kPa), the lower heating value (LHV) of H...rise in the petroleum price has refocused the...accounts, conventional oil production is predicted...support 67% of US oil consumption equals yr Hkg...the form of its high heating value (HHV). For...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

182

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...in the internal combustion engine will be highly beneficial. Clearly, the proposed...Transportation 1 SI Appendix General information and Assumption Total...of CH4 = 891 kJ/mol LHV of diesel assuming C15H32 = 43.987 MJ/kg. This...the gasifier. 5. Amount of diesel produced from ASPEN model using...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

183

Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes  

SciTech Connect

Two mathematical models of gas-diffusion electrodes, one for liquid electrolytes and one for ion-exchange polymer electrolytes, are presented to investigate the effects of mass-transport limitations on the polarization characteristics of a reaction obeying Tafel kinetics. The focus is on low-temperature fuel-cell cathodes, and in particular, contrasting two limiting cases that may be encountered at high current densities: control by kinetics and dissolved oxygen mass transport vs. control by kinetics and ionic mass transport. It is shown that two distinct double Tafel slopes may arise from these two limiting cases. The former is first order, and the latter is half-order with respect to oxygen concentration. How the modeling results may be applied to diagnose the performance of fuel-cell cathodes is also presented. Since the ionic-mass-transport-limited case has generally been neglected in previous gas-diffusion electrode models, specific examples of fuel-cell cathode data from the literature which display the behavior predicted by the models in this case are given and briefly discussed.

Perry, M.L.; Newman, J.; Cairns, E.J. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.]|[Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

1998-01-01T23:59:59.000Z

184

Cathode porous transport irreversibility model for PEM fuel cell design  

Science Journals Connector (OSTI)

The influence is studied of slip-irreversibility at the interface between the gas diffusion layer, also referred to here as the porous transport layer, and the catalyst layer of a proton exchange membrane fuel cell (PEMFC). A two-dimensional cathode ... Keywords: catalyst layer, exergy, gas diffusion layer, slip flow irreversibility

E. O. B. Ogedengbe; M. A. Rosen

2009-02-01T23:59:59.000Z

185

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network (OSTI)

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

186

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis  

Science Journals Connector (OSTI)

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis ... This paper, which is the first part of a series of papers, introduces a hybrid coal, biomass, and natural gas to liquids (CBGTL) process that can produce transportation fuels in ratios consistent with current U.S. transportation fuel demands. ... Steady-state process simulation results based on Aspen Plus are presented for the seven process alternatives with a detailed economic analysis performed using the Aspen Process Economic Analyzer and unit cost functions obtained from literature. ...

Richard C. Baliban; Josephine A. Elia; Christodoulos A. Floudas

2010-07-19T23:59:59.000Z

187

Thaw flow control for liquid heat transport systems  

DOE Patents (OSTI)

In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.

Kirpich, Aaron S. (Broomall, PA)

1989-01-01T23:59:59.000Z

188

Pore-Scale Modeling of Two-Phase Transport in Polymer Electrolyte Fuel Cells - Progress and Perspective  

SciTech Connect

Recent years have witnessed an explosion of research and development efforts in the area of polymer electrolyte fuel cells (PEFC), perceived as the next generation clean energy source for automotive, portable and stationary applications. Despite significant progress, a pivotal performance/durability limitation in PEFCs centers on two-phase transport and mass transport loss originating from suboptimal liquid water transport and flooding phenomena. Liquid water blocks the porous pathways in the gas diffusion layer (GDL) and the catalyst layer (CL), thus hindering oxygen transport from the flow field to the electrochemically actives sites in the catalyst layer. Different approaches have been examined to model the underlying transport mechanisms in the PEFC with different levels of complexities. Due to the macroscopic nature, these two-phase models fail to resolve the underlying structural influence on the transport and performance. Mesoscopic modeling at the pore-scale offers great promise in elucidating the underlying structure-transport-performance interlinks in the PEFC porous components. In this article, a systematic review of the recent progress and prospects of pore-scale modeling in the context of two-phase transport in the PEFC is presented. Specifically, the efficacy of lattice Boltzmann (LB), pore morphology (PM) and pore network (PN) models coupled with realistic delineation of microstructures in fostering enhanced insight into the underlying liquid water transport in the PEFC GDL and CL is highlighted.

Mukherjee, Partha P [ORNL

2010-01-01T23:59:59.000Z

189

Cost Analysis of Fuel Cell Systems for Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Ref D0006 SFAA No. DE-SCO2- 98EE50526 Topic 1 Subtopic 1C Agenda EC_2004 10 20 FC Tech Team Presentation 1 1 Project Overview 2 Compressed Hydrogen Storage Cost 3 2004 System Cost Update 4 Appendix Project Overview Approach EC_2004 10 20 FC Tech Team Presentation 2 In our final year of the project, we assessed the cost of compressed hydrogen storage and updated the overall system cost projection. Task 1: PEMFC System Technology Synopsis Task 2: Develop Cost Model and Baseline Estimates Task 3: Identify Opportunities for System Cost Reduction Tasks 4, 5, 6 & 7: Annual Updates

190

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-01-01T23:59:59.000Z

191

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-12-31T23:59:59.000Z

192

4.12 - Hydrogen and Fuel Cells in Transport  

Science Journals Connector (OSTI)

Abstract This chapter reviews the several applications of hydrogen and fuel cells in transport. Early fuel cell markets have tested hydrogen for auxiliary power applications, but other fuels such as methanol, natural gas, and propane have been preferred because they are more available. Until now, the best successes have been forklifts where battery propulsion can be inflexible and hydrogen competes economically. However, the mainstream medium-term market is in buses, taxis, and fleet vehicles with passenger cars following close behind as the infrastructure of hydrogen filling stations becomes more widespread. It is becoming clear that the hybrid fuel cell/battery combination works best in such fleets because there is a need for batteries or supercapacitors providing pulse power and also for regenerative braking. Boats and ships represent a possible application in later years if the leisure market can be tapped and extended. In ports, fuel cell auxiliary power has already proved attractive in terms of emission reductions, and the same is true for airports. Aircraft applications will take longer to develop fully but small lightweight planes are using hydrogen at the present time because it can be generated via solar cells on the wings. Unmanned air vehicles driven by fuel cells are more likely to use propane because such lightweight fuel is easily available

K. Kendall; B.G. Pollet

2012-01-01T23:59:59.000Z

193

Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels  

SciTech Connect

A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

2014-12-02T23:59:59.000Z

194

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

195

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1979  

SciTech Connect

The in-house results at Bartlesville Energy Technology Center on the liquid fossil fuel cycle are presented. The cycle covers extraction, processing, utilization, and environmental technology of the liquid fuels derived from petroleum, heavy oils, tar sands, oil shale, and coal.

Linville, B. (ed.)

1980-02-01T23:59:59.000Z

196

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains hydrocarbons such as ethane and propane and other gases such as nitrogen,

197

Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Lessons Learned from Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Technical Report NREL/TP-540-39446 February 2006 Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Prepared under Task Nos. HS04.2000 and HS06.1002 Technical Report NREL/TP-540-39446 February 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

198

Heat and water transport in a polymer electrolyte fuel cell electrode  

SciTech Connect

In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

2010-01-01T23:59:59.000Z

199

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Storage Fuels Storage and Transportation Planning Project (NFST) Program Status Jeff Williams Project Director National Transportation Stakeholders Forum Buffalo, New York May 2013 2  "With the appropriate authorizations from Congress, the Administration currently plans to implement a program over the next 10 years that:  Sites, designs and licenses, constructs and begins operations of a pilot interim storage facility by 2021 with an initial focus on accepting used nuclear fuel from shut-down reactor sites;  Advances toward the siting and licensing of a larger interim storage facility to be available by 2025 that will have sufficient capacity to provide flexibility in the waste management system and allows for acceptance of enough used

200

On the Mechanism of Activated Transport in Glassy Liquids  

E-Print Network (OSTI)

We explore several potential issues that have been raised over the years regarding the "entropic droplet" scenario of activated transport in liquids, due to Wolynes and coworkers, with the aim of clarifying the status of various approximations of the random first order transition theory (RFOT) of the structural glass transition. In doing so, we estimate the mismatch penalty between alternative aperiodic structures, above the glass transition; the penalty is equal to the typical magnitude of free energy fluctuations in the liquid. The resulting expressions for the activation barrier and the cooperativity length contain exclusively bulk, static properties; in their simplest form they contains only the bulk modulus and the configurational entropy per unit volume. The expressions are universal in that they do not depend explicitly on the molecular detail. The predicted values for the barrier and cooperativity length and, in particular, the temperature dependence of the barrier are in satisfactory agreement with observation. We thus confirm that the entropic droplet picture is indeed not only internally-consistent but is also fully constructive, consistent with the apparent success of its many quantitative predictions. A simple view of a glassy liquid as a locally metastable, degenerate pattern of frozen-in stress emerges in the present description. Finally, we derive testable relationships between the bulk modulus and several characteristics of glassy liquids and peculiarities in low-temperature glasses.

Vassiliy Lubchenko; Pyotr Rabochiy

2014-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel  

E-Print Network (OSTI)

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

Victoria, University of

202

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1981  

SciTech Connect

The Bartlesville Energy Technology Center's research activities are summarized under the following headings: liquid fossil fuel cycle; extraction which is subdivided into resource assessment and production; liquid processing which includes characterization of liquids from petroleum, coal, shale and other alternate sources, thermodynamics and process technology; utilization; and project integration and technology transfer. (ATT)

Not Available

1981-08-01T23:59:59.000Z

203

Fuel Cell Technologies Office: Transportation and Stationary Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell Council, and the National Renewable Energy Laboratory, and was held in conjunction with the Fuel Cell Seminar in Phoenix, Arizona. Plenary presentations provided an overview of the integration concept and perspective on the opportunity from federal, state and industry organizations. Workshop participants met in breakout sessions to consider the potential to leverage early hydrogen vehicle refueling infrastructure requirements by co-producing hydrogen in stationary fuel cell CHP applications at select facilities (e.g., military bases, postal facilities, airports, hospitals, etc.). The efficiency, reliability, and emissions benefits of these CHP systems have the potential to offset the up-front capital costs and financial risks associated with producing hydrogen for early vehicle markets.

204

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-01-01T23:59:59.000Z

205

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-04-01T23:59:59.000Z

206

Salt transport extraction of transuranium elements from LWR fuel  

DOE Patents (OSTI)

A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

1992-11-03T23:59:59.000Z

207

Transport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt-Binding Receptor  

E-Print Network (OSTI)

in the solid state as contact ion pairs. Transport experiments, using a supported liquid membrane and high saltTransport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt and anion receptors. All transport systems exhibit the same qualitative order of ion selectivity; that is

Smith, Bradley D.

208

Transportation Center Seminar... Life-Cycle Analysis of Transportation Fuels and Vehicle  

E-Print Network (OSTI)

with life-cycle analysis (LCA). In fact, LCA of transportation fuels and vehicle systems has a history of more than 30 years. Over this period, LCA methodologies have evolved and critical data have become readily available. This is especially true in the past ten years when LCA has been applied extensively

Bustamante, Fabián E.

209

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

210

Cellulosic biomass could help meet California’s transportation fuel needs  

E-Print Network (OSTI)

al. 2006. Ethanol can contribute to energy and environmentalan unfavorable energy balance preclude biomass ethanol fromethanol and other organic liquid fuels can improve energy

Wyman, Charles E.; Yang, Bin

2009-01-01T23:59:59.000Z

211

New Fuel Cycle and Fuel Management Options in Heavy Liquid Metal-Cooled Reactors  

Science Journals Connector (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Fuel Management of Reactors Other Than Light Water Reactors

Ehud Greenspan; Pavel Hejzlar; Hiroshi Sekimoto; Georgy Toshinsky; David Wade

212

A non-isothermal PEM fuel cell model including two water transport mechanisms in the  

E-Print Network (OSTI)

A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

Münster, Westfälische Wilhelms-Universität

213

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Section 180(c) of the Nuclear of Section 180(c) of the Nuclear Waste Policy Act, as amended National Transportation Stakeholder's Forum Buffalo, NY May 15, 2013 Section 180(c) Mandate "The Secretary shall provide technical assistance and funds to States for training for public safety officials of appropriate units of local government and Indian tribes through whose jurisdiction the Secretary plans to transport spent nuclear fuel or high-level radioactive waste [to an NWPA-authorized facility]. * The training shall cover procedures for safe routine transportation of these materials and procedures for dealing with emergency response situations. * Covers all modes of transport 2 Section 180(c) - Background  DOE nearly implemented Section 180(c) in the mid-

214

Liquid fuels perspective on ultra low carbon vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels perspective on ultra low carbon vehicles Fuels challenges in the evolving global energy market deer11simnick.pdf More Documents & Publications Green Racing Initiative:...

215

Liquid Metal as a Heat Transport Fluid for Thermal Solar Power Applications  

Science Journals Connector (OSTI)

Abstract In order to increase the thermal efficiency and produce process heat for hydrogen production, the operating temperature of the heat transfer fluid in thermal solar plants needs to increase. In addition reaching 900 °C would also increase the heat storage density and the efficiency of the thermodynamic cycle by using a combined cycle for electricity production. The benefits of hydrogen (e.g., for fuel cells) and a more efficient thermodynamic cycle would allow a plant to have a higher energy output per square acre of land use, thereby increasing its economic competiveness. Today, solar thermal plants do not operate at these high temperatures due to the fact that conventional heat transport fluids begin to disintegrate around 600 °C [1,2]. For non-solar applications, low melting-temperature metals, such as wood's metal and lead- bismuth eutectic alloy, have been examined as heat-transport media, because of the large temperature ranges over which they remain liquid. Lead-bismuth eutectic alloy (LBE; 45% Pb, 55% Bi) melts at 125 °C and does not boil until 1670 °C, making it an ideal heat-transfer medium for application in thermal solar power [3]. The main obstacle to using LBE is finding structural materials that can withstand the harsh corrosion environments at high temperatures. In this work the key issues of materials exposed to liquid metal are described while initial data on carious steels tested in liquid metal are provided. While corrosion is a significant issue in this environment, mechanical failure of steels in liquid metal are discussed as well.

D. Frazer; E. Stergar; C. Cionea; P. Hosemann

2014-01-01T23:59:59.000Z

216

Prospect of biofuels as an alternative transport fuel in Australia  

Science Journals Connector (OSTI)

Abstract The prospect of biofuels as a transport alternative fuel in Australia is reviewed and discussed in this paper. The Australian transport sector is the second largest energy consuming sector which consumes about 24% of total energy consumption. A part of this energy demand can be met by ecofriendly biofuels. A wide array of different biofuels feedstocks including Australian native species, their distributions, oil content, traditional uses are reviewed and listed in the descending order of their oil content. The world biofuel scenario as well as the 20 largest biofuel production countries and their mandates on biofuels blending with petroleum diesel are presented. Australia’s biofuel production, consumption, production facilities and future investment projects are also reviewed and discussed. The study developed a biofuel supply chain for Australia and found that the second generation biofuels have better prospects as a future alternative transport fuel in Australia. These biofuel feedstocks are readily available and can overcome the shortcomings of the first generation biofuels, such as socio-economic, environmental and food versus land use challenges. Although some research is in progress, further study is needed on the process development of second generation biofuel production at commercial scale in Australia and abroad.

A.K. Azad; M.G. Rasul; M.M.K. Khan; Subhash C. Sharma; M.A. Hazrat

2015-01-01T23:59:59.000Z

217

Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion  

Science Journals Connector (OSTI)

Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion ... The fuels, such as natural gas, coal, petroleum coke, and biomass combusted by CLC are frequently studied by various researchers(17, 26-31) and compared in the previous studies;(20, 33) however, only few studies on liquid fuel combustion are reported. ... Ishida, M.; Takeshita, K.; Susuki, K.; Ohba, T..Application of Fe2O3-Al2O3 composite particles as solid looping material of the chemical loop combustor Energy Fuels 2005, 19, 2514– 2518 ...

Ping-Chin Chiu; Young Ku; Hsuan-Chih Wu; Yu-Lin Kuo; Yao-Hsuan Tseng

2013-10-31T23:59:59.000Z

218

Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft  

Science Journals Connector (OSTI)

Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper we report on the design fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

Gary L. Mills; Brian Buchholtz; Al Olsen

2012-01-01T23:59:59.000Z

219

Space effect on liquid film flow in a BWR fuel bundle  

SciTech Connect

Critical power at boiling transition is an important factor in a boiling water reactor (BWR) fuel bundle design. Boiling transition under high quality accounts for dryout as the result of the complete disappearance of film flow on a fuel rod. This liquid film vanishing process can be calculated by the liquid film model, which takes into account the evaporation due to heat from the rod surface, liquid film entrainment by steam flow, and liquid droplet deposition. It is known that spacers affect liquid film entrainment and liquid droplet deposition, so the detailed study of spacer effects on hydrodynamic characteristics is necessary for critical power prediction based on the film flow model. Many studies have been conducted to examine spacer effects on liquid film flow. However, most of them are restricted to simple test sections such as a rectangular conduit. There are a few reports on fuel bundle geometry; however the bundle studied was only a 3 by 3 rod array. It is known that spacers affect not only deposition and entrainment but also flow distribution among the subchannels. Therefore, in this research, liquid film thickness measurements were performed to clarify the deposition and entrainment at a spacer in a full-sized fuel bundle. Furthermore, critical power predictions on a BWR fuel bundle were carried out with a film flow model that included a spacer model.

Nishida, Koji; Kanazawa, Toru; Yokomizo, Osamu (Hitachi Ltd., Ibaraki (Japan))

1991-01-01T23:59:59.000Z

220

Advanced liquid fuel production from biomass for power generation  

SciTech Connect

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Comparison of performance characteristics of liquid biofuels and petroleum fuels  

Science Journals Connector (OSTI)

The performance properties of different types of liquid biofuels (bioalcohols, biodiesel, etc.) are examined...

K. E. Pankin; Yu. V. Ivanova; R. I. Kuz’mina…

2011-05-01T23:59:59.000Z

222

Methanol as an alternative transportation fuel in the U.S.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Methanol as an alternative transportation fuel in the US: Methanol as an alternative transportation fuel in the US: Options for sustainable and/or energy-secure transportation L. Bromberg and W.K. Cheng Prepared by the Sloan Automotive Laboratory Massachusetts Institute of Technology Cambridge MA 02139 September 27, 2010 Finalized November 2, 2010 Revised November 28, 2010 Final report UT-Battelle Subcontract Number:4000096701 1 Abstract Methanol has been promoted as an alternative transportation fuel from time to time over the past forty years. In spite of significant efforts to realize the vision of methanol as a practical transportation fuel in the US, such as the California methanol fueling corridor of the 1990s, it did not succeed on a large scale. This white paper covers all important aspects of methanol as a transportation fuel.

223

Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009  

Energy.gov (U.S. Department of Energy (DOE))

Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

224

Durability of Foam Insulation for LH2 Fuel Tanks of Future Subsonic Transports  

Science Journals Connector (OSTI)

The potential short-supply of petroleum-based fuels has led to activities by NASA to establish technical characteristics of air transportation systems that would use hydrogen-fueled aircraft. These activities ...

E. L. Sharpe; R. G. Helenbrook

1979-01-01T23:59:59.000Z

225

Preparation of liquid motor fuel components from oil shale gasification products  

Science Journals Connector (OSTI)

The gasification of shale from two domestic deposits (Kashpirskoe and Leningradskoe) and the subsequent transformation of the products of this process into the components of liquid motor fuels were studied.

B. I. Katorgin; A. L. Lapidus

2011-04-01T23:59:59.000Z

226

Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)  

SciTech Connect

Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

Not Available

2007-07-01T23:59:59.000Z

227

Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Agenda for the Transitioning the Transportation Sector--Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

228

Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price.  

E-Print Network (OSTI)

??In this thesis we examine how fuel price variation affects the optimal mix of services in intercity transportation. Towards this end, we make two main… (more)

Ryerson, Megan Smirti

2010-01-01T23:59:59.000Z

229

Two-phase microfluidics, heat and mass transport in direct methanol fuel cells  

E-Print Network (OSTI)

CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

230

Liquid Fuels Taxes and Credits (released in AEO2010)  

Reports and Publications (EIA)

Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

2010-01-01T23:59:59.000Z

231

Fuel cells for future transportation: The Department of Energy OTT/OUT partnership  

SciTech Connect

The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and integrated into the energy economy. This integration will enable the Program to reach its objectives of displacing 10 quads per year by 2030 in all end-use sectors, which will represent about a 10% penetration into the total US energy market.

Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies; Ohi, J. [National Renewable Energy Lab., Golden, CO (United States). Center for Transportation Technologies and Systems

1997-12-31T23:59:59.000Z

232

Liquid-fossil-fuel technology. Quarterly technical progress report, July-September 1982  

SciTech Connect

Progress reports for the quarter ending September 1982 are presented for the following major tasks: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum, coal liquids, thermodynamics, process technology); utilization; project integration and technology transfer. Feature articles for this quarter are: new laboratory enhances BETC capability in mass spectrometry; and BETC tests on diesel particulate extracts indicate potential health risks. (ATT)

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

233

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

1993-05-01T23:59:59.000Z

234

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1993-05-01T23:59:59.000Z

235

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29T23:59:59.000Z

236

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

SciTech Connect

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2010-01-01T23:59:59.000Z

237

Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site  

SciTech Connect

Beginning in the 1940`s, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments.

Smith, R.J.

1995-02-01T23:59:59.000Z

238

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

Liquid hydrocarbon fuels will continue to play a significant role in the transportation sector in the future of both the world and the United States because of the their convenience, high energy density, and vast existing infrastructure. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports by developing overseas economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be alleviated in part by utilizing the abundant domestic coal resource base. Continued R&D in coal conversion technology is expected to significantly reduce costs so that synfuels can compete economically at a much earlier date than previously forecast.

Srivastava, R.; McIlvried, H.G. [Burns and Roe Services Co., Pittsburgh, PA (United States); Gray, D.; Klunder, E.B.

1995-12-31T23:59:59.000Z

239

Alternative Fuels Data Center: xTL Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

xTL Fuels to someone xTL Fuels to someone by E-mail Share Alternative Fuels Data Center: xTL Fuels on Facebook Tweet about Alternative Fuels Data Center: xTL Fuels on Twitter Bookmark Alternative Fuels Data Center: xTL Fuels on Google Bookmark Alternative Fuels Data Center: xTL Fuels on Delicious Rank Alternative Fuels Data Center: xTL Fuels on Digg Find More places to share Alternative Fuels Data Center: xTL Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels xTL Fuels Synthetic liquid transportation fuels, collectively known as xTL fuels, are produced through specialized conversion processes. These production methods, including the Fischer-Tropsch process, produce fuels from carbon-based feedstocks, such as biomass, coal, or natural gas, and can

240

Fuel-Mix, Fuel Efficiency, and Transport Demand Affect Prospects for Biofuels in Northern Europe  

Science Journals Connector (OSTI)

Consumption structure parameters describe how the four road transport processes are being consumed, such as, for example, the amount of car-sharing and private vehicle ownership per capita—and are based on country-specific trend extrapolation using data provided by national statistical agencies and other research institutions (13-17, 35). ... As Ohrogge et al. point out, although there are uncertainties in the pace of electric car development and market penetration, future strategies aimed at promoting bioelectricity instead of ethanol for substituting conventional fuels like gasoline in cars and promoting more diesel engines in heavier vehicles may be the best route to the goal of reducing petroleum consumption and CO2 emissions (69). ... In the case of Sweden, where forest operations are highly and efficiently mechanized, this stage consumes more fossil fuels than other elements of the wood supply chain (such as silviculture and logging operations). ...

Ryan M. Bright; Anders Hammer Strømman

2010-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes  

E-Print Network (OSTI)

E. Ionic Liquids as Green Solvents: Progress and Prospectsthem attention as “green” solvents for synthesis and

Hoarfrost, Megan Lane

2012-01-01T23:59:59.000Z

242

AEO2015 Liquid Fuels Markets Working Group Presentation  

Annual Energy Outlook 2012 (EIA)

target volumes - Direct Rule and Pathways II Final Rule set renewable fuel oil and biogas as cellulosic- compliant. Investigating methodology for representing new rules. * E-15...

243

Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042  

SciTech Connect

The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States)] [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States); Wagner, John C. [Oak Ridge National Laboratory (United States)] [Oak Ridge National Laboratory (United States)

2013-07-01T23:59:59.000Z

244

Fuel Cells for Transportation FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION1  

E-Print Network (OSTI)

Fuel Cells for Transportation FY 2001 Progress Report 113 V. PEM STACK COMPONENT COST REDUCTION1 A. High-Performance, Matching PEM Fuel Cell Components and Integrated Pilot Manufacturing Processes Mark K polymer electrolyte membrane (PEM) fuel cell components and pilot manufacturing processes to facilitate

245

A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE  

E-Print Network (OSTI)

A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE KEITH exchange membrane fuel cell is a highly porous material which acts to distribute reactant gases uniformly perturbation, fuel cell electrodes, free surface. AMS subject classifications. 35B40, 35K55, 76R99, 76S05 1

Stockie, John

246

Hybrid Life-Cycle Assessment of Natural Gas Based Fuel Chains for Transportation  

Science Journals Connector (OSTI)

The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. ... Then, trucks are used to transport the fuels to a fueling station in Geneva, Switzerland. ... In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid elec., and hydrogen fuel cells], we find no option dominates the others on all dimensions. ...

Anders Hammer Strømman; Christian Solli; Edgar G. Hertwich

2006-03-17T23:59:59.000Z

247

Algae: The Source of Reliable, Scalable, and Sustainable Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable, and Sustainable Liquid Transportation Fuels At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Brian Goodall (Sapphire Energy)...

248

UNDERSTANDING OF CATALYST DEACTIVATION CAUSED BY SULFUR POISONING AND CARBON DEPOSITION IN STEAM REFORMING OF LIQUID HYDROCARBON FUELS.  

E-Print Network (OSTI)

??The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production.… (more)

Xie, Chao

2011-01-01T23:59:59.000Z

249

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network (OSTI)

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

250

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

251

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

252

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

253

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

254

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

255

Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor  

Science Journals Connector (OSTI)

Abstract Almost 10,000 spherical fuel elements are transported pneumatically one by one in the pipeline outside the core of a pebble bed reactor every day. Any failure in the transportation will lead to the shutdown of the reactor, even safety accidents. In order to ensure a stable and reliable transportation, it's of great importance to analyze the motion and force condition of the fuel element. In this paper, we focus on the dynamic analysis of the pneumatic transportation of the fuel element and derive kinetic equations. Then we introduce the design of the transportation pipeline. On this basis we calculate some important data such as the velocity of the fuel element, the force between the fuel element and the pipeline and the efficiency of the pneumatic transportation. Then we analyze these results and provide some suggestions for the design of the pipeline. The experiment was carried out on an experimental platform. The velocities of the fuel elements were measured. The experimental results were consistent with and validated the theoretical analysis. The research may offer the basis for the design of the transportation pipeline and the optimization of the fuel elements transportation in a pebble bed reactor.

Hongbing Liu; Dong Du; Zandong Han; Yirong Zou; Jiluan Pan

2014-01-01T23:59:59.000Z

256

NREL: Transportation Research - Fuel Combustion and Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in...

257

A liquid water management strategy for PEM fuel cell stacks  

E-Print Network (OSTI)

Gas and water management are key to achieving good performance from a PEM fuel cell stack. Previous experimentation had found, and this experimentation confirms, that one very effective method of achieving proper gas and water management is the use...

Van Nguyen, Trung; Knobbe, M. W.

2003-02-25T23:59:59.000Z

258

Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte  

Science Journals Connector (OSTI)

We report the design and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates, and electrolyte ...

Ranga S. Jayashree; Michael Mitchell; Dilip Natarajan; Larry J. Markoski; Paul J. A. Kenis

2007-05-19T23:59:59.000Z

259

Dehydrogenation of liquid fuel in microchannel catalytic reactor  

DOE Patents (OSTI)

The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

Toseland, Bernard Allen (Coopersburg, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

2010-08-03T23:59:59.000Z

260

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

Energy.gov (U.S. Department of Energy (DOE))

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost.

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Elephant in the Room: Dealing with Carbon Emissions from Synthetic Transportation Fuels Production  

SciTech Connect

Carbon dioxide (CO2), produced by conversion of hydrocarbons to energy, primarily via fossil fuel combustion, is one of the most ubiquitous and significant greenhouse gases (GHGs). Concerns over climate change precipitated by rising atmospheric GHG concentrations have prompted many industrialized nations to begin adopting limits on emissions to inhibit increases in atmospheric CO2 levels. The United Nations Framework Convention on Climate Change states as a key goal the stabilization of atmospheric CO2 at a level that prevents “dangerous anthropogenic interference” with the planet’s climate systems. This will require sharply reducing emissions growth rates in developing nations, and reducing CO2 emissions in the industrialized world to half current rates in the next 50 years. And ultimately, stabilization will require that annual emissions drop to almost zero.Recently, there has been interest in producing synthetic transportation fuels via coal-to-liquids (CTL) production, particularly in countries where there is an abundant supply of domestic coal, including the United States. This paper provides an overview of the current state of CTL technologies and deployment, a discussion of costs and technical requirements for mitigating the CO2 impacts associated with a CTL facility, and the challenges facing the CTL industry as it moves toward maturity.

Parker, Graham B.; Dahowski, Robert T.

2007-07-11T23:59:59.000Z

262

Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor  

DOE Patents (OSTI)

The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

2014-03-04T23:59:59.000Z

263

Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels  

Science Journals Connector (OSTI)

Abstract Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrothermal liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available experimental results. The system assumed an LEA feed rate of 608 dry metric tons/day and that the feedstock was converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid fuels, mainly alkanes. Performance and cost results demonstrated that HTL and upgrading is effective for converting LEA to liquid fuels. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent (GGE) and the overall energy efficiency on a higher heating value (HHV) basis was estimated to be 69.5%. The variation range of the minimum fuel selling price (MFSP) was estimated to be $2.07 to $7.11/GGE by combining the effects of selected process factors. Key factors affecting the production cost were identified to be the LEA feedstock cost, final products yields, and the upgrading equipment cost. The impact of plant scale on MFSP was also investigated.

Yunhua Zhu; Karl O. Albrecht; Douglas C. Elliott; Richard T. Hallen; Susanne B. Jones

2013-01-01T23:59:59.000Z

264

Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell  

E-Print Network (OSTI)

. Researchers all over the world are focusing on optimizing this system to be cost competitive with energy conversion devices currently available. It is a well known fact that the cathode of the PEM fuel cell is the performance limiting component due...THREE DIMENSIONAL EFFECTS OF LIQUID WATER FLOODING IN THE CATHODE OF A PEM FUEL CELL by Dilip Natarajan and Trung Van Nguyen* Department of Chemical and Petroleum Engineering University of Kansas Lawrence, KS 66045, USA Submitted...

Natarajan, Dilip; Van Nguyen, Trung

2003-03-27T23:59:59.000Z

265

Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Use of Natural Gas Based Fuels in Heavy-Duty Engines Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines Natural gas and other liquid feedstocks for transportation fuels...

266

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks  

NLE Websites -- All DOE Office Websites (Extended Search)

AURORA Program Overview Topic 4A. Transport within the PEM Stack / Transport Studies Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Award#: DE-EE0000472 US DOE Fuel Cell Projects Kickoff Meeting Washington, DC September 30, 2009 Program Objectives The objective of this program is to optimize the efficiency of a stack technology meeting DOE cost targets. As cost reduction is of central importance in commercialization, the objective of this program addresses all fuel cell applications. AURORA C. Performance Technical Barriers Premise: DOE cost targets can be met by jointly exceeding both the Pt loading (1.0 W/cm2) targets.

267

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations  

SciTech Connect

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-01-01T23:59:59.000Z

268

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

SciTech Connect

This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2003-07-31T23:59:59.000Z

269

Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods  

SciTech Connect

A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

Donald Olander

2005-08-24T23:59:59.000Z

270

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

271

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System  

SciTech Connect

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

272

On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks  

SciTech Connect

This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

Samuel Bays; Ayodeji Alajo

2010-05-01T23:59:59.000Z

273

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents (OSTI)

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

274

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

275

The impact of fuel price volatility on transportation mode choice  

E-Print Network (OSTI)

In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight logistics. This thesis explores the impact of fuel price volatility on supply ...

Kim, Eun Hie

2009-01-01T23:59:59.000Z

276

Transportation Fuel Cell R&D Needs (Presentation)  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado.

277

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

278

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

279

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1980  

SciTech Connect

Highlights of research activities at BETC during the past quarter are summarized in this document. Major research areas include: liquid fossil fuel cycle, extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, and process technology); utilization; and product integration and technology transfer.

Not Available

1981-05-01T23:59:59.000Z

280

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

On direct and indirect methanol fuel cells for transportation applications  

SciTech Connect

Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

282

Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies  

E-Print Network (OSTI)

Camelina Algae Gasoline Diesel Jet Fuel Liquefied Petroleum Gas Naphtha Residual Oil Hydrogen Fischer Coke Nuclear Energy Hydrogen #12;GREET examines more than 80 vehicle/fuel systems Conventional Spark-Tropsch diesel 4 Dimethyl ether 4 Biodiesel Fuel Cell Vehicles 4 On-board hydroge

Bustamante, Fabián E.

283

The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation  

E-Print Network (OSTI)

The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

Fradera, Jorge

2013-01-01T23:59:59.000Z

284

Cost analysis of air cargo transport and effects of fluctuations in fuel price  

Science Journals Connector (OSTI)

Abstract This study developed a model with cost functions formulated for different stages of cargo transport operation. A case analysis was performed with actual data from four air cargo traffic routes and eight aircraft types to validate the applicability of the model. The results show that the optimal payloads for various aircraft types vary with fuel price fluctuations. Furthermore, this study determined optimal types of freighter aircraft for different routes. Freight rates increase with rises in fuel price due to the corresponding increase in the fuel surcharge, thus bringing in higher total revenue. When the increase in total revenue exceeds the rise in fuel cost, the optimal payload will drop. Not only can the cost functions reveal the impact of fuel price fluctuations on different aspects of air cargo transport, they can also assist airlines in selecting the aircraft type with the best fuel economy for different route distances and cargo volumes.

Ching-Cheng Chao; Ching-Wen Hsu

2014-01-01T23:59:59.000Z

285

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

286

Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2  

SciTech Connect

EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

Klosky, M.K. [EnerTech Environmental, Inc., Atlanta, GA (United States)

1996-09-01T23:59:59.000Z

287

Heavy Oil Transportation as a Solid-Liquid Dispersion  

Science Journals Connector (OSTI)

Traditionally, heavy oil pipelines are designed to handle liquids with effective viscosity below 0.5 Pa s at the pump outlet, in order to minimize the frictional pressure gradient and obtain a pipeline size an...

Adriana Brito; H. Salazar; Ramón Cabello…

2014-01-01T23:59:59.000Z

288

Producing transportation fuels from algae: In search of synergy  

Science Journals Connector (OSTI)

Abstract The study found that promising algae biofuels R&D breakthroughs (hydrothermal liquefaction technology, high-frequency magnetic impulse cavitation reactors, etc.) and industry milestones (technologies of hydrorefining and catalytic selective oxidation among others), in order to move forward, require for implementation of new synergies and further innovations needed to improve economical production of advanced biofuels that are not applicable today. It seems that already viable state-of-the-art findings must be re-examined extensively in all of the different aspects in order to hasten the commercialisation of algal biofuels production in sustainable biorefineries. The same could be said about the feedstock selection for algal biomass production and its cultivation. It is the first step to successful large-scale algae cultivation in new regions of the world. Based on the above mentioned we identified fourteen promising algae species that can successfully grow in various regions of Russia under local climatic conditions. Samples collected during expedition were analysed at Lomonosov Moscow State University. Providing predetermined alternate periods of light and darkness and for temperature control of the different mediums to improve photosynthetic responses we investigated two different microalgal production systems: open ponds of the volume V=500 l and closed bioreactors of the volume V=1.0 l. Later on, a review on interdisciplinary synergies between biology and technology to open up new avenues of R&D in the field of algae-for-transport was carried out by leading universities of Lithuania, Russia, and Ukraine. In summary, we found that it is already possible to reduce the price of the 3rd and 4th generation biodiesel fuel from algae by applying the synergistic approaches to sustainable energy production highlighted in this paper, and probably some other ones as well.

Laurencas Raslavi?ius; Vladimir G. Semenov; Nadezhda I. Chernova; Art?ras Keršys; Aleksandr K. Kopeyka

2014-01-01T23:59:59.000Z

289

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

290

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

291

GREET 1.0 -- Transportation fuel cycles model: Methodology and use  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-06-01T23:59:59.000Z

292

No loss fueling station for liquid natural gas vehicles  

SciTech Connect

A no loss liquid natural gas (LNG) delivery system is described comprising: (a) means for storing LNG and natural gas at low pressure; (b) means for delivering LNG from the means for storing to a use device including means for sub-cooling the LNG; (c) means for pre-cooling the means for sub-cooling before the LNG is delivered to the use device to substantially reduce vaporization of the initial LNG delivered to the use device; and (d) means for delivering a selectable quantity of the natural gas in said storing means to said use device with the LNG.

Gustafson, K.

1993-07-20T23:59:59.000Z

293

Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels  

DOE Patents (OSTI)

A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

2013-04-30T23:59:59.000Z

294

NREL: Transportation Research - Emissions and Fuel Economy Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that result in...

295

Alternative Fuels Used in Transportation: Science Projects in...  

Energy Savers (EERE)

with a hydroxyl radical (OH). Methanol can be produced from natural gas, coal, residual oil, or biomass. Although vehicles can operate on pure methanol fuel (M100), methanol...

296

The impact of fuel price volatility on transportation mode choice.  

E-Print Network (OSTI)

??In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight… (more)

Nsiah-Gyimah, Michael

2009-01-01T23:59:59.000Z

297

Catalytic pressurization of liquid hydrogen fuel tanks for unmanned aerial vehicles  

Science Journals Connector (OSTI)

As the use and applications of Unmanned Aerial Vehicles (UAV) expand the need for a lighter weight fuel allowing for longer duration flights has become the primary limiting factor in the advancement of these vehicles. To extend the operational envelope of UAV onboard condensed hydrogen storage for missions exceeding one week is necessary. Currently large spherical liquid hydrogen tanks that are pressurized with external helium tanks or electronic heating elements are utilized for this purpose. However the mass size and power consumption of the fuel storage tank and fuel pressurization system significantly limit the flight envelope of UAV. In an effort to alleviate these issues this paper investigates the technological feasibility of orthohydrogen-parahydrogen catalysis as a method of fuel pressurization. Typical pressurization requirements for takeoff cruise and landing are reviewed. Calculations of the catalyst system mass and response time are presented.

Jacob Leachman; Melissa Jean Street; Teira Graham

2012-01-01T23:59:59.000Z

298

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

299

Charge Transport in Solid and Liquid Ar, Kr, and Xe  

Science Journals Connector (OSTI)

This paper reports an investigation of the drift velocity of excess electrons in solid and liquid Ar, Kr, and Xe. After purification of the commercially available gas, thin crystal specimens (100-600 ?m) were grown from the liquid between parallel electrodes in a chamber attached to a miniature cryostat. Pulses of 40-keV electrons were used to generate the charge carriers in both liquids and solids. This technique overcomes the limitations inherent in previously applied methods and has made it possible to investigate the drift velocity over a range of applied fields from 10 V cm-1 to 100 kV cm-1. Near the triple point, the low-field mobility ?0 in solid Ar, Kr, and Xe was found to be 1000, 3700, and about 4500 cm2sec-1V-1, respectively. In the liquids the corresponding mobilities were 475, 1800, and 2200 cm2sec-1V-1. The temerature dependence of ?0 has been measured on Ar crystals, and the results indicate that ?0 is determined by acoustic scattering. The electron lifetime appears to be controlled predominantly by oxygen impurities. Pronounced hot-electron effects are observed in drift-velocity—versus—field curves for both liquids and solids, and their fit to the Shockley hot-electron theory has been investigated. In the high-field region all the curves show an almost complete saturation with field. The theory of Cohen and Lekner applied to liquid Ar fits the results over most of the field range, suggesting that the deviations from the Shockley theory at higher electron temperatures are associated with an increase in the value of the structure factor. In solid Ar or Kr, positive holes do not appear to be mobile, but in Xe crystals a hole mobility of about 2×10-2 cm2sec-1V-1 was found. The implications of these results are briefly discussed.

L. S. Miller; S. Howe; W. E. Spear

1968-02-15T23:59:59.000Z

300

Microscopic Transport in Mixtures of Room Temperature Ionic Liquids...  

NLE Websites -- All DOE Office Websites (Extended Search)

andor storage of carbon dioxide. For these applications in addition to CO 2 sorption properties, also transport properties of the mixtures of CO 2 and ILs are of high...

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

302

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

303

STATE ALTERNATIVE FUELS PLAN COMMISSIONREPORT  

E-Print Network (OSTI)

to Liquids Alliance of Automotive Manufacturers American Bioethanol Corporation American Honda Motor Company Resources California Electric Transportation Coalition California Environmental Protection Agency California. Dupont #12;iii ECO Fuel Systems Inc Electric Power Research Institute EMPA Technology and Society

304

Ultrafast, Unimpeded Liquid Water Transport Through Graphene-Based Nanochannels Measured by Isotope Labelling  

E-Print Network (OSTI)

Graphene-based laminates, with ultralong and tortuous nanocapillaries formed by simply stacking graphene flakes together, have great promises in filtration and separation. However, the information on liquid water trans-membrane permeation is lacking, which is the most fundamental problem and of crucial importance in solution-based mass transport. Here, based on isotope labelling, we investigate the liquid water transportation through graphene-based nanocapillaries under no external hydrostatic pressures. Liquid water can afford an unimpeded permeation through graphene-based nanochannels with a diffusion coefficient 4~5 orders of magnitude larger than through sub-micrometer-sized polymeric channels. When dissolving ions in sources, the diffusion coefficient of ions through graphene channels lies in the same order of magnitude as water, while the ion diffusion is faster than water, indicating that the ions are mainly transported by fast water flows and the delicate interactions between ions and nanocapillary wa...

Sun, Pengzhan; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

2014-01-01T23:59:59.000Z

305

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

Science Journals Connector (OSTI)

Long endurance flight on the order of days is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However no such system of LH2 storage delivery and use is currently available for commercial UAVs. In this paper we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered student designed and constructed Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging pressurizing and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

2014-01-01T23:59:59.000Z

306

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

SciTech Connect

Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

2014-01-29T23:59:59.000Z

307

Liquid fossil fuel technology. Quarterly technical progress report, July-September 1981  

SciTech Connect

Progress accomplished during the quarter ending September 1981 is reported under the following headings: liquid fossil fuel cycle; extraction (reservoir characterization and evaluation, recovery projects, reservoir access, extraction technology, recovery processes and process implementation); liquid processing (characterization, thermodynamics, and process technology); utilization (energy conversion - adaptive engineering, combustion systems assessment, and heat engines/heat recovery); and project integration and technology transfer. Special reports include: air drilling research; fluid injection in reservoirs; target reservoirs in Permian Basin suitable for CO/sub 2/ flooding; heavy oil technology; and the fate of used motor oil/results of a survey.

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

308

Mass transport phenomena in direct methanol fuel cells T.S. Zhao*, C. Xu, R. Chen, W.W. Yang  

E-Print Network (OSTI)

Mass transport phenomena in direct methanol fuel cells T.S. Zhao*, C. Xu, R. Chen, W.W. Yang January 2009 Available online 20 February 2009 Keywords: Fuel cell Direct methanol fuel cell Mass efficient energy production has long been sought to solve energy and environmental problems. Fuel cells

Zhao, Tianshou

309

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

310

NREL: Vehicles and Fuels Research - Transportation and Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

online animation that shows the variables of filling a fuel tank with compressed natural gas. NREL created an online tool to help drivers learn more about filling a tank with...

311

Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations  

SciTech Connect

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-08-02T23:59:59.000Z

312

Catalyst and process for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1987-01-01T23:59:59.000Z

313

Liquid fossil fuel technology. Quarterly technical progress rport, April-June 1983  

SciTech Connect

Highlights of research activities for the quarter ending June 1983 are summarized under the following headings: liquid fossil fuel; extraction; processing; utilization; and project integration and technology transfer. BETC publications are listed. Titles of featured articles are: (1) chemical flooding field test produces 975,000 barrels of oil; (2) chemicals boost recovery in steam-drive tests; (3) North Dakota carbon dioxide minitest successful; (4) carbon dioxide EOR reports issued; and (5) BETC slated for new management and new name. (ATT)

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

314

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

Energy.gov (U.S. Department of Energy (DOE))

Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and demolition debris. It has an average higher heating value (HHV) of approximately 5100 btu/lb (as arrived basis).

315

The Decline of Fuel Taxes and New Transportation Funding Options  

E-Print Network (OSTI)

). Regardless of the original intent, fuel taxes expanded on the paradigm shift introduced by tolling by creating a system that effectively correlated vehicle usage to tax collected, all while driving down collection costs. In 1932, a federal gas tax of 1... cent was introduced (Tax Foundation, 2012). However, unlike state fuel taxes, which were earmarked for road projects, the federal gas tax was credited to the federal government’s general fund, where congressional lawmakers could divert this revenue...

Manning, Kevin M.

2012-12-14T23:59:59.000Z

316

Liquid fossil fuel technology. Quarterly technical progress report, January-March 1980  

SciTech Connect

Highlights of the BETC January-March 1980 quarter were: Gasohol was tested in a cooperative effort with Southwestern Bell Telephone Co. Two fleets of 55 cars were tested using gasohol in one and gasoline in the other. No problems were encountered. The gasohol-fueled cars had less emissions, and the fuel efficiencies for both fleets were approximately the same. An in situ combustion has been successfully started in a heavy oil deposit in Kansas. After some difficulties in starting the burn, it is now operating satisfactorily and producing oil. Cooperation between DOE and the Venezuelan oil industry was explored in a meeting at BETC that emphasized efforts to produce heavy oil. Cooperation through the International Energy Agency is expected to result in sharing of technology on enhanced oil recovery. Petroleum product surveys are produced cooperatively by DOE and the American Petroleum Institute. They give the properties of the products currently being marketed in the US. During the quarter, surveys on Motor Gasolines, Summer 1979 and Diesel Fuel Oils, 1979 were published. They are used to trace changes in characteristics and also to set specifications. The size of colloids, micelles, and emulsions in petroleum and associated liquids can be a factor in the design of improved recovery processes. The use of small angle x-ray scattering has been facilitated by a new method of calculation. The development of the Liquid Fossil Fuel Cycle has been facilitated by a workshop and further discussions resulting in a new statement Planning Framework for Liquid Fossil Fuel Cycle, March 1, 1980. This has now been used to prepare a computer-processible form to use in a critical path study of the BETC program.

Linville, B. (ed.)

1980-08-01T23:59:59.000Z

317

The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta.  

E-Print Network (OSTI)

??The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This… (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

318

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS  

SciTech Connect

Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

Fox, E.

2012-05-01T23:59:59.000Z

319

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

320

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Santa Clara Valley Transportation Authority and San Mateo County Transit District-- Fuel Cell Transit Buses: Evaluation Results  

Energy.gov (U.S. Department of Energy (DOE))

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

322

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders Forum Forum 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting May 11, 2011 May 11, 2011 Evaluation of Shortline Railroads Evaluation of Shortline Railroads & & & & SNF/HLW Rail Shipment Inspections SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Task: Task: Task: Task: Identify Shortline Railroads Serving Nuclear Power Plants Identify Shortline Railroads Serving Nuclear Power Plants

323

E-Print Network 3.0 - average transport coefficient Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Korea Advanced Institute of Science and Technology Collection: Chemistry 5 Journal of Power Sources 164 (2007) 189195 Modeling water transport in liquid feed direct methanol fuel...

324

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Developed and Developing World Speaker(s): Lee Schipper Date: February 15, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing countries are expected to rise sharply in the coming decades if current trends continue. Projections of passenger and freight activity, vehicle use, and CO2 emissions push up overall CO2 emissions by a factor of three in Latin American and five in Asia by 2030, even with fuel economy improvements. The increase in car use is in part a result of growing incomes and economic activity, but it also reflects the poor quality of transit and

325

Thermodynamic and transport properties of thoria–urania fuel of Advanced Heavy Water Reactor  

Science Journals Connector (OSTI)

High temperature thermochemistry of thoria–urania fuel for Advanced Heavy Water Reactor was investigated. Oxygen potential development within the matrix and distribution behaviors of the fission products (fps) in different phases were worked out with the help of thermodynamic and transport properties of the fps as well as fission generated oxygen and the detailed balance of the elements. Some of the necessary data for different properties were generated in this laboratory while others were taken from literatures. Noting the behavior of poor transports of gases and volatile species in the thoria rich fuel (thoria–3 mol% urania), the evaluation shows that the fuel will generally bear higher oxygen potential right from early stage of burnup, and Mo will play vital role to buffer the potential through the formation of its oxygen rich chemical states. The problems related to the poor transport and larger retention of fission gases (Xe) and volatiles (I, Te, Cs) are discussed.

M. Basu (Ali); R. Mishra; S.R. Bharadwaj; D. Das

2010-01-01T23:59:59.000Z

326

A method for determining the spent-fuel contribution to transport cask containment requirements  

SciTech Connect

This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

Sanders, T.L.; Seager, K.D. [Sandia National Labs., Albuquerque, NM (United States); Rashid, Y.R.; Barrett, P.R. [ANATECH Research Corp., La Jolla, CA (United States); Malinauskas, A.P. [Oak Ridge National Lab., TN (United States); Einziger, R.E. [Pacific Northwest Lab., Richland, WA (United States); Jordan, H. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Duffey, T.A.; Sutherland, S.H. [APTEK, Inc., Colorado Springs, CO (United States); Reardon, P.C. [GRAM, Inc., Albuquerque, NM (United States)

1992-11-01T23:59:59.000Z

327

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

SciTech Connect

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

328

The role of natural gas as a vehicle transportation fuel  

E-Print Network (OSTI)

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

329

Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael Mitchell, Dilip Natarajan, Larry J. Markoski, and  

E-Print Network (OSTI)

Letters Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates

Kenis, Paul J. A.

330

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

331

Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions  

Science Journals Connector (OSTI)

Abstract Today there are serious regulations to reduce sulfur content of fuels because the \\{SOx\\} produced during the combustion of fuels containing sulfur compounds make the air polluted and have dangerous environmental impacts. With the aim of replacement of the present volatile, flammable and toxic organic solvents or inefficient, corrosive and expensive ionic liquids (ILs), the polyethylene glycol (PEG) was introduced as a green, effective, non-toxic, non-corrosive and also recyclable molecular solvent for extractive desulfurization (EDS) of benzothiophenic compounds from liquid fuel in this work for the first time. PEG shows excellent EDS and it has the higher extraction efficiency for dibenzothiophene (DBT) (76% within 90 s) than those of ILs. Using this extractant, the BDT content was reduced from 512 to 10 ppmw (98%) only within three extraction stages, the minimum number of cycles within shortest time reported up to now, and the deep desulfurization was achieved. Effect of some important parameters including initial concentration of sulfur compound, PEG dosage, time and temperature of extraction on the EDS process was investigated. It was fond that extraction performance of PEG is independent to temperature and initial sulfur content, which is an excellent finding for industrialization. The feasibility of PEG for extraction of different thiophenic compounds was observed in the order of dibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiopene. Finally, the PEG was reused in several cycles and then it was regenerated by adsorption method. The results of the present work hopefully provide useful information for future industrial application of PEG as an efficient green solvent for the EDS of liquid fuels.

Effat Kianpour; Saeid Azizian

2014-01-01T23:59:59.000Z

332

Fuel cells for transportation program: FY1997 national laboratory annual report  

SciTech Connect

The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

NONE

1997-12-31T23:59:59.000Z

333

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

SciTech Connect

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

334

Argonne Transportation - Clean Cities Area of Interest 4: Alternative Fuel,  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Download Clean Cities Area of Interest 4 Emissions Benefit Tool (Excel 57 KB) This tool has been created for the Clean Cities Funding Opportunity Announcement for Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program. The tool is based off the AirCRED model's methodology using EPA's MOBILE6 model and light duty vehicle and heavy duty engine certification data to generate criteria air pollutant emission credits. However, for this tool, the GREET model is also used to generate data for vehicles not certified and well-to-wheel greenhouse gas emissions. This tool requires the user to input: The number of vehicles planned to be purchased

335

Vehicle Technologies Office: Transitioning the Transportation Sector- Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" workshop report by Sandia National Laboratory summarizes a workshop that discussed common opportunities and challenges in expanding the use of hydrogen (H2) and natural gas (CNG or LNG) as transportation fuels.

336

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

SciTech Connect

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

337

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2008/fiscal year 2009.

Not Available

2010-06-01T23:59:59.000Z

338

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

339

Criteria for selection of components for surrogates of natural gas and transportation fuels q  

E-Print Network (OSTI)

Criteria for selection of components for surrogates of natural gas and transportation fuels q reserved. Keywords: Kerosene reaction mechanism; Gasoline reaction mechanism; Natural gas reaction found in minor amounts in natural gas [4]. The widely studied heptane reaction set [5,6] is often used a

Utah, University of

340

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network (OSTI)

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes  

DOE Patents (OSTI)

Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

2014-01-28T23:59:59.000Z

342

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

343

Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow  

SciTech Connect

Under conditions of a programmable discharge (a surface microwave discharge combined with a dc discharge), plasma-enhanced combustion of alcohol injected into a subsonic (M = 0.3-0.9) airflow in the drop (spray) phase is stabilized. It is shown that the appearance of the discharge, its current-voltage characteristic, the emission spectrum, the total emission intensity, the heat flux, the electron density, the hydroxyl emission intensity, and the time dependences of the discharge current and especially discharge voltage change substantially during the transition from the airflow discharge to stabilized combustion of the liquid hydrocarbon fuel. After combustion stabilization, more than 80% of liquid alcohol can burn out, depending on the input power, and the flame temperature reaches {approx}2000 K.

Kopyl, P. V.; Surkont, O. S.; Shibkov, V. M.; Shibkova, L. V. [Moscow State University, Faculty of Physics (Russian Federation)

2012-06-15T23:59:59.000Z

344

ADSORPTIVE DESULFURIZATION OF LIQUID TRANSPORTATION FUELS VIA NICKEL-BASED ADSORBENTS FOR FUEL CELL APPLICATONS.  

E-Print Network (OSTI)

??The objectives of this work are to compare the adsorptive desulfurization capacity of several different types of nickel-based adsorbents and to identify ways for further… (more)

Clemons, Jennifer

2009-01-01T23:59:59.000Z

345

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

346

Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications  

SciTech Connect

Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

1985-01-01T23:59:59.000Z

347

Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and  

E-Print Network (OSTI)

112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP flammability and safety precautions. Do not keep gasoline inside the home or transport it in the trunks

348

Numerical assessment of liquid cooling system for power electronics in fuel cell electric vehicles  

Science Journals Connector (OSTI)

Abstract Electrical power from the fuel cells is converted and controlled by power electronics that are composed of control units, converters and switching devices. During the power management, the inevitable power losses induce heat generation in the power electronics. In this, effective design for the cooling system is essential in terms of safety, reliability, and durability. A liquid cooling system for the power electronics is applied to chill the electrical components below the thermal specifications. Nonetheless, the layout of cooling components is usually designed after the completion of the chassis and power electronics in the automotive applications, thus, only a little freedom is allowed to change the layout. Thus, it is significant and urgent to investigate the cooling performance before finalizing the layout design. In this paper, one dimensional and computerized fluid dynamics code is employed to simulate the performance of the cooling system at the early stage of conceptual design. Three different layouts of cooling systems are chosen to compare the ensuing systematic cooling performances. The liquid flow rates, pressure drops, and maximum temperatures are computed by the numerical simulations of the cooling system which comprises the cold plates, liquid pump, radiator, and plumbing network. It is demonstrated that for a fuel cell electric vehicle of 100 kW, the dual cooling loops with a specified array control the maximum temperatures below thermal specification by inducing the higher liquid flow rate of rate of 33.4 L/min through radiator than 20.0 L/min in a single loop. The proposed systematic numerical simulation provides significant information to determine the layout of the power electronics coupled with the cooling performance at the early stage of conceptual design.

Heesung Park

2014-01-01T23:59:59.000Z

349

Fuel-Neutral Studies of PM Transportation Emissions  

SciTech Connect

New gasoline engine technologies such as Spark Ignition Direct Injection (SIDI), Gasoline Direct Injection Compression Ignition (GDICI), and Reaction Controlled Compression Ignition (RCCI) offer the possibility of dramatically increasing the fuel efficiency of future vehicles. One drawback to these advanced engines is that they have the potential to produce higher levels of exhaust particulates than current Port Fuel Injection (PFI) engines. Regulation of engine particulate emissions in Europe is moving from mass-based standards toward number-based standards. Due to growing health concerns surrounding nano-aerosols, it is likely that similar standards will eventually be applied in the United States. This would place more emphasis on the reliable removal of smaller particles, which make up the vast majority of the particulates generated on a number basis. While Diesel Particulate Filters (DPF) have become standard, different filter systems would likely be required for advanced gasoline vehicles, due to factors such as differing particulate properties and higher exhaust temperatures. High exhaust temperatures can limit the accumulation of a soot cake, which performs most of the actual filtration in a typical DPF system.

Stewart, Mark L.; Zelenyuk, Alla; Howden, Ken

2012-11-15T23:59:59.000Z

350

Safeguards and security concept for the Secure Automated Fabrication (SAF) and Liquid Metal Reactor (LMR) fuel cycle, SAF line technical support  

SciTech Connect

This report is a safeguards and security concept system review for the secure automated fabrication (SAF) and national liquid metal reactor (LMR) fuel programs.

Schaubert, V.J.; Remley, M.E.; Grantham, L.F.

1986-02-21T23:59:59.000Z

351

The conversion of natural gas to liquid fuels using the Sasol Slurry Phase Distillate Process  

SciTech Connect

The natural gas and energy industries have long sought an economically attractive means of converting remote gas reserves into transportable products, such as fuels or petrochemicals. Applicable gas sources include: undeveloped gas fields in locations so remote that pipeline construction is prohibitively expensive and associated gas from oil wells that is either flared, which is becoming environmentally unacceptable in many parts of the world, or reinjected, which is costly. Projects which have been developed to exploit such feeds typically have converted the gas into one of the following: (1) liquefied natural gas (LNG)--the process plants for LNG production are expensive, need to be very large to be economically viable, have costly dedicated shipping requirements, and suffer from a limited market concentrated in few countries; (2) methanol--the market for petrochemical feedstock methanol is limited, for use as a fuel, further downstream processing is needed, for example in a methyl tertiary butyl ether (MTBE) or methanol to gasoline (MTG) unit. Clearly, there is a need for an alternative that produces high quality fuels or value added products that can be transported to far-off markets, while yielding an attractive return on the developers` investment. The Sasol Slurry Phase Distillate Process will fulfill this need.

Silverman, R.W. [Raytheon Engineers and Constructors, Cambridge, MA (United States); Hill, C.R. [Sastech, Johannesburg (South Africa)

1997-12-31T23:59:59.000Z

352

Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Background Background Since 1988, federal and state legislation has mandated the adoption of alternative transportation fuels, primarily because of environmental and energy security concerns. Recently, however, much of the alternative fuels activity has shifted. With the electoral revolution of 1992, Congress is rethinking environmental regulation and cutting federal appro- priations for alternative fueled vehi- cles (AFVs). The U.S. Enviromental Protection Agency (EPA) may delay implementation of stringent emission standards, and the U.S. Department of Energy (DOE) has delayed requirements for alternative fuel adoption that were set to go into effect on September 1, 1995. In the late 1980s and early 1990s, as federal and state legislation was being crafted across the country,

353

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

ET AL. : FOSSIL FUEL CO 2 TRANSPORT IN CALIFORNIA health,fossil fuel combustion, with consequent impacts to human health [health. [ 45 ] Model predictions indicated that some areas within California had higher near-surface fossil fuel

2008-01-01T23:59:59.000Z

354

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R. Ahluwalia, V. Novick and S. Ahmed  

E-Print Network (OSTI)

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R · Produce fuel (H2-rich gas) for PEM and/or solid oxide fuel cells (SOFCs) · Reduce NOx emissions through

355

MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS  

SciTech Connect

The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions relevant to the experiments, and (3) to explore whether the corresponding predictions can explain the experimentally-observed behavior of the rise and dispersion of oil droplets in isotropic turbulence. A brief summary of results is presented in Section 4.

Joseph Katz and Omar Knio

2007-01-10T23:59:59.000Z

356

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

357

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components  

SciTech Connect

Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.

Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony; Weber, Adam Z.

2011-09-23T23:59:59.000Z

358

REFORMING OF LIQUID HYDROCARBONS IN A NOVEL HYDROGEN-SELECTIVE MEMBRANE-BASED FUEL PROCESSOR  

SciTech Connect

We propose to develop an inorganic metal-metal composite membrane to study reforming of liquid hydrocarbons and methanol by equilibrium shift in membrane-reactor configuration, viewed as fuel processor. Based on our current understanding and experience in the Pd-ceramic composite membrane, we propose to further develop this membrane to a Pd and Pd-Ag alloy membrane on microporous stainless steel support to provide structural reliability from distortion due to thermal cycling. Because of the metal-metal composite structure, we believe that the associated end-seal problem in the Pd-ceramic composite membrane in tubular configuration would not be an issue at all. We plan to test this membrane as membrane-reactor-separator for reforming liquid hydrocarbons and methanol for simultaneous production and separation of high-purity hydrogen for PEM fuel cell applications. To improve the robustness of the membrane film and deep penetration into the pores, we have used osmotic pressure field in the electroless plating process. Using this novel method, we deposited thin Pd-film on the inside of microporous stainless steel tube and the deposited film appears to robust and defect free. Work is in progress to evaluate the hydrogen perm-selectivity of the Pd-stainless steel membrane.

Shamsuddin Ilias

2003-06-30T23:59:59.000Z

359

Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)  

SciTech Connect

While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

Not Available

2014-12-01T23:59:59.000Z

360

Effect of a sudden fuel shortage on freight transport in the United States: an overview  

SciTech Connect

A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

Hooker, J N

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation  

SciTech Connect

This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

2012-08-01T23:59:59.000Z

362

Water Footprint of U.S. Transportation Fuels  

Science Journals Connector (OSTI)

If energy use is split into two categories, stationary and transportation, it is clear from the breakdown in ref 14 that water already plays a major role in stationary energy production: thermoelectric power generation is responsible for approximately 49% of total freshwater withdrawals in the United States (see the Supporting Information (SI) Figure S1 for complete breakdown). ... These more GHG-intensive water supplies serve a variety of users: in California, 18% of total desalination capacity provides freshwater for power plants with closed-loop cooling systems, 23% serves industrial facilities, 1% goes to crop irrigation, 57% goes to municipal customers, and 1% goes to other users. ... Fthenakis, V.; Kim, H. C.Life-Cycle Uses of Water in U.S. Electricity Generation Renewable Sustainable Energy Rev. 2010, 14 ( 7) 2039– 2048 ...

Corinne D. Scown; Arpad Horvath; Thomas E. McKone

2011-03-15T23:59:59.000Z

363

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

364

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

365

Hydrogen as transport fuel in Iceland. The political, technological and commercial story of ECTOS  

Science Journals Connector (OSTI)

Through the political, the technological and the commercial story of the early phases of the ECTOS project and its background, the implementation of hydrogen as transport fuel in Iceland is analysed. The presence of large amounts of geothermal energy is the resource basis for the governmental plans for converting Iceland into a hydrogen economy. Strong political commitment has established the framework for this transition. The goal of replacing the import of fossil fuels by 2030â??2040 has provided motivation and support for hydrogen R&D projects. The early public scepticism turned into general support when large multinational companies entered the scene.

Otto Andersen

2007-01-01T23:59:59.000Z

366

Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells  

E-Print Network (OSTI)

70-108B One Cyclotron Road Berkeley, California 94720 December 2, 1997 Key Words: Proton Exchange Membrane fuel cells, humidification, gas distribution, direct liquid water injection, interdigitated flow fields. * Corresponding... of the catalyst layers were made of waterproof, carbon fiber cloths. Liquid water was injected by two metering pumps into two heated stainless steel coils, where it was preheated to the cell operating temperatures, and then directly into the gas streams...

Wood, D. L.; Yi, Y. S.; Nguyen, Trung Van

1998-01-01T23:59:59.000Z

367

Scaling the Water Percolation in PEM Fuel Cell Porous Transport Layers  

Science Journals Connector (OSTI)

A typical polymer electrolyte membrane fuel cell (PEMFC) consist of a series of non?wetting porous layers comprised between the bipolar plates: the porous transport anode and cathode layers with their catalyst layer and the proton exchange membrane. The cathode porous transport layer (PTL) also known as gas diffusion layer has the dual role of facilitating the access of the reactants to the catalyst layer while removing the generated water. Water percolation through the PTL will evolve on one of the drainage flow patterns (either capillary fingering or stable displacement) depending on the injection flow rate.

E. F. Medici; J. S. Allen

2010-01-01T23:59:59.000Z

368

Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code  

SciTech Connect

A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

2012-08-29T23:59:59.000Z

369

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

370

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

371

Cost Analysis of PEM Fuel Cell Systems for Transportation: September 30, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Subcontract Report Subcontract Report Cost Analysis of PEM Fuel Cell NREL/SR-560-39104 Systems for Transportation December 2005 September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Cost Analysis of PEM Fuel Cell Systems for Transportation September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL Technical Monitor: K. Wipke Prepared under Subcontract No. KACX-5-44452-01 Subcontract Report NREL/SR-560-39104 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy

372

Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Fast Pyrolysis to Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University Daren E. Daugaard ConocoPhillips Company David D. Hsu National Renewable Energy Laboratory Technical Report NREL/TP-6A20-46586 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University

373

Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels  

SciTech Connect

In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain boundaries derived from separate atomistic calculations, we simulate Xe redistribution for a few simple microstructures using finite element methods (FEM), as implemented in the MOOSE framework from Idaho National Laboratory. Thermal transport together with the power distribution determines the temperature distribution in the fuel rod and it is thus one of the most influential properties on nuclear fuel performance. The fuel thermal conductivity changes as function of time due to microstructure evolution (e.g. fission gas redistribution) and compositional changes. Using molecular dynamics simulations we have studied the impact of different types of grain boundaries and fission gas bubbles on UO{sub 2} thermal conductivity.

Andersson, Anders D. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory; Du, Shiyu [Los Alamos National Laboratory; Liu, Xiang-Yang [Los Alamos National Laboratory; Nerikar, Pankaj [IBM; Stanek, Christopher R. [Los Alamos National Laboratory; Tonks, Michael [Idaho National Laboratory; Millet, Paul [Idaho National Laboratory; Biner, Bulent [Idaho National Laboratory

2012-06-04T23:59:59.000Z

374

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

375

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

376

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

377

Minority and poor households: patterns of travel and transportation fuel use  

SciTech Connect

This report documents the travel behavior and transportation fuel use of minority and poor households in the US, using information from numerous national-level sources. The resulting data base reveals distinctive patterns of household vehicle availability and use, travel, and fuel use and enables us to relate observed differences between population groups to differences in their demographic characteristics and in the attributes of their household vehicles. When income and residence location are controlled, black (and to a lesser extent, Hispanic and poor) households have fewer vehicles regularly available than do comparable white or nonpoor households; moreover, these vehicles are older and larger and thus have significantly lower fuel economy. The net result is that average black, Hispanic, and poor households travel fewer miles per year but use more fuel than do average white and nonpoor households. Certain other findings - notably, that of significant racial differences in vehicle availability and use by low-income households - challenge the conventional wisdom that such racial variations arise solely because of differences in income and residence location. Results of the study suggest important differences - primarily in the yearly fluctuation of income - between black and white low-income households even when residence location is controlled. These variables are not captured by cross-sectional data sets (either the national surveys used in our analysis or the local data sets that are widely used for urban transportation planning).

Millar, M.; Morrison, R.; Vyas, A.

1986-05-01T23:59:59.000Z

378

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,

Delucchi, Mark

2003-01-01T23:59:59.000Z

379

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

380

CONTAINMENT ANALYSIS METHODOLOGY FOR TRANSPORT OF BREACHED CLAD ALUMINUM SPENT FUEL  

SciTech Connect

Aluminum-clad, aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to the Savannah River Site and placed in interim storage in a water basin. To enter the United States, a cask with loaded fuel must be certified to comply with the requirements in the Title 10 of the U.S. Code of Federal Regulations, Part 71. The requirements include demonstration of containment of the cask with its contents under normal and accident conditions. Many Al-SNF assemblies have suffered corrosion degradation in storage in poor quality water, and many of the fuel assemblies are 'failed' or have through-clad damage. A methodology was developed to evaluate containment of Al-SNF even with severe cladding breaches for transport in standard casks. The containment analysis methodology for Al-SNF is in accordance with the methodology provided in ANSI N14.5 and adopted by the U. S. Nuclear Regulatory Commission in NUREG/CR-6487 to meet the requirements of 10CFR71. The technical bases for the inputs and assumptions are specific to the attributes and characteristics of Al-SNF received from basin and dry storage systems and its subsequent performance under normal and postulated accident shipping conditions. The results of the calculations for a specific case of a cask loaded with breached fuel show that the fuel can be transported in standard shipping casks and maintained within the allowable release rates under normal and accident conditions. A sensitivity analysis has been conducted to evaluate the effects of modifying assumptions and to assess options for fuel at conditions that are not bounded by the present analysis. These options would include one or more of the following: reduce the fuel loading; increase fuel cooling time; reduce the degree of conservatism in the bounding assumptions; or measure the actual leak rate of the cask system. That is, containment analysis for alternative inputs at fuel-specific conditions and at cask-loading-specific conditions could be performed to demonstrate that release is within the allowable leak rates of the cask.

Vinson, D.

2010-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

382

Development of a silicon-based passive gas-liquid separation system for microscale direct methanol fuel cells  

Science Journals Connector (OSTI)

The design, fabrication and performance characterisation of a passive gas-liquid separation system is presented in this paper. The gas-liquid separation system is silicon-based and its fabrication is compatible with the existing CMU design of the microscale direct methanol fuel cell (DMFC). Both gas and liquid separators consist of staggered arrays of etched-through holes fabricated by deep reactive ion etching (DRIE). The gas separator is coated with a thin layer of hydrophobic polymer to substantiate the gas-liquid separation. To visually characterise the system performance, the gas-liquid separation system is made on a single wafer with a glass plate bonded on the top to form a separation chamber with a narrow gap in between. Benzocyclobutene (BCB) is applied for the low-temperature bonding. The maximum pressure for the liquid leakage of the gas separators is experimentally determined and compared with the values predicted theoretically. Several successful gas-liquid separations are observed at liquid pressures between 14.2 cmH2O and 22.7 cmH2O, liquid flow rates between 0.705 cc/min and 1.786 cc/min, and CO2 flow rates between 0.15160 cc/min to 0.20435 cc/min.

C.C. Hsieh; S.C. Yao; Yousef Alyousef

2009-01-01T23:59:59.000Z

383

Probabilistic assessment of spent fuel shipping cask response to severe transportation accident conditions. Report summary  

SciTech Connect

The licensing of commercial nuclear spent shipping casks in the United States is regulated by 10CFR71. In order to be licensed, casks must be designed not to fail under hypothetical test conditions specified in Appendix B of this regulation. Questions have been raised about the suitability of these tests in simulating actual transportation accident conditions. Our study addresses the adequacy of current regulations by comparing real-world accident conditions with regulatory test specifications using more complete accident statistics and more sophisticated structural analyses than have been used in studies to date. Our objective is to evaluate the protection provided by current regulations against severe accident conditions for commercial spent nuclear fuel casks that are transported by truck or rail. The complete spectrum of truck and rail accidents will be reviewed in order to determine the frequency (or infrequency) of cask failures during transportation accidents. 3 references, 1 figure.

Fischer, L.E.; Kimura, C.Y.; Witte, M.C.

1985-01-01T23:59:59.000Z

384

INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report  

SciTech Connect

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2009-12-01T23:59:59.000Z

385

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1981  

SciTech Connect

Progress reports are presented for the following major areas of investigation: liquid fossil fuel cycle; extraction (resource assessment, enhanced recovery); liquid processing (characterization of petroleum and synthetic crude, thermodynamics; process technology); utilization; project integration and technology transfer. Highlights for this period in research studies are listed as those in extraction research and processing and thermodynamics research. Searches for microorganisms that will be useful in enhanced oil recovery have produced two promising leads. At Oklahoma State University, bacteria of the genus Clostridia have been found which can live in a brine solution as found in most petroleum reservoirs. These bacteria produce carbon dioxide, acetic acid, alcohols, and ketones as metabolic products. At the University of Georgia, a culture of bacteria has been found which will reduce the viscosity of a 10/sup 0/ API gravity oil by 95 percent. The analysis of heavy oils requires differentiation of sulfur, nitrogen, and oxygen-containing compounds from hydrocarbons. The most effective way to do this is with a high-resolution mass spectrometer that can distinguish between compounds having molecular weights only a fractional unit apart. These molecular weights are calculated from the computer acquired time-moments of the various ions in a mass spectrum. Thus, the accuracy of results reflects, in part, the numerical methods used in data processing. Consequently, the effect of the mathematical functions on the accuracy of mass measurement is being determined.

Not Available

1981-01-01T23:59:59.000Z

386

Growth Dynamics and Gas Transport Mechanism of Nanobubbles in Graphene Liquid Cells  

E-Print Network (OSTI)

Formation, evolution, and vanishing of bubbles are common phenomena in our nature, which can be easily observed in boiling or falling waters, carbonated drinks, gas-forming electrochemical reactions, etc. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in liquid phase. Here we demonstrate, for the first time, that the nanobubbles in water encapsulated by graphene membrane can be visualized by in situ ultrahigh vacuum transmission electron microscopy (UHV-TEM), showing the critical radius of nanobubbles determining its unusual long-term stability as well as two distinct growth mechanisms of merging nanobubbles (Ostwald ripening and coalescing) depending on their relative sizes. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensa...

Shin, Dongha; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S

2014-01-01T23:59:59.000Z

387

Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium  

Science Journals Connector (OSTI)

Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium ... A simple and efficient process was presented for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) into the high-quality liquid fuel 2,5-dimethylfuran (DMF) in the presence of tetrahydrofuran (THF). ... (1-3) Among the many possible chemicals, 5-hydroxymethylfurfural (HMF), which can be produced from a variety of biomass-derived carbohydrates,(4-8) is recognized as a versatile intermediate (Scheme 1), and it can be further converted into a series of high-quality fuels such as ethyl levulinate (EL),(9) 5-ethoxymethylfurfural (EMF),(10) 2,5-dimethylfuran (DMF),(11) C9–C15 alkanes,(12) and high-value chemicals such as levulinic acid (LA),(13) 2,5-dihydroxymethylfurfural (DHMF),(14) 2,5-diformylfuran (DFF),(15) and 2,5-furandicarboxylic acid (FDCA). ...

Lei Hu; Xing Tang; Jiaxing Xu; Zhen Wu; Lu Lin; Shijie Liu

2014-02-02T23:59:59.000Z

388

WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization  

SciTech Connect

Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

2012-10-02T23:59:59.000Z

389

Calculation of the Local Neutronic Parameters for CANDU Fuel Bundles Using Transport Methods  

SciTech Connect

For a realistic neutronic evaluation of the CANDU reactor core it is important to accurately perform the local neutronic parameters (i.e. multigroup macroscopic cross sections for the core materials) calculation. This means using codes that allow a good geometric representation of the CANDU fuel bundle and then solving the transport equation. The paper reported here intends to study in detail the local behavior for two types of CANDU fuel, NU{sub 3}7 (Natural Uranium, 37 elements) and SEU{sub 4}3 (Slightly Enriched Uranium, 43 elements, with 1.1 wt% enrichment). The considered fuel types represent fresh and used bundles. The two types of CANDU super-cells are reference NU{sub 3}7, perturbed NU{sub 3}7, reference SEU{sub 4}3 and perturbed SEU{sub 4}3. The perturbed super-cells contain a Mechanical Control Absorber (a very strong reactivity device). For reaching the proposed objective a methodology is used based on WIMS and PIJXYZ codes. WIMS is a standard lattice-cell code, based on transport theory and it is used for producing fuel cell multigroup macroscopic cross sections. For obtaining the fine local neutronic parameters in the CANDU super-cells (k-eff values, local MCA reactivity worth, flux distributions and reaction rates), the PIJXYZ code is used. PIJXYZ is a 3D integral transport code using the first collision probability method and it has been developed for CANDU cell geometry. It is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The analysis of the neutronic parameters consists of comparing the obtained results with the similar results calculated with the DRAGON code. This comparison shows a good agreement between these results. (authors)

Balaceanu, Victoria; Rizoiu, Andrei; Hristea, Viorel [Institute for Nuclear Research, PO Box 78, PITESTI (Romania)

2006-07-01T23:59:59.000Z

390

Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.  

SciTech Connect

The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

2014-09-01T23:59:59.000Z

391

Thorium ions transport across Tri-n-butyl phosphate-benzene based supported liquid membranes  

SciTech Connect

Transport of Th(IV) ions across tri-n-butyl phosphate (TBP) benzene based liquid membranes supported in microporous hydrophobic polypropylene film (MHPF) has been studied. Various parameters such as variation of nitric acid concentration in the feed, TBP concentration in the membrane, and temperature on the given metal ions transport have been investigated. The effects of nitric acid and TBP concentrations on the distribution coefficient were also studied, and the data obtained were used to determine the Th ions-TBP complex diffusion coefficient in the membrane. Permeability coefficients of Th(IV) ions were also determined as a function of the TBP and nitric acid concentrations. The optimal conditions for the transport of Th(IV) ions across the membrane are 6 mol{sm_bullet}dm{sup -3} HNO{sub 3} concentration, 2.188 mol {center_dot} dm{sup -3} TBP concentration, and 25{degrees}C. The stoichiometry of the chemical species involved in chemical reaction during the transport of Th(IV) ions has also been studied.

Rasul, G.; Chaudry, M.A. [Pakistan Institute of Nuclear Chemistry, Islamabad (Pakistan); Afzal, M. [Quaid-I-Azam Univ., Islamabad (Pakistan)

1995-12-01T23:59:59.000Z

392

Spent Fuel Transportation Cask Response to the Caldecott Tunnel Fire Scenario  

SciTech Connect

On April 7, 1982, a tank truck and trailer carrying 8,800 gallons of gasoline was involved in an accident in the Caldecott tunnel on State Route 24 near Oakland, California. The tank trailer overturned and subsequently caught fire. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook analyses to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by truck. The Fire Dynamics Simulator (FDS) code developed by National Institute of Standards and Technology (NIST) was used to determine the thermal environment in the Caldecott tunnel during the fire. The FDS results were used to define boundary conditions for a thermal transient model of a truck transport cask containing spent nuclear fuel. The Nuclear Assurance Corporation (NAC) Legal Weight Truck (LWT) transportation cask was selected for this evaluation, as it represents a typical truck (over-the-road) cask, and can be used to transport a wide variety of spent nuclear fuels. Detailed analysis of the cask response to the fire was performed using the ANSYS® computer code to evaluate the thermal performance of the cask design in this fire scenario. This report describes the methods and approach used to assess the thermal response of the selected cask design to the conditions predicted in the Caldecott tunnel fire. The results of the analysis are presented in detail, with an evaluation of the cask response to the fire. The staff concluded that some components of smaller transportation casks resembling the NAC LWT, despite placement within an ISO container, could degrade significantly. Small transportation casks similar to the NAC LWT would probably experience failure of seals in this severe accident scenario. USNRC staff evaluated the radiological consequences of the cask response to the Caldecott tunnel fire. Although some components heated up beyond their service temperatures, the staff determined that there would be no significant release as a result of the fire for the NAC LWT and similar casks.

Adkins, Harold E.; Koeppel, Brian J.; Cuta, Judith M.

2007-01-01T23:59:59.000Z

393

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

394

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network (OSTI)

.......................................................................................................................4 PROPOSED CALIFORNIA TRANSPORTATION FUEL PRICE FORECASTS......... 6 Summary....................................................................................................6 Petroleum Transportation Fuel Price Forecast Assumptions .............................................................6 California Transportation Fuel Price Forecasts

395

Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw  

SciTech Connect

Recently there has been much interest in developing processes for producing liquid fuels from renewable resources. The most logical long term approach in terms of economics derives the carbohydrate substrate for fermentation from the hydrolysis of cellulosic crop and forest residues rather than from grains or other high grade food materials (1,2). Since the presence of lignin is the main barrier to the hydrolysis of cellulose from lignocellulosic materials, delignification processes developed by the wood pulping industry have been considered as possible prehydrolysis treatments. The delignification process under study in our laboratory is envisioned as a synthesis of two recently developed pulping processes. In the first step, called autohydrolysis, hot water is used directly to solubilize hemicellulose and to depolymerize lignin (3). Then, in a second step known as organosolv pulping (4), the autohydrolyzed material is extracted with aqueous alcohol. A s shown in Figure 1, this process can separate the original lignocellulosic material into three streams--hemicellulose in water, lignin in aqueous alcohol, and a cellulose pulp. Without further mechanical milling, delignified cellulose can be enzymatically hydrolyzed at 45-50 C to greater than 80% theoretical yield of glucose using fungal cellulases (5, 6). The resulting glucose syrup can then be fermented by yeast to produce ethanol or by selected bacteria to produce acetone and butanol or acetic and propionic acids (7). One objection to such a process, however, is the large energy input that is required. In order to extend our supplies of liquid fuels and chemicals, it is important that the use of fossil fuels in any lignocellulosic conversion process be minimized. The direct use of geothermal hot water in carrying out the autohydrolysis and extraction operations, therefore, seems especially attractive. On the one hand, it facilitates the conversion of non-food biomass to fuels and chemicals without wasting fossil fuel; and on the other hand, it provides a means for ''exporting'' geothermal energy from the well site. The primary goal of the work discussed in this report was to investigate the effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw. In assessing the relative merits of various sets of conditions, we considered both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, we also investigated the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge. Phenol was selected for study because it was reported (8) to be effective in suppressing repolymerization of reactive lignin fragments. Aluminum sulfate, on the other hand, was chosen as a representative of the Lewis acids which, we hoped, would catalyze the delignification reactions.

Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

1981-06-01T23:59:59.000Z

396

Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312  

SciTech Connect

The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In January 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to evaluate the solutions, and the alternative solutions. The complexity of the project is increasing with time (more fuel assemblies, new storage systems, deteriorating logistics infrastructure at some sites, etc.) but with the uncertainty on the final disposal path, flexibility and simplicity will be critical. (authors)

Bracey, William; Bondre, Jayant; Shelton, Catherine [Transnuclear, Inc., 7135 Minstrel Way Suite 300, Columbia MD 21045 (United States)] [Transnuclear, Inc., 7135 Minstrel Way Suite 300, Columbia MD 21045 (United States); Edmonds, Robert [AREVA Federal Services, 7207 IBM Drive, Charlotte NC 28262 (United States)] [AREVA Federal Services, 7207 IBM Drive, Charlotte NC 28262 (United States)

2013-07-01T23:59:59.000Z

397

Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.  

SciTech Connect

Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

2008-01-01T23:59:59.000Z

398

Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta  

SciTech Connect

The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using this model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.

NONE

1997-12-01T23:59:59.000Z

399

Pore-Scale Investigation of Mass Transport and Electrochemistry in a Solid Oxide Fuel Cell Anode  

SciTech Connect

The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure.

Grew, K. N.; Joshi, A. S.; Peracchio, A. A.; Chiu, W. K. S.

2010-01-01T23:59:59.000Z

400

Renewable Fuel Standard Schedule | Open Energy Information  

Open Energy Info (EERE)

Standard Schedule Standard Schedule Jump to: navigation, search Name Renewable Fuel Standard Schedule Sector Liquid Transportation Fuels Spatial Resolution National Geographic Scope United States Temporal Resolution Annual The United States Environmental Protection Agency, under the National Renewable Fuel Standard program and as required by the Energy Independence and Security Act of 2007 (EISA), periodically revises the volumetric standards for cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel each year. The table below lists the current RFS2 schedule in billions of gallons: Year Renewable Biofuel Advanced Biofuel Cellulosic Biofuel Biomass-based Diesel Undifferentiated Total 2008 9 9

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Effective Transport Properties Accounting for Electrochemical Reactions of Proton-Exchange Membrane Fuel Cell Catalyst Layers  

SciTech Connect

There has been a rapidly growing interest in three-dimensional micro-structural reconstruction of fuel cell electrodes so as to derive more accurate descriptors of the pertinent geometric and effective transport properties. Due to the limited accessibility of experiments based reconstruction techniques, such as dual-beam focused ion beam-scanning electro microscopy or micro X-Ray computed tomography, within sample micro-structures of the catalyst layers in polymer electrolyte membrane fuel cells (PEMFCs), a particle based numerical model is used in this study to reconstruct sample microstructure of the catalyst layers in PEMFCs. Then the reconstructed sample structure is converted into the computational grid using body-fitted/cut-cell based unstructured meshing technique. Finally, finite volume methods (FVM) are applied to calculate effective properties on computational sample domains.

Pharoah, Jon; Choi, Hae-Won; Chueh, Chih-Che; Harvey, David

2011-07-01T23:59:59.000Z

402

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1  

SciTech Connect

Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

403

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components  

E-Print Network (OSTI)

Uptake and Removal in PEM Fuel-Cell Components Prodip K. DasWater management in PEM fuel cells is critical for optimumof droplet dynamics in PEM fuel-cell gas flow channels has

Das, Prodip K.

2013-01-01T23:59:59.000Z

404

Life-cycle assessment of corn-based butanol as a potential transportation fuel.  

SciTech Connect

Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

2007-12-31T23:59:59.000Z

405

Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO2 Targets: Connections between Transportation and Other Energy Sectors  

Science Journals Connector (OSTI)

Five fuel options (petroleum, natural gas, synthetic fuels (coal to liquid, CTL; gas to liquid, GTL; biomass to liquid, BTL), electricity, and hydrogen) and five vehicle technologies (ICEV, HEV, BEV, PHEV, and FCV) were considered. ... Petro ICEV, Synth ICEV, NG ICEV, H2 ICEV = internal combustion engine vehicle fueled either by petroleum, synthetic fuel (CTL, GTL, or BTL), natural gas, or gaseous hydrogen; HEV = hybrid electric vehicle; BEV = battery electric vehicle, PHEV = plug-in hybrid electric vehicle; Petro FCV, Synth FCV, H2 FCV = fuel-cell vehicle fueled either by petroleum, synthetic fuel, or gaseous hydrogen. ... In their CO2 reduction scenario (reduction from 1990 of 50% by 2050 and 75% by 2100), the car sector is dominated by gasoline/diesel (first in ICEVs, then HEVs and to a small extent also PHEVs) with hydrogen-fueled FCVs becoming dominant by 2100. ...

M. Grahn; C. Azar; M. I. Williander; J. E. Anderson; S. A. Mueller; T. J. Wallington

2009-03-26T23:59:59.000Z

406

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

407

Evaporation Characteristics of a Liquid Bio-Fuel from Chicken Litter .  

E-Print Network (OSTI)

??Alternative fuels are becoming more important as fossil fuels become more expensive. This thesis describes the production and properties of a bio-oil produced from waste… (more)

Tolonen, Erik

2013-01-01T23:59:59.000Z

408

Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns  

SciTech Connect

The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

Marsha Keister; Kathryn McBride

2006-08-01T23:59:59.000Z

409

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

SciTech Connect

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

410

Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application  

SciTech Connect

This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

NONE

1995-09-05T23:59:59.000Z

411

Thrust measurement method verification and analytical studies on a liquid-fueled pulse detonation engine  

Science Journals Connector (OSTI)

Abstract In order to test the feasibility of a new thrust stand system based on impulse thrust measurement method, a liquid-fueled pulse detonation engine (PDE) is designed and built. Thrust performance of the engine is obtained by direct thrust measurement with a force transducer and indirect thrust measurement with an eddy current displacement sensor (ECDS). These two sets of thrust data are compared with each other to verify the accuracy of the thrust performance. Then thrust data measured by the new thrust stand system are compared with the verified thrust data to test its feasibility. The results indicate that thrust data from the force transducer and ECDS system are consistent with each other within the range of measurement error. Though the thrust data from the impulse thrust measurement system is a litter lower than that from the force transducer due to the axial momentum losses of the detonation jet, the impulse thrust measurement method is valid when applied to measure the averaged thrust of PDE. Analytical models of PDE are also discussed in this paper. The analytical thrust performance is higher than the experimental data due to ignoring the losses during the deflagration to detonation transition process. Effect of equivalence ratio on the engine thrust performance is investigated by utilizing the modified analytical model. Thrust reaches maximum at the equivalence ratio of about 1.1.

Jie Lu; Longxi Zheng; Zhiwu Wang; Changxin Peng; Xinggu Chen

2014-01-01T23:59:59.000Z

412

Direct conversion of methane to C sub 2 's and liquid fuels  

SciTech Connect

Objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. Promoted metal oxide catalysts were tested. Several of these exhibited similar high ethylene to ethane ratios and low carbon dioxide to carbon monoxide ratios observed for the NaCl/{alpha}-alumina catalyst system reported earlier. Research on catalysts containing potentially activated metals began with testing of metal molecular sieves. Silver catalysts were shown to be promising as low temperature catalysts. Perovskites were tested as potential methane coupling catalysts. A layered perovskite (K{sub 2}La{sub 2}Ti{sub 3}O{sub 10}) gave the highest C{sub 2} yield. Work continued on the economic evaluation of a hypothetical process converting methane to ethylene. An engineering model of the methane coupling system has been prepared. 47 refs., 17 figs., 57 tabs.

Warren, B.K.; Campbell, K.D.

1989-11-22T23:59:59.000Z

413

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

414

Possible Pathways for Increasing Natural Gas Use for Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

emissions reduction. * NG use can provide a pathway for future bio-based fuels (e.g., biogas and gas + biomass-to-liquids GBTL). Natural Gas Use in Transportation Offers...

415

Heavy Duty Diesel Particulate Matter and Fuel Consumption Modeling for Transportation Analysis  

E-Print Network (OSTI)

of steady state engine fuel consumption and emission maps.affecting engine load and consequently fuel consumption. Theand engine speed which it then relates to fuel consumption

Scora, George Alexander

2011-01-01T23:59:59.000Z

416

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network (OSTI)

radiative forcing from bio- fuel and gasoline GHG emissions,directly to additional bio- fuel feedstocks. The averagelife cycle GHGs from bio- fuels highlights the limitations

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

417

Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl Burner.  

E-Print Network (OSTI)

??Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact… (more)

Zarghami-Tehran, Milad

2012-01-01T23:59:59.000Z

418

Experimental Investigation of the Effects of Fuel Properties on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-ethanol Blends in a Swirl Burner.  

E-Print Network (OSTI)

??Biomass fast pyrolysis liquid, also known as bio-oil, is a promising renewable fuel for heat and power generation; however, implementing crude bio-oil in some current… (more)

Moloodi, Sina

2011-01-01T23:59:59.000Z

419

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

420

Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation  

SciTech Connect

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL; Bevard, Bruce Balkcom [ORNL] [ORNL; Howard, Rob L [ORNL] [ORNL; Flanagan, Michelle [U.S. Nuclear Regulatory Commission] [U.S. Nuclear Regulatory Commission

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are...

422

Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides  

SciTech Connect

This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

Rogers, J.D.

1994-08-04T23:59:59.000Z

423

Commercialization of Coal-to-Liquids Technology  

SciTech Connect

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

424

Review of Energy Balances and Emissions Associated with Biomass-Based Transport Fuels Relevant to the United Kingdom Context  

Science Journals Connector (OSTI)

A numerical evaluation of the energy available from biomass-derived transport fuels, including biodiesel, bioethanol, and biomethane has been undertaken based on the available literature. ... Biomethane from the anaerobic digestion of crops was found to have a more favorable energy balance for the production of transport fuel than biodiesel or bioethanol (maximum 237?011 MJ/ha compared to 24?185 and 77?264 MJ/ha, respectively). ... To make the most efficient use of the limited land available for production of biofuels, it is recommended that further development of gaseous biofuels, such as biomethane and biohydrogen, are encouraged. ...

Tim Patterson; Richard Dinsdale; Sandra Esteves

2008-08-20T23:59:59.000Z

425

Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report  

SciTech Connect

Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

NONE

1996-01-01T23:59:59.000Z

426

Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Factsheet summarizing Univ. of Alabama project to save energy and reduce emissions with fuel-flexible burners

427

Modifying woody plants for efficient conversion to liquid and gaseous fuels  

SciTech Connect

The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

1990-07-01T23:59:59.000Z

428

One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels  

DOE Patents (OSTI)

The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.

Sen, Ayusman; Yang, Weiran

2014-03-18T23:59:59.000Z

429

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

430

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

SciTech Connect

Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the thirteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that they were having difficulty with refractory vendors meeting specifications for the lining of the pressure vessel. EnviRes is working to resolve this issue.

Donald P. Malone; William R. Renner

2006-04-01T23:59:59.000Z

431

The effect of TDC temperature and density on the liquid-phase fuel penetration in a D.I. Diesel engine  

SciTech Connect

A parametric study of the liquid-phase fuel penetration of evaporating Diesel fuel jets has been conducted in a directinjection Diesel engine using laser elastic-scatter imaging. The experiments were conducted in an optically accessible Diesel engine of the ``heavy-duty`` size class at a representative medium speed (1200 rpm) operating condition. The density and temperature at TDC were varied systematically by adjusting the intake temperature and pressure. At all operating conditions the measurements show that initially the liquid fuel penetrates almost linearly with increasing crank angle until reaching a maximum length. Then, the liquid-fuel penetration length remains fairly constant although fuel injection continues. At a TDC density of 16.6 kg/m{sup 3} and a temperature of about 1000 K the maximum penetration length is approximately 23 mm. However, it varies significantly as TDC conditions are changed, with the liquid-length being less at higher temperatures and at higher densities. The corresponding apparent heat release rate plots are presented and the results of the liquid-phase fuel penetration are discussed with respect to the ignition delay and premixed bum fraction.

Espey, C. [Daimler-Benz AG, Stuttgart (Germany); Dec, J.E. [Sandia National Labs., Albuquerque, NM (United States)

1995-12-01T23:59:59.000Z

432

Kinetic Monte Carlo (KMC) simulation of fission product silver transport through TRISO fuel particle  

Science Journals Connector (OSTI)

A mesoscale kinetic Monte Carlo (KMC) model developed to investigate the diffusion of silver through the pyrolytic carbon and silicon carbide containment layers of a TRISO fuel particle is described. The release of radioactive silver from TRISO particles has been studied for nearly three decades, yet the mechanisms governing silver transport are not fully understood. This model atomically resolves Ag, but provides a mesoscale medium of carbon and silicon carbide, which can include a variety of defects including grain boundaries, reflective interfaces, cracks, and radiation-induced cavities that can either accelerate silver diffusion or slow diffusion by acting as traps for silver. The key input parameters to the model (diffusion coefficients, trap binding energies, interface characteristics) are determined from available experimental data, or parametrically varied, until more precise values become available from lower length scale modeling or experiment. The predicted results, in terms of the time/temperature dependence of silver release during post-irradiation annealing and the variability of silver release from particle to particle have been compared to available experimental data from the German HTR Fuel Program (Gontard and Nabielek [1]) and Minato and co-workers (Minato et al. [2]).

G. Méric de Bellefon; B.D. Wirth

2011-01-01T23:59:59.000Z

433

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect

The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

Not Available

1991-07-01T23:59:59.000Z

434

Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round  

E-Print Network (OSTI)

Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round Jennifer Baka a , David Roland-Holst b,Ã? a Yale School of Forestry and Environmental Studies agricultural production constant, we find that the EU has the potential to reduce oil imports between 6% and 28

Kammen, Daniel M.

435

Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures - A Molecular Dynamics Simulation Study  

E-Print Network (OSTI)

The lithium transport mechanism in ternary polymer electrolytes, consisting of PEO/LiTFSI and various fractions of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide, are investigated by means of MD simulations. This is motivated by recent experimental findings [Passerini et al., Electrochim. Acta 2012, 86, 330-338], which demonstrated that these materials display an enhanced lithium mobility relative to their binary counterpart PEO/LiTFSI. In order to grasp the underlying microscopic scenario giving rise to these observations, we employ an analytical, Rouse-based cation transport model [Maitra at al., PRL 2007, 98, 227802], which has originally been devised for conventional polymer electrolytes. This model describes the cation transport via three different mechanisms, each characterized by an individual time scale. It turns out that also in the ternary electrolytes essentially all lithium ions are coordinated by PEO chains, thus ruling out a transport mechanism enhanced by the presence of ionic-liquid molecules. Rather, the plasticizing effect of the ionic liquid contributes to the increased lithium mobility by enhancing the dynamics of the PEO chains and consequently also the motion of the attached ions. Additional focus is laid on the prediction of lithium diffusion coefficients from the simulation data for various chain lengths and the comparison with experimental data, thus demonstrating the broad applicability of our approach.

Diddo Diddens; Andreas Heuer

2012-11-14T23:59:59.000Z

436

RISKIND: A computer program for calculating radiological consequences and health risks from transportation of spent nuclear fuel  

SciTech Connect

This report presents the technical details of RISIUND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the collective population from exposures associated with the transportation of spent nuclear fuel. RISKIND is a user-friendly, semiinteractive program that can be run on an IBM or equivalent personal computer. The program language is FORTRAN-77. Several models are included in RISKIND that have been tailored to calculate the exposure to individuals under various incident-free and accident conditions. The incidentfree models assess exposures from both gamma and neutron radiation and can account for different cask designs. The accident models include accidental release, atmospheric transport, and the environmental pathways of radionuclides from spent fuels; these models also assess health risks to individuals and the collective population. The models are supported by databases that are specific to spent nuclear fuels and include a radionudide inventory and dose conversion factors.

Yuan, Y.C. [Square Y, Orchard Park, NY (United States); Chen, S.Y.; LePoire, D.J. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rothman, R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-02-01T23:59:59.000Z

437

Life-Cycle Water Impacts of U.S. Transportation Fuels  

E-Print Network (OSTI)

Water Intensity of Transportation. Environmental Science &and Energy Use in Transportation (GREET) Model, Version 1.5.Water Intensity of Transportation. Environmental Science &

Scown, Corinne Donahue

2010-01-01T23:59:59.000Z

438

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

97 BTUs of refinery energy per BTU of dieseland hydrogen) per BTU of diesel produced, depending onof refinery energy per BTU of diesel fuel In the real world

Delucchi, Mark

2003-01-01T23:59:59.000Z

439

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

440

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Lessons Learned from the Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen- Fueled Transportation System M. Melendez, K. Theis, and C. Johnson Technical Report NREL/TP-560-40753 August 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Technical Report NREL/TP-560-40753 August 2007 Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-

Note: This page contains sample records for the topic "liquid transportation fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

442

Modeling Gas-Phase Transport in Polymer-Electrolyte Fuel Cells  

E-Print Network (OSTI)

Energy, Office of Hydrogen, Fuel Cell, and InfrastructureIN POLYMER-ELECTROLYTE FUEL CELLS A. Z. Weber and J. Newmandiffusion of gases in a fuel-cell gas-diffusion layer are

Weber, A.Z.; Newman, J.

2006-01-01T23:59:59.000Z

443

Tuning the transport properties of layer-by-layer thin films for fuel cell applications  

E-Print Network (OSTI)

The increasing global focus on alternative energy sources has led to a renewed interest in fuel cells. For low power, portable applications, direct methanol fuel cells (DMFCs) are the most promising type of fuel cell. DMFCs ...

Ashcraft, James Nathan

2009-01-01T23:59:59.000Z

444

Fact #634: August 2, 2010 Off-highway Transportation-related Fuel Consumption  

Energy.gov (U.S. Department of Energy (DOE))

The Environmental Protection Agency's NONROAD2008a model estimates fuel use for off-highway equipment. Construction and mining equipment using diesel fuel account for the majority of this fuel use....

445

Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study  

Science Journals Connector (OSTI)

School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K., Shell Global Solutions, Cheshire Innovation Park, Chester CH1 3SH, U.K., Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH, U.K., and Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading RG4 9NH, U.K. ... Clearly, the general trend is toward higher efficiency engines and improved fuel economy, something that puts current technology spark ignition (SI) engines in a relatively weak position compared to compression ignition (CI) engines. ... As the diesel engine used in this study was equipped with a pump-line-nozzle-type fuel injection system, all the observed effects may not apply to common rail or unit injection equipped engines. ...

A. Abu-Jrai; A. Tsolakis; K. Theinnoi; R. Cracknell; A. Megaritis; M. L. Wyszynski; S. E. Golunski

2006-10-18T23:59:59.000Z

446

Vehicle Technologies Office Merit Review 2014: Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

447

Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price  

E-Print Network (OSTI)

5 Figure 1.2 U.S. jet fuel price (dollars pertravel and U.S. jet fuel price paid by airlines (dollars perfuel price. ..

Ryerson, Megan S.

2010-01-01T23:59:59.000Z

448

An improved Monte Carlo study of coherent scattering effects of low energy charged particle transport in Percus-Yevick liquids  

E-Print Network (OSTI)

We generalize a simple Monte Carlo (MC) model for dilute gases to consider the transport behavior of positrons and electrons in Percus-Yevick model liquids under highly non-equilibrium conditions, accounting rigorously for coherent scattering processes. The procedure extends an existing technique [Wojcik and Tachiya, Chem. Phys. Lett. 363, 3--4 (1992)], using the static structure factor to account for the altered anisotropy of coherent scattering in structured material. We identify the effects of the approximation used in the original method, and develop a modified method that does not require that approximation. We also present an enhanced MC technique that has been designed to improve the accuracy and flexibility of simulations in spatially-varying electric fields. All of the results are found to be in excellent agreement with an independent multi-term Boltzmann equation solution, providing benchmarks for future transport models in liquids and structured systems.

Tattersall, W J; Boyle, G J; White, R D

2015-01-01T23:59:59.000Z

449

Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media  

SciTech Connect

For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

Steindler, M.J.; Ader, M.; Barletta, R.E.

1980-09-01T23:59:59.000Z

450

Probing Liquid Water Saturation in Diffusion Media of Polymer Electrolyte Fuel Cells  

E-Print Network (OSTI)

of information strongly needed to characterize the level of cathode DM flooding or anode dry-out. In this paper liquid water in the anode DM for the thin membrane case. In addition, the two-phase simulation results be realized. One of these is related to flooding phenomena. Due to the presence of liquid water inside a PEFC