Sample records for liquid porous interfaces

  1. Charge transfer kinetics at the solid–solid interface in porous electrodes

    E-Print Network [OSTI]

    Bai, Peng

    Interfacial charge transfer is widely assumed to obey the Butler–Volmer kinetics. For certain liquid–solid interfaces, the Marcus–Hush–Chidsey theory is more accurate and predictive, but it has not been applied to porous ...

  2. Interface effects on multiphase flows in porous media

    SciTech Connect (OSTI)

    Zhang, Duan Z [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.

  3. Unreacted Hugoniots for porous and liquid explosives

    SciTech Connect (OSTI)

    Gustavsen, R.L.; Sheffield, S.A.

    1993-08-01T23:59:59.000Z

    Numerous authors have measured the Hugoniots of a variety of granular explosives pressed to different densities. Each explosive at each density was typically then treated as a unique material having its own Hugoniot. By combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. We discuss application of this method to several materials including HMX, PETN, TNT, and Tetryl, as well as HNS. We also show that the ``Universal Liquid Hugoniot`` can be used to calculate the unreacted Hugoniot for liquid explosives. With this method only the ambient pressure sound speed and density are needed to predict the Hugoniot. Applications presented include nitromethane and liquid TNT.

  4. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

  5. Double multiple-relaxation-time lattice Boltzmann model for solid-liquid phase change with natural convection in porous media

    E-Print Network [OSTI]

    Liu, Qing

    2015-01-01T23:59:59.000Z

    In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid phase change interface is traced through the liquid fraction which is determined by the enthalpy method. The model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.

  6. Conductive porous scaffolds as potential neural interface materials.

    SciTech Connect (OSTI)

    Hedberg-Dirk, Elizabeth L.; Cicotte, Kirsten N.; Buerger, Stephen P.; Reece, Gregory; Dirk, Shawn M.; Lin, Patrick P.

    2011-11-01T23:59:59.000Z

    Our overall intent is to develop improved prosthetic devices with the use of nerve interfaces through which transected nerves may grow, such that small groups of nerve fibers come into close contact with electrode sites, each of which is connected to electronics external to the interface. These interfaces must be physically structured to allow nerve fibers to grow through them, either by being porous or by including specific channels for the axons. They must be mechanically compatible with nerves such that they promote growth and do not harm the nervous system, and biocompatible to promote nerve fiber growth and to allow close integration with biological tissue. They must exhibit selective and structured conductivity to allow the connection of electrode sites with external circuitry, and electrical properties must be tuned to enable the transmission of neural signals. Finally, the interfaces must be capable of being physically connected to external circuitry, e.g. through attached wires. We have utilized electrospinning as a tool to create conductive, porous networks of non-woven biocompatible fibers in order to meet the materials requirements for the neural interface. The biocompatible fibers were based on the known biocompatible material poly(dimethyl siloxane) (PDMS) as well as a newer biomaterial developed in our laboratories, poly(butylene fumarate) (PBF). Both of the polymers cannot be electrospun using conventional electrospinning techniques due to their low glass transition temperatures, so in situ crosslinking methodologies were developed to facilitate micro- and nano-fiber formation during electrospinning. The conductivity of the electrospun fiber mats was controlled by controlling the loading with multi-walled carbon nanotubes (MWNTs). Fabrication, electrical and materials characterization will be discussed along with initial in vivo experimental results.

  7. Systems and methods for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11T23:59:59.000Z

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  8. A study of vapor-liquid flow in porous media

    SciTech Connect (OSTI)

    Satik, Cengiz; Yortsos, Yanis C.

    1994-01-20T23:59:59.000Z

    We study the heat transfer-driven liquid-to-vapor phase change in single-component systems in porous media by using pore network models and flow visualization experiments. Experiments using glass micromodels were conducted. The flow visualization allowed us to define the rules for the numerical pore network model. A numerical pore network model is developed for vapor-liquid displacement where fluid flow, heat transfer and capillarity are included at the pore level. We examine the growth process at two different boundary conditions.

  9. A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE

    E-Print Network [OSTI]

    Stockie, John

    A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE KEITH exchange membrane fuel cell is a highly porous material which acts to distribute reactant gases uniformly perturbation, fuel cell electrodes, free surface. AMS subject classifications. 35B40, 35K55, 76R99, 76S05 1

  10. The acoustical flows of the hydrophobic and anticeptic liquids in porous media

    E-Print Network [OSTI]

    Boyer, Edmond

    of the acoustical flows in the porous or microcrum- bling media. Concrete and brick walls being porous media absorbThe acoustical flows of the hydrophobic and anticeptic liquids in porous media V. Tsaplev North effect. Just the same, if the protective covering of the concrete or brick wall is damaged, they begin

  11. MATHEMATICAL MODELING OF CHANNEL POROUS LAYER INTERFACES IN PEM FUEL CELLS

    E-Print Network [OSTI]

    Ehrhardt, Matthias

    MATHEMATICAL MODELING OF CHANNEL ­ POROUS LAYER INTERFACES IN PEM FUEL CELLS M. EHRHARDT, J, Germany ABSTRACT In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active diffusion layers. In order to improve existing mathematical and numerical models of PEM fuel cells, a deeper

  12. INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH

    E-Print Network [OSTI]

    Boyer, Edmond

    INTERFACE CRACK PROPAGATION IN POROUS AND TIME-DEPENDENT MATERIALS ANALYZED WITH DISCRETE MODELS and the FPZ. From the point of view of design of structures, e.g. reinforced concrete structures, this size size, size effects, creep, ageing, fracture, viscoelastic- ity, time effect, concrete failure, discrete

  13. Investigations of amino acid-based surfactants at liquid interfaces 

    E-Print Network [OSTI]

    Yang, Dengliang

    2005-11-01T23:59:59.000Z

    Herein are presented collective studies of amino acid-based surfactants, also known as lipoamino acids, at liquid interfaces. Chapter III describes an investigation of domain morphology of N-Stearoylglutamic acid (N-SGA) ...

  14. An experimental measurement of the thermal conductivity and diffusivity of a porous solid-liquid system 

    E-Print Network [OSTI]

    Dunn, James Elliott

    1959-01-01T23:59:59.000Z

    AN EXPERIMENTAL MEASUREMENT QF THE THERMAL CONDUCTIVITY AND DIFFUSIVITY OF A POROUS SOLID LIQUID SYSTEM By James Elliott Dunn A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the reQuirements for the degree of MASTER OF SCIENCE August 1959 Major Sub)ect: Mechanical Engineering AN EXPERIMENTAL MEASURFJ1ENT OF THE THERMAL CONDUCTIVITY AND DIFFUSIVITY OF A POROUS SOLID LIQUID SYSTEM A Thesis James Elliott Dunn...

  15. Fourier Transform Heterodyne Spectroscopy of Liquid Interfaces A thesis presented

    E-Print Network [OSTI]

    Mazur, Eric

    Fourier Transform Heterodyne Spectroscopy of Liquid Interfaces A thesis presented by Doo Soo Chung Abstract This thesis describes the application of a novel Fourier transform heterodyne spectroscopy of fluid interfaces 3 1.4 Organization of this thesis 5 2 Fourier Transform Heterodyne Spectroscopy 7 2

  16. Methods and systems for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD); Kary, Tim (Union Bridge, MD)

    2010-07-20T23:59:59.000Z

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material that is parallel with the liquid surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on.times. ##EQU00001## where g is the gravitational constant, w is the horizontal width of the liquid, and f is the at least one frequency.

  17. Novel Fluctuations at a Constrained Liquid-Solid Interface

    E-Print Network [OSTI]

    Abhishek Chaudhuri; Debasish Chaudhuri; Surajit Sengupta

    2007-03-19T23:59:59.000Z

    We study the interface between a solid trapped within a bath of liquid by a suitably shaped non-uniform external potential. Such a potential may be constructed using lasers, external electric or magnetic fields or a surface template. We study a two dimensional case where a thin strip of solid, created in this way, is surrounded on either side by a bath of liquid with which it can easily exchange particles. Since height fluctuations of the interface cost energy, this interface is constrained to remain flat at all length scales. However, when such a solid is stressed by altering the depth of the potential; beyond a certain limit, it responds by relieving stress by novel interfacial fluctuations which involve addition or deletion of entire lattice layers of the crystal. This ``layering'' transition is a generic feature of the system regardless of the details of the interaction potential. We show how such interfacial fluctuations influence mass, momentum and energy transport across the interface. Tiny momentum impulses produce weak shock waves which travel through the interface and cause the spallation of crystal layers into the liquid. Kinetic and energetic constraints prevent spallation of partial layers from the crystal, a fact which may be of some practical use. We also study heat transport through the liquid-solid interface and obtain the resistances in liquid, solid and interfacial regions (Kapitza resistance) as the solid undergoes such layering transitions. Heat conduction, which shows strong signatures of the structural transformations, can be understood using a free volume calculation.

  18. Nanoparticles at liquid interfaces: Rotational dynamics and angular locking

    SciTech Connect (OSTI)

    Razavi, Sepideh; Kretzschmar, Ilona [Department of Chemical Engineering, City College of City University of New York, New York, New York 10031 (United States)] [Department of Chemical Engineering, City College of City University of New York, New York, New York 10031 (United States); Koplik, Joel [Department of Physics and The Benjamin Levich Institute for Physico-chemical Hydrodynamics, City College of City University of New York, New York, New York 10031 (United States)] [Department of Physics and The Benjamin Levich Institute for Physico-chemical Hydrodynamics, City College of City University of New York, New York, New York 10031 (United States); Colosqui, Carlos E., E-mail: carlos.colosqui@stonybrook.edu [Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794 (United States)

    2014-01-07T23:59:59.000Z

    Nanoparticles with different surface morphologies that straddle the interface between two immiscible liquids are studied via molecular dynamics simulations. The methodology employed allows us to compute the interfacial free energy at different angular orientations of the nanoparticle. Due to their atomistic nature, the studied nanoparticles present both microscale and macroscale geometrical features and cannot be accurately modeled as a perfectly smooth body (e.g., spheres and cylinders). Under certain physical conditions, microscale features can produce free energy barriers that are much larger than the thermal energy of the surrounding media. The presence of these energy barriers can effectively “lock” the particle at specific angular orientations with respect to the liquid-liquid interface. This work provides new insights on the rotational dynamics of Brownian particles at liquid interfaces and suggests possible strategies to exploit the effects of microscale features with given geometric characteristics.

  19. Structure and Depletion at Fluoro- and Hydro-carbon/Water Liquid/Liquid Interfaces

    E-Print Network [OSTI]

    Kaoru Kashimoto; Jaesung Yoon; Binyang Hou; Chiu-hao Chen; Binhua Lin; Makoto Aratono; Takanori Takiue; Mark L. Schlossman

    2008-07-18T23:59:59.000Z

    The results of x-ray reflectivity studies of two oil/water (liquid/liquid) interfaces are inconsistent with recent predictions of the presence of a vapor-like depletion region at hydrophobic/aqueous interfaces. One of the oils, perfluorohexane, is a fluorocarbon whose super-hydrophobic interface with water provides a stringent test for the presence of a depletion layer. The other oil, heptane, is a hydrocarbon and, therefore, is more relevant to the study of biomolecular hydrophobicity. These results are consistent with the sub-angstrom proximity of water to soft hydrophobic materials.

  20. DNA adsorption at liquid/solid interfaces

    E-Print Network [OSTI]

    Carine Douarche; Robert Cortès; Steven J. Roser; Jean-Louis Sikorav; Alan Braslau

    2008-09-26T23:59:59.000Z

    DNA adsorption on solid or liquid surfaces is a topic of broad fundamental and applied interest. Here we study by x-ray reflectivity the adsorption of monodisperse double-stranded DNA molecules a positively-charged surface, obtained through chemical grafting of a homogeneous organicmonomolecular layer of N-(2-aminoethyl) dodecanamide on an oxide-free monocrystalline Si(111) wafer. The adsorbed dsDNA is found to embed into the soft monolayer which is deformed in the process. The surface coverage is very high and this adsorbed layer is expected to display 2D nematic ordering.

  1. Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media

    SciTech Connect (OSTI)

    Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan)

    2014-01-29T23:59:59.000Z

    A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks.

  2. Dependence of solid-liquid interface free energy on liquid structure

    SciTech Connect (OSTI)

    Wilson, S R [Ames Laboratory; Mendelev, M I [Ames Laboratory

    2014-09-01T23:59:59.000Z

    The Turnbull relation is widely believed to enable prediction of solid–liquid interface (SLI) free energies from measurements of the latent heat and the solid density. Ewing proposed an additional contribution to the SLI free energy to account for variations in liquid structure near the interface. In the present study, molecular dynamics (MD) simulations were performed to investigate whether SLI free energy depends on liquid structure. Analysis of the MD simulation data for 11 fcc metals demonstrated that the Turnbull relation is only a rough approximation for highly ordered liquids, whereas much better agreement is observed with Ewing’s theory. A modification to Ewing’s relation is proposed in this study that was found to provide excellent agreement with MD simulation data.

  3. Methods and systems for monitoring a solid-liquid interface

    DOE Patents [OSTI]

    Stoddard, Nathan G. (Gettysburg, PA); Clark, Roger F. (Frederick, MD)

    2011-10-04T23:59:59.000Z

    Methods and systems are provided for monitoring a solid-liquid interface, including providing a vessel configured to contain an at least partially melted material; detecting radiation reflected from a surface of a liquid portion of the at least partially melted material; providing sound energy to the surface; measuring a disturbance on the surface; calculating at least one frequency associated with the disturbance; and determining a thickness of the liquid portion based on the at least one frequency, wherein the thickness is calculated based on L=(2m-1)v.sub.s/4f, where f is the frequency where the disturbance has an amplitude maximum, v.sub.s is the speed of sound in the material, and m is a positive integer (1, 2, 3, . . . ).

  4. Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile-water interface

    E-Print Network [OSTI]

    Eisenthal, Kenneth B.

    Sudden structural change at ati air/binary liquid interface: Sum frequency study of the air/acetonitrile change in an air/acetonitrile-water interface as the solution composition varies; the abruptness of which and in the polarization of the signal from the acetonitrile molecules in the interface observed using infrared + visible

  5. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, Charles C. (Fairfield, OH); Taylor, Larry T. (Blacksburg, VA)

    1986-01-01T23:59:59.000Z

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  6. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOE Patents [OSTI]

    Johnson, C.C.; Taylor, L.T.

    1985-01-04T23:59:59.000Z

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  7. Dynamical instabilities of two-fluid interfaces in a porous medium: A three-dimensional video imaging study

    E-Print Network [OSTI]

    Prerna Sharma; P. Aswathi; Anit Sane; Shankar Ghosh; S. Bhattacharya

    2011-03-22T23:59:59.000Z

    Two-fluid interfaces in porous media, an example of driven disordered systems, were studied by a real time three-dimensional imaging technique with pore scale resolution for a less viscous fluid displacing a more viscous one. With increasing flow rate the interface transforms from flat to fingers and thence to droplets for both drainage and imbibition. The results compare and contrast the effects of randomness, both physical (geometry of the pore space) and chemical (wettability of the fluids), on the dynamical instability and identify the origin of the pore-scale processes that govern them.

  8. Control and ultrasonic actuation of a gas-liquid interface in a microfluidic chip

    E-Print Network [OSTI]

    Jie Xu; Daniel Attinger

    2009-12-15T23:59:59.000Z

    This article describes the design and manufacturing of a microfluidic chip, allowing for the actuation of a gas-liquid interface and of the neighboring fluid. A first way to control the interface motion is to apply a pressure difference across it. In this case, the efficiency of three different micro-geometries at anchoring the interface is compared. Also, the critical pressures needed to move the interface are measured and compared to theoretical result. A second way to control the interface motion is by ultrasonic excitation. When the excitation is weak, the interface exhibits traveling waves, which follow a dispersion equation. At stronger ultrasonic levels, standing waves appear on the interface, with frequencies that are half integer multiple of the excitation frequency. An associated microstreaming flow field observed in the vicinity of the interface is characterized. The meniscus and associated streaming flow have the potential to transport particles and mix reagents.

  9. Two-dimensional Electron Liquid State at Oxide Interfaces J. Mannhart

    E-Print Network [OSTI]

    Yeh, Nai-Chang

    AlO3 (4 unit cells) interface electron system SrTiO3 M. Breitschaft et al., PRB 81, 153414 (2010) #12 Interface M. Breitschaft et al., PRB 81, 153414 (2010) #12;E - EF (eV) VS (V) E - EV (eV) E - EF (eV) VS (V al., PRB 81, 153414 (2010) U is needed, interface system is a 2D-electron liquid #12;LaAlOAlxGa1-x

  10. (Electron transfer rates at semiconductor/liquid interfaces)

    SciTech Connect (OSTI)

    Lewis, N.S.

    1992-01-01T23:59:59.000Z

    Work has focused on several aspects of the fundamental chemistry and physics semiconductor/liquid junction behavior. These projects have been directed primarily towards GaAs/liquid contacts, because GaAs/liquid systems provide high energy conversion efficiencies and offer an opportunity to gain mechanistic understanding of the factors that are important to control in an efficient photoelectrochemical energy conversion system.

  11. [Electron transfer rates at semiconductor/liquid interfaces]. Progress report

    SciTech Connect (OSTI)

    Lewis, N.S.

    1992-08-01T23:59:59.000Z

    Work has focused on several aspects of the fundamental chemistry and physics semiconductor/liquid junction behavior. These projects have been directed primarily towards GaAs/liquid contacts, because GaAs/liquid systems provide high energy conversion efficiencies and offer an opportunity to gain mechanistic understanding of the factors that are important to control in an efficient photoelectrochemical energy conversion system.

  12. A mean field approach for computing solid-liquid surface tension for nanoscale interfaces

    E-Print Network [OSTI]

    Nielsen, Steven O.

    A mean field approach for computing solid-liquid surface tension for nanoscale interfaces Chi are largely determined by the solid-liquid surface tension. This is especially true for nanoscale systems with high surface area to volume ratios. While experimental techniques can only measure surface tension

  13. aux interfaces liquide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (81 C), its relative safety (compared to liquids such as benzene and toluene of graphite under water and under cyclohexane will be discussed. From the results of this...

  14. Structure of gas-liquid interface and hydrophobic interface for urea aqueous solution: a computer simulation study 

    E-Print Network [OSTI]

    Yu, Meng

    2009-05-15T23:59:59.000Z

    . Sci. U. S. A. 2006, 103, 18417- 18420 (57) Courtenay, E. S.; Capp, M. W.; Record, M. T. Protein Sci. 2001, 10, 2485-2497. (58) Soper, A. K.; Bruni, F.; Ricci, M. A. J. Chem. Phys. 1997, 106, 247. 34 VITA Name: Meng Yu Address... STRUCTURE OF GAS-LIQUID INTERFACE AND HYDROPHOBIC INTERFACE FOR UREA AQUEOUS SOLUTION SYSTEMS: A COMPUTER SIMULATION STUDY A Thesis by MENG YU Submitted to the Office of Graduate Studies of Texas A&M University in partial...

  15. Molecular Structure and Ordering of Phospholipids at a Liquid-Liquid Interface

    E-Print Network [OSTI]

    Richmond, Geraldine L.

    stretching region of several different phosphocholines adsorbed to the D2O- carbon tetrachloride interface the molecular structure of phosphocholine monolayers adsorbed to the interface between D2O and carbon tetrachloride. Monolayers form from breakup at the interface of aqueous phase phosphocholine vesicles

  16. Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface

    SciTech Connect (OSTI)

    Collins, Liam; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Kilpatrick, Jason I.; Weber, Stefan A. L. [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Vlassiouk, Ivan V. [Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tselev, Alexander; Jesse, Stephen; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-03-31T23:59:59.000Z

    Kelvin probe force microscopy (KPFM) is a powerful technique for the determination of the contact potential difference (CPD) between an atomic force microscope tip and a sample under ambient and vacuum conditions. However, for many energy storage and conversion systems, including graphene-based electrochemical capacitors, understanding electrochemical phenomena at the solid–liquid interface is paramount. Despite the vast potential to provide fundamental insight for energy storage materials at the nanoscale, KPFM has found limited applicability in liquid environments to date. Here, using dual harmonic (DH)-KPFM, we demonstrate CPD imaging of graphene in liquid. We find good agreement with measurements performed in air, highlighting the potential of DH-KPFM to probe electrochemistry at the graphene–liquid interface.

  17. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    SciTech Connect (OSTI)

    Timothy Chainer

    2012-11-30T23:59:59.000Z

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  18. Ginzburg-Landau theory of the bcc-liquid interface kinetic coefficient

    E-Print Network [OSTI]

    Kuo-An Wu; Ching-Hao Wang; Jeffrey J. Hoyt; Alain Karma

    2014-10-25T23:59:59.000Z

    We extend the Ginzburg-Landau (GL) theory of atomically rough bcc-liquid interfaces [Wu {\\it et al.}, Phys. Rev. B \\textbf{73}, 094101 (2006)] outside of equilibrium. We use this extension to derive an analytical expression for the kinetic coefficient, which is the proportionality constant $\\mu(\\hat n)$ between the interface velocity along a direction $\\hat n$ normal to the interface and the interface undercooling. The kinetic coefficient is expressed as a spatial integral along the normal direction of a sum of gradient square terms corresponding to different nonlinear density wave profiles. Anisotropy arises naturally from the dependence of those profiles on the angles between the principal reciprocal lattice vectors $\\vec K_i$ and $\\hat n$. Values of the kinetic coefficient for the$(100)$, $(110)$ and $(111)$ interfaces are compared quantitatively to the prediction of linear Mikheev-Chernov (MC) theory [J. Cryst. Growth \\textbf{112}, 591 (1991)] and previous molecular dynamics (MD) simulation studies of crystallization kinetics for a classical model of Fe. Additional MD simulations are carried out here to compute the relaxation time of density waves in the liquid in order to make this comparison free of fit parameter. The GL theory predicts a similar expression for $\\mu$ as the MC theory but yields a better agreement with MD simulations for both its magnitude and anisotropy due to a fully nonlinear description of density wave profiles across the solid-liquid interface. GL theory is also used to derive an inverse relation between $\\mu$ and the solid-liquid interfacial free-energy. The general methodology used here to derive an expression for $\\mu(\\hat n)$ also applies to amplitude equations derived from the phase-field-crystal model, which only differ from GL theory by the choice of cubic and higher order nonlinearities in the free-energy density.

  19. Two--Phase Flow Problems in Porous Media for Sharp Interface Problems

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    . A control volume finite element method (CVFEM) is applied to the solution of the governing equations using hand by sharp interfaces between different fluids, such as these problems occur e.g. by DNAPL infiltration or saltwater intrusion. For the simulation of such processes, a two--dimensional model for two

  20. Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion

    E-Print Network [OSTI]

    Courtney, Daniel George

    2011-01-01T23:59:59.000Z

    Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

  1. Computational study of ion distributions at the air/liquid methanol interface

    SciTech Connect (OSTI)

    Sun, Xiuquan; Wick, Collin D.; Dang, Liem X.

    2011-06-16T23:59:59.000Z

    Molecular dynamic simulations with polarizable potentials were performed to systematically investigate the distribution of NaCl, NaBr, NaI, and SrCl2 at the air/liquid methanol interface. The density profiles indicated that there is no substantial enhancement of anions at the interface for the NaX systems in contrast to what was observed at the air/aqueous interface. The surfactant-like shape of the larger more polarizable halide anions is compensated by the surfactant nature of methanol itself. As a result, methanol hydroxy groups strongly interacted with one side of polarizable anions, in which their induced dipole points, and methanol methyl groups were more likely to be found near the positive pole of anion induced dipoles. Furthermore, salts were found to disrupt the surface structure of methanol, reducing the observed enhancement of methyl groups at the outer edge of the air/liquid methanol interface. With the additional of salts to methanol, the computed surface potentials increased, which is in contrast to what is observed in corresponding aqueous systems, where the surface potential decreases with the addition of salts. Both of these trends have been indirectly observed with experiments. This was found to be due to the propensity of anions for the air/water interface that is not present at the air/liquid methanol interface. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    DOE Patents [OSTI]

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04T23:59:59.000Z

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  3. Density Profiles of Liquid/Vapor Interfaces Away from Their Critical Point

    E-Print Network [OSTI]

    Wei Bu; Doseok Kim; David Vaknin

    2014-04-28T23:59:59.000Z

    We examine the applicability of various model profiles for the liquid/vapor interface by X-ray reflectivities on water and ethanol and their mixtures at room temperature. Analysis of the X-ray reflecivities using various density profiles shows an error-function like profile is the most adequate within experimental error. Our finding, together with recent observations from simulation studies on liquid surfaces, strongly suggest that the capillary-wave dynamics shapes the interfacial density profile in terms of the error function.

  4. Density Profiles of Liquid/Vapor Interfaces Away from Their Critical Points

    SciTech Connect (OSTI)

    Bu, Wei; Kim, Doseok; Vaknin, David

    2014-06-12T23:59:59.000Z

    We examine the applicability of various model profiles for the liquid/vapor interface by X-ray reflectivities on water and ethanol and their mixtures at room temperature. Analysis of the X-ray reflecivities using various density profiles shows an error-function like profile is the most adequate within experimental error. Our findings, together with recent observations from simulation studies on liquid surfaces, strongly suggest that the capillary-wave dynamics shapes the interfacial density profile in terms of the error function.

  5. DFT-MD approach to TiO2/liquid interface systems for photocatalysis and dye-sensitised solar cell

    E-Print Network [OSTI]

    Katsumoto, Shingo

    DFT-MD approach to TiO2/liquid interface systems for photocatalysis and dye-sensitised solar cell- namics (MD) analysis of TiO2/solution in- terfaces related to photocatalysis and dye- sensitized solar

  6. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect (OSTI)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States)

    2014-05-14T23:59:59.000Z

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup ?}, and I{sup ?}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Å away from the surface.

  7. Determination of the pressure at the gas-liquid interface using acoustic speed measurements

    E-Print Network [OSTI]

    Heggelund, Dag Gustav

    1988-01-01T23:59:59.000Z

    . The density can be expressed with the use of the real gas law. This yields BP = ? (g/gc) *dz*P*M/(144*Z*R*T) BP = ? (g/gc) *dz*P*SG*MAIR/(144*Z*R*T) (26) 21 where: SG MAIR specific gravity of gas. (air= 1. 0), Molecular weight of air, 28. 966...DETERMINATION OF THE PRESSURE AT THE GAS-LIQUID INTERFACE USING ACOUSTIC SPEED MEASUREMENTS A Thesis by DAG GUSTAV HEGGELUND Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree...

  8. Smouldering Combustion of Organic Liquids in Porous Media for Remediating NAPL-contaminated Soils 

    E-Print Network [OSTI]

    Pironi, Paolo

    2010-01-01T23:59:59.000Z

    This research investigated the potential of smouldering combustion to be employed as a remediation approach for soil contaminated by non-aqueous phase liquids (NAPLs). Small-scale (~15 cm), proof-of-concept experiments ...

  9. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2003-12-01T23:59:59.000Z

    Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluoropolymer polymer, has been studied experimentally. Berea sandstone was used as the main rock sample in our work and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93 C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experimental study shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.

  10. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  11. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    SciTech Connect (OSTI)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons, E-mail: baiker@chem.ethz.ch [Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Hönggerberg, HCI, CH-8093 Zürich (Switzerland)

    2014-08-15T23:59:59.000Z

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  12. Liquid-Air Interface Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    SciTech Connect (OSTI)

    Wiersma, B.; Gray, J. R.; Garcia-Diaz, B. L.; Murphy, T. H.; Hicks, K. R.

    2014-01-30T23:59:59.000Z

    Coupon tests on A537 carbon steel materials were conducted to evaluate the Liquid-Air Interface (LAI) corrosion susceptibility in a series of solutions designed to simulate conditions in the radioactive waste tanks located at the Hanford Nuclear Facility. The new stress corrosion cracking requirements and the impact of ammonia on LAI corrosion were the primary focus. The minimum R value (i.e., molar ratio of nitrite to nitrate) of 0.15 specified by the new stress corrosion cracking requirements was found to be insufficient to prevent pitting corrosion at the LAI. The pH of the test solutions was 10, which was actually less than the required pH 11 defined by the new requirements. These tests examined the effect of the variation of the pH due to hydroxide depletion at the liquid air interface. The pits from the current testing ranged from 0.001 to 0.008 inch in solutions with nitrate concentrations of 0.4 M and 2.0 M. The pitting and general attack that occurred progressed over the four-months. No significant pitting was observed, however, for a solution with a nitrate concentration of 4.5 M. The pitting depths observed in these partial immersion tests in unevaporated condensates ranged from 0.001 to 0.005 inch after 4 months. The deeper pits were in simulants with low R values. Simulants with R values of approximately 0.6 to 0.8 appeared to significantly reduce the degree of attack. Although, the ammonia did not completely eliminate attack at the LAI, the amount of corrosion in an extremely corrosive solution was significantly reduced. Only light general attack (< 1 mil) occurred on the coupon in the vicinity of the LAI. The concentration of ammonia (i.e., 50 ppm or 500 ppm) did not have a strong effect.

  13. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect (OSTI)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17T23:59:59.000Z

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  14. Sum frequency generation study on the orientation of room-temperature ionic liquid at the grapheneionic liquid interface

    E-Print Network [OSTI]

    Bao, Jiming

    such as dye-sensitized solar cells and super capacitors, room-temperature ionic liquids are considered

  15. Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions

    E-Print Network [OSTI]

    Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

    2007-10-27T23:59:59.000Z

    The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

  16. Structure of gas-liquid interface and hydrophobic interface for urea aqueous solution: a computer simulation study

    E-Print Network [OSTI]

    Yu, Meng

    2009-05-15T23:59:59.000Z

    near the interfacial areas are analyzed in terms of density, orientation and number of hydrogen bonds. For each kind of interface, systems with four different urea concentrations are included, ranging from 0M to 8M. The results show slight change...

  17. LIQUID CRYSTAL THERMOGRAPHY ON THE FLUID SOLID INTERFACE OF ROTATING SYSTEMS

    E-Print Network [OSTI]

    Camci, Cengiz

    = Aluminum c = centrifugal lc = liquid crystal o = aerodynamic wall friction related p = at constant pressu

  18. The Hydrated Proton at the Water Liquid/Vapor Interface Matt K. Petersen, Srinivasan S. Iyengar, Tyler J. F. Day, and Gregory A. Voth*,

    E-Print Network [OSTI]

    Iyengar, Srinivasan S.

    The Hydrated Proton at the Water Liquid/Vapor Interface Matt K. Petersen, Srinivasan S. Iyengar ReceiVed: July 23, 2004; In Final Form: August 22, 2004 The hydrated proton was studied at the water the migration of the excess proton to and about the interface through the fluctuating bond topology described

  19. Adsorption Trajectories and Free-Energy Separatrices for Colloidal Particles in Contact with a Liquid-Liquid Interface

    E-Print Network [OSTI]

    J. de Graaf; M. Dijkstra; R. van Roij

    2010-02-18T23:59:59.000Z

    We apply the recently developed triangular tessellation technique as presented in [J. de Graaf et al., Phys. Rev. E 80, 051405 (2009)] to calculate the free energy associated with the adsorption of anisotropic colloidal particles at a flat interface. From the free-energy landscape, we analyze the adsorption process, using a simplified version of Langevin dynamics. The present result is a first step to understand the time-dependent behavior of colloids near interfaces. This study shows a wide range of adsorption trajectories, where the emphasis lies on a strong dependence of the dynamics on the orientation of the colloid at initial contact with the interface. We believe that the observed orientational dependence in our simple model can be recovered in suitable experimental systems.

  20. In Situ Immobilization of Uranium in Structured Porous Media via Biomineralization at the Fracture/Matrix Interface

    SciTech Connect (OSTI)

    Scheibe, Timothy D.

    2006-06-01T23:59:59.000Z

    Although the biogeochemical processes underlying key bioremediation technologies are increasingly well understood, field-scale heterogeneity (both physical and biogeochemical) remains a major obstacle to successful field-scale implementation. In particular, slow release of contamination from low-permeability regions (primarily by diffusive/dispersive mass transfer) can hinder the effectiveness of remediation. This research aims to evaluate strategies that target bioremediation efforts at interfaces between high- and low-permeability regions of an aquifer in order to minimize the rate of contaminant transfer into high-permeability (high-flux) zones, and thereby reduce ultimate contaminant delivery to environmental receptors.

  1. air-liquid interface cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a landfill cap or base liner systemi Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs) by John Scott Mc Strength of Geosynthetic Clay Liners (GCLs)...

  2. air-liquid interface biofilms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a landfill cap or base liner systemi Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs) by John Scott Mc Strength of Geosynthetic Clay Liners (GCLs)...

  3. (Fundamental electron transfer processes at the single crystal semiconductor/liquid interface)

    SciTech Connect (OSTI)

    Lewis, N.S.

    1991-01-01T23:59:59.000Z

    The last year's work has focused on several aspects of the fundamental chemistry and physics semiconductor/liquid junction behavior. These projects have been directed primarily towards GaAs/liquid contacts, because GaAs/liquid systems provide high energy conversion efficiencies and offer an opportunity to gain mechanistic understanding of the factors that are important to control in an efficient photoelectrochemical energy conversion system.

  4. [Fundamental electron transfer processes at the single crystal semiconductor/liquid interface]. Progress report

    SciTech Connect (OSTI)

    Lewis, N.S.

    1991-12-31T23:59:59.000Z

    The last year`s work has focused on several aspects of the fundamental chemistry and physics semiconductor/liquid junction behavior. These projects have been directed primarily towards GaAs/liquid contacts, because GaAs/liquid systems provide high energy conversion efficiencies and offer an opportunity to gain mechanistic understanding of the factors that are important to control in an efficient photoelectrochemical energy conversion system.

  5. aux interfaces solide-liquide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (81 C), its relative safety (compared to liquids such as benzene and toluene of graphite under water and under cyclohexane will be discussed. From the results of this...

  6. Adsorption at Liquid Interfaces Induces Amyloid Fibril Bending and Ring Formation

    E-Print Network [OSTI]

    Sophia Jordens; Emily E. Riley; Ivan Usov; Lucio Isa; Peter D. Olmsted; Raffaele Mezzenga

    2014-10-29T23:59:59.000Z

    Protein fibril accumulation at interfaces is an important step in many physiological processes and neurodegenerative diseases as well as in designing materials. Here we show, using $\\beta$-lactoglobulin fibrils as a model, that semiflexible fibrils exposed to a surface do not possess the Gaussian distribution of curvatures characteristic for wormlike chains, but instead exhibit a spontaneous curvature, which can even lead to ring-like conformations. The long-lived presence of such rings is confirmed by atomic force microscopy, cryogenic scanning electron microscopy and passive probe particle tracking at air- and oil-water interfaces. We reason that this spontaneous curvature is governed by structural characteristics on the molecular level and is to be expected when a chiral and polar fibril is placed in an inhomogeneous environment such as an interface. By testing $\\beta$-lactoglobulin fibrils with varying average thicknesses, we conclude that fibril thickness plays a determining role in the propensity to form rings.

  7. Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components

    E-Print Network [OSTI]

    Anastasiya V. Pimenova; Denis S. Goldobin

    2014-10-20T23:59:59.000Z

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  8. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Axnanda, Stephanus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Crumlin, Ethan J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mao, Baohua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chinese Academy of Sciences, Shanghai (Republic of China); Rani, Sana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chang, Rui [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chinese Academy of Sciences, Shanghai (Republic of China); Karlsson, Patrik G. [VG Scienta,Uppsala (Sweden); Edwards, Mårten O. M. [VG Scienta,Uppsala (Sweden); Lundqvist, Måns [VG Scienta,Uppsala (Sweden); Moberg, Robert [VG Scienta,Uppsala (Sweden); Ross, Phil [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hussain, Zahid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Liu, Zhi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chinese Academy of Sciences, Shanghai (Republic of China); Shanghai Tech Univ., Shanghai (China)

    2015-05-07T23:59:59.000Z

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²? and Pt?? interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  9. Thermal conductance of solid-liquid interfaces Scott Huxtable, Zhenbin Ge, David G. Cahill

    E-Print Network [OSTI]

    Braun, Paul

    on temperature of thetemperature of the nanotube · Assume heat capacity is comparable to graphitegraphite of the conductance? "heat capacity G" vs. "heat conduction G" #12;Comparisons between experiment and simulation capacity to convert time constant to G. For long tubes: [K] CFor long tubes: G = 22 MW m-2 K-1 100-T(liquid

  10. TESTING VAPOR SPACE AND LIQUID-AIR INTERFACE CORROSION IN SIMULATED ENVIRONMENTS OF HANFORD DOUBLE-SHELLED TANKS

    SciTech Connect (OSTI)

    Hoffman, E.

    2013-05-30T23:59:59.000Z

    Electrochemical coupon testing were performed on 6 Hanford tank solution simulants and corresponding condensate simulants to evaluate the susceptibility of vapor space and liquid/air interface corrosion. Additionally, partial-immersion coupon testing were performed on the 6 tank solution simulants to compliment the accelerated electrochemical testing. Overall, the testing suggests that the SY-102 high nitrate solution is the most aggressive of the six solution simulants evaluated. Alternatively, the most passive solution, based on both electrochemical testing and coupon testing, was AY-102 solution. The presence of ammonium nitrate in the simulants at the lowest concentration tested (0.001 M) had no significant effect. At higher concentrations (0.5 M), ammonium nitrate appears to deter localized corrosion, suggesting a beneficial effect of the presence of the ammonium ion. The results of this research suggest that there is a threshold concentration of ammonium ions leading to inhibition of corrosion, thereby suggesting the need for further experimentation to identify the threshold.

  11. Structure and phase transitions into ionic adsorption layers on liquid interfaces

    E-Print Network [OSTI]

    R. Tsekov

    2014-10-25T23:59:59.000Z

    The structure of ionic adsorption layers is studied via a proper thermodynamic treatment of the electrostatic and non-electrostatic interactions between the surfactant ions as well as of the effect of thermodynamic non-locality. The analysis is also applied to phase transitions into the ionic adsorption layer, which interfere further with the oscillatory-diffusive structure of the electric double layer and hydrodynamic stability of squeezing waves in thin liquid films.

  12. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; et al

    2015-05-07T23:59:59.000Z

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore »and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²? and Pt?? interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  13. NORIA-SP: A finite element computer program for analyzing liquid water transport in porous media; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Hopkins, P.L.; Eaton, R.R.; Bixler, N.E.

    1991-12-01T23:59:59.000Z

    A family of finite element computer programs has been developed at Sandia National Laboratories (SNL) most recently, NORIA-SP. The original NORIA code solves a total of four transport equations simultaneously: liquid water, water vapor, air, and energy. Consequently, use of NORIA is computer-intensive. Since many of the applications for which NORIA is used are isothermal, we decided to ``strip`` the original four-equation version, leaving only the liquid water equation. This single-phase version is NORIA-SP. The primary intent of this document is to provide the user of NORIA-SP an accurate user`s manual. Consequently, the reader should refer to the NORIA manual if additional detail is required regarding the equation development and finite element methods used. The single-equation version of the NORIA code (NORIA-SP) has been used most frequently for analyzing various hydrological scenarios for the potential underground nuclear waste repository at Yucca Mountain in western Nevada. These analyses are generally performed assuming a composite model to represent the fractured geologic media. In this model the material characteristics of the matrix and the fractures are area weighted to obtain equivalent material properties. Pressure equilibrium between the matrix and fractures is assumed so a single conservation equation can be solved. NORIA-SP is structured to accommodate the composite model. The equations for water velocities in both the rock matrix and the fractures are presented. To use the code for problems involving a single, nonfractured porous material, the user can simply set the area of the fractures to zero.

  14. The crystal–liquid interface of a body?centered?cubic?forming substance: Computer simulations of the r ? 6 potential

    E-Print Network [OSTI]

    Laird, Brian Bostian; Haymet, A. D. J.

    1989-09-01T23:59:59.000Z

    The interfaces between a bcc crystal and its melt are studied by molecular dynamics simulation. Three distinct crystal/melt interfaces, (100), (111), and (110) are studied. For all interfaces the variation with z, the coordinate perpendicular...

  15. Adapting SAFT-? perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    SciTech Connect (OSTI)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu [Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325 (United States)

    2014-07-14T23:59:59.000Z

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-? WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-? refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ?2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ?1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.

  16. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16T23:59:59.000Z

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  17. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    SciTech Connect (OSTI)

    Hoffer, Saskia

    2002-08-19T23:59:59.000Z

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  18. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01T23:59:59.000Z

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  19. Liquid foams of graphene

    E-Print Network [OSTI]

    Alcazar Jorba, Daniel

    2012-01-01T23:59:59.000Z

    Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

  20. Effects of interfaces on dynamics in micro-fluidic devices: slip-boundaries' impact on rotation characteristics of polar liquid film motors

    E-Print Network [OSTI]

    Zhong-Qiang Liu; Su-Rong Jiang; Tamar A. Yinnon; Xiang-Mu Kong; Ying-Jun Li

    2014-04-21T23:59:59.000Z

    Slip-boundary effects on the polar liquid film motor (PLFM) -- a novel micro-fluidic device with important implications for advancing knowledge on liquid micro-film's structure, dynamics, modeling and technology -- are studied. We develop a mathematical model, under slip boundary conditions, describing electro-hydro-dynamical rotations in the PLFMs induced either by direct current (DC) or alternating current (AC) fields. Our main results are: (i) rotation characteristics depend on the ratio $k=l_{s}/D$ ($l_{s}$ denotes the slip length, resulting from the interface's impact on the structure of the liquid and $D$ denotes the film's diameter). (ii) As $k$ ($k>-1/2$) increases: (a) PLFMs subsequently exhibit rotation characteristics under "negative-", "no-", "partial-" and "perfect-" slip boundary conditions; (b) the maximum value of the linear velocity of the steady rotating liquid film increases and its location approaches the film's border; (c) the decay of the angular velocities' dependency on the distance from the center of the film slows down, resulting in a macroscopic flow near the boundary. (iii) In addition to $k$, the rotation characteristics of the AC PLFM depend on the magnitudes, the frequencies, and the phase difference of the AC fields. (iv) Our analytical derived rotation speed distributions are consistent with the existing experimental ones.

  1. Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    or membraneless fuel cells;10 and the creation of axisymmetric microscale polymeric struc- tures.11 of mammalian and microbial cells;5 liquid­ liquid extractions;6 crystallization of proteins7 or inorganic salts in membrane- less fuel cells.9,10 Understanding the interplay of forces that dictates the reorientation

  2. Method to prepare nanoparticles on porous mediums

    DOE Patents [OSTI]

    Vieth, Gabriel M. (Knoxville, TN) [Knoxville, TN; Dudney, Nancy J. (Oak Ridge, TN) [Oak Ridge, TN; Dai, Sheng (Knoxville, TN) [Knoxville, TN

    2010-08-10T23:59:59.000Z

    A method to prepare porous medium decorated with nanoparticles involves contacting a suspension of nanoparticles in an ionic liquid with a porous medium such that the particles diffuse into the pores of the medium followed by heating the resulting composition to a temperature equal to or greater than the thermal decomposition temperature of the ionic liquid resulting in the removal of the liquid portion of the suspension. The nanoparticles can be a metal, an alloy, or a metal compound. The resulting compositions can be used as catalysts, sensors, or separators.

  3. Molecular Mechanism of the Adsorption Process of an Iodide Anion into Liquid-Vapor Interfaces of Water-Methanol Mixtures

    SciTech Connect (OSTI)

    Annapureddy, Harsha V.; Dang, Liem X.

    2012-12-07T23:59:59.000Z

    To enhance our understanding of the molecular mechanism of ion adsorption to the interface of mixtures, we systematically carried out a free energy calculations study involving the transport of an iodide anion across the interface of a water-methanol mixture. Many body affects are taken into account to describe the interactions among the species. The surface propensities of I- at interfaces of pure water and methanol are well understood. In contrast, detailed knowledge of the molecular level adsorption process of I- at aqueous mixture interfaces has not been reported. In this paper, we explore how this phenomenon will be affected for mixed solvents with varying compositions of water and methanol. Our potential of mean force study as function of varying compositions indicated that I- adsorption free energies decrease from pure water to pure methanol but not linearly with the concentration of methanol. We analyze the computed density profiles and hydration numbers as a function of concentrations and ion positions with respect to the interface to further explain the observed phenomenon. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle. The calculations were carried out using computer resources provided by BES.

  4. Variably porous structures

    DOE Patents [OSTI]

    Braun, Paul V. (Savoy, IL); Yu, Xindi (Urbana, IL)

    2011-01-18T23:59:59.000Z

    A method of making a monolithic porous structure, comprises electrodepositing a material on a template; removing the template from the material to form a monolithic porous structure comprising the material; and electropolishing the monolithic porous structure.

  5. PUBLISHED ONLINE: 7 APRIL 2013 | DOI: 10.1038/NMAT3598 Adaptive fluid-infused porous films with tunable

    E-Print Network [OSTI]

    Mahadevan, L.

    LETTERS PUBLISHED ONLINE: 7 APRIL 2013 | DOI: 10.1038/NMAT3598 Adaptive fluid-infused porous films for malleable surfaces. As we have recently shown, a liquid infused in a rigid porous substrate develops 1School

  6. Porous material and process development for electrospray propulsion applications

    E-Print Network [OSTI]

    Arestie, Steven Mark

    2014-01-01T23:59:59.000Z

    Ion electrospray propulsion devices rely on the transportation of ionic liquid propellant to emission regions where ions are extracted at high velocities. One such method involves the use of porous substrates to passively ...

  7. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  8. Liquid metal electric pump

    DOE Patents [OSTI]

    Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  9. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    SciTech Connect (OSTI)

    Feng, Guang [ORNL; Jiang, Deen [ORNL; Cummings, Peter T [ORNL

    2012-01-01T23:59:59.000Z

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

  10. Mechanisms of virus removal during transport in unsaturated porous media

    E-Print Network [OSTI]

    Flury, Markus

    Mechanisms of virus removal during transport in unsaturated porous media Yanjie Chu and Yan Jin retention and retardation during transport in unsaturated systems. In this study, bacteriophages X174 and MS at the solid-water interface rather than at the air-water interface dominates in virus removal and transport

  11. Capture of particles in soft porous media , R. Hhler and O. Pitois

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -height in the foam sample, using a thin glass capillary. The solid particles that we use are green fluorescent Cedex 2, France We investigate the capture of particles in soft porous media. Liquid foam constitutes foams can be considered as soft porous materials, exhibiting fine liquid channels between gas bubbles

  12. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    SciTech Connect (OSTI)

    Kenneth Paul Roberts

    2002-06-27T23:59:59.000Z

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonance (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.

  13. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect (OSTI)

    Gilmore, Walter E. [Los Alamos National Laboratory; Stender, Kerith K. [Los Alamos National Laboratory

    2012-08-29T23:59:59.000Z

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  14. 4/28/2010 1Porous Pavements Porous Pavements

    E-Print Network [OSTI]

    Minnesota, University of

    4/28/2010 1Porous Pavements Porous Pavements for Stormwater Restoration in Urban Environments Cliff Aichinger Ramsey-Washington Metro Watershed District #12;4/28/2010 2Porous Pavements Porous Pavements Why am new volume reduction rules. Porous pavement is one of a relative few BMPs that address stormwater

  15. Liquid Wall Chambers

    SciTech Connect (OSTI)

    Meier, W R

    2011-02-24T23:59:59.000Z

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  16. Hollow porous-wall glass microspheres for hydrogen storage

    DOE Patents [OSTI]

    Heung, Leung K. (Aiken, SC); Schumacher, Ray F. (Aiken, SC); Wicks, George G. (Aiken, SC)

    2010-02-23T23:59:59.000Z

    A porous wall hollow glass microsphere is provided having a diameter range of between 1 to 200 microns, a density of between 1.0 to 2.0 gm/cc, a porous-wall structure having wall openings defining an average pore size of between 10 to 1000 angstroms, and which contains therein a hydrogen storage material. The porous-wall structure facilitates the introduction of a hydrogen storage material into the interior of the porous wall hollow glass microsphere. In this manner, the resulting hollow glass microsphere can provide a membrane for the selective transport of hydrogen through the porous walls of the microsphere, the small pore size preventing gaseous or liquid contaminants from entering the interior of the hollow glass microsphere.

  17. Nanocrystals Grow from Liquid Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eleventh Arthur H. Compton Award Announced Borland Awarded ACFA-IPAC'13 Prize for Accelerator Science President Obama at the Advanced Photon Source Von Dreele Receives Hanawalt...

  18. Reaction Dynamics at Liquid Interfaces

    E-Print Network [OSTI]

    Benjamin, Ilan

    2015-01-01T23:59:59.000Z

    A. 2001. Calculating free energies using average force. J.D, Benjamin I. 2009. Free energy of transfer of hydrated ion1990. Reorganization free energy for electron transfers at

  19. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G. (Krasnoyarsk, RU); Sharonova, Olga M. (Krasnoyarsk, RU); Vereshchagina, Tatiana A. (Krasnoyarsk, RU); Zykova, Irina D. (Krasnoyarsk, RU); Revenko, Yurii A. (Zheleznogorsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (Saint-Petersburg, RU); Lubtsev, Rem I. (Saint-Petersburg, RU); Knecht, Dieter A. (Idaho Falls, ID); Tranter, Troy J. (Idaho Falls, ID); Macheret, Yevgeny (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  20. Open-cell glass crystalline porous material

    DOE Patents [OSTI]

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23T23:59:59.000Z

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  1. Ventilation of porous media

    DOE Patents [OSTI]

    Neeper, Donald A. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  2. Ventilation of porous media

    DOE Patents [OSTI]

    Neeper, D.A.

    1994-02-22T23:59:59.000Z

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  3. Study of the simultaneous heat and mass transfer in two-dimensional porous media

    E-Print Network [OSTI]

    Suh, Young Bae

    1988-01-01T23:59:59.000Z

    in an unsaturated porous medium. A chronological discussion of the details of the review follows. Philip and De Vries[1] were the early investigators of the general topic of moisture migration in porous media with temperature gradients. The analysis revealed... for drying in a porous medium. The model accounted for the ca, pillary flow of the liquid phs, se and the diffusion of the vapor phase, including heat-conduction through the solid matrix. The coupled, non-linear governing equations, together...

  4. Preparation of asymmetric porous materials

    DOE Patents [OSTI]

    Coker, Eric N. (Albuquerque, NM)

    2012-08-07T23:59:59.000Z

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  5. Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations

    E-Print Network [OSTI]

    Harting, Jens

    and the gas diffusion layers in fuel cells [1]. Examples include the behavior of liquid oil and gas in porous the effectiveness of leaching processes [6] and optimizing filtration and sedimentation operations [7]. An important

  6. Coupling free flow / porous-medium flow General idea

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    equation t (v) + div (vv ) - div(v) + p - g - qv = 0 Darcy flow equation t (S) - div K (p - g) - qpmT transport equation t (X) + div (vX - DsteamX) = qsteam 16/14 #12;Backup additional Darcy flow equations-Stokes 1 phase, 2 components, temperature sharp interface porous-medium / Darcy flow 2 phases, 2 component

  7. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10T23:59:59.000Z

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  8. A model for enhanced fluid percolation in porous media by application of low-frequency elastic waves

    E-Print Network [OSTI]

    Beresnev, Igor

    , primarily in connection with the appli- cations to enhanced oil recovery (EOR) and remediation of nonaqueousA model for enhanced fluid percolation in porous media by application of low-frequency elastic can significantly enhance transport of nonaqueous phase liquids (NAPLs) in porous media. Our analyses

  9. Porous metallic bodies

    DOE Patents [OSTI]

    Landingham, R.L.

    1984-03-13T23:59:59.000Z

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  10. Excitations of superfluid 4 He in porous media: Aerogel and Vycor

    E-Print Network [OSTI]

    Glyde, Henry R.

    Excitations of superfluid 4 He in porous media: Aerogel and Vycor O. Plantevin and B. Fa structure factor S(Q, ) and the elementary excitations of liquid 4 He immersed in aerogel and Vycor. In both and superfluid density, S(T), of liquid 4 He in aerogel and Vycor have been made over the past 30 years.1

  11. Novel fluctuations at constrained interfaces

    E-Print Network [OSTI]

    Abhishek Chaudhuri

    2006-01-25T23:59:59.000Z

    In this study we try to answer the qustion : What happens when explicit constraints are introduced such that the low energy, long wavelength modes of a system are unavailable ? This question has assumed some importance in recent years due to the advent of nano technology and the growing use of nanometer scale devices and structures. In a small system, the size limits the scale of the fluctuations and makes it imperative for us to understand how the response of the system is altered in such a situation. In this thesis, this question is answered for the special case of interfacial fluctuations in two dimensions (2d). The energy of an interface between two phases in equilibrium is invariant with respect to translations perpendicular to the plane (or line in 2d) of the interface. We study the consequence of breaking this symmetry explicity using an external field gradient. One expects that since low energy excitations are suppressed, the interface would be flat and inert at all times. We show that surprisingly there are novel fluctuations and phenomena associated with such constrained interfaces which have static as well as dynamic consequences. The Ising interface on a square lattice is shown to undergo a multitude of structural transitions as a function of velocity and the orientation. Liquid solid interfaces show coherent addition and removal of atomic layers providing novel mechanisms of stress relaxation in a nanosized single crystal without defects. We study momentum and energy transfer across the liquid solid interface in the presence of this ``layering'' transition.

  12. Progress in Creating Stabilized Gas Layers in Flowing Liquid Mercury

    SciTech Connect (OSTI)

    Wendel, Mark W [ORNL; Felde, David K [ORNL; Riemer, Bernie [ORNL; Abdou, Ashraf A [ORNL; D'Urso, Brian R [ORNL; West, David L [ORNL

    2009-01-01T23:59:59.000Z

    The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design.

  13. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect (OSTI)

    Allain, Jean Paul; Taylor, Chase N. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, Indiana 47907 (United States)

    2012-05-15T23:59:59.000Z

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  14. Porous polymer media

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  15. Fluorescent optical liquid level sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.

  16. Graphene Enhances Li Storage Capacity of Porous Single-crystalline Silicon Nanowires

    SciTech Connect (OSTI)

    Wang, X.; Han, W.

    2010-12-01T23:59:59.000Z

    We demonstrated that graphene significantly enhances the reversible capacity of porous silicon nanowires used as the anode in Li-ion batteries. We prepared our experimental nanomaterials, viz., graphene and porous single-crystalline silicon nanowires, respectively, using a liquid-phase graphite exfoliation method and an electroless HF/AgNO{sub 3} etching process. The Si porous nanowire/graphene electrode realized a charge capacity of 2470 mAh g{sup -1} that is much higher than the 1256 mAh g{sup -1} of porous Si nanowire/C-black electrode and 6.6 times the theoretical capacity of commercial graphite. This relatively high capacity could originate from the favorable charge-transportation characteristics of the combination of graphene with the porous Si 1D nanostructure.

  17. Fabrication of porous silicon membranes 

    E-Print Network [OSTI]

    Yue, Wing Kong

    1988-01-01T23:59:59.000Z

    . Porous silicon layer is formed by the local dissolution which is initiated by the surface layer and is promoted by the hindrance layers composed of the silicic acid. Local etching or local dissolution is the cause of forming porous structure... of pores were 25 to 45 A with a mean value of 38 A. Microstructure of porous silicon studied by Besle et al. showed two distinct 17 patterns: the structure pattern of porous silicon film on heavily doped silicon and that on slightly doped silicon [26...

  18. Liquid-Liquid Extraction Processes

    E-Print Network [OSTI]

    Fair, J. R.; Humphrey, J. L.

    1983-01-01T23:59:59.000Z

    Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

  19. Experimental and Modeling Studies of Two-Phase Flow in Porous Media and Its Effects on the Performance of a PEM Fuel Cell

    E-Print Network [OSTI]

    Wang, Xuhai

    2010-01-01T23:59:59.000Z

    An experimental investigation was conducted to study the two-phase flow properties of porous media used in proton exchange membrane (PEM) fuel cells. The liquid and gas phase relative permeability of porous media used in PEM fuel cells was measured...

  20. Porous Materials -Metal-Organic Frameworks

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    ShellsSnow Coral SoilBoneLungs Lemons #12;Artificial Porous Materials Insulation Cake Concrete BreadPorous Materials -Metal-Organic Frameworks 2012 Nanocamp NCMN, UNL Dr. Jian Zhang & Jacob Johnson-organic Frameworks Porous polymer networks #12;Porous Materials in Nature Sandstones Sea Sponge Butterfly Wings Egg

  1. Radiative heat transfer in porous uranium dioxide

    SciTech Connect (OSTI)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01T23:59:59.000Z

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  2. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01T23:59:59.000Z

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  3. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10T23:59:59.000Z

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  4. Porous Superhydrophobic Membranes: Hydrodynamic Anomaly in Oscillating Flows S. Rajauria,1,2

    E-Print Network [OSTI]

    that a stable Knudsen layer of gas percolates on the membrane, changing the boundary condition. This is be simultaneously. Oscillatory hydrodynamic measurements on porous superhydropho- bic membranes as a function of Ès Knudsen layer of air at the interface. DOI: 10.1103/PhysRevLett.107.174501 PACS numbers: 47.61.Àk, 47

  5. Mullite/Alumina Mixtures for Use as Porous Matrices in Oxide Fiber Composites

    E-Print Network [OSTI]

    Zok, Frank

    ceramic composites. Conditions for the deflection of a matrix crack at a fiber-matrix interface are used particle mixtures of mullite and alumina are assessed as candidate matrixes for use in porous matrix to identify the combinations of modulus and toughness of the fibers and the matrix for which damage

  6. www.rsc.org/analyst The airliquid interface of benzene, toluene, m-xylene, and

    E-Print Network [OSTI]

    ANALYST FULLPAPER THE www.rsc.org/analyst The air­liquid interface of benzene, toluene, m as an Advance Article on the web 10th April 2003 The air­liquid interface and the liquid-phase of benzene-zero hyperpolarizabilities of benzene and 1,3,5-trimethylbenzene. The orientation of the aromatic rings of these compounds

  7. User Interfaces 1 Command Line Interfaces

    E-Print Network [OSTI]

    Verschelde, Jan

    User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line 2013 1 / 39 #12;User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line interface to store points fitting points with polyfit of numpy 2 Encapsulation by Object

  8. Porous substrates filled with nanomaterials

    DOE Patents [OSTI]

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19T23:59:59.000Z

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  9. Nonequilibrium Thermodynamics of Porous Electrodes

    E-Print Network [OSTI]

    Ferguson, Todd Richard

    We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic ...

  10. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Joshua David

    2012-07-24T23:59:59.000Z

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing a monolith.

  11. Filter casting nanoscale porous materials

    DOE Patents [OSTI]

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

    2013-12-10T23:59:59.000Z

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

  12. Porous Superhydrophobic Membranes: Hydrodynamic Anomaly in Oscillating Flows

    E-Print Network [OSTI]

    Rajauria, Sukumar; Lawall, J; Yakhot, Victor; Ekinci, Kamil L

    2011-01-01T23:59:59.000Z

    We have fabricated and characterized a novel superhydrophobic system, a mesh-like porous superhydrophobic membrane with solid area fraction $\\Phi_s$, which can maintain intimate contact with outside air and water reservoirs simultaneously. Oscillatory hydrodynamic measurements on porous superhydrophobic membranes as a function of $\\Phi_s$ reveal surprising effects. The hydrodynamic mass oscillating in-phase with the membranes stays constant for $0.9\\le\\Phi_s\\le1$, but drops precipitously for $\\Phi_s < 0.9$. The viscous friction shows a similar drop after a slow initial decrease proportional to $\\Phi_s$. We attribute these effects to the percolation of a stable Knudsen layer of air at the interface.

  13. Porous Superhydrophobic Membranes: Hydrodynamic Anomaly in Oscillating Flows

    E-Print Network [OSTI]

    Sukumar Rajauria; O. Ozsun; J. Lawall; Victor Yakhot; Kamil L. Ekinci

    2011-08-05T23:59:59.000Z

    We have fabricated and characterized a novel superhydrophobic system, a mesh-like porous superhydrophobic membrane with solid area fraction $\\Phi_s$, which can maintain intimate contact with outside air and water reservoirs simultaneously. Oscillatory hydrodynamic measurements on porous superhydrophobic membranes as a function of $\\Phi_s$ reveal surprising effects. The hydrodynamic mass oscillating in-phase with the membranes stays constant for $0.9\\le\\Phi_s\\le1$, but drops precipitously for $\\Phi_s < 0.9$. The viscous friction shows a similar drop after a slow initial decrease proportional to $\\Phi_s$. We attribute these effects to the percolation of a stable Knudsen layer of air at the interface.

  14. Porous silicon structures with high surface area/specific pore size

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA); Yu, Conrad M. (Antioch, CA); Raley, Norman F. (Danville, CA)

    1999-01-01T23:59:59.000Z

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  15. Porous silicon structures with high surface area/specific pore size

    DOE Patents [OSTI]

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16T23:59:59.000Z

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  16. Porous light-emitting compositions

    DOE Patents [OSTI]

    Burrell, Anthony K. (Los Alamos, NM); McCleskey, Thomas Mark (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Bauer, Eve (Los Alamos, NM); Mueller, Alexander H. (Los Alamos, NM)

    2012-04-17T23:59:59.000Z

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  17. Scaling of bubble growth in a porous medium. Topical report

    SciTech Connect (OSTI)

    Satik, C.; Yortsos, Y.; Li, X. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering

    1995-07-01T23:59:59.000Z

    Processes involving liquid-to-gas phase change in porous media are routinely encountered, for example in the recovery of oil, geothermal processes, nuclear waste disposal or enhanced heat transfer. They involve diffusion (and convection) in the pore space, driven by an imposed supersaturation in pressure or temperature. Phase change proceeds by nucleation and phase growth. Depending on pore surface roughness, a number of nucleation centers exist, thus phase growth occurs from a multitude of clusters. Contrary to growth in the bulk or in a Hele-Shaw cell, however, growth patterns in porous media are disordered and not compact. As in immiscible displacements, they reflect the underlying pore microstructure. The competition between multiple clusters is also different from the bulk. For example, cluster growth may be controlled by a combination of diffusion (e.g. Laplace equation in the quasi-static case) with percolation. Novel growth patterns axe expected from this competition. While multiple cluster growth is important, the simpler problem of single-bubble growth is still not well understood. In this section, we focus on the growth of a single bubble, subject to a fixed far-field supersaturation (e.g. by lowering the pressure in a supersaturated solution or by raising the temperature in a. superheated liquid). Our emphasis is on deriving a scaling theory for growth at conditions of quasi-static diffusion, guided by recent experimental observations. Visualization of bubble growth in model porous media was recently conducted using 2-D etched-glass micromodels.

  18. Photophysics and photoredox processes at liquid-liquid interfaces

    SciTech Connect (OSTI)

    Webber, S.E.

    1992-09-01T23:59:59.000Z

    This report is divided into four sections: (1) Recent work on polymers with covalently bound chromophores, primarily involving triplet state electron transfer quenching; (2) Pyrene and pyrene butyric acid adsorbed onto polystyrene latexes (microspheres); (3) Adsorption and micellization of amphiphilic block polymers with chromophores at the junction between the hydrophobic and hydrophilic part; (4) Adsorption of alternating polymers with grafted combs'' to improve adsorption onto a hydrophobic surface.

  19. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect (OSTI)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15T23:59:59.000Z

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  20. Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media

    SciTech Connect (OSTI)

    Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane

    2008-01-01T23:59:59.000Z

    When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was invaded.

  1. Foam Transport in Porous Media - A Review

    SciTech Connect (OSTI)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11T23:59:59.000Z

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).

  2. Deformation of acoustically transparent fluid interfaces by the acoustic radiation pressure

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in v/c, (v is the fluid velocity amplitude, c the sound speed), the time-averaged Lagrangian pressure.g., Rayleigh-Taylor) Abstract ­ We experimentally study the deformations of liquid-liquid interfaces induced

  3. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, S.W.

    1997-02-18T23:59:59.000Z

    A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.

  4. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  5. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

    1992-01-01T23:59:59.000Z

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  6. Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media

    SciTech Connect (OSTI)

    McBride, J.F. (ed.) (Pacific Northwest Lab., Richland, WA (USA)); Graham, D.N. (ed.); Schiegg, H.O. (SIMULTEC Ltd., Meilen/Zurich (Switzerland))

    1990-10-01T23:59:59.000Z

    In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.

  7. ON A PRIORI ERROR ESTIMATES FOR A TWO-PHASE MOVING-INTERFACE PROBLEM WITH KINETIC CONDITION

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    reaction-slow transport scenarios in porous media is to employ a so-called moving-interface model-interface model with kinetic condition arising in the modeling of concrete carbonation. CO2 and humidity attack concrete samples and reduce their protection to corrosion (i.e. the alkalinity) via the apparently harmless

  8. Direct Observations of Three Dimensional Growth of Hydrates Hosted in Porous Media

    SciTech Connect (OSTI)

    Kerkar, P.; Jones, K; Kleinberg, R; Lindquist, W; Tomov, S; Feng, H; Mahajan, D

    2009-01-01T23:59:59.000Z

    The visualization of time-resolved three-dimensional growth of tetrahydrofuran hydrates with glass spheres of uniform size as porous media using synchrotron x-ray computed microtomography is presented. The images of hydrate patches, formed from excess tetrahydrofuran in aqueous solution, show random nucleation and growth concomitant with grain movement but independent of container-wall effect. Away from grain surfaces, hydrate surface curvature was convex showing that liquid, not hydrate, was the wetting phase, similar to ice growth in porous media. The extension of the observed behavior to methane hydrates could have implications in understanding their role in seafloor stability and climate change.

  9. Drying by Cavitation and Poroelastic Relaxations in Porous Media with Macroscopic Pores Connected by Nanoscale Throats

    E-Print Network [OSTI]

    Olivier Vincent; David A. Sessoms; Erik J. Huber; Jules Guioth; Abraham D. Stroock

    2014-09-30T23:59:59.000Z

    We investigate the drying dynamics of porous media with two pore diameters separated by several orders of magnitude. Nanometer-sized pores at the edge of our samples prevent air entry, while drying proceeds by heterogeneous nucleation of vapor bubbles (cavitation) in the liquid in micrometer-sized voids within the sample. We show that the dynamics of cavitation and drying are set by the interplay of the deterministic poroelastic mass transport in the porous medium and the stochastic nucleation process. Spatio-temporal patterns emerge in this unusual reaction-diffusion system, with temporal oscillations in the drying rate and variable roughness of the drying front.

  10. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1991-01-01T23:59:59.000Z

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  11. Water Dynamics at Rough Interfaces

    E-Print Network [OSTI]

    Markus Rosenstihl; Kerstin Kämpf; Felix Klameth; Matthias Sattig; Michael Vogel

    2014-07-21T23:59:59.000Z

    We use molecular dynamics computer simulations and nuclear magnetic resonance experiments to investigate the dynamics of water at interfaces of molecular roughness and low mobility. We find that, when approaching such interfaces, the structural relaxation of water, i.e., the $\\alpha$ process, slows down even when specific attractive interactions are absent. This prominent effect is accompanied by a smooth transition from Vogel to Arrhenius temperature dependence and by a growing importance of jump events. Consistently, at protein surfaces, deviations from Arrhenius behavior are weak when free water does not exist. Furthermore, in nanoporous silica, a dynamic crossover of liquid water occurs when a fraction of solid water forms near 225 K and, hence, the liquid dynamics changes from bulk-like to interface-dominated. At sufficiently low temperatures, water exhibits a quasi-universal $\\beta$ process, which is characterized by an activation energy of $E_a\\!=\\!0.5$ eV and involves anisotropic reorientation about large angles. As a consequence of its large amplitude, the faster $\\beta$ process destroys essentially all orientational correlation, rendering observation of a possible slower $\\alpha$ process difficult in standard experiments. Nevertheless, we find indications for the existence of structural relaxation down to a glass transition of interfacial water near 185 K. Hydrated proteins show a highly restricted backbone motion with an amplitude, which decreases upon cooling and vanishes at comparable temperatures, providing evidence for a high relevance of water rearrangements in the hydration shell for secondary protein relaxations.

  12. COMPARISON OF SINGLE AND MULTI GEOSYNTHETIC AND SOIL INTERFACE TESTS

    E-Print Network [OSTI]

    , geosynthetic clay liner (GCL)/geomembrane, and soil/geosynthetic interfaces. This comparison shows an agreement and Choi 2004). A composite liner system consisting of multiple geosynthetic components, Liquid CollectionCOMPARISON OF SINGLE AND MULTI GEOSYNTHETIC AND SOIL INTERFACE TESTS Timothy D. Stark1 , Fawad S

  13. Remarks on Liquid Wall Research Mohamed Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    rrr ×= BJF rrr ×= BJF rrr ×= BJF rrr ×= J r V r+- g r B r J r #12;· Magnetic Propulsion Liquid Metal Forces" · Gravity-Momentum Drive (GMD) · GMD with Swirl Flow · Electromagnetically Restrained · Magnetic Propulsion Plasma-Liquid Interface · Fluids with low vapor pressure at high temperature (e.g. Sn

  14. Solid-Liquid Interfacial Premelting

    E-Print Network [OSTI]

    Yang, Yang; Asta, Mark; Laird, Brian Bostian

    2013-02-28T23:59:59.000Z

    liquid-liquid miscibility gap, negligible solubility of Pb in the Al solid phase, and a large melting point separa- tion (600 K for Pb and 933 K for Al). We have previously reported results from MD simulations on this system at 625 K, a temperature just... undergoes a roughening transition about 100 K below the melting point of Al. Simulation details.—In our simulations of the Al-Pb solid-liquid interface, we employ a classical many-body potential developed by Landa et al. [42] to model the inter- atomic...

  15. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    SciTech Connect (OSTI)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01T23:59:59.000Z

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  16. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  17. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Web Browser Interface (WBUI) Web Service Interface (API) Read More... Fasterdata IPv6...

  18. Selecting and Applying Interfacings

    E-Print Network [OSTI]

    2006-05-01T23:59:59.000Z

    Selecting and using interfacing correctly is an important component of garment construction. The various types of interfacing are described and methods of applying them are discussed in detail....

  19. Three-Dimensional Reconstruction of Porous LSCF Cathodes D. Gostovic,*,z

    E-Print Network [OSTI]

    Florida, University of

    Three-Dimensional Reconstruction of Porous LSCF Cathodes D. Gostovic,*,z J. R. Smith,* D. P In this initial study the electrochemically active region of a La0.8Sr0.2Co0.2Fe0.8O3- LSCF cathode an actual three-dimensional 3D model of a La0.8Sr0.2Co0.2Fe0.8O3- LSCF cathode and its interface

  20. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Sexton, W.

    2012-06-30T23:59:59.000Z

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

  1. Metal recovery from porous materials

    DOE Patents [OSTI]

    Sturcken, E.F.

    1992-10-13T23:59:59.000Z

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  2. Activation of porous MOF materials

    DOE Patents [OSTI]

    Hupp, Joseph T; Farha, Omar K

    2014-04-01T23:59:59.000Z

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  3. Web Interface Call Simulator

    E-Print Network [OSTI]

    Ernst, Damien

    Web Interface Call Simulator Stage Description Web Interface for VoIP Call Simulator Net) Version 1.0 ­ 3/09/2012 Page 1 of 6 #12;Web Interface Call Simulator Version 1.0 ­ 3/09/2012 Page 2 of 6 #12;Web Interface Call Simulator Document Control Version Date Notes 1.0 25/8/2012 Reviewed

  4. Monte Carlo simulation methodology of the ghost interface theory for the planar surface tension

    E-Print Network [OSTI]

    Attard, Phil

    Monte Carlo simulation methodology of the ghost interface theory for the planar surface tension October 2003 A novel ``ghost interface'' expression for the surface tension of a planar liquid coexisting phases. Results generated from the ghost interface theory for the surface tension are presented

  5. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Furukawa, Hiroyasu; Galatsis, Kosmas; Wang, Kang L.

    2013-07-09T23:59:59.000Z

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  6. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

    2014-05-27T23:59:59.000Z

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  7. Infrared Spectroscopy and Optical Constants of Porous Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy and Optical Constants of Porous Amorphous Solid Water. Infrared Spectroscopy and Optical Constants of Porous Amorphous Solid Water. Abstract: Reflection-absorption...

  8. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

  9. Determination of Water Saturation in Relatively Dry Porous Media...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests....

  10. Removal of carbon tetrachloride from a layered porous medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water Removal of carbon tetrachloride from a layered porous medium...

  11. Removal of Carbon Tetrachloride from a Layered Porous Medium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Tetrachloride from a Layered Porous Medium by Means of Soil Vapor Extraction Enhanced by Desiccation and Water Removal of Carbon Tetrachloride from a Layered Porous Medium...

  12. anisotropic porous layer: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Highly Porous Catalytic Layers for Polymer Electrolyte Fuel Cell Based on Carbon Aerogels Physics Websites Summary: Synthesis of Highly Porous Catalytic Layers for Polymer...

  13. ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars

    SciTech Connect (OSTI)

    Wang, Dong, E-mail: dong.wang@tu-ilmenau.de; Yan, Yong; Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Sharp, Thomas [Oxford Instruments Plasma Technology Ltd., Yatton, Bristol BS49 4AP (United Kingdom); Schönherr, Sven; Ronning, Carsten [Institute for Solid State Physics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Ji, Ran [SUSS MicroTec Lithography GmbH, Schleissheimer Str. 90, 85748 Garching (Germany)

    2015-01-01T23:59:59.000Z

    Porous Si nanopillar arrays are used as templates for atomic layer deposition of ZnO and TiO{sub 2}, and thus, ZnO/porous-Si and TiO{sub 2}/porous-Si nanocomposite nanopillars are fabricated. The diffusion of the precursor molecules into the inside of the porous structure occurs via Knudsen diffusion and is strongly limited by the small pore size. The luminescence of the ZnO/porous-Si nanocomposite nanopillars is also investigated, and the optical emission can be changed and even quenched after a strong plasma treatment. Such nanocomposite nanopillars are interesting for photocatalysis and sensors.

  14. Equilibrium composition between liquid and clathrate reservoirs on Titan

    E-Print Network [OSTI]

    Mousis, Olivier; Lunine, Jonathan I; Sotin, Christophe

    2015-01-01T23:59:59.000Z

    Hundreds of lakes and a few seas of liquid hydrocarbons have been observed by the Cassini spacecraft to cover the polar regions of Titan. A significant fraction of these lakes or seas could possibly be interconnected with subsurface liquid reservoirs of alkanes. In this paper, we investigate the interplay that would happen between a reservoir of liquid hydrocarbons located in Titan's subsurface and a hypothetical clathrate reservoir that progressively forms if the liquid mixture diffuses throughout a preexisting porous icy layer. To do so, we use a statistical-thermodynamic model in order to compute the composition of the clathrate reservoir that forms as a result of the progressive entrapping of the liquid mixture. This study shows that clathrate formation strongly fractionates the molecules between the liquid and the solid phases. Depending on whether the structure I or structure II clathrate forms, the present model predicts that the liquid reservoirs would be mainly composed of either propane or ethane, r...

  15. NONLINEAR OPTICS AT INTERFACES

    E-Print Network [OSTI]

    Chen, Chenson K.

    2010-01-01T23:59:59.000Z

    N. Bloembergen, Nonlinear Optics (W. A. Benjamin, 1977) p.Research Division NONLINEAR OPTICS AT INTERFACES Chenson K.ED LBL-12084 NONLINEAR OPTICS AT INTERFACES Chenson K. Chen

  16. Microelectromechanical pump utilizing porous silicon

    DOE Patents [OSTI]

    Lantz, Jeffrey W. (Albuquerque, NM); Stalford, Harold L. (Norman, OK)

    2011-07-19T23:59:59.000Z

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  17. X-rays at Solid-Liquid Surfaces

    SciTech Connect (OSTI)

    Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

    2007-05-02T23:59:59.000Z

    Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

  18. Diffuse charge and Faradaic reactions in porous electrodes

    E-Print Network [OSTI]

    Biesheuvel, P. M.

    Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage

  19. Winter Performance and Maintenance of Porous Asphalt Pavements

    E-Print Network [OSTI]

    Concrete (HSG-B)Porous Asphalt (HSG-C) #12;Cold Climate Performance Results #12;12 Porous Asphalt SurfaceWinter Performance and Maintenance of Porous Asphalt Pavements Robert M. Roseen, Ph.D., P.E., D impacts for new development and reverse impacts in areas with redevelopment. #12;Porous Asphalt Design

  20. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D'Silva, Arthur (Ames, IA)

    1996-08-06T23:59:59.000Z

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conducts is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer.

  1. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06T23:59:59.000Z

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  2. Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media

    SciTech Connect (OSTI)

    Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

    2005-03-10T23:59:59.000Z

    The objective of this study is the description of the kinetic dissociation of CH4-hydrates in porous media, and the determination of the corresponding kinetic parameters. Knowledge of the kinetic dissociation behavior of hydrates can play a critical role in the evaluation of gas production potential of gas hydrate accumulations in geologic media. We analyzed data from a sequence of tests of CH4-hydrate dissociation by means of thermal stimulation. These tests had been conducted on sand cores partially saturated with water, hydrate and CH4 gas, and contained in an x-ray-transparent aluminum pressure vessel. The pressure, volume of released gas, and temperature (at several locations within the cores) were measured. To avoid misinterpreting local changes as global processes, x-ray computed tomography scans provided accurate images of the location and movement of the reaction interface during the course of the experiments. Analysis of the data by means of inverse modeling (history matching ) provided estimates of the thermal properties and of the kinetic parameters of the hydration reaction in porous media. Comparison of the results from the hydrate-bearing porous media cores to those from pure CH4-hydrate samples provided a measure of the effect of the porous medium on the kinetic reaction. A tentative model of composite thermal conductivity of hydrate-bearing media was also developed.

  3. Laboratory experiments on dispersive transport across interfaces: The role of flow direction

    SciTech Connect (OSTI)

    Berkowitz, B.; Cortis, A.; Dror, I.; Scher, H.

    2009-04-01T23:59:59.000Z

    We present experimental evidence of asymmetrical dispersive transport of a conservative tracer across interfaces between different porous materials. Breakthrough curves are measured for tracer pulses that migrate in a steady state flow field through a column that contains adjacent segments of coarse and fine porous media. The breakthrough curves show significant differences in behavior, with tracers migrating from fine medium to coarse medium arriving significantly faster than those from coarse medium to fine medium. As the flow rate increases, the differences between the breakthrough curves diminish. We argue that this behavior indicates the occurrence of significant, time-dependent tracer accumulation in the resident concentration profile across the heterogeneity interface. Conventional modeling using the advection-dispersion equation is demonstrated to be unable to capture this asymmetric behavior. However, tracer accumulation at the interface has been observed in particle-tracking simulations, which may be related to the asymmetry in the observed breakthrough curves.

  4. Characterization of porous GASAR aluminum

    SciTech Connect (OSTI)

    Bonenberger, R.J. [FM Technologies, Inc., Fairfax, VA (United States); Kee, A.J. [Geo-Centers, Inc., Fort Washington, MD (United States); Everett, R.K.; Matic, P. [Naval Research Lab., Washington, DC (United States)

    1998-12-31T23:59:59.000Z

    Experimental and numerical analyses were performed on porous aluminum samples to evaluate microstructure and mechanical properties. Experiments considered of tensile tests on dog-bone specimens containing 9 to 17% porosity, which were instrumented with axial and transverse extensometers. Properties measured included Young`s modulus, Poisson`s ratio remained constant with porosity., For the numerical simulations, 3-D, mesoscale, multilayer models were constructed to evaluate the effects of pore morphology and interactions on material properties. The models allowed systematic spatial positioning of the pore within the cell and the ability to form solid zones. Pore arrangement, the effect of constraint, and gradients on the stress state were investigated. By using different combinations of hex cells as building blocks, several complicated microstructural arrangements were simulated.

  5. Multiphase flow in fractured porous media

    SciTech Connect (OSTI)

    Firoozabadi, A.

    1995-02-01T23:59:59.000Z

    The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.

  6. Anomalous transport through porous and fractured media

    E-Print Network [OSTI]

    Kang, Peter Kyungchul

    2014-01-01T23:59:59.000Z

    Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured ...

  7. Derivation of effective macroscopic Stokes-Cahn-Hilliard equations for periodic immiscible flows in porous media

    E-Print Network [OSTI]

    Markus Schmuck; Marc Pradas; Gregorios A. Pavliotis; Serafim Kalliadasis

    2013-10-19T23:59:59.000Z

    Using thermodynamic and variational principles we examine a basic phase field model for a mixture of two incompressible fluids in strongly perforated domains. With the help of the multiple scale method with drift and our recently introduced splitting strategy for Ginzburg-Landau/Cahn-Hilliard-type equations [Schmuck et al., Proc. R. Soc. A 468:3705-3724, 2012.], we rigorously derive an effective macroscopic phase field formulation under the assumption of periodic flow and a sufficiently large P\\'eclet number. As for classical convection-diffusion problems, we obtain systematically diffusion-dispersion relations (including Taylor-Aris-dispersion). Our results also provide a convenient analytical and computational framework to macroscopically track interfaces in porous media. In view of the well-known versatility of phase field models, our study proposes a promising model for many engineering and scientific applications such as multiphase flows in porous media, microfluidics, and fuel cells.

  8. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  9. Method for preparing porous metal hydride compacts

    DOE Patents [OSTI]

    Ron, Moshe (Haifa, IL); Gruen, Dieter M. (Downers Grove, IL); Mendelsohn, Marshall H. (Woodridge, IL); Sheft, Irving (Oak Park, IL)

    1981-01-01T23:59:59.000Z

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  10. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02T23:59:59.000Z

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  11. Characterization of naturally occurring porous media

    E-Print Network [OSTI]

    Riley, Robert Daniel

    1965-01-01T23:59:59.000Z

    characteristics of natural occur- ring porous media, The gR /K dimensionless ratio is related to the minimum water saturation in the reverse manner as is permeability. REFERENCES Wyllie, M. R. J. and M. B. Spangler: Application of Electrical Resistivity...: Resistivity of Brine-Saturated Sands in Relation to Pore Seometry. Cornell, D. snd D. L. Kstz: Flow of Sases through Consolidated Porous Media. Industrial and En ineeri hemietr (October 1953) Vo . 5, p. 21 5. Leverett, N, C. : Capillary Behavior...

  12. Computational Studies of [Bmim][PF6]/n-Alcohol Interfaces with Many-Body Potentials

    SciTech Connect (OSTI)

    Chang, Tsun-Mei; Dang, Liem X.

    2014-09-04T23:59:59.000Z

    In this paper, we present the results from molecular-dynamics simulations of the equilibrium properties of liquid/liquid interfaces of room temperature ionic liquid [bmim][PF6] and simple alcohols (i.e., methanol, 1-butanol, and 1-hexanol) at room temperature. Polarizable potential models are employed to describe the interactions among species. Results from our simulations show stable interfaces between the ionic liquid and n-alcohols, and we found that the interfacial widths decrease from methanol to 1-butanol systems, and then increase for 1-hexanol interfaces. Angular distribution analysis reveals that the interface induces a strong orientational order of [bmim] and n-alcohol molecules near the interface, with [bmim] extending its butyl group into the alcohol phase while the alcohol has the OH group pointing into the ion liquid region, which is consistent with the recent sum-frequency-generation experiments. We found the interface to have a significant influence on the dynamics of ionic liquids and n-alcohols. The orientational autocorrelation functions illustrate that [bmim] rotate more freely near the interface than in the bulk, while the rotation of n-alcohol is hindered at the interface. Additionally, the time scale associated with the diffusion along the interfacial direction is found to be faster for [bmim] but slowed down for n-alcohols approaching the interface. We also calculate the dipole moment of n-alcohols as a function of the distance normal to the interface. We found that, even though methanol and 1-butanol have different dipole moments in bulk phase, they reach a similar value at the interface. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the Department of Energy by Battelle. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  13. Interpreting the drying kinetics of a soil using a macroscopic thermodynamic non-equilibrium of water between the liquid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by diffusion mechanisms within the material [1]. When modelling this second phase, the state variable chosen about liquid-gas phase change in porous media that suggest that the establishment of equilibrium, 9]. Vapour diffusion and liquid-vapour phase change are considered as the main phenomena

  14. Effect of gravitation on dynamic response of tanks containing two liquids

    SciTech Connect (OSTI)

    Tang, Yu

    1994-08-01T23:59:59.000Z

    The exact solution to the dynamic response of circular cylindrical tanks containing two liquids, considering the gravitational (g) effect at the interface of the two liquids, is presented. Only rigid tanks were studied. The solution is expressed as the superposition of the so-called impulsive and convective solutions. The results are compared with those obtained by neglecting the gravitional effect at the interface to elucidate the g effect and with those of the tanks containing only one liquid to elucidate the effect of the interaction between two liquids. The response functions examined include the hydrodynamic pressure, base shear, base moments, sloshing motions at surface and at the interface of two liquids and the associated sloshing frequencies. It is found that there are two natural frequencies associated with each sloshing mode in contrast to only one frequency associated with each sloshing mode if the g effect at the interface is neglected; also, the convective pressure has a jump at the interface of two liquids, whereas the impulsive pressure is continuous at the interface. Further, it is shown that in a tank containing two liquids the maximum sloshing wave height may increase significantly, and the fundamental frequency of the sloshing motion is lower than that of an identical tanks filled with only one liquid. Additionally, the well-known mechanical model for tanks containing one liquid is generalized for tanks containing two liquids.

  15. Brain-Computer Interfaces

    E-Print Network [OSTI]

    Aggarwal, Khushbu

    2009-01-01T23:59:59.000Z

    I \\ November 16, 2008). CNN. ’Brain’ in a dish ?ies ?ightREFERENCES Adams, Ray. Brain Computer Interfaces: Psychologyaccessed Biever, Celeste. Brain cells in a dish ?y ?ghter

  16. PHASE TRANSITION NEAR A LIQUID-GAS COEXISTENCE EQUILIBRIUM

    E-Print Network [OSTI]

    Wang, Xiao-Ping

    , are the states in which gas and liquid can stay in equilibrium. We denote c± = -p (±), the speed of sound) in general in a oscillatory manner with fre- quency determined in part by the speeds of sound in gas, the time needed for the sound wave to travel in liquid from the interface to the tube boundary

  17. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting

    2014-10-28T23:59:59.000Z

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  18. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect (OSTI)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26T23:59:59.000Z

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  19. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect (OSTI)

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  20. Smart Interfaces superhydrophobe Oberflchen

    E-Print Network [OSTI]

    Kohlenbach, Ulrich

    forschen 24 Smart Interfaces ­ superhydrophobe Oberflächen Superhydrophobe, selbstreinigende-Silica-Hybridteilchen ermöglichen, lang- zeitstabile superhydrophobe Oberflächen einfach herzustellen. Smart Interfaces unten). Blattes runter. Neben der Struktur auf der Mikro- meter-Skala muss das Material, aus dem die

  1. Fabrication of porous silicon membranes

    E-Print Network [OSTI]

    Yue, Wing Kong

    1988-01-01T23:59:59.000Z

    efficiencies. The silicon difluoride, SiFq, is an unstable substance. It reacts with hydrofluoric acid forming silicic acid (HqSiFs) and hydrogen gas(Hq): SiFs + 2HF ? & SiF4+ Hs, (2) Si F4 + 2 H F ~ Hr Si Fs. In dilute HF solution, silicon can also react.... In step 1, the surface of silicon is covered with fluorine ions. In step 2, when an electric field is applied across the interface, holes move towards the surface. In step 3, some of the holes are trapped at the surface, and they weaken the silicon...

  2. Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation

    DOE Patents [OSTI]

    Calamur, Narasimhan (Lemont, IL); Carrera, Martin E. (Naperville, IL); Devlin, David J. (Los Alamos, NM); Archuleta, Tom (Espanola, NM)

    2000-01-01T23:59:59.000Z

    The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.

  3. Evaporative capillary instability for flow in porous media under the influence of axial electric field

    SciTech Connect (OSTI)

    Kumar Awasthi, Mukesh, E-mail: mukeshiitr.kumar@gmail.com [Department of Mathematics, University of Petroleum and Energy Studies, Dehradun (India)

    2014-04-15T23:59:59.000Z

    We study the linear analysis of electrohydrodynamic capillary instability of the interface between two viscous, incompressible and electrically conducting fluids in a fully saturated porous medium, when the phases are enclosed between two horizontal cylindrical surfaces coaxial with the interface and, when there is mass and heat transfer across the interface. The fluids are subjected to a constant electric field in the axial direction. Here, we use an irrotational theory in which the motion and pressure are irrotational and the viscosity enters through the jump in the viscous normal stress in the normal stress balance at the interface. A quadratic dispersion relation that accounts for the growth of axisymmetric waves is obtained and stability criterion is given in terms of a critical value of wave number as well as electric field. It is observed that heat transfer has stabilizing effect on the stability of the considered system while medium porosity destabilizes the interface. The axial electric field has dual effect on the stability analysis.

  4. Fracture of porous materials induced by crystallization of salt

    E-Print Network [OSTI]

    Katzoff, Golda Y

    2006-01-01T23:59:59.000Z

    The penetration of salt into porous materials is known to have deleterious effects, often resulting in fracture. The damage process begins with a saline solution penetrating the porous network by way of capillary action. ...

  5. Degradation of polymer/substrate interfaces an attenuated total reflection Fourier transform infrared spectroscopy approach

    E-Print Network [OSTI]

    Degradation of polymer/substrate interfaces ­ an attenuated total reflection Fourier transform degradation of the polymer near the interface. However, such changes were not observed when PVB coated Zn for the observed structural deterioration. Liquid water uptake kinetics for the degraded PVB monitored using ATR

  6. On the interface instability during rapid evaporation in microgravity

    SciTech Connect (OSTI)

    Juric, D. [Los Alamos National Lab., NM (United States). Theoretical Div.

    1997-05-01T23:59:59.000Z

    The rapid evaporation of a superheated liquid (vapor explosion) under microgravity conditions is studied by direct numerical simulation. The time-dependent Navier-Stokes and energy equations coupled to the interface dynamics are solved using a two-dimensional finite-difference/front-tracking method. Large interface deformations, topology change, latent heat, surface tension and unequal material properties between the liquid and vapor phases are included in the simulations. A comparison of numerical results to the exact solution of a one-dimensional test problem shows excellent agreement. For the two-dimensional rapid evaporation problem, the vapor volume growth rate and unstable interface dynamics are studied for increasing levels of initial liquid superheat. As the superheat is increased the liquid-vapor interface experiences increasingly unstable energetic growth. These results indicate that heat transfer plays a very important role in the instability mechanism leading to vapor explosions. It is suggested that the Mullins-Sekerka instability could play a role in the instability initiation mechanism.

  7. Optical Measurement of the Non-linear Focusing of Sound in Liquid Helium 4

    E-Print Network [OSTI]

    Caupin, Frédéric

    Optical Measurement of the Non-linear Focusing of Sound in Liquid Helium 4 X. Chavanne, S. Balibar have measured the amplitude of 1MHz acoustic waves focused in liquid helium 4. Our resolution is 10 the reflec- tion of light at the glass/helium interface, which depends on the refractive index of the liquid

  8. Surface layering of liquids: The role of surface tension Oleg Shpyrko,1

    E-Print Network [OSTI]

    Ocko, Ben

    Surface layering of liquids: The role of surface tension Oleg Shpyrko,1 Masafumi Fukuto,1 Peter and alloys are always layered, regardless of composition and surface tension; a result supported by three, for the liquid-vapor interface it is tempting to think that the large surface tension of liquid metals such as Hg

  9. Investigation of porous media structures using NMR restricted diffusion measurements

    E-Print Network [OSTI]

    Miao, Peizhi

    1993-01-01T23:59:59.000Z

    coefficient which produces a new description of molecule diffusion in porous media. Experimental Details Model porous media chosen for investigation are water saturated glass bead packs of different bead sizes from 50 to 300 microns. First the glass beads... is accessible with the aid of sufficiently developed analysis procedures, NMR techniques can be applied to porous structure analysis. For the hypothesis that water saturated in porous media consists of two phases: water removed from domain boundaries...

  10. Mechanical Properties of Porous-Matrix Ceramic Composites**

    E-Print Network [OSTI]

    Zok, Frank

    REVIEWS Mechanical Properties of Porous- Matrix Ceramic Composites** By Frank W. Zok* and Carlos G/Mechanical Properties of Porous-Matrix Ceramic Composites REVIEWS The porous matrix concept has been developed primarily. Levi 1. Introduction Damage tolerance can be enabled in continuous fiber-rein- forced ceramic

  11. Propagation of polymer slugs through porous media

    SciTech Connect (OSTI)

    Lecourtier, J.; Chauveteau, G.

    1984-09-01T23:59:59.000Z

    This paper describes an experimental and theoretical study of the mechanisms governing polymer slug propagation through porous media. An analytical model taking into account the macromolecule exclusion from pore walls is proposed to predict rodlike polymer velocity in porous media and thus the spreading out of polydispersed polymer slugs. Under conditions where this wall exclusion is maximum, i.e. at low shear rates and polymer concentrations, the experiments show that xanthan propagation is effectively predicted by this model. At higher flow rates and polymer concentrations, the effects of hydrodynamic dispersion and viscous fingering are analyzed. A new fractionation method for determining molecular weight distribution of polymers used in EOR is proposed.

  12. Porous polymeric materials for hydrogen storage

    DOE Patents [OSTI]

    Yu, Luping (Hoffman Estates, IL); Liu, Di-Jia (Naperville, IL); Yuan, Shengwen (Chicago, IL); Yang, Junbing (Westmont, IL)

    2011-12-13T23:59:59.000Z

    Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  13. NORIA. Nonisothermal Two-Phase Porous Flow

    SciTech Connect (OSTI)

    Bixler, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1992-02-26T23:59:59.000Z

    NORIA is a finite element program that simultaneously solves four nonlinear parabolic, partial differential equations that describe the transport of water, water vapor, air, and energy through partially saturated porous media. NORIA is designed for the analysis of two-dimensional, non-isothermal, unsaturated porous flow problems. Nearly all material properties, such as permeability, can either be set to constant values or defined as functions of the dependent and independent variables by user-supplied subroutines. The gas phase is taken to be ideal. NORIA is intended to solve nonisothermal problems in which large gradients are expected in the gas pressure.

  14. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05T23:59:59.000Z

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  15. SRS Interface Input

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Input 1. MOA's: The contractor has no MOA's in effect at the Tritium Operations (SRTO) level. 2. AIP's: The contractor has no AIP's in effect at the SRTO level. 3....

  16. A model for reactive porous transport during re-wetting of hardened concrete

    E-Print Network [OSTI]

    Chapwanya, Michael; Stockie, John M

    2008-01-01T23:59:59.000Z

    We develop a mathematical model that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the infiltrating water and the residual calcium silicate compounds that reside in the porous concrete matrix. We investigate the hypothesis that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Using numerical simulations, we determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.

  17. Micro-engineered cathode interface studies

    SciTech Connect (OSTI)

    Doshi, R.; Kueper, T.; Nagy, Z.; Krumpelt, M.

    1997-08-01T23:59:59.000Z

    The aim of this work is to increase the performance of the cathode in solid oxide fuel cells (SOFCs) operating at 1,000 C by decreasing the polarization resistance from 0.2 {Omega}-cm{sup 2} at 300 mA/cm{sup 2}. Decreased polarization resistance will allow operation at higher current densities. This work is in support of the Westinghouse tubular SOFC technology using YSZ electrolyte and strontium doped lanthanum manganite (LSM) cathode. As a result of work performed last year at Argonne National Laboratory and information derived from the literature, the limitations at the cathode/electrolyte interface can be classified into two main areas. First, the ionic conductivity of the LSM cathode material is low which limits the reaction zone to an area very close to the interface, while the rest of the cathode thickness acts essentially as current collector with channels for gas access. Second, the electronic conductivity in YSZ is very low which limits the reaction zone to areas that are the boundaries between LSM and YSZ rather than the YSZ surface away from LSM at the interface. Possible solutions to this problem being pursued are: (1) introducing an ionic conducting YSZ phase in LSM to form a porous two-phase mixture of LSM and YSZ; (2) applying a thin interlayer between the electrolyte and the cathode where the interlayer has high ionic and electronic conductivity and high catalytic activity for reduction of O{sub 2}; (3) increasing the ionic conductivity in the LSM by suitable doping; and (4) increasing the electronic conductivity in the electrolyte by doping or by depositing an appropriate mixed conducting layer on the YSZ before applying the cathode.

  18. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, Amy A. (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  19. Process for the production of liquid hydrocarbons

    DOE Patents [OSTI]

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27T23:59:59.000Z

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  20. Method of making porous ceramic fluoride

    DOE Patents [OSTI]

    Reiner, Robert H. (Knoxville, TN); Holcombe, Cressie E. (Farragut, TN)

    1990-01-01T23:59:59.000Z

    A process for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  1. Porous ceramics and method for making

    SciTech Connect (OSTI)

    Reiner, R.H.; Holcombe, C.E.

    1989-06-08T23:59:59.000Z

    The fabrication of a porous ceramic composite is described. Fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  2. Method of making porous ceramic fluoride

    SciTech Connect (OSTI)

    Reiner, R.H.; Holcombe, C.E.

    1990-11-13T23:59:59.000Z

    A process is disclosed for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  3. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01T23:59:59.000Z

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  4. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    SciTech Connect (OSTI)

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01T23:59:59.000Z

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  5. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect (OSTI)

    Kushner, Mark Jay [University of Michigan] [University of Michigan

    2014-07-10T23:59:59.000Z

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  6. VAPOR SPACE AND LIQUID/AIR INTERFACECORROSION TESTS

    SciTech Connect (OSTI)

    Zapp, P.; Hoffman, E.

    2009-11-09T23:59:59.000Z

    The phenomena of vapor space corrosion and liquid/air interface corrosion of carbon steel in simulated liquid waste environments have been investigated. Initial experiments have explored the hypothesis that vapor space corrosion may be accelerated by the formation of a corrosive electrolyte on the tank wall by a process of evaporation of relatively warmer waste and condensation of the vapor on the relatively cooler tank wall. Results from initial testing do not support the hypothesis of electrolyte transport by evaporation and condensation. The analysis of the condensate collected by a steel specimen suspended over a 40 C simulated waste solution showed no measurable concentrations of the constituents of the simulated solution and a decrease in pH from 14 in the simulant to 5.3 in the condensate. Liquid/air interface corrosion was studied as a galvanic corrosion system, where steel at the interface undergoes accelerated corrosion while steel in contact with bulk waste is protected. The zero-resistance-ammeter technique was used to measure the current flow between steel specimens immersed in solutions simulating (1) the high-pH bulk liquid waste and (2) the expected low-pH meniscus liquid at the liquid/air interface. Open-circuit potential measurements of the steel specimens were not significantly different in the two solutions, with the result that (1) no consistent galvanic current flow occurred and (2) both the meniscus specimen and bulk specimen were subject to pitting corrosion.

  7. Stiffening solids with liquid inclusions

    E-Print Network [OSTI]

    Robert W. Style; Rostislav Boltyanskiy; Benjamin Allen; Katharine E. Jensen; Henry P. Foote; John S. Wettlaufer; Eric R. Dufresne

    2014-07-24T23:59:59.000Z

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and engineering materials. Eshelby's inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite's bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby's theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet's deformation is strongly size-dependent with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straight-forward extension of Eshelby's theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive effect of liquid-stiffening of solids is expected whenever droplet radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young's modulus of the solid matrix.

  8. Liquid electrode

    DOE Patents [OSTI]

    Ekechukwu, A.A.

    1994-07-05T23:59:59.000Z

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  9. Pore-scale dynamics of salt transport and distribution in drying porous media

    SciTech Connect (OSTI)

    Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk [School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL (United Kingdom)] [School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-01-15T23:59:59.000Z

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 ?m and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.

  10. A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface

    E-Print Network [OSTI]

    He, Hong

    2012-01-01T23:59:59.000Z

    illustrated in figure 4.1. Two Peltier devices are stackedThe hot side of the top Peltier device is attached to aand prevent burning of the Peltier devices. The temperature

  11. Rate constants for charge transfer across semiconductor-liquid interfaces

    SciTech Connect (OSTI)

    Fajardo, A.M.; Lewis, N.S. [California Institute of Technology, Pasadena, CA (United States)

    1996-11-08T23:59:59.000Z

    Interfacial charge-transfer rate constants have been measured for n-type Si electrodes in contact with a series of viologen-based redox couples in methanol through analyses of the behavior of these junctions with respect to their current density versus potential and differential capacitance versus potential properties. The data allow evaluation of the maximum rate constant (and therefore the electronic coupling) for majority carriers in the solid as well as of the dependence of the rate constant on the driving force for transfer of delocalized electrons from the n-Si semiconducting electrode into the localized molecular redox species in the solution phase. The data are in good agreement with existing models of this interfacial electron transfer process and provide insight into the fundamental kinetic events underlying the use of semiconducting photoelectrodes in applications such as solar energy conversion. 23 refs., 3 figs.

  12. Investigations of amino acid-based surfactants at liquid interfaces

    E-Print Network [OSTI]

    Yang, Dengliang

    2005-11-01T23:59:59.000Z

    packing and hydrogen bonding between bulk crystals and two-dimensional thin films for enantiomeric and racemic compounds. Chapter IV summarizes the investigations of hydrogen bonding in N-acyl amino acid monolayers by vibrational sum-frequency spectroscopy...

  13. A Magnetomechanical Thermal Energy Harvester With A Reversible Liquid Interface

    E-Print Network [OSTI]

    He, Hong

    2012-01-01T23:59:59.000Z

    and Mechanical Model of a Thermal Energy Harvesting Device”,M, and Ferrari V. , “Thermal energy harvesting throughand G. P. Carman, “Thermal energy harvesting device using

  14. J. Colloid Interface Sci. 296 (2006) 614-623 AFM and low-pressure argon adsorption analysis of geometrical properties of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2006-01-01T23:59:59.000Z

    of contaminants and nutrients in soils and porous rocks. In addition, these minerals find numerous applications of non swelling clay minerals, except for one kaolinite, which is very heterogeneous in sizes minerals #12;J. Colloid Interface Sci. 296 (2006) 614-623 3 Introduction The particle shape

  15. Fundamental Studies of Fluid Mechanics: Stability in Porous Media

    SciTech Connect (OSTI)

    George M. Homsy

    2005-04-28T23:59:59.000Z

    This work has been concerned with theoretical, computational and experimental studies of a variety of flow and transport problems that are of generic interest and applicability in energy-related and energy-intensive processes. These include the following. (1) Problems associated with oil recovery: the global economy continues to be dependent on the stable and predictable supply of oil and fossil fuels. This will remain the case for the near term, as current estimates are that world production of oil will peak between 2025 and 2100, depending on assumptions regarding growth. Most of these resources reside in porous rocks and other naturally occurring media. Studies of flow-induced instabilities are relevant to the areas of secondary and enhanced oil recovery. (2) Small scale and Stokes flows: flows in microgeometries and involving interfaces and surfactants are of interest in a myriad of energy-related contexts. These include: pore-level modeling of the fundamental processes by which oil held in porous materials is mobilized and produced; heating and cooling energy cycles involving significant expenditure of energy in conditioning of human environments, heat pipes, and compact heat exchangers; and energy efficiency in large scale separation processes such as distillation and absorption-processes that underlie the chemical process industries. (3) Coating flows: these are of interest in information technologies, including the manufacture of integrated circuits and data storage and retrieval devices. It is estimated that 50-70% of the starting raw materials and intermediate devices in information technology processes must be discarded as a result of imperfections and failure to meet specifications. These in turn are often the result of the inability to control fluid-mechanical processes and flow instabilities. Our work over the grant period is primarily fundamental in nature. We are interested in establishing general principles and behaviors that relate to a variety of processes in a variety of contexts. Our work has focused and will continue to focus on fluid mechanical phenomena that are of interest in energy-related technologies, with an emphasis on interfacial flows.

  16. Probing helium interfaces with light scattering : from fluid mechanics to statistical physics

    E-Print Network [OSTI]

    Pierre-Etienne Wolf; Fabien Bonnet; Sylvain Perraud; Laurent Puech; Bernard Rousset; Pierre Thibault

    2008-07-10T23:59:59.000Z

    We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous glasses during the process of helium condensation. The context, aims, and results of these experiments are reviewed, with focus on the specificity of light scattering by helium. In particular, we discuss how, for different reasons, the closeness to unity of the index of refraction of helium allows in both cases to minimise the problem of multiple scattering and obtain results which it would not be possible to get using other fluids.

  17. X-ray Absorption Spectroscopy of Liquid Methanol Microjets: Bulk Electronic Structure and Hydrogen Bonding Network

    E-Print Network [OSTI]

    Cohen, Ronald C.

    of ice,15,16 or at the liquid-gas interface.3 As expected, water in its various phases is a natural, Sweden, AdVanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720

  18. Heat transfer enhancement in a channel with porous baffles

    E-Print Network [OSTI]

    Ko, Kang-Hoon

    2005-02-17T23:59:59.000Z

    with staggered positioned porous baffles. A numerical procedure was implemented, in conjunction with a commercially available Navier-Stokes solver, to model the turbulent flow in porous media. The Brinkman-Forchheimer-Extended Darcy model was used for modeling... fluid flow through the porous baffles. Conventional, one- equation, and two-equation models were used for heat transfer modeling. The accuracy and characteristics of each model were investigated and discussed. The results were compared...

  19. Porous silicon membranes as ultrafiltration devices: a feasibility study 

    E-Print Network [OSTI]

    Hong, Xiangrong

    1993-01-01T23:59:59.000Z

    in the integrated circuits. According to research results, porous silicon layers are formed by local dissolution of silicon during anodization in hydrofluoric acid solution. Memming and Schwandt (1966) proposed the following model for the etching process... results in the formation of the etched pores. Beale (1984) investigated the microstructure of porous silicon using cross-sectional transmission electron microscopy. The studies show that the structure of porous silicon is not perfectly cylindrical...

  20. Primary Atomization of a Liquid Jet in Crossflow

    E-Print Network [OSTI]

    Rana, Sandeep

    2010-01-01T23:59:59.000Z

    In this fluid dynamics video, we present a visualization of the primary atomization of a turbulent liquid jet injected into a turbulent gaseous crossflow. It is based on a detailed numerical simulation of the primary atomization region of the jet using a finite volume, balanced force, incompressible LES/DNS flow solver coupled to a Refined Level Set Grid (RLSG) solver to track the phase interface position. The visualization highlights the two distinct breakup modes of the jet: the column breakup mode of the main liquid column and the ligament breakup mode on the sides of the jet and highlights the complex evolution of the phase interface geometry.

  1. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Abstract: In this study, porous silicon...

  2. Effects of Monolayer Density and Bulk Ionic Strength on Acid-Base Equilibria at the Air/Water Interface

    E-Print Network [OSTI]

    Eisenthal, Kenneth B.

    using the method of second harmonic generation. If it is assumed that the amphiphiles are uniformly distributed at the interface, the application of the Gouy-Chapman model yields pKa values ranging from 10 of the interface, i.e., there are amphiphiles islands of "liquid phase" density immersed in a "gas phase" of very

  3. Living Bacterial Sacrificial Porogens to Engineer Decellularized Porous Scaffolds

    E-Print Network [OSTI]

    Xu, Feng

    Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative ...

  4. Transport in Porous Media ISSN 0169-3913

    E-Print Network [OSTI]

    Zhan, Hongbin

    -011-9720-2 Applicability of the Linearized Governing Equation of Gas Flow in Porous Media Jian Li · Hongbin Zhan · Guanhua

  5. Interfaces Module March 28, 2013

    E-Print Network [OSTI]

    Rhoads, James

    the design solution for the physical interface o Kind of like a ConOps to the IRD · Explicitly identify

  6. Porous, sintered metal filter recovers 100% of catalyst in H/sub 2/O/sub 2/ process

    SciTech Connect (OSTI)

    Hall, G.L.; Isaacs, M.

    1982-01-01T23:59:59.000Z

    Recovery of catalyst and prevention of catalyst from entering the oxidizer were plant problems for the Interox America process for production of H/sub 2/O/sub 2/ by the catalyzed alternative hydrogenation and oxidation of anthraquinone. A porous metal filter element was inserted in the filter unit following the hydrogenation stage to collect the catalyst which forms a permeable cake that is recovered by backwashing on a timer cycle. The porous metal filters consisting of a rigid matrix containing small pores applicable for the collection of very small particles (> 0.5 ..mu.. in liquids and 0.05 ..mu.. in gases) have been in use in plants in UK for 25 years with 75% of the original filter elements still in use. (BLM)

  7. Curved and diffuse interface effects on the nuclear surface tension

    E-Print Network [OSTI]

    V. M. Kolomietz; S. V. Lukyanov; A. I. Sanzhur

    2012-01-30T23:59:59.000Z

    We redefine the surface tension coefficient for a nuclear Fermi-liquid drop with a finite diffuse layer. Following Gibbs-Tolman concept, we introduce the equimolar radius R_e of sharp surface droplet at which the surface tension is applied and the radius of tension surface R_s which provides the minimum of the surface tension coefficient \\sigma. This procedure allows us to derive both the surface tension and the corresponding curvature correction (Tolman length) correctly for the curved and diffuse interface. We point out that the curvature correction depends significantly on the finite diffuse interface. This fact is missed in traditional nuclear considerations of curvature correction to the surface tension. We show that Tolman's length \\xi is negative for nuclear Fermi-liquid drop. The value of the Tolman length is only slightly sensitive to the Skyrme force parametrization and equals \\xi=-0.36 fm.

  8. Standard interface file handbook

    SciTech Connect (OSTI)

    Shapiro, A.; Huria, H.C. (Cincinnati Univ., OH (United States))

    1992-10-01T23:59:59.000Z

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  9. Virtual button interface

    DOE Patents [OSTI]

    Jones, Jake S. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

  10. Virtual button interface

    DOE Patents [OSTI]

    Jones, J.S.

    1999-01-12T23:59:59.000Z

    An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

  11. Liquid Effluents Program mission analysis

    SciTech Connect (OSTI)

    Lowe, S.S.

    1994-09-27T23:59:59.000Z

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  12. Seeding Bioreactor-Produced Embryonic Stem Cell-Derived Cardiomyocytes on Different Porous, Degradable, Polyurethane

    E-Print Network [OSTI]

    Zandstra, Peter W.

    Seeding Bioreactor-Produced Embryonic Stem Cell-Derived Cardiomyocytes on Different Porous in bioreactors and seeded them on porous, 3-dimensional scaffolds prepared using 2 different techniques

  13. High-throughput Characterization of Porous Materials Using Graphics Processing Units

    E-Print Network [OSTI]

    Kim, Jihan

    2013-01-01T23:59:59.000Z

    A.E. ; Purcell, T. Computer Graphics Forum 2007, 26(1), 80-of Porous Materials Using Graphics Processing Units Jihanof Porous Materials Using Graphics Processing Units Jihan

  14. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High Performance Supercapacitors. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High...

  15. Surface tension of a Lennard-Jones liquid under supersaturation Songnian He and Phil Attard*

    E-Print Network [OSTI]

    Attard, Phil

    Surface tension of a Lennard-Jones liquid under supersaturation Songnian He and Phil Attard* School A formally exact Kirkwood­Buff virial formula for the surface tension of a supersaturated interface-vapor interface. The Kirkwood­Buff results for the supersaturated surface tension are found to be in reasonable

  16. Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects

    E-Print Network [OSTI]

    Schmittbuhl, Jean

    of the model. Viscous forces tend to destabilize the displacement front into narrow fingers against the stabilizing effect of gravity. Subsequently, a viscous instability is observed for sufficiently large in geological engineering, including ground water flow modeling and oil recovery, where an increase

  17. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  18. Safetygram #9- Liquid Hydrogen

    Broader source: Energy.gov [DOE]

    Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

  19. Characterizing unsaturated diffusion in porous tuff gravel

    SciTech Connect (OSTI)

    Hu, Qinhong; Kneafsey, Timothy J.; Roberts, Jeffery J.; Tomutsa, Liviu; Wang, Joseph, S.Y.

    2003-11-12T23:59:59.000Z

    Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (for example, the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent to which surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents were calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s for tuff gravel. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel at very low water contents.

  20. Molecular Design of Branched and Binary Molecules at Ordered Interfaces

    SciTech Connect (OSTI)

    Kirsten Larson Genson

    2005-12-27T23:59:59.000Z

    This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

  1. Fundamental studies of fluid mechanics and stability in porous media

    SciTech Connect (OSTI)

    Homsy, G.M.

    1991-08-01T23:59:59.000Z

    This report summarizes accomplished and proposed work for the fundamental studies of fluid mechanics and stability in porous media. Topics discussed include: viscous fingering in miscible displacements; polymer flow interactions in free shear layers of viscoelastic fluids; effect of nonmonotonic viscosity profiles on the stability of miscible displacements in porous media; and references. (JL)

  2. Stability of Miscible Displacements Across Stratified Porous Media

    SciTech Connect (OSTI)

    Shariati, Maryam; Yortsos, Yanis C.

    2000-09-11T23:59:59.000Z

    This report studied macro-scale heterogeneity effects. Reflecting on their importance, current simulation practices of flow and displacement in porous media were invariably based on heterogeneous permeability fields. Here, it was focused on a specific aspect of such problems, namely the stability of miscible displacements in stratified porous media, where the displacement is perpendicular to the direction of stratification.

  3. Combustion fronts in porous media with two layers Steve Schecter

    E-Print Network [OSTI]

    Schecter, Stephen

    Combustion fronts in porous media with two layers layer 1 layer 2 Steve Schecter North Carolina Subject: Propagation of a combustion front through a porous medium with two parallel layers having different properties. · Each layer admits a traveling combustion wave. · The layers are coupled by heat

  4. Porous Pavement in Cold Climates Part: Performance and Cost

    E-Print Network [OSTI]

    Porous Pavement in Cold Climates Part: Performance and Cost Onondaga Environmental Institute 17 #12;Overview 1. Hydrology of Permeable Pavements 2. Water Quality Performance 3. Hydraulic Performance However, a large number of installations STILL continue to be sub-standard 4 #12;Porous Pavement Design

  5. SIMULATING NON-DARCY FLOW THROUGH POROUS MEDIA USING SUNDANCE

    E-Print Network [OSTI]

    Kelley, C. T. "Tim"

    Abstract A non-Darcy partial differential equation (PDE) model for flow through porous media is presentedSIMULATING NON-DARCY FLOW THROUGH POROUS MEDIA USING SUNDANCE J. P. REESE1 , K. R. LONG2 , C. T media has been modeled using either the linear Darcy's law or some empirical nonlinear relationship

  6. TERMINATION OF THE POROUS WALL CONCEPT To: APEX GROUP

    E-Print Network [OSTI]

    California at Los Angeles, University of

    TERMINATION OF THE POROUS WALL CONCEPT To: APEX GROUP From: Anter El-Azab (anter@seas.ucla.edu) Re with Lithium will can not work and this concept should be terminated. For the case of vanadium alloy on this concept should be terminated. #12;TERMINATION OF THE POROUS WALL CONCEPT Best Regards, Anter #12;

  7. Nitrogen modification of highly porous carbon for improved supercapacitor performance

    E-Print Network [OSTI]

    Cao, Guozhong

    Nitrogen modification of highly porous carbon for improved supercapacitor performance Stephanie L for supercapacitor applications. Surface modification increases the amount of nitrogen by four times when compared elements in highly porous carbon used for electric double-layer supercapacitors.1 These elements modify

  8. Diffusion with dissolution and precipitation in a porous media

    E-Print Network [OSTI]

    Herbin, Raphaèle

    Diffusion with dissolution and precipitation in a porous media approximation by a finite volume. Quelques tests numériques sont ensuite montrés. KEYWORDS: diffusion, dissolution­precipitation, porous­ ficiency of such disposals relies on material barriers. For such a use, cement concrete offers

  9. Diffusion with dissolution and precipitation in a porous media

    E-Print Network [OSTI]

    Herbin, Raphaèle

    Diffusion with dissolution and precipitation in a porous media approximation by a finite volume numériques sont ensuite montrés. KEYWORDS: diffusion, dissolution-precipitation, porous media, finite volumes barriers. For such a use, cement concrete offers the advantage of having a weak porosity. However, disposal

  10. Invariant measures for a stochastic porous medium equation

    E-Print Network [OSTI]

    Röckner, Michael

    Invariant measures for a stochastic porous medium equation Giuseppe Da Prato (Scuola Normale AMS :76S05,35J25, 37L40 . 1 Introduction The porous medium equation X t = (Xm ), m N, (1 Brownian motion in H and C is a positive definite bounded operator on H of trace class. To be more concrete

  11. Field emission study of cobalt ion implanted porous silicon 

    E-Print Network [OSTI]

    Liu, Hongbiao

    1995-01-01T23:59:59.000Z

    as an electrode in field emission applications. In this project, the formation of a CoSi2, conducting layer on porous silicon by high dose ion implantation while preserving the pore structure and field emission properties of the underlying porous silicon...

  12. Coated porous carbon cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Klett, James William [ORNL

    2008-01-01T23:59:59.000Z

    Coated porous carbon cathodes for automotive lithium batteries are being developed with the goal of overcoming the problems with capacity fade and poor thermal management in conventional polymer-bonded cathodes. The active cathode material (lithium iron phosphate nanoparticles) is carbon-bonded to the porous carbon support material. Cathodes have been developed with high specific energy and power and with good cycling behavior.

  13. Numerical Computation of Multiphase Flows in Porous Media

    E-Print Network [OSTI]

    Bastian, Peter

    Preface iii Notation ix Introduction 1 1 Modeling Immiscible Fluid Flow in Porous Media 7 1.1 Porous Media legendi im Fachgebiet Informatik (Wissenschaftliches Rechnen) #12;ii #12;Preface Groundwater is a precious resource that is important for all forms of life on earth. The quality of groundwater is impaired

  14. COMPARISON OF VARIOUS FORMULATIONS OF THREEPHASE FLOW IN POROUS MEDIA

    E-Print Network [OSTI]

    , oil, and gas) flow in porous media, including phase, global, and pseudo­global pressure three­phase (e.g., water, oil, and gas) flow in porous media. We show that, under a so­called total­global pressure and two saturations without any assumption. However, it turns out that the phase and pseudo

  15. Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography

    E-Print Network [OSTI]

    , at shutdown, may freeze under subzero tem- peratures and makes cold start of a PEM fuel cell difficult conditions. MRI is used to visualize the transport of liquid water across a polymer electrolyte membrane opportunities for imaging pore-scale flow and multiphase transport in porous me- dia. In recent years, X

  16. Production of porous coating on a prosthesis

    DOE Patents [OSTI]

    Sump, Kenneth R. (Richland, WA)

    1987-01-01T23:59:59.000Z

    Preselected surface areas of a prosthesis are covered by a blend of matching primary metallic particles and expendable particles. The particles are compressed and heated to assure that deformation and metallurgical bonding occurs between them and between the primary particles and the surface boundaries of the prosthesis. Porosity is achieved by removal of the expendable material. The result is a coating including discrete bonded particles separated by a network of interconnected voids presenting a homogeneous porous coating about the substrate. It has strength suitable for bone implant usage without intermediate adhesives, and adequate porosity to promote subsequent bone ingrowth.

  17. Protein separations using porous silicon membranes

    E-Print Network [OSTI]

    Pass, Shannon Marie

    1992-01-01T23:59:59.000Z

    charge or as the absence of an electron in the crystal structure of silicon. The properties of boron doped siTicon are exploited experimentally by setting up an etch cell in which one surface of the silicon serves as the anode and by using... terminals located on the top surface of the etch cell. The current to be used in the experiment and the total time were previously calculated to produce the desired average pore size and porous silicon film thickness, respectively. The power source...

  18. Porous Power Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to Reduce EmissionsPoncha Hot SpringsPorous

  19. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  20. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13T23:59:59.000Z

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  1. Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media

    E-Print Network [OSTI]

    Pramanik, Satyajit; Mishra, Manoranjan

    2015-01-01T23:59:59.000Z

    The influence of viscosity contrast on buoyantly unstable miscible fluids in a porous medium is investigated through a linear stability analysis (LSA) as well as direct numerical simulations (DNS). The linear stability method implemented in this paper is based on an initial value approach, which helps to capture the onset of instability more accurately than the quasi-steady state analysis. In the absence of displacement, we show that viscosity contrast delays the onset of instability in buoyantly unstable miscible fluids. Further, it is observed that suitably choosing the viscosity contrast and injection velocity a gravitationally unstable miscible interface can be stabilized completely. Through LSA we draw a phase diagram, which shows three distinct stability regions in a parameter space spanned by the displacement velocity and the viscosity contrast. DNS are performed corresponding to parameters from each regime and the results obtained are in accordance with the linear stability results. Moreover, the conv...

  2. Web Browser Interface (WBUI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowser Interface (WBUI)

  3. Web Service Interface (API)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHE FUTUREBrowser Interface

  4. Porous Elasticity: Lectures on the elasticity of porous materials as an application of the theory of mixtures

    E-Print Network [OSTI]

    Bowen, Ray M.

    2014-01-22T23:59:59.000Z

    of classical porous media models. Chapter 2 introduces the essentials of the theory of mixtures. Chapters 3,4 and 5 exploit the theory of mixtures to formulate various models of porous elastic materials. Chapter 6 is concerned with establishing connections...

  5. Laparoscopic simulation interface

    DOE Patents [OSTI]

    Rosenberg, Louis B.

    2006-04-04T23:59:59.000Z

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  6. Macrodispersivity tensor for nonreactive solute transport in isotropic and anisotropic fractal porous media

    E-Print Network [OSTI]

    Zhan, Hongbin

    porous media: Analytical solutions Hongbin Zhan1 and Stephen W. Wheatcraft Hydrology/Hydrogeology Program

  7. RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via structural transformations

    E-Print Network [OSTI]

    Li, Jing

    RPM-2: A recyclable porous material with unusual adsorption capability: self assembly via, fully recyclable porous material (RPM-2) with a very high sorption capability. Self recent explora- tory study on such a structure, the 3D porous RPM-1 (RPM: Rutgers Recyclable Porous

  8. Wetting and strength issues at Al/alpha-alumina interfaces

    SciTech Connect (OSTI)

    Saiz, Eduardo; Tomsia, Antoni P.; Suganuma, Katsuaki

    2003-04-15T23:59:59.000Z

    The wetting behavior and strength at aluminum/alumina interfaces has been an active subject of research. Al/alumina applications include ceramic-metal composites and several applications for electronic industries. In this paper the interface strength and microstructure of Al/alpha-alumina was investigated. We discovered that in a solid-state joining, the strength of the joint increases with increasing joining temperature. In a liquid-state joining, the strength of the joint gradually decreases due to the formation of unbonded areas. The strength, sigma sub b, is expressed by the following equation as a function of unbonded area, A: sigma sub b = 2.22 A + 143 (70 percent {le} A {le} 100 percent). The highest strength reached 400 MPa when the interface was formed at around the melting temperature of aluminum. An aluminum layer close to the interface became a single crystal when it was bonded to a sapphire. The following crystallographic orientation relationship is established: (1{bar 1}1){sub Al}//(001){sub {alpha}}-Al{sub 2} O{sub 3}, (110){sub Al}//<100>{sub {alpha}}-Al{sub 2}O{sub 3}. Amorphous alumina islands were formed at the interface. In the amorphous alumina, gamma-alumina nanocrystals grew from the sapphire, with the same orientation relationship to sapphire as above.

  9. Photophysics and photoredox processes at liquid-liquid interfaces. Progress report, April 1, 1990--September 1992

    SciTech Connect (OSTI)

    Webber, S.E.

    1992-09-01T23:59:59.000Z

    This report is divided into four sections: (1) Recent work on polymers with covalently bound chromophores, primarily involving triplet state electron transfer quenching; (2) Pyrene and pyrene butyric acid adsorbed onto polystyrene latexes (microspheres); (3) Adsorption and micellization of amphiphilic block polymers with chromophores at the junction between the hydrophobic and hydrophilic part; (4) Adsorption of alternating polymers with grafted ``combs`` to improve adsorption onto a hydrophobic surface.

  10. Resonance of a liquid-liquid interface P. Dimon, A. P. Kushnick and J. P. Stokes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for u (r, w ), we find where 6 = (,q lp w )1/2 is the penetration depth (boundary layer width), and Jo an oscillatory pressure difference across the length of the pipe and measure the linear response of both the mean the paper. 2. Theory. First, let us consider the classical solution for the oscillatory flow of a single

  11. Liquid Hydrogen Absorber for MICE

    E-Print Network [OSTI]

    Ishimoto, S.

    2010-01-01T23:59:59.000Z

    REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

  12. Interface physics in microporous media : LDRD final report.

    SciTech Connect (OSTI)

    Yaklin, Melissa A.; Knutson, Chad E.; Noble, David R.; Aragon, Alicia R.; Chen, Ken Shuang; Giordano, Nicholas J. (Purdue University, West Lafayette, IN); Brooks, Carlton, F.; Pyrak-Nolte, Laura J. (Purdue University, West Lafayette, IN); Liu, Yihong (Purdue University, West Lafayette, IN)

    2008-09-01T23:59:59.000Z

    This document contains a summary of the work performed under the LDRD project entitled 'Interface Physics in Microporous Media'. The presence of fluid-fluid interfaces, which can carry non-zero stresses, distinguishes multiphase flows from more readily understood single-phase flows. In this work the physics active at these interfaces has been examined via a combined experimental and computational approach. One of the major difficulties of examining true microporous systems of the type found in filters, membranes, geologic media, etc. is the geometric uncertainty. To help facilitate the examination of transport at the pore-scale without this complication, a significant effort has been made in the area of fabrication of both two-dimensional and three-dimensional micromodels. Using these micromodels, multiphase flow experiments have been performed for liquid-liquid and liquid-gas systems. Laser scanning confocal microscopy has been utilized to provide high resolution, three-dimensional reconstructions as well as time resolved, two-dimensional reconstructions. Computational work has focused on extending lattice Boltzmann (LB) and finite element methods for probing the interface physics at the pore scale. A new LB technique has been developed that provides over 100x speed up for steady flows in complex geometries. A new LB model has been developed that allows for arbitrary density ratios, which has been a significant obstacle in applying LB to air-water flows. A new reduced order model has been developed and implemented in finite element code for examining non-equilibrium wetting in microchannel systems. These advances will enhance Sandia's ability to quantitatively probe the rich interfacial physics present in microporous systems.

  13. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    SciTech Connect (OSTI)

    Davis, H.T.; Scriven, L.E.

    1991-07-01T23:59:59.000Z

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numerical methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.

  14. Human-computer interface

    DOE Patents [OSTI]

    Anderson, Thomas G.

    2004-12-21T23:59:59.000Z

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  15. Rapid process for producing transparent, monolithic porous glass

    DOE Patents [OSTI]

    Coronado, Paul R. (Livermore, CA)

    2006-02-14T23:59:59.000Z

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  16. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01T23:59:59.000Z

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 ?m. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  17. Towards improved methods for determining porous media multiphase flow functions

    E-Print Network [OSTI]

    Xue, Song

    2004-09-30T23:59:59.000Z

    to the empirical relation by using the three-dimensional saturation and relaxation data. 7 CHAPTER II ESTIMATION OF POROUS MEDIA FLOW FUNCTIONS Multiphase flow functions are required to simulate the flow of multiple fluid phases through porous media....3) Snw + Sw = 1: (2.4) Together with boundary and initial conditions, Eqs. (2.1)-(2.4) provide a mathemat- ical model of three-dimensional, two-phase fluid flow in porous media. Several properties have to be specified in the above model. The densities...

  18. The porous atmosphere of eta Carinae

    E-Print Network [OSTI]

    Nir J. Shaviv

    2000-02-09T23:59:59.000Z

    We analyze the wind generated by the great 20 year long super-Eddington outburst of eta-Carinae. We show that using classical stellar atmospheres and winds theory, it is impossible to construct a consistent wind model in which a sufficiently small amount of mass, like the one observed, is shed. One expects the super-Eddington luminosity to drive a thick wind with a mass loss rate substantially higher than the observed one. The easiest way to resolve the inconsistency is if we alleviate the implicit notion that atmospheres are homogeneous. An inhomogeneous atmosphere, or "porous", allows more radiation to escape while exerting a smaller average force. Consequently, such an atmosphere yields a considerably lower mass loss rate for the same total luminosity. Moreover, all the applications of the Eddington Luminosity as a strict luminosity limit should be revised, or at least reanalyzed carefully.

  19. Equation for liquid density

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C.; Hopper, J.R.; Cawley, W.A. (Lamar Univ., Beaumont, TX (US))

    1991-01-01T23:59:59.000Z

    Saturated liquid densities for organic chemicals are given as functions of temperature using a modified Rackett equation.

  20. Liquid detection circuit

    DOE Patents [OSTI]

    Regan, Thomas O. (North Aurora, IL)

    1987-01-01T23:59:59.000Z

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  1. Surface and Interface Control on Photochemically Initiated Immobilizat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interface Control on Photochemically Initiated Immobilization . Surface and Interface Control on Photochemically Initiated Immobilization . Abstract: Surface and interface...

  2. The evolution of miscible gravity currents in horizontal porous layers

    E-Print Network [OSTI]

    Szulczewski, Michael Lawrence

    Gravity currents of miscible fluids in porous media are important to understand because they occur in important engineering projects, such as enhanced oil recovery and geologic CO[subscript 2] sequestration. These flows ...

  3. Simulation of filtration for suspension transport in porous media

    E-Print Network [OSTI]

    Kim, Yun Sung, 1974-

    2005-01-01T23:59:59.000Z

    This thesis describes the development and application of a novel method for analyzing the filtration of particles transported through a granular porous medium. The proposed analysis considers the deposition of particles ...

  4. Modelling Flow through Porous Media under Large Pressure Gradients

    E-Print Network [OSTI]

    Srinivasan, Shriram

    2013-11-01T23:59:59.000Z

    The most interesting and technologically important problems in the study of flow through porous media involve very high pressures and pressure gradients in the flow do- main such as enhanced oil recovery and carbon dioxide sequestration. The popular...

  5. Gasification and combustion modeling for porous char particles

    E-Print Network [OSTI]

    Singer, Simcha Lev

    2012-01-01T23:59:59.000Z

    Gasification and combustion of porous char particles occurs in many industrial applications. Reactor-scale outputs of importance depend critically on processes that occur at the particle-scale. Because char particles often ...

  6. Commercial applications of nanostructures created with ordered porous alumina

    E-Print Network [OSTI]

    Wells, Brendan Christopher, 1979-

    2004-01-01T23:59:59.000Z

    In the drive from microfabrication to nanofabrication, porous alumina templates may play a key role in technological evolution. Under the right processing conditions, ordered pores can grow in anodic aluminum oxide, which ...

  7. Evaluation of the Effects of Porous Media Structure on Mixing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Effects of Porous Media Structure on Mixing-Controlled Reactions Using Pore-Scale Modeling and Micromodel Abstract: The objectives of this work were to determine if a...

  8. Carbide-derived carbons - From porous networks to nanotubes and...

    Office of Scientific and Technical Information (OSTI)

    Carbide-derived carbons - From porous networks to nanotubes and graphene Re-direct Destination: Carbide-derived carbons (CDCs) are a large family of carbon materials derived from...

  9. Flow of pH-responsive microcapsules in porous media

    E-Print Network [OSTI]

    Gun, Wei Jin; Routh, Alexander F.

    2014-11-20T23:59:59.000Z

    1 Flow of pH-responsive microcapsules in porous media Wei Jin Gun and Alexander F. Routh* BP Institute for Multiphase Flow, Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0EZ, United Kingdom. Abstract...

  10. Field emission study of cobalt ion implanted porous silicon

    E-Print Network [OSTI]

    Liu, Hongbiao

    1995-01-01T23:59:59.000Z

    Porous silicon has become potentially important material for microelectronics applications. By using low energy implantation and energy scan implantation, a stable silicide with good electrical conductivity can be formed, and can be used...

  11. Modeling of Porous Electrodes in Molten-Salt Systems

    E-Print Network [OSTI]

    Newman, John

    1986-01-01T23:59:59.000Z

    of Porous Electrodes in Molten-Salt Systems^ John Newmanon High-Temperature Molten Salt B a t - teries, Argonneby the modeling of molten-salt cells, including some

  12. Uncertainty quantification using multiscale methods for porous media flows

    E-Print Network [OSTI]

    Dostert, Paul Francis

    2009-05-15T23:59:59.000Z

    numerical models. When solving the flow and transport through heterogeneous porous media some type of upscaling or coarsening is needed due to scale disparity. We describe multiscale techniques used for solving the spatial component of the stochastic flow...

  13. Effective hydraulic conductivity of bounded, strongly heterogeneous porous media

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    Effective hydraulic conductivity of bounded, strongly heterogeneous porous media Evangelos K of Arizona, Tucson Abstract. We develop analytical expressions for the effective hydraulic conductivity Ke boundaries. The log hydraulic conductivity Y forms a Gaussian, statistically homogeneous and anisotropic

  14. Composition suitable for decontaminating a porous surface contaminated with cesium

    DOE Patents [OSTI]

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15T23:59:59.000Z

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  15. Functionalization/passivation of porous graphitic carbon with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data are also presented. Citation: Jensen DS, V Gupta, RE Olsen, AT Miller, RC Davis, D Ess, Z Zhu, MA Vail, A Dadson, and MR Linford.2011."Functionalizationpassivation of porous...

  16. Overlimiting Current and Shock Electrodialysis in Porous Media

    E-Print Network [OSTI]

    Deng, Daosheng

    Most electrochemical processes, such as electrodialysis, are limited by diffusion, but in porous media, surface conduction and electroosmotic flow also contribute to ionic flux. In this article, we report experimental ...

  17. anisotropic porous medium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    outflows ... Germain, Joel; Martel, Hugo 2009-01-01 24 Ultrasonic measurement of porous medium in an aqueous environment Texas A&M University - TxSpace Summary: August 1995 Major...

  18. Ultrasonic measurement of porous medium in an aqueous environment

    E-Print Network [OSTI]

    Daubon, Jose C

    1995-01-01T23:59:59.000Z

    The use of a medical ultrasonic scanning device was studied as a measuring tool for determining the physical characteristics of soft porous media in an turbid aqueous environment. Three different sponge types were used as the soft objects. A method...

  19. Experimental design for study of nucleate boiling in porous structures

    E-Print Network [OSTI]

    Kelley, Mitchell Joseph

    2011-01-01T23:59:59.000Z

    The superheat required to initiate nucleate boiling inside porous wicks is not well understood in practice. This thesis reports the design of an experimental setup for investigating the onset of vapor nucleation in sintered ...

  20. An overview of instability and fingering during immiscible fluid flow in porous and fractured media

    SciTech Connect (OSTI)

    Chen, G.; Neuman, S.P. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Hydrology and Water Resources; Taniguchi, M. [Nara Univ. of Education (Japan). Dept. of Earth Sciences

    1995-04-01T23:59:59.000Z

    Wetting front instability is an important phenomenon affecting fluid flow and contaminant transport in unsaturated soils and rocks. It causes the development of fingers which travel faster than would a uniform front and thus bypass much of the medium. Water saturation and solute concentration in such fingers tend to be higher than in the surrounding medium. During infiltration, fingering may cause unexpectedly rapid arrival of water and solute at the water-table. This notwithstanding, most models of subsurface flow and transport ignore instability and fingering. In this report, we survey the literature to assess the extent to which this may or may not be justified. Our overview covers experiments, theoretical studies, and computer simulations of instability and fingering during immiscible two-phase flow and transport, with emphasis on infiltration into soils and fractured rocks. Our description of instability in an ideal fracture (Hele-Shaw cell) includes an extension of existing theory to fractures and interfaces having arbitrary orientations in space. Our discussion of instability in porous media includes a slight but important correction of existing theory for the case of an inclined interface. We conclude by outlining some potential directions for future research. Among these, we single out the effect of soil and rock heterogeneities on instability and preferential flow as meriting special attention in the context of nuclear waste storage in unsaturated media.

  1. CollageMachine: Model of ``Interface Ecology''

    E-Print Network [OSTI]

    Mohri, Mehryar

    CollageMachine: Model of ``Interface Ecology'' By Andruid Kerne dissertation submitted partial addresses browsing creatively, been co­developed with the metadisciplinary framework interface ecology, in addition inside them, open process without definite bounds. a metadiscipline, interface ecology brings

  2. Porous solid ion exchange wafer for immobilizing biomolecules

    DOE Patents [OSTI]

    Arora, Michelle B. (Woodridge, IL); Hestekin, Jamie A. (Morton Grove, IL); Lin, YuPo J. (Naperville, IL); St. Martin, Edward J. (Libertyville, IL); Snyder, Seth W. (Lincolnwood, IL)

    2007-12-11T23:59:59.000Z

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  3. Porous silicon membranes as ultrafiltration devices: a feasibility study

    E-Print Network [OSTI]

    Hong, Xiangrong

    1993-01-01T23:59:59.000Z

    etching have several physical qualities desirable for an ultrafiltration membrane. Porous silicon layers with mean pore sizes of 7. 5 ? 11. 0 nm were fabricated. Porous silicon membrane samples were tested for permeability using nitrogen gas... . . 8 10 . . . 12 GAS FLOW TESTING 14 Apparatus and test procedure of gas flow testing Inf1uence of etching current density on gas flow rate Influence of the concentration of hydrofluoric acid on gas flow rate . . . 1 4 17 . . . 20 TABLE...

  4. Nuclear magnetic resonance study of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Li, Feng

    1992-01-01T23:59:59.000Z

    NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG I I Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1992 Major Subject: Physics NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG LI Approved as to style and content by: . P. Kirk (Chair of Committee) i G. Agnolet (Member) J. H. Ross, r (Member) M...

  5. The study of methane adsorbed on porous silicon by NMR

    E-Print Network [OSTI]

    Czermak, Adam Kazimierz

    1986-01-01T23:59:59.000Z

    THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1986... Major Subject: Physics THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Approved as to style and content by: e Wile . Kirk (Chairman of Committee) J eevak M. Par pi a (Member) Randall L. Geiger...

  6. Two dimensional properties of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Tennis, Richard Franklin

    1989-01-01T23:59:59.000Z

    TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1989 Major Subject: Physics TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Approved as to style and content by: P. Kirk (C ir of Committee) Glenn olet (M er) Da J. Ernst...

  7. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  8. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  9. Liquid Metal Transformers

    E-Print Network [OSTI]

    Sheng, Lei; Liu, Jing

    2014-01-01T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

  10. Electron Spectrometer: XPS with Laser Interface | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Laser Interface Electron Spectrometer: XPS with Laser Interface This ultrahigh vacuum machine can be applied as a routine means for analyzing the structure and chemical...

  11. Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films

    E-Print Network [OSTI]

    Lorène Champougny; Benoit Scheid; Frédéric Restagno; Jan Vermant; Emmanuelle Rio

    2014-12-01T23:59:59.000Z

    The behavior of thin liquid films is known to be strongly affected by the presence of surfactants at the interfaces. The detailed mechanism by which the latter enhance film stability is still a matter of debate, in particular concerning the influence of surface elastic effects on the hydrodynamic boundary condition at the liquid/air interfaces. In the present work, "twin" hydrodynamic models neglecting surfactant transport to the interfaces are proposed to describe the coating of films onto a solid plate (Landau-Levich-Derjaguin configuration) as well as soap film pulling (Frankel configuration). Experimental data on the entrained film thickness in both configurations can be fitted very well using a single value of the surface elasticity, which is in good agreement with independent measurements by mean of surface expansion experiments in a Langmuir through. The analysis shows how and when the soap films or dip coating experiments may be used to precisely and sensitively measure the surface elasticity of surfactant solutions.

  12. Interfacing to the Programmer's Apprentice

    E-Print Network [OSTI]

    Pitman, Kent

    In this paper, we discuss the design of a user interface to the Knowledge Based Editor (KBE), a prototype implementation of the Programmer's Apprentice. Although internally quite sophisticated, the KBE hides most of its ...

  13. Nanoemulsions obtained via bubble bursting at a compound interface

    E-Print Network [OSTI]

    Feng, Jie; Vigolo, Daniele; Arnaudov, Luben N; Stoyanov, Simeon D; Gurkov, Theodor D; Tsutsumanova, Gichka G; Stone, Howard A

    2013-01-01T23:59:59.000Z

    The bursting of bubbles at an air/liquid interface is a familiar occurrence important to foam stability, cell cultures in bioreactors and mass transfer between the sea and atmosphere. Here we document the hitherto unreported formation and dispersal into the water column of submicrometre oil droplets following bubble bursting at a compound air/oil/water-with-surfactant interface. We show that dispersal results from the detachment of an oil spray from the bottom of the bubble towards water during bubble collapse. We provide evidence that droplet size is selected by physicochemical interactions between oil molecules and the surfactants rather than by hydrodynamic effects. We illustrate the unrecognized role that this dispersal mechanism may play in the fate of the sea surface micro-layer and of pollutant spills by dispersing petroleum in the water column. Finally, our system provides an energy-efficient route, with potential upscalability and wide applicability, for applications in drug delivery, food production...

  14. Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity

    SciTech Connect (OSTI)

    Miranda, Daniel F.; Urata, Chihiro; Masheder, Benjamin; Dunderdale, Gary J.; Hozumi, Atsushi, E-mail: a.hozumi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560 (Japan); Yagihashi, Makoto [Nagoya Municipal Industrial Research Institute, Rokuban, Atsuta-ku, Nagoya 456-0058 (Japan)

    2014-05-01T23:59:59.000Z

    A fluorinated and hydrophobic ionic liquid (IL), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, effectively served as an advantageous lubricating liquid for the preparation of physically and chemically stable omniphobic surfaces based on slippery liquid-infused porous surfaces. Here, we used particulate microstructures as supports, prepared by the chemical vapor deposition of 1,3,5,7-tetramethylcyclotetrasiloxane and subsequent surface modification with (3-aminopropyl)triethoxysilane. Confirmed by SEM and contact angle measurements, the resulting IL-infused microtextured surfaces are smooth and not only water but also various low surface tension liquids can easily slide off at low substrate tilt angles of <5°, even after exposure to high temperature, vacuum, and UV irradiation.

  15. General Relativity at an interface

    E-Print Network [OSTI]

    Juan G. Diaz Ochoa

    2006-08-19T23:59:59.000Z

    In this work a simple toy model for a free interface between bulk phases in space and time is presented, derived from the balance equations for extensive thermodynamic variables of Meinhold-Heerlein. In this case the free interface represents geodesics in the space-time, allowing the derivation of the Einstein's equations for gravitational fields. The effect of the balance equation is examined and a simple expression for cold dark matter is derived. The thermodynamically meaning of this model is also discussed.

  16. Poroelastic response of orthotropic fractured porous media

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-12-01T23:59:59.000Z

    An algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton's second coe#14;fficient and satisfies 0 {<=} #20; B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further goal of the discussion is to determine how many of the poroelastic constants need to be known by other means in order to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a{sub f} ~ 0.1 and the pore fluid is liquid water, then for several cases considered Skempton's B ~ 0:9, so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ~ 0.1, in these examples. The results do however depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann's equations for homogeneous -- but anisotropic -- poroelasticity. Relationships to Skempton's analysis of saturated soils are also noted. The paper concludes with a discussion of alternative methods of analyzing and quantifying fluid-substitution behavior in poroelastic systems, especially for those systems having heterogeneous constitution.

  17. Electrokinetic coupling in unsaturated porous media

    SciTech Connect (OSTI)

    Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthai, S.; Finsterle, S.

    2007-02-27T23:59:59.000Z

    We consider a charged porous material that is saturated bytwo fluid phases that are immiscible and continuous on the scale of arepresentative elementary volume. The wetting phase for the grains iswater and the nonwetting phase is assumed to be an electricallyinsulating viscous fluid. We use a volume-averaging approach to derivethe linear constitutive equations for the electrical current density aswell as the seepage velocities of the wetting and nonwetting phases onthe scale of a representative elementary volume. These macroscopicconstitutive equations are obtained by volume-averaging Ampere's lawtogether with the Nernst Planck equation and the Stokes equations. Thematerial properties entering the macroscopic constitutive equations areexplicitly described as functions of the saturation of the water phase,the electrical formation factor, and parameters that describe thecapillary pressure function, the relative permeability function, and thevariation of electrical conductivity with saturation. New equations arederived for the streaming potential and electro-osmosis couplingcoefficients. A primary drainage and imbibition experiment is simulatednumerically to demonstrate that the relative streaming potential couplingcoefficient depends not only on the water saturation, but also on thematerial properties of the sample, as well as the saturation history. Wealso compare the predicted streaming potential coupling coefficients withexperimental data from four dolomite core samples. Measurements on thesesamples include electrical conductivity, capillary pressure, thestreaming potential coupling coefficient at various level of saturation,and the permeability at saturation of the rock samples. We found verygood agreement between these experimental data and the modelpredictions.

  18. Liquid level detector

    DOE Patents [OSTI]

    Tshishiku, Eugene M. (Augusta, GA)

    2011-08-09T23:59:59.000Z

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  19. (Ionization in liquids)

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document describes charge transport following ionization of model liquids and how this process may be important in carcinogenesis. 15 refs., 2 figs., 4 tabs. (MHB)

  20. Ultrasonic liquid level detector

    DOE Patents [OSTI]

    Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

    2010-09-28T23:59:59.000Z

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  1. Liquid Metal Transformers

    E-Print Network [OSTI]

    Lei Sheng; Jie Zhang; Jing Liu

    2014-01-30T23:59:59.000Z

    The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

  2. Liquid Crystal Optofluidics

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11T23:59:59.000Z

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  3. Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions

    SciTech Connect (OSTI)

    Arienti, Marco; Pan, Wenxiao; Li, Xiaoyi; Karniadakis, George E.

    2011-05-27T23:59:59.000Z

    The combination of short-range repulsive and long-range attractive forces in Many-body Dissipative Particle Dynamics (MDPD) is examined at a vapor/liquid and liquid/solid interface. Based on the radial distribution of the virial pressure in a drop at equilibrium, a systematic study is carried out to characterize the sensitivity of the surface tension coefficient with respect to the inter-particle interaction parameters. For the first time, this study highlights the approximately cubic dependence of the surface tension coefficient on the bulk density of the fluid. In capillary flow, MDPD solutions are shown to satisfy the condition on the wavelength of an axial disturbance leading to the pinch-off of a cylindrical liquid thread. Correctly, no pinch-off occurs below the cutoff wavelength. MDPD is augmented by a set of bell-shaped weight functions to model interaction with a solid wall. There, hydrophilic and hydrophobic behaviors, including the occurrence of slip in the latter, are reproduced using a modification in the weight function that avoids particle clustering. Finally, the dynamics of droplets entering an inverted Y-shaped fracture junction is correctly captured in simulations parameterized by the Bond number, proving the flexibility of MDPD in modeling interface-dominated flows.

  4. An experimental measurement of the thermal conductivity and diffusivity of a porous solid-liquid system

    E-Print Network [OSTI]

    Dunn, James Elliott

    1959-01-01T23:59:59.000Z

    . 6. The Relation of to SE for Values of K Calculated by the Heat Neter K SE Nethod 10 13 15 17 22 7. The Relation of the Thermal Conductivity of Fluid Saturated Sandstone to the Thermal Conductivity of the Saturating Fluid 8. The Variation... of pressures and temperatures and at flow and non-flow states (3)~(6), (7), The advent of widespread interest in increasing petroleum recovery from subterranean reservoirs by applying heat to an oil-bearing for- mation (8), (9), (10) has created a need...

  5. Syngas production from heavy liquid fuel reforming in inert porous media

    E-Print Network [OSTI]

    Pastore, Andrea

    2010-11-16T23:59:59.000Z

    -up), but it will still show a significant efficiency advantage [2]. Eventually, when fuel cells and hydrogen demand will build up, a switch can be made to central hydrogen production, by using fossil sources with CO2 sequestration and finally by the use of low carbon... requirements: • Hydrogen production levels smaller than those in chemical plants; • Severe constraints on size and weight; • Ability to cycle through frequent start-ups and shutdowns; • Hydrogen production rate should be responsive to changes in demand...

  6. Porous platinum-based catalysts for oxygen reduction

    DOE Patents [OSTI]

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25T23:59:59.000Z

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  7. Noninvasive method for determining the liquid level and density inside of a container

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    Noninvasive method for determining the liquid level and density inside of a container having arbitrary dimension and shape. By generating a flexural acoustic wave in the container shell and measuring the phase difference of the detected flexural wave from that of the originally generated wave a small distance from the generated wave, while moving the generation and detection means through the liquid/vapor interface, this interface can be detected. Both the wave generation and wave detection may be achieved by transducers on the surface of the container. A change in the phase difference over the outer surface of the vessel signifies that a liquid/vapor interface has been crossed, while the magnitude of the phase difference can be related to fluid density immediately opposite the measurement position on the surface of the vessel.

  8. Hybrid user interfaces : design guidelines and implementation examples

    E-Print Network [OSTI]

    Ahn, Sehyun

    2006-01-01T23:59:59.000Z

    A hybrid user interface is a new type of computer user interface that achieves high usability by combining features of graphical user interfaces and command line interfaces. The main goal of a hybrid user interface is to ...

  9. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect (OSTI)

    Holinga IV, G.H.

    2010-08-01T23:59:59.000Z

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  10. Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes. Hollow Core-Shell Structured Porous Si-C Nanocomposites for Li-Ion Battery Anodes. Abstract:...

  11. Highly porous chemically modified carbon cryogels and their coherent nanocomposites for energy applications

    E-Print Network [OSTI]

    Cao, Guozhong

    the pores, porous media for natural gas (methane) storage at reduced pressure, and scaffolds for hydride the pores, porous media for natural gas (m of Mechanical Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China d

  12. Study of gas flow dynamics in porous and granular media with laser-polarized ¹²?Xe NMR

    E-Print Network [OSTI]

    Wang, Ruopeng, 1972-

    2005-01-01T23:59:59.000Z

    This thesis presents Nuclear Magnetic Resonance (NMR) studies of gas flow dynamics in porous and granular media by using laser-polarized ¹²?Xe . Two different physical processes, the gas transport in porous rock cores and ...

  13. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for WaterEthanol Separation. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for WaterEthanol Separation. Abstract:...

  14. Flow adjustment and interior flow associated with a rectangular porous obstruction

    E-Print Network [OSTI]

    Rominger, Jeffrey Tsaros

    The flow at the leading edge and in the interior of a rectangular porous obstruction is described through experiments and scaling. The porous obstruction consists of an emergent, rectangular array of cylinders in shallow ...

  15. Discrete particle transport in porous media : discrete observations of physical mechanisms influencing particle behavior

    E-Print Network [OSTI]

    Yoon, Joon Sik, 1973-

    2005-01-01T23:59:59.000Z

    An understanding of how discrete particles in the micron to submicron range behave in porous media is important to a number of environmental problems. Discrete particle behavior in the interior of a porous medium is complex ...

  16. NERSC Analysis of Void Space of Porous Materials Used in Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Porous Materials Analysis of Void Space of Porous Materials Used in Energy-related Applications fmm-smmaciek.jpg We have developed partial differential equations-based tools that...

  17. Scalability of mass transfer in liquid-liquid flow

    E-Print Network [OSTI]

    Woitalka, A.

    We address liquid–liquid mass transfer between immiscible liquids using the system 1-butanol and water, with succinic acid as the mass transfer component. Using this system we evaluate the influence of two-phase flow ...

  18. INEEL Liquid Effluent Inventory

    SciTech Connect (OSTI)

    Major, C.A.

    1997-06-01T23:59:59.000Z

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  19. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09T23:59:59.000Z

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  20. Synthesis of ionic liquids

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Luo, Huimin (Knoxville, TN)

    2011-11-01T23:59:59.000Z

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  1. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  2. An electrochemical route for making porous nickel oxide electrochemical capacitors

    SciTech Connect (OSTI)

    Srinivasan, V.; Weidner, J.W. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering

    1997-08-01T23:59:59.000Z

    Porous nickel oxide films were prepared by electrochemically precipitating nickel hydroxide and heating the hydroxide in air at 300 C. The resulting nickel oxide films behave as an electrochemical capacitor with a specific capacitance of 59 F/g electrode material. These nickel oxide films maintain high utilization at high rates of discharge (i.e., high power density) and have excellent cycle life. Porous cobalt oxide films were also synthesized. Although the specific capacitances of these films are approximately one-fifth that of the nickel oxide films, the results demonstrate the versatility of fabricating a wide range of porous metal oxide films using this electrochemical route for use in capacitor applications. Electrochemical capacitors have generated wide interest in recent years for use in high power applications (e.g., in a hybrid electric vehicle, where they are expected to work in conjunction with a conventional battery).

  3. Method for dialysis on microchips using thin porous polymer membrane

    DOE Patents [OSTI]

    Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

    2009-05-19T23:59:59.000Z

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  4. Dialysis on microchips using thin porous polymer membranes

    DOE Patents [OSTI]

    Singh, Anup K. (San Francisco, CA); Kirby, Brian J. (San Francisco, CA); Shepodd, Timothy J. (Livermore, CA)

    2007-09-04T23:59:59.000Z

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and form a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  5. Simulations of strongly phase-separated liquid-gas systems

    E-Print Network [OSTI]

    A. J. Wagner; C. M. Pooley

    2006-08-22T23:59:59.000Z

    Lattice Boltzmann simulations of liquid-gas systems are believed to be restricted to modest density ratios of less than 10. In this article we show that reducing the speed of sound and, just as importantly, the interfacial contributions to the pressure allows lattice Boltzmann simulations to achieve high density ratios of 1000 or more. We also present explicit expressions for the limits of the parameter region in which the method gives accurate results. There are two separate limiting phenomena. The first is the stability of the bulk liquid phase. This consideration is specific to lattice Boltzmann methods. The second is a general argument for the interface discretization that applies to any diffuse interface method.

  6. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect (OSTI)

    Knowlton, W.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley Lab., CA (United States). Materials Sciences Div.

    1995-07-01T23:59:59.000Z

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  7. PinBus Interface Design

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

    2009-12-30T23:59:59.000Z

    On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins’ functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

  8. Multi-robot control interface

    DOE Patents [OSTI]

    Bruemmer, David J. (Idaho Falls, ID); Walton, Miles C. (Idaho Falls, ID)

    2011-12-06T23:59:59.000Z

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  9. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOE Patents [OSTI]

    Vasilow, T.R.; Zymboly, G.E.

    1991-12-17T23:59:59.000Z

    An electrode is deposited on a support by providing a porous ceramic support tube having an open end and closed end; masking at least one circumferential interior band inside the tube; evacuating air from the tube by an evacuation system, to provide a permeability gradient between the masked part and unmasked part of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating over the unmasked support part and a tapered coating over the masked part. 2 figures.

  10. Simulation of surface waves with porous boundaries in a 2-D numerical wave tank

    E-Print Network [OSTI]

    Koo, Weoncheol

    1999-01-01T23:59:59.000Z

    are obtained for an arbitrary 2-D body. The boundary element method is then extended to the problem with porous boundaries. The flow inside porous medium is based on Darcy's rule. Analytic solutions are obtained for the flat porous bottom case and compared...

  11. Water Quality and Hydrologic Performance of a Porous Asphalt Pavement as a Storm-Water

    E-Print Network [OSTI]

    examined the functionality of a porous pavement storm-water management system in coastal New Hampshire headings: Stormwater management; Runoff; Porous media; Pavements; Cold regions; Best Management Practice; Water quality; Water treatment. Author keywords: Storm-water management; Runoff; Porous pavements; Cold

  12. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, S.W.

    1997-02-25T23:59:59.000Z

    Disclosed is an illumination source comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  13. SALT DAMAGE OF POROUS MATERIALS: A COMBINED THEORETICAL AND EXPERIMENTAL APPROACH

    E-Print Network [OSTI]

    Hinsch, Klaus

    SALT DAMAGE OF POROUS MATERIALS: A COMBINED THEORETICAL AND EXPERIMENTAL APPROACH Herbert Juling-resolved deformation data were promising and confirmed the dilatometric results. Keywords: salt crystallization, porous Introduction It is generally recognized that crystal growth of salts in porous materials is a major cause

  14. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, S.W.

    1998-06-16T23:59:59.000Z

    An illumination source is disclosed comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  15. DYNAMICS OF FREE SURFACES IN RANDOM POROUS MEDIA DANIEL M. TARTAKOVSKY AND C. L. WINTER

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    media to be concrete. Predicting flow through natural porous media is complicated by their high degreeDYNAMICS OF FREE SURFACES IN RANDOM POROUS MEDIA DANIEL M. TARTAKOVSKY AND C. L. WINTER SIAM J­1876 Abstract. We consider free surface flow in random porous media by treating hydraulic conduc- tivity

  16. A model for reactive porous transport during re-wetting of hardened concrete

    E-Print Network [OSTI]

    Stockie, John

    A model for reactive porous transport during re-wetting of hardened concrete Michael Chapwanya residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product hydration; Porous media; Reaction-diffusion equations; Vari- able porosity. 1. Introduction Concrete

  17. Asymptotical Computations for a Model of Flow in Saturated Porous Media

    E-Print Network [OSTI]

    Weinmüller, Ewa B.

    a variably saturated porous medium with exponential diffusivity, such as soil, rock or concrete is given by uAsymptotical Computations for a Model of Flow in Saturated Porous Media P. Amodio a , C.J. Budd b for an implicit second order ordinary differential equation which arises in models of flow in saturated porous

  18. Bending Creep Test to Measure the Viscosity of Porous Materials during Sintering

    E-Print Network [OSTI]

    Messing, Gary L.

    Bending Creep Test to Measure the Viscosity of Porous Materials during Sintering Sang-Ho Lee creep test is proposed for measuring the change in viscosity of a porous material during densification be measured. Experiments with porous Y2O3-stabilized ZrO2 beams were used to illustrate the bending creep test

  19. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  20. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL)

    1998-01-01T23:59:59.000Z

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  1. Porous GaN nanowires synthesized using thermal chemical vapor deposition

    E-Print Network [OSTI]

    Kim, Bongsoo

    Porous GaN nanowires synthesized using thermal chemical vapor deposition Seung Yong Bae a , Hee Won 2003 Abstract Porous structured GaN nanowires were synthesized with a large scale by chemical vapor to 1 mm. The porous GaN nanowires consist of the wurtzite single crystal grown with the [0 1 1

  2. Fabrication and testing of oxidized porous silicon field emitter strips

    E-Print Network [OSTI]

    Madduri, Vasanta Bhanu

    1992-01-01T23:59:59.000Z

    mechanism. Formation by Local Dissolution of Silicon Unagami proposed [29] that the formation of porous silicon occurs due to the dissolution of silicon at places restricted by a surface porous film and silicic acid formed during the dissolution reaction... anodized in the presence of HF electmlyte. The silicon wafer divides the electrochemical cell into front and rear half cells. Each of the cells was filled with the electrolyte which is a mixture of 1. 5:1 hydroflouric acid and ethanol. Ethanol is used...

  3. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17T23:59:59.000Z

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  4. User interfaces to expert systems

    SciTech Connect (OSTI)

    Agarwal, A.; Emrich, M.L.

    1988-10-01T23:59:59.000Z

    Expert Systems are becoming increasingly popular in environments where the user is not well versed in computers or the subject domain. They offer expert advice and can also explain their lines of reasoning. As these systems are applied to highly technical areas, they become complex and large. Therefore, User Systems Interfaces (USIs) become critical. This paper discusses recent technologies that can be applied to improved user communication. In particular, bar menus/graphics, mouse interfaces, touch screens, and voice links will be highlighted. Their applications in the context of SOFTMAN (The Software Manager Apprentice) a knowledge-based system are discussed. 18 refs., 2 figs.

  5. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOE Patents [OSTI]

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05T23:59:59.000Z

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  6. Interface Compilation: Steps toward Compiling Program Interfaces as Languages

    E-Print Network [OSTI]

    Engler, Dawson

    systems, programmers are limited to writing code, while the power to transform the code has been reserved Magik gives to programmers enables a broad class of optimization and code transformations. This paper's data structures and internally), operations on this state (defined by the interface's procedures

  7. Crystal growth from a supersaturated melt: relaxation of the solid-liquid dynamic stiffness

    E-Print Network [OSTI]

    Francesco Turci; Tanja Schilling

    2014-05-20T23:59:59.000Z

    We discuss the growth process of a crystalline phase out of a metastable over-compressed liquid that is brought into contact with a crystalline substrate. The process is modeled by means of molecular dynamics. The particles interact via the Lennard-Jones potential and their motion is locally thermalized by Langevin dynamics. We characterize the relaxation process of the solid-liquid interface, showing that the growth speed is maximal for liquid densities above the solid coexistence density, and that the structural properties of the interface rapidly converge to equilibrium-like properties. In particular, we show that the off-equilibrium dynamic stiffness can be extracted using capillary wave theory arguments, even if the growth front moves fast compared to the typical diffusion time of the compressed liquid, and that the dynamic stiffness converges to the equilibrium stiffness in times much shorter than the diffusion time.

  8. Microscopic Motion of Liquid Metal Plasma Facing Components In A Diverted Plasma

    SciTech Connect (OSTI)

    Jaworski, M A; Morley, N B; Abrams, T; Kaita, R; Kallman, J; Kugel, H; Majeski, R

    2010-09-22T23:59:59.000Z

    Liquid metal plasma facing components (PFCs) have been identified as an alternative material for fusion plasma experiments. The use of a liquid conductor where significant magnetic fields are present is considered risky, with the possibility of macroscopic fluid motion and possible ejection into the plasma core. Analysis is carried out on thermoelectric magnetohydrodynamic (TEMHD) forces caused by temperature gradients in the liquid-container system itself in addition to scrape-off-layer currents interacting with the PFC from a diverted plasma. Capillary effects at the liquid-container interface will be examined which govern droplet ejection criteria. Stability of the interface is determined using linear stability methods. In addition to application to liquidmetal PFCs, thin film liquidmetal effects have application to current and future devices where off-normal events may liquefy portions of the first wall and other plasma facing components.

  9. Liquid-liquid interfacial nanoparticle assemblies

    DOE Patents [OSTI]

    Emrick, Todd S. (South Deerfield, MA); Russell, Thomas P. (Amherst, MA); Dinsmore, Anthony (Amherst, MA); Skaff, Habib (Amherst, MA); Lin, Yao (Amherst, MA)

    2008-12-30T23:59:59.000Z

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  10. Liquid sampling system

    DOE Patents [OSTI]

    Larson, L.L.

    1984-09-17T23:59:59.000Z

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  11. Liquid sampling system

    DOE Patents [OSTI]

    Larson, Loren L. (Idaho Falls, ID)

    1987-01-01T23:59:59.000Z

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  12. Density distribution for the molecules of a liquid in a semi-infinite space

    E-Print Network [OSTI]

    V. Molinari; B. D. Ganapol; D. Mostacci

    2015-03-04T23:59:59.000Z

    The Sutherland approximation to the van der Waals forces is applied to the derivation of a self-consistent Vlasov-type field in a liquid filling a half space, bordering vacuum. The ensuing Vlasov equation is then derived, and solved to predict the behavior of the density at and in the vicinity of the liquid-vacuum interface. A numerical solution to the Vlasov equation is also produced and the density profile shown and discussed.

  13. New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site

    SciTech Connect (OSTI)

    Bhave, Ramesh R [ORNL

    2012-01-01T23:59:59.000Z

    New Composite Membranes for High Throughput Solid-Liquid Separations at the Savannah River Site R. Bhave (Oak Ridge National Laboratory. Oak Ridge, TN) and M. R. Poirier* (Savannah River National Laboratory, Aiken SC) Solid-liquid separation is the limiting step for many waste treatment processes at the Savannah River Site. SRNL researchers have identified the rotary microfilter as a technology to improve the rate of solid-liquid separation processes. SRNL is currently developing the rotary microfilter for radioactive service and plans to deploy the technology as part of the small column ion exchange process. The rotary microfilter can utilize any filter media that is available as a flat sheet. The current baseline membrane is a 0.5 micron (nominal) porous metal filter (Pall PMM050). Previous testing with tubular filters showed that filters composed of a ceramic membrane on top of a stainless steel support produce higher flux than filters composed only of porous metal. The authors are working to develop flat sheet filter media composed of a ceramic membrane and/or ceramic-metal composite on top of a porous stainless steel support that can be used with the rotary microfilter to substantially increase filter flux resulting in a more compact, energy efficient and cost-effective high level radioactive waste treatment system. Composite membranes with precisely controlled pore size distribution were fabricated on porous metal supports. High quality uniform porous metal (316SS) supports were fabricated to achieve high water permeability. Separative layers of several different materials such as ultrafine metal particles and ceramic oxides were used to fabricate composite membranes. The fabrication process involved several high temperature heat treatments followed by characterization of gas and liquid permeability measurements and membrane integrity analysis. The fabricated composite membrane samples were evaluated in a static test cell manufactured by SpinTek. The composite membranes were evaluated on several feed slurries: 1 wt. % strontium carbonate in deionized water, 1 wt. % monosodium titanate in simulated salt solution, and 1 wt. % simulated sludge in simulated salt solution and deionized water. Flux as a function of feed flow rate and transmembrane pressure was measured for each of the above described feed slurries. The authors will discuss the new membrane development efforts, waste slurry filtration performance evaluations and scale-up considerations.

  14. Electrically Deformable Liquid Marbles

    E-Print Network [OSTI]

    Edward Bormashenko; Roman Pogreb; Tamir Stein; Gene Whyman; Marcelo Schiffer; Doron Aurbach

    2011-02-17T23:59:59.000Z

    Liquid marbles, which are droplets coated with a hydrophobic powder, were exposed to a uniform electric field. It was established that a threshold value of the electric field, 15 cgse, should be surmounted for deformation of liquid marbles. The shape of the marbles was described as a prolate spheroid. The semi-quantitative theory describing deformation of liquid marbles in a uniform electric field is presented. The scaling law relating the radius of the contact area of the marble to the applied electric field shows a satisfactory agreement with the experimental data.

  15. BREATH Version 1.1, Coupled flow and energy transport in porous media: Simulator description and user guide

    SciTech Connect (OSTI)

    Stothoff, S.A.

    1995-07-01T23:59:59.000Z

    This document describes the BREATH computer code, including the mathematical and numerical formulation for the simulator, usage description, and sample input files with corresponding output files. The BREATH computer code is designed to simulate one-dimensional flow of a liquid phase and dispersive transport of the corresponding vapor species, coupled with energy transfer, in a heterogeneous porous medium. The BREATH simulator has been developed for use in auxiliary analyses which are a part of the Nuclear Regulatory Commission Iterative Performance Assessment program. The simulator was developed in response to the observation from Total System Performance Assessments by both the Nuclear Regulatory Commission and the US Department of Energy that total-system performance at the Yucca Mountain site in Nevada is highly sensitive to the infiltration rate. Accordingly, this first version of the code is primarily intended to simulate processes important to infiltration and evaporation in climatic and hydrologic near-surface environments representative of the Yucca Mountain site. The simulation model assumes that there is an immobile solid phase, a mobile liquid phase, and an optional infinitely mobile gas phase. The liquid may have an associated vapor species, assumed to be in equilibrium with the liquid phase. The vapor phase may only move via diffusion within the gas phase. Energy may be transported in the form of enthalpy, thermal conduction, and latent heat. The temperature range is assumed to be between 0 and 100{degree}C. Available boundary conditions include six liquid-phase conditions, four vapor-species conditions, and three energy conditions, all of which may be applied independently to either end of the domain. Meteorological conditions may also be input, thereby providing additional control over boundary fluxes. Boundary conditions may be updated as often as desired.

  16. Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

    SciTech Connect (OSTI)

    James Saiers; Joseph Ryan

    2006-07-02T23:59:59.000Z

    Radionuclides, metals, and dense non-aqueous phase liquids have contaminated about six billion cubic meters of soil at Department of Energy (DOE) sites. The subsurface transport of many of these contaminants is facilitated by colloids (i.e., microscopic, waterborne particles). The first step in the transport of contaminants from their sources to off-site surface water and groundwater is migration through the vadose zone. Developing our understanding of the migration of colloids and colloid-associated contaminants through the vadose zone is critical to assessing and controlling the release of contaminants from DOE sites. In this study, we examined the mobilization, transport, and filtration (retention) of mineral colloids and colloidassociated radionuclides within unsaturated porous media. This investigation involved laboratory column experiments designed to identify properties that affect colloid mobilization and retention and pore-scale visualization experiments designed to elucidate mechanisms that govern these colloid-mass transfer processes. The experiments on colloid mobilization and retention were supplemented with experiments on radionuclide transport through porous media and on radionuclide adsorption to mineral colloids. Observations from all of these experiments – the column and visualization experiments with colloids and the experiments with radionuclides – were used to guide the development of mathematical models appropriate for describing colloids and colloid-facilitated radionuclide transport through the vadose zone.

  17. Influences of Flow Transients and Porous Medium Heterogeneity on Colloid-Associated Contaminant Transport in the Vadose Zone

    SciTech Connect (OSTI)

    James Saiers

    2006-06-28T23:59:59.000Z

    Radionuclides, metals, and dense non-aqueous phase liquids have contaminated about six billion cubic meters of soil at Department of Energy (DOE) sites. The subsurface transport of many of these contaminants is facilitated by colloids (i.e., microscopic, waterborne particles). The first step in the transport of contaminants from their sources to off-site surface water and groundwater is migration through the vadose zone. Developing our understanding of the migration of colloids and colloid-associated contaminants through the vadose zone is critical to assessing and controlling the release of contaminants from DOE sites. In this study, we examined the mobilization, transport, and filtration (retention) of mineral colloids and colloid-associated radionuclides within unsaturated porous media. This investigation involved laboratory column experiments designed to identify properties that affect colloid mobilization and retention and pore-scale visualization experiments designed to elucidate mechanisms that govern these colloid-mass transfer processes. The experiments on colloid mobilization and retention were supplemented with experiments on radionuclide transport through porous media and on radionuclide adsorption to mineral colloids. Observations from all of these experiments – the column and visualization experiments with colloids and the experiments with radionuclides – were used to guide the development of mathematical models appropriate for describing colloids and colloid-facilitated radionuclide transport through the vadose zone.

  18. High-strength porous carbon and its multifunctional applications

    DOE Patents [OSTI]

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31T23:59:59.000Z

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  19. A Java Reinforcement Learning Module for the Recursive Porous

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    common to many types of reinforcement learning Includes algorithms currently in use in social scienceA Java Reinforcement Learning Module for the Recursive Porous Agent Simulation Toolkit Facilitating study and experimentation with reinforcement learning in multi-agent, social science simulations

  20. Porous Pavements in Cold Climates Part 1: Design, Installation, and

    E-Print Network [OSTI]

    Porous Pavements in Cold Climates Part 1: Design, Installation, and Maintenance A Green Pavements and Infiltration Beds Joshua F. Briggs, Geosyntec, Kristopher Houle, Horsley Witten Group Jeff Manager, CH2M HILL ASCE Committee Report on Recommended Design Guidelines for Permeable Pavements

  1. ORIGINAL PAPER Conditional simulations of wateroil flow in heterogeneous porous

    E-Print Network [OSTI]

    Lu, Zhiming

    . The log-transformed intrinsic permeability, soil pore size distribution parameter, and van Genuchten of these processes in order to conduct risk assess- ment and design of cost-efficient remediation (e.g. Abriola 1989 is a complicated mixture of hydrocarbon fluids, brine, porous rock and fractures. The structure of the void space

  2. Acoustic wave propagation in two-phase heterogeneous porous media

    E-Print Network [OSTI]

    J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-19T23:59:59.000Z

    The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.

  3. Numerical simulation of transpiration cooling through porous , T. Gotzen1

    E-Print Network [OSTI]

    55, 52056 Aachen SUMMARY Transpiration cooling using ceramic matrix composite (CMC) materials to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gasNumerical simulation of transpiration cooling through porous material W. Dahmen1 , T. Gotzen1 and S

  4. Porous Solids DOI: 10.1002/anie.200503950

    E-Print Network [OSTI]

    Osterloh, Frank

    Foundation. We thank Prof. Susan Kauzlarich for providing a furnace for the synthesis of starting materials of a fresh reaction mixture leads to complete sedimentation of all inorganic materials whereas separate. Osterloh,* and Alexandra Navrotsky* As a result of their high surface-to-volume ratios, porous inorganic

  5. 'Butterfly effect' in porous Bénard convection heated from below

    SciTech Connect (OSTI)

    Siri, Z.; Liew, K. Y. [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ibrahim, R. I. [Faculty of Science and Technology, Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan Darul Khusus (Malaysia)

    2014-07-10T23:59:59.000Z

    Transition from steady to chaos for the onset of Bénard convection in porous medium was analyzed. The governing equation is reduced to ordinary differential equation and solved using built in MATLAB ODE45. The transition from steady to chaos take over from a limit cycle followed by homoclinic explosion.

  6. Author's personal copy Porous layered oxide/Nafion

    E-Print Network [OSTI]

    Nair, Sankar

    transport through membranes for direct methanol fuel cell (DMFC) applications. Ó 2008 Elsevier Inc. All September 2008 Keywords: Direct methanol fuel cell (DMFC) Polyelectrolyte exchange membrane (PEM) Porous for conduction through the PEM. In particular, the direct methanol fuel cell (DMFC) utilizes methanol as the fuel

  7. Method for the preparation of ferrous low carbon porous material

    SciTech Connect (OSTI)

    Miller, Curtis Jack

    2014-05-27T23:59:59.000Z

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  8. Modeling Multicomponent Diffusion and Convection in Porous Media

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    the bottom-hot side of the porous media, may be at higher concentration at the cold-top side in ternary apparatus.8-10 On the other hand, in hy- drocarbon reservoirs, there is generally more methane on the cold

  9. Pyrolytic carbon electrodes Lithographically Defined Porous Carbon Electrodes**

    E-Print Network [OSTI]

    New Mexico, University of

    Pyrolytic carbon electrodes Lithographically Defined Porous Carbon Electrodes** D. Bruce Burckel Polsky* The special nature of the CÀC bond can lead to various polymorphic forms of carbon such as graphite, glassy-carbon, fullerenes (such as buckyballs), carbon nanotubes, and diamond. Electrodes made

  10. Numerical assessment of 3-D macrodispersion in heterogeneous porous media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . [1] Hydrodynamic dispersion is a key controlling factor of solute transport in heterogeneous porous.20206. 1. Introduction [2] Hydrodynamic dispersion is a major component of solute transport; Freeze, 1975; Gelhar and Axness, 1983]. The logarithm of permeability Y xð Þ ¼ ln K xð Þð Þ follows

  11. On the Electrochemical Response of Porous Functionalized Graphene Electrodes

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    prominent examples include electrical energy storage devices such as batteries3-5 and energy conversion. 1. INTRODUCTION Porous electrodes are used in numerous areas of electro- chemistry:1,2 The most of electrode porosity in these energy- related systems has been studied in great detail both experimentally8

  12. AN ANALYSIS FOR A FORMULATION OF THE POROUS MEDIUM EQUATION

    E-Print Network [OSTI]

    Fadimba, Koffi B.

    a porous medium, with S the saturation of the invading fluid. In this model, one assumption (the wet phase and the dry phase) occupying entirely the pores of the medium, e.g. water and oil, so , we make the assumption that n = 0, (1..4) where n is the outward unit normal vector to the boundary

  13. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  14. Liquidity facilities and signaling

    E-Print Network [OSTI]

    Arregui, Nicolás

    2010-01-01T23:59:59.000Z

    This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

  15. Kuali Financial System Implementation Collector Interface Meeting

    E-Print Network [OSTI]

    Stephens, Graeme L.

    Kuali Financial System Implementation Collector Interface Meeting December 17, 2008 Presenters of the Kuali Financial System (KFS) Collector Interface Format Differences from FRS Answer your questions #12 Collector File collector

  16. Advanced Power Electronic Interfaces for Distributed

    E-Print Network [OSTI]

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development Electronic Interfaces for Distributed Energy Systems Part 2: Modeling, Development, and Experimental, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter S

  17. XRCT characterisation of Ti particles inside porous Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Vasic, S., E-mail: srdan.vasic@unifr.ch [Technical Mineralogy Group, Institute of Mineralogy and Petrography, University of Fribourg, CH-1700 Fribourg (Switzerland); Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Grobety, B. [Technical Mineralogy Group, Institute of Mineralogy and Petrography, University of Fribourg, CH-1700 Fribourg (Switzerland); Kuebler, J., E-mail: jakob.kuebler@empa.ch [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Graule, T. [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Baumgartner, L. [Institute of Mineralogy and Petrography, Earth Science, University of Lausanne, CH-1100 Lausanne (Switzerland)

    2010-06-15T23:59:59.000Z

    Computed X-ray tomography was used to characterise distribution and sphericity of Ti granules within highly porous (> 35%) Al{sub 2}O{sub 3} powder compacts, as they are key parameters for a successful infiltration by Fe-based alloys. Setting of reconstruction constraints, image editing as well as data processing are the most challenging parts of computed X-ray tomography and principal sources of errors that bias the generated data. Thus, corrective measures have to be applied and the reliability of generated data has to be proved with respect to statistical, stereological and volumetric aspects. Combining an adapted Interface Particle Treatment Algorithm with the Marching Cube Method, Equilibrium Random State Model, cluster splitting and conventional laser diffraction measurements a significant improvement of the three-dimensional reconstructed data was achieved. This study points out the need of the applied algorithms for the proof and improvement of generated data by computed X-ray tomography and gives a short survey of methods that can be applied.

  18. Long-time evolution of sequestered CO$_2$ in porous media

    E-Print Network [OSTI]

    Cohen, Yossi

    2014-01-01T23:59:59.000Z

    CO$_2$ sequestration in subsurface reservoirs is important for limiting atmospheric CO$_2$ concentrations. However, a complete physical picture able to predict the structure developing within the porous medium is lacking. We investigate theoretically reactive transport in the long-time evolution of carbon in the brine-rock environment. As CO$_2$ is injected into a brine-rock environment, a carbonate-rich region is created amid brine. Within the carbonate-rich region minerals dissolve and migrate from regions of high concentration to low concentration, along with other dissolved carbonate species. This causes mineral precipitation at the interface between the two regions. We argue that precipitation in a small layer reduces diffusivity, and eventually causes mechanical trapping of the CO$_2$. Consequently, only a small fraction of the CO$_2$ is converted to solid mineral; the remainder either dissolves in water or is trapped in its original form. We also study the case of a pure CO$_2$ bubble surrounded by bri...

  19. Initial mechanical stability of cementless highly-porous titanium tibial components

    SciTech Connect (OSTI)

    Stone, Timothy Brandon [Los Alamos National Laboratory; Amer, Luke D [Los Alamos National Laboratory; Warren, Christopher P [Los Alamos National Laboratory; Cornwell, Phillip [Los Alamos National Laboratory; Meneghini, R Michael [UNIV OF CONNECTICUT HEALTH CENTER

    2008-01-01T23:59:59.000Z

    Cementless fixation in total knee replacement has seen limited use since reports of early failure surfaced in the late 80s and early 90s. However the emergence of improved biomaterials, particularly porous titanium and tantalum, has led to a renewed interest in developing a cementless tibial component to enhance long-term survivorship of the implants. Cement is commonly employed to minimize micromotion in new implants but represents a weak interface between the implant and bone. The elimination of cement and application of these new biomaterials, which theoretically provide improved stability and ultimate osseointegration, would likely result in greater knee replacement success. Additionally, the removal of cement from the procedure would help minimize surgical durations and get rid of the time needed for curing, thereby the chance of infection. The purpose of this biomechanical study was twofold. The first goal was to assess whether vibration analysis techniques can be used to evaluate and characterize initial mechanical stability of cementless implants more accurately than the traditional method of micromotion determination, which employs linear variable differential transducers (LVDTs). Second, an evaluative study was performed to determine the comparative mechanical stability of five designs of cementless tibial components under mechanical loading designed to simulate in vivo forces. The test groups will include a cemented Triathlon Keeled baseplate control group, three different 2-peg cementless baseplates with smooth, mid, and high roughnesses and a 4-peg cement/ess baseplate with mid-roughness.

  20. Liquid crystalline composites containing phyllosilicates

    DOE Patents [OSTI]

    Chaiko, David J.

    2004-07-13T23:59:59.000Z

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  1. Liquid mixing device

    SciTech Connect (OSTI)

    O'Leary, R. P.

    1985-08-06T23:59:59.000Z

    A mixing device for mixing at least two liquids to produce a homogenous mixture. The device includes an elongated chamber in which a vertically oriented elongated mixing cavity is located. The cavity is sealed at its lower end and it is open at its upper end and in communication with the interior of the chamber. An elongated conduit extends the length of the cavity and is adapted to receive liquids to be mixed. The conduit includes a plurality of ports located at longitudinally spaced positions therealong and which ports are directed in different directions. The ports create plural streams of liquid which interact and mix with one another within the cavity. The mixed liquids overflow the cavity and out its top end into the chamber 24. The chamber 24 includes an outlet from which the mixed liquids are withdrawn. In accordance with the preferred embodiment gas eductor means are provided in the inlet to the conduit to introduce gas bubbles within the cavity. Gas vent means are also provided in the device to vent any introduced gases from the device so that only the mixed liquids flow out the outlet.

  2. Atomistic modeling of dislocation-interface interactions

    SciTech Connect (OSTI)

    Wang, Jian [Los Alamos National Laboratory; Valone, Steven M [Los Alamos National Laboratory; Beyerlein, Irene J [Los Alamos National Laboratory; Misra, Amit [Los Alamos National Laboratory; Germann, T. C. [Los Alamos National Laboratory

    2011-01-31T23:59:59.000Z

    Using atomic scale models and interface defect theory, we first classify interface structures into a few types with respect to geometrical factors, then study the interfacial shear response and further simulate the dislocation-interface interactions using molecular dynamics. The results show that the atomic scale structural characteristics of both heterophases and homophases interfaces play a crucial role in (i) their mechanical responses and (ii) the ability of incoming lattice dislocations to transmit across them.

  3. VOLUME 85, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 OCTOBER 2000 Phonons, Rotons, and Layer Modes of Liquid 4He in Aerogel

    E-Print Network [OSTI]

    Glyde, Henry R.

    , and Layer Modes of Liquid 4He in Aerogel B. Fåk* and O. Plantevin Département de Recherche Fondamentale sur filled aerogel. Using complementary high-energy resolution and high statistical precision neutron scattering instruments, and two different 87% porous aerogel samples, we show that the three-dimensional (3D

  4. Compacted Soil Liner Interface Strength Importance

    E-Print Network [OSTI]

    Case Study Compacted Soil Liner Interface Strength Importance Timothy D. Stark, F.ASCE1 ; Hangseok interface is not the geomembrane (GM)/compacted low-permeability soil liner (LPSL) but a soil­soil interface placing the cover soil from bottom to top. DOI: 10.1061/(ASCE)GT.1943-5606 .0000556. © 2012 American

  5. Web Interfaces 1 Python Scripts in Browsers

    E-Print Network [OSTI]

    Verschelde, Jan

    Web Interfaces 1 Python Scripts in Browsers the web server Apache processing forms with Python scripts Python code to write HTML 2 Web Interfaces for the Determinant dynamic interactive forms passing, 28 October 2013 Scientific Software (MCS 507 L-27) web interfaces 28 October 2013 1 / 42 #12;Web

  6. The influence of a hierarchical porous carbon network on the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid in an electrode material whose hierar- chical structure makes it a good supercapacitor material. It is extremely difficult to study an interface if the sublayers far...

  7. Adaptive Brain-Computer Interface Passive brain-computer interfaces are designed to use

    E-Print Network [OSTI]

    Boetticher, Gary D.

    Adaptive Brain-Computer Interface Abstract Passive brain-computer interfaces are designed to use brain activity as an additional input, allowing the adaptation of the interface in real time according to the user's mental state. While most current brain computer interface research (BCI) is designed for direct

  8. Heat transfer in soft nanoscale interfaces: the influence of interface curvature

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Heat transfer in soft nanoscale interfaces: the influence of interface curvature Anders Lervik transient non-equilibrium molecular-dynamics simulations, heat-transfer through nanometer-scale interfaces processes. We show that the modeling of heat transfer across a nanodroplet/fluid interface requires

  9. Investigation of redox processes at semiconductor electrode liquid junctions

    SciTech Connect (OSTI)

    Koval, C.A.

    1990-08-01T23:59:59.000Z

    Research in fundamental aspects of photoelectrochemical cells has been in the following areas: chemical probes for hot carrier processes, electrostatic theory for describing electrical interactions at interfaces, and kinetics of electron transfer at ideal semiconductor solution interfaces. Our goal is to achieve a better understanding of dark and photo-induced current flow at the semiconductor electrode/redox electrolyte interface (SEI) so that devices and processes utilizing this interface for solar energy conversion can be developed or improved. Our most important accomplishment has been the development of a redox system capable of detecting hot electrons at the p-InP/acetonitrile interface. Also, we have examined electrostatic theory for the image potential of an ion as a function of distance from the SEI. Finally, our group was one of the first to realize that the 2-dimensional metal chalcogenides (MC) are excellent materials for fundamental studies of electron transfer at the SEI. One of the chief potential advantages for use of MC's is the formation of semiconductor/liquid junctions with nearly ideal electrochemical properties. 27 refs., 1 fig.

  10. Plastic flow in solids with interfaces

    E-Print Network [OSTI]

    Anurag Gupta; David Steigmann

    2011-11-25T23:59:59.000Z

    A non-equilibrium theory of isothermal and diffusionless evolution of incoherent interfaces within a plastically deforming solid is developed. The irreversible dynamics of the interface are driven by its normal motion, incoherency (slip and misorientation), and an intrinsic plastic flow; and purely by plastic deformation in the bulk away from the interface. Using the continuum theory for defect distribution (in bulk and over the interface) we formulate a general kinematical framework, derive relevant balance laws and jump conditions, and prescribe a thermodynamically consistent constitutive/kinetic structure for interface evolution.

  11. Porous Alumina Silicate Matrix Gubka for Solidification of {sup 137}Cs Strip Product

    SciTech Connect (OSTI)

    Aloy, Albert; Strelnikov, Alexander; Essimantovskiy, Vyacheslav ['V.G. Khlopin Radium Institute', 2nd Murinskiy str., 28, Saint Petersburg, 194021 (Russian Federation)

    2007-07-01T23:59:59.000Z

    Separated liquid high-level radioactive waste (HLW) fractions, in particular, about 100 liters of a {sup 137}Cs strip product with activity up to {approx} 100 Ci/l (3.7 TBq/l) have been produced during the development and testing of partitioning technology and temporarily stored at V.G. Khlopin Radium Institute (KRI) (Saint-Petersburg, Russia). The bench-scale experimental unit designed for operation in the hot cell was developed for {sup 137}Cs strip product solidification using an alumina silicate porous inorganic material (PIM) called Gubka. Conditions of saturation, drying, and calcinations of the salts into Gubka pores were optimized, and the operations under a remote control regime were executed during tests using a simulated strip product doped with {sup 137}Cs. The volume reduction coefficients were equal by a factor of 3.2-3.9 and a {sup 137}Cs discharge into an off-gas system was not detected. {sup 137}Cs leach rates from Gubka blocks after calcination at 800 deg. C were 1.0-1.5.10{sup -3} g/m{sup 2}.per day. (authors)

  12. Modeling multiphase heat and mass transfer in consolidated, fractured, porous media

    SciTech Connect (OSTI)

    Bixler, N.E.; Eaton, R.R.

    1987-12-31T23:59:59.000Z

    A number of potential transport mechanisms are considered in this paper: Darcy flow due to pressure and density gradients in the liquid and gas phases; Knudsen diffusion in the gas phase; binary diffusion in the gas phase; heat conduction; energy convection; and evaporation/condensation and its associated latent heat effects. Most of these mechanisms are highly nonlinear, especially Darcy flow, where relative permeabilities often vary by orders of magnitude depending on local saturation, and evaporation/condensation, which depends strongly on local temperature, gas pressure, and saturation. As a consequence of the nonlinearities, it is essential to employ numerical methods if realistic modeling is to be performed. Here, the numerical model is of the standard Galerkin/finite element variety, which is convenient for handling irregular domains and a wide variety of boundary conditions. This numerical model is used to examine the relative effectiveness of each of the transport mechanisms in several one-dimensional and simple two-dimensional multiphase flows in fractured and unfractured porous materials. The importance of fracture orientation is also studied. Predictions are compared with experimental measurements for imbibition and drying of fractured volcanic tuff.

  13. Modeling of Taylor bubble rising in a vertical mini noncircular channel filled with a stagnant liquid

    E-Print Network [OSTI]

    Zhao, Tianshou

    of the liquid phase coupled with the equations of the force balance at the bubble interface. The predicted drift by the interfacial curvature variations along bubble length, gravity, and viscous force. The interfacial profiles gas reservoir during gas production, in chemical and nuclear reactors, and numerous heat transport

  14. Coupled modeling of non-isothermal multiphase flow, solutetransport and reactive chemistry in porous and fractured media: 1. ModelDevelopment and Validation

    SciTech Connect (OSTI)

    Xu, Tianfu; Pruess, Karsten

    1998-09-01T23:59:59.000Z

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.

  15. Rounding of the localization transition in model porous media

    E-Print Network [OSTI]

    Simon K. Schnyder; Markus Spanner; Felix Höfling; Thomas Franosch; Jürgen Horbach

    2014-11-07T23:59:59.000Z

    The generic mechanisms of anomalous transport in porous media are investigated by computer simulations of two-dimensional model systems. In order to bridge the gap between the strongly idealized Lorentz model and realistic models of porous media, two models of increasing complexity are considered: a cherry-pit model with hard-core correlations as well as a soft-potential model. An ideal gas of tracer particles inserted into these structures is found to exhibit anomalous transport which extends up to several decades in time. Also, the self-diffusion of the tracers becomes suppressed upon increasing the density of the systems. These phenomena are attributed to an underlying percolation transition. In the soft potential model the transition is rounded, since each tracer encounters its own critical density according to its energy. Therefore, the rounding of the transition is a generic occurrence in realistic, soft systems.

  16. Self-assembled porous media from particle-stabilized emulsions

    E-Print Network [OSTI]

    Stefan Frijters; Jens Harting

    2014-08-13T23:59:59.000Z

    We propose a new mechanism to create self-assembled porous media with highly tunable geometrical properties and permeabilities: We first allow a particle-stabilized emulsion to form from a mixture of two fluids and colloidal particles. Then, either one fluid phase or the particle layer is solidified, which can be achieved by techniques such as polymerization or freezing. Based on computer simulations we demonstrate that modifying only the particle wettability or concentration results in porous structures with a wide range of pore sizes and a permeability that can be varied by up to three orders of magnitude. We then discuss optimization of these properties for self-assembled filters or reactors and conclude that structures based on so-called "bijels" are most suitable candidates.

  17. Dissipative particle dynamics model for colloid transport in porous media

    SciTech Connect (OSTI)

    Pan, Wenxiao; Tartakovsky, Alexandre M.

    2013-08-01T23:59:59.000Z

    We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation e?ect. In the present work, we use the new formulation to study the contact e?ciency in colloid ?ltration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian di?usion. Our results of contact e?ciency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.

  18. Two-phase flow in a chemically active porous medium

    E-Print Network [OSTI]

    Alexandre Darmon; Michael Benzaquen; Thomas Salez; Olivier Dauchot

    2014-11-20T23:59:59.000Z

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species -- in a one-dimensional macroscopic description --, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy's law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor.

  19. Impact of wettability correlations on multiphase flow through porous media

    E-Print Network [OSTI]

    Marta S. de La Lama; Martin Brinkmann

    2012-05-31T23:59:59.000Z

    In the last decades, significant progress has been made in understanding the multiphase displacement through porous media with homogeneous wettability and its relation to the pore geometry. However, the role of wettability at the scale of the pore remains still little understood. In the present study the displacement of immiscible fluids through a two-dimensional porous medium is simulated by means of a mesoscopic particle approach. The substrate is described as an assembly of non-overlapping circular disks whose preferential wettability is distributed according to prescribed spatial correlations, from pore scale up to domains at system size. We analyze how this well-defined heterogeneous wettability affects the flow and try to establish a relationship among wettability-correlations and large-scale properties of the multiphase flow.

  20. The Uniaxial Tensile Response of Porous and Microcracked Ceramic Materials

    SciTech Connect (OSTI)

    Pandey, Amit [ORNL; Shyam, Amit [ORNL; Watkins, Thomas R [ORNL; Lara-Curzio, Edgar [ORNL; Lara-Curzio, Edgar [ORNL; Stafford, Randall [Cummins, Inc; Hemker, Kevin J [Johns Hopkins University

    2014-01-01T23:59:59.000Z

    The uniaxial tensile stress-strain behavior of three porous ceramic materials was determined at ambient conditions. Test specimens in the form of thin beams were obtained from the walls of diesel particulate filter honeycombs and tested using a microtesting system. A digital image correlation technique was used to obtain full-field 2D in-plane surface displacement maps during tensile loading, and in turn, the 2D strains obtained from displacement fields were used to determine the Secant modulus, Young s modulus and initial Poisson s ratio of the three porous ceramic materials. Successive unloading-reloading experiments were performed at different levels of stress to decouple the linear elastic, anelastic and inelastic response in these materials. It was found that the stress-strain response of these materials was non-linear and that the degree of nonlinearity is related to the initial microcrack density and evolution of damage in the material.

  1. Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    E-Print Network [OSTI]

    Biesheuvel, P M

    2009-01-01T23:59:59.000Z

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes wi...

  2. Methods for removing contaminant matter from a porous material

    DOE Patents [OSTI]

    Fox, Robert V. (Idaho Falls, ID) [Idaho Falls, ID; Avci, Recep (Bozeman, MT) [Bozeman, MT; Groenewold, Gary S. (Idaho Falls, ID) [Idaho Falls, ID

    2010-11-16T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  3. Methods for making a porous nuclear fuel element

    DOE Patents [OSTI]

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30T23:59:59.000Z

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  4. Porous protective solid phase micro-extractor sheath

    DOE Patents [OSTI]

    Andresen, Brian D.; Randich, Erik

    2005-03-29T23:59:59.000Z

    A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.

  5. A focused liquid jet formed by a water hammer in a test tube

    E-Print Network [OSTI]

    Kiyama, Akihito; Ando, Keita; Kameda, Masaharu

    2015-01-01T23:59:59.000Z

    We investigate motion of a gas-liquid interface in a test tube induced by a large acceleration via impulsive force. We conduct simple experiments in which the tube partially filled with a liquid falls under gravity and impacts a rigid floor. A curved gas-liquid interface inside the tube reverses and eventually forms an elongated jet (i.e. the so-called a focused jet). In our experiments, there arises either vibration of the interface or increment in the velocity of a liquid jet accompanied by the onset of cavitation in the liquid column. These phenomena cannot be explained by considering pressure impulse in a classical potential flow analysis, which does not account for finite speeds of sound as well as phase change. Here we model such water-hammer events as a result of one-dimensional pressure wave propagation and its interaction with boundaries through acoustic impedance mismatching. The method of characteristics is applied to describe pressure wave interactions and the subsequent cavitation. The proposed m...

  6. Experimental and theoretical study of polymer flow in porous media

    SciTech Connect (OSTI)

    Sorbie, K.S.; Parker, A.; Clifford, P.J.

    1987-08-01T23:59:59.000Z

    In this paper, an extensive study is presented on the single-phase flow of xanthum/tracer slugs in a consolidated sandstone. The phenomena studied include polymer/tracer dispersion, excluded/inaccessible-volume effects, polymer adsorption, and viscous fingering. In some floods, there is also evidence of nonequilibrium effects. Macroscopic flow equations are derived that include terms to model all the behaviors listed above. A microscopic approach is also developed that describes certain features of polymer flow in porous media semiquantitatively.

  7. Preparation of porous apatite granules from calcium phosphate cement

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Preparation of porous apatite granules from calcium phosphate cement A. C. Tas Received: 30 March and 37 °C. A CaP cement powder, comprising a-Ca3(PO4)2 (61 wt.%), CaH- PO4 (26%), CaCO3 (10 to 1 mm. Cement powder (35 wt.%) and NaCl (65 wt.%) mixture was kneaded with an ethanol­Na2HPO4

  8. Investigation of porous media structures using NMR restricted diffusion measurements 

    E-Print Network [OSTI]

    Miao, Peizhi

    1993-01-01T23:59:59.000Z

    be observed in the literature. Woessner measured the apparent diffusion coefficients for three systems: water in silica suspensions; water in a sandstone core; and benzene- rubber. He employed a constant field gradient spin-echo technique and observed.... For the application of NMR technique to extract pore structure information from restricted diffusion measurements, we will follow a two-step scheme, 1) determine the distribution of apparent diffusion coefficient from NMR measurement of fluid diffusion in porous...

  9. Porous coatings from wire mesh for bone implants

    DOE Patents [OSTI]

    Sump, Kenneth R. (Richland, WA)

    1986-01-01T23:59:59.000Z

    A method of coating areas of bone implant elements and the resulting implant having a porous coating are described. Preselected surface areas are covered by a preform made from continuous woven lengths of wire. The preform is compressed and heated to assure that diffusion bonding occurs between the wire surfaces and between the surface boundaries of the implant element and the wire surfaces in contact with it. Porosity is achieved by control of the resulting voids between the bonded wire portions.

  10. High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    Maruska, P. [Spire Corp., Bedford, MA (United States)] [Spire Corp., Bedford, MA (United States)

    1996-09-01T23:59:59.000Z

    The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

  11. Surface rheology and interface stability.

    SciTech Connect (OSTI)

    Yaklin, Melissa A.; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Walker, Lynn; Koehler, Timothy P.; Reichert, Matthew D. (Carnegie Mellon University, Pittsburgh, PA); Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-11-01T23:59:59.000Z

    We have developed a mature laboratory at Sandia to measure interfacial rheology, using a combination of home-built, commercially available, and customized commercial tools. An Interfacial Shear Rheometer (KSV ISR-400) was modified and the software improved to increase sensitivity and reliability. Another shear rheometer, a TA Instruments AR-G2, was equipped with a du Nouey ring, bicone geometry, and a double wall ring. These interfacial attachments were compared to each other and to the ISR. The best results with the AR-G2 were obtained with the du Nouey ring. A Micro-Interfacial Rheometer (MIR) was developed in house to obtain the much higher sensitivity given by a smaller probe. However, it was found to be difficult to apply this technique for highly elastic surfaces. Interfaces also exhibit dilatational rheology when the interface changes area, such as occurs when bubbles grow or shrink. To measure this rheological response we developed a Surface Dilatational Rheometer (SDR), in which changes in surface tension with surface area are measured during the oscillation of the volume of a pendant drop or bubble. All instruments were tested with various surfactant solutions to determine the limitations of each. In addition, foaming capability and foam stability were tested and compared with the rheology data. It was found that there was no clear correlation of surface rheology with foaming/defoaming with different types of surfactants, but, within a family of surfactants, rheology could predict the foam stability. Diffusion of surfactants to the interface and the behavior of polyelectrolytes were two subjects studied with the new equipment. Finally, surface rheological terms were added to a finite element Navier-Stokes solver and preliminary testing of the code completed. Recommendations for improved implementation were given. When completed we plan to use the computations to better interpret the experimental data and account for the effects of the underlying bulk fluid.

  12. Gelled Ionic Liquid-Based Membranes: Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes

    SciTech Connect (OSTI)

    None

    2011-02-02T23:59:59.000Z

    IMPACCT Project: Alongside Los Alamos National Laboratory and the Electric Power Research Institute, CU-Boulder is developing a membrane made of a gelled ionic liquid to capture CO2 from the exhaust of coal-fired power plants. The membranes are created by spraying the gelled ionic liquids in thin layers onto porous support structures using a specialized coating technique. The new membrane is highly efficient at pulling CO2 out of coal-derived flue gas exhaust while restricting the flow of other materials through it. The design involves few chemicals or moving parts and is more mechanically stable than current technologies. The team is now working to further optimize the gelled materials for CO2 separation and create a membrane layer that is less than 1 micrometer thick.

  13. Phase-separation of miscible liquids in a centrifuge

    E-Print Network [OSTI]

    Yoav Tsori; Ludwik Leibler

    2007-12-18T23:59:59.000Z

    We show that a liquid mixture in the thermodynamically stable homogeneous phase can undergo a phase-separation transition when rotated at sufficiently high frequency $\\omega$. This phase-transition is different from the usual case where two liquids are immiscible or where the slow sedimentation process of one component (e.g. a polymer) is accelerated due to centrifugation. For a binary mixture, the main coupling is due to a term $\\propto \\Delta\\rho(\\omega r)^2$, where $\\Delta\\rho$ is the difference between the two liquid densities and $r$ the distance from the rotation axis. Below the critical temperature there is a critical rotation frequency $\\omega_c$, below which smooth density gradients occur. When $\\omega>\\omega_c$, we find a sharp interface between the low density liquid close to the center of the centrifuge and a high density liquid far from the center. These findings may be relevant to various separation processes and to the control of chemical reactions, in particular their kinetics.

  14. Effect of methanotrophic biofilm growth on the hydraulic conductivity of porous media 

    E-Print Network [OSTI]

    Haby, Jeffrey J.

    1993-01-01T23:59:59.000Z

    of the biofilm surface in some cases increased eddy diffusion and external mass transfer rates into heterotrophic biofilms. Boawer et al. [1988] was able to draw the following conclusions from his experiments which addressed biofilm accumulation processes... and their effect on 11 hydraulic resistance in porous media: 1. Biofilm accumulation in the pore space increases the hydraulic resistance in small laminar capillary and porous media flow systems. 2. The tortuous flow paths in porous media increase the rate...

  15. liquid nberwp.tex Liquidity Constraints and Precautionary Saving

    E-Print Network [OSTI]

    Niebur, Ernst

    liquid nberwp.tex Liquidity Constraints and Precautionary Saving Christopher D. Carroll ccarroll to the optimal consumption/saving problem under uncertainty have long known that there are quantitatively important in- teractions between liquidity constraints and precautionary saving behavior. This paper

  16. Device for detecting the specific gravity of a liquid. [Patent application

    DOE Patents [OSTI]

    Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.

    1980-11-18T23:59:59.000Z

    A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.

  17. Interfaces and Free Boundaries 11 (2009), 239258 Two-phase flows involving capillary barriers in heterogeneous porous media

    E-Print Network [OSTI]

    Porretta, Alessio

    2009-01-01T23:59:59.000Z

    and immiscible oil-water flow through , and thus through each i. By Darcy's law, the conservation of oil medium leads to the phenomena of oil-trapping and oil-expulsion, which is modelled with discontinuous and water phases is given for all (x, t) i ×]0, T [ by the equations it ui(x, t) - · o,i(ui(x, t))( po

  18. Z .Current Opinion in Colloid & Interface Science 5 2000 56 63 Colloidal crystals as templates for porous materials

    E-Print Network [OSTI]

    Velev, Orlin D.

    to the materials synthesis is the design of procedures for assembling the crystals and subsequently infusing them the process up is by filtration Z .Fig. 2c , which also allows easy washing and subse- quent infusion

  19. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    SciTech Connect (OSTI)

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01T23:59:59.000Z

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  20. Properties of Liquid Plutonium

    SciTech Connect (OSTI)

    Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory

    2012-08-02T23:59:59.000Z

    Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

  1. Breakup of Liquid Filaments

    E-Print Network [OSTI]

    Castrejon-Pita, Alfonso A.; Castrejon-Pita, J.R.; Hutchings, I.M.

    2012-01-01T23:59:59.000Z

    , including the dispersion of liquid drugs into res- pirable droplets, microfluidics, crop- and paint-spraying, and ink-jet printing [2–4]. There are also biological sys- tems in which either long filaments remain intact, or many droplets are formed [5, 6...

  2. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10T23:59:59.000Z

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  3. Pore-Scale Simulation Of Experimentally Realizable, Oscillatory Flow In Porous Rock

    E-Print Network [OSTI]

    Olson, John F.

    1999-01-01T23:59:59.000Z

    We report new simulations of oscillating flow in porous rock. Our goal is to better understand the frequency dependence of pore-scale fluid motion, which should ultimately

  4. High Performance Computing linear algorithms for two-phase flow in porous media

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    High Performance Computing linear algorithms for two-phase flow in porous media Robert Eymard High Performance Computing techniques. This implies to handle the difficult problem of solving

  5. Estimate the Effective Elastic Properties of Digitized Porous Rocks by Inverting the Cracks Unresolved

    E-Print Network [OSTI]

    Zhang, Yang

    2010-01-01T23:59:59.000Z

    Current imaging technique such as micro X-ray CT can provide us detailed 3D micro-structures of porous

  6. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering

    E-Print Network [OSTI]

    Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio

  7. A Numerical Algorithm for Single Phase Fluid Flow in Elastic Porous Media

    E-Print Network [OSTI]

    Ewing, Richard E.

    , petroleum, and environmental engineering for several decades. While considering the impact of the rock algorithm. KEYWORDS: geomechanics, uid ow, elastic deformation, porous media 1 Introduction Mechanical

  8. Liquid crystalline composites containing phyllosilicates

    DOE Patents [OSTI]

    Chaiko; David J. (Naperville, IL)

    2007-05-08T23:59:59.000Z

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  9. High Performance Thermal Interface Technology Overview

    E-Print Network [OSTI]

    R. Linderman; T. Brunschwiler; B. Smith; B. Michel

    2008-01-07T23:59:59.000Z

    An overview on recent developments in thermal interfaces is given with a focus on a novel thermal interface technology that allows the formation of 2-3 times thinner bondlines with strongly improved thermal properties at lower assembly pressures. This is achieved using nested hierarchical surface channels to control the particle stacking with highly particle-filled materials. Reliability testing with thermal cycling has also demonstrated a decrease in thermal resistance after extended times with longer overall lifetime compared to a flat interface.

  10. Flexible feature interface for multimedia sources

    DOE Patents [OSTI]

    Coffland, Douglas R. (Livermore, CA)

    2009-06-09T23:59:59.000Z

    A flexible feature interface for multimedia sources system that includes a single interface for the addition of features and functions to multimedia sources and for accessing those features and functions from remote hosts. The interface utilizes the export statement: export "C" D11Export void FunctionName(int argc, char ** argv,char * result, SecureSession *ctrl) or the binary equivalent of the export statement.

  11. Moment of Fluid Interface Reconstruction with Filaments

    SciTech Connect (OSTI)

    Jemison, Matthew B. [Los Alamos National Laboratory

    2012-08-15T23:59:59.000Z

    A moving system made up of multiple fluids (e.g. air and water) may be defined by an evolving interface with a changing topology. MOF uses a piecewise linear interface reconstruction to numerically model deforming boundaries. Given a volume fraction V and reference centroid x for a material in cell {Omega}, we seek to find an interface {Gamma} that exactly captures V and minimizes error in x. This differs from Volume of Fluid methods.

  12. High temperature liquid level sensor

    DOE Patents [OSTI]

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01T23:59:59.000Z

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  13. Elastic Wave Behavior Across Linear Slip Interfaces

    E-Print Network [OSTI]

    Schoenberg, M.

    plane waves incident at arbitrary angles upon a plane linear slip interface are computed ... Also included in these sections is an analysis ... ish, Ut is of the form.

  14. Contested Material Interface Shows Mixing | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMSL, scientists from the Pacific Northwest National Laboratory and University College London have shown that intermixing occurs at the interface of two perovskites - lanthanum...

  15. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    DOE Patents [OSTI]

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12T23:59:59.000Z

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  16. Factors influencing quantitative liquid (scanning) transmission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors influencing quantitative liquid (scanning) transmission electron microscopy. Factors influencing quantitative liquid (scanning) transmission electron microscopy. Abstract:...

  17. Analysis & Simulation of Dynamics in Supercooled Liquids

    E-Print Network [OSTI]

    Elmatad, Yael Sarah

    2011-01-01T23:59:59.000Z

    Moreover, the heat capacity of that liquid is also higherthe intensive heat capacities of the liquid and the crystal,

  18. Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC

    E-Print Network [OSTI]

    Stadtherr, Mark A.

    Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC different excess Gibbs free energy models are evaluated: the NRTL, UNIQUAC and electrolyte- NRTL (eNRTL) models. In the case of eNRTL, a new formulation of the model is used, based on a symmetric reference

  19. Help cut pollution with vapor/liquid and liquid/liquid separators

    SciTech Connect (OSTI)

    Woinsky, S.G.

    1994-10-01T23:59:59.000Z

    Vapor/liquid and liquid/liquid separators are common in chemical process industries plants. In addition to separating phases, these devices can aid in reducing pollution in the plant. Two-phase separators achieve pollution prevention via recycling of intermediates and final products. It is doubtful that most vapor/liquid and liquid/liquid separators are used specifically for pollution prevention projects. They may have another purpose yet provide pollution prevention as a bonus. The first step in achieving pollution prevention by design is for operating companies to be aware of vapor/liquid and liquid/liquid separators as potential pollution prevention devices. Then, likely applications need to be investigated. Since the quantities of material recovered are relatively small, higher value products are the most likely targets, especially for liquid/liquid separators. However, for vapor/liquid separators, the costs involved are usually relatively low since only the cost of a separator pad is normally involved, and more moderately valued products can be targets.

  20. Message Passing Interface for Python 1 the Message Passing Interface (MPI)

    E-Print Network [OSTI]

    Verschelde, Jan

    Message Passing Interface for Python 1 the Message Passing Interface (MPI) MPI and MPI for Python, and gather processing numpy arrays 3 Probing for Messages nonblocking communications MCS 507 Lecture 38 L-38) MPI for Python 22 November 2013 1 / 37 #12;Message Passing Interface for Python 1 the Message

  1. The Toom Interface Via Coupling

    E-Print Network [OSTI]

    Nick Crawford; Wojciech de Roeck

    2015-01-20T23:59:59.000Z

    We consider a one dimensional interacting particle system which describes the effective interface dynamics of the two dimensional Toom model at low temperature and noise. We prove a number of basic properties of this model. First we consider the dynamics on a half open finite interval $[1, N)$, bounding the mixing time from above by $2N$. Then we consider the model defined on the integers. Due to infinite range interaction, this is a non-Feller process that we can define starting from product Bernoulli measures with density $p \\in (0, 1)$, but not from arbitrary measures. We show, under a modest technical condition, that the only possible invariant measures are those product Bernoulli measures. We further show that the unique stationary measure on $[-k, \\infty)$ converges weakly to a product Bernoulli measure on $\\Z$ as $k \\rightarrow \\infty$.

  2. Conduction at a ferroelectric interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit S.; Han, Myung-Guen; Chen, Hanghui; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick J.; Ahn, Charles H.

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly,more »in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.« less

  3. Conduction at a ferroelectric interface

    SciTech Connect (OSTI)

    Marshall, Matthew S. J. [Yale Univ., New Haven, CT (United States); Malashevich, Andrei [Yale Univ., New Haven, CT (United States); Disa, Ankit S. [Yale Univ., New Haven, CT (United States); Han, Myung-Guen [Brookhaven National Lab. (BNL), Upton, NY (United States); Chen, Hanghui [Yale Univ., New Haven, CT (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Ismail-Beigi, Sohrab [Yale Univ., New Haven, CT (United States); Walker, Frederick J. [Yale Univ., New Haven, CT (United States); Ahn, Charles H. [Yale Univ., New Haven, CT (United States);

    2014-11-01T23:59:59.000Z

    Typical logic elements utilizing the field effect rely on the change in carrier concentration due to the field in the channel region of the device. Ferroelectric-field-effect devices provide a nonvolatile version of this effect due to the stable polarization order parameter in the ferroelectric. In this work, we describe an oxide/ oxide ferroelectric heterostructure device based on (001)-oriented PbZr??.?Ti?.?O?-LaNiO? where the dominant change in conductivity is a result of a significant mobility change in the interfacial channel region. The effect is confined to a few atomic layers at the interface and is reversible by switching the ferroelectric polarization. More interestingly, in one polarization state, the field effect induces a 1.7-eV shift of the interfacial bands to create a new conducting channel in the interfacial PbO layer of the ferroelectric.

  4. Glass Transition, Cooperativity and Interfaces

    E-Print Network [OSTI]

    Salez, Thomas; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-01-01T23:59:59.000Z

    We introduce a minimal theory of glass formation based on the physical ideas of molecular crowding and resultant cooperative motion, and address the effects of free interfaces on dynamics. First, we obtain a simple scaling expression for the diverging number of particles taking part in bulk cooperative relaxation as the system approaches kinetic arrest, and in doing so provide a robust derivation of the Adam and Gibbs description of cooperative dynamics. Then, by including thermal expansivity of the material, the Vogel-Fulcher-Tammann relation is derived. Moreover, we predict a temperature-dependent expression for the cooperative length $\\xi$ of bulk relaxation, and explore the influence of sample boundaries on the glassy dynamics when the system size becomes comparable to $\\xi$. The theory is in full agreement with measurements of the glass transition temperature of thin polystyrene films. This agreement comes with two adjustable parameters, the critical interparticle distance and the Vogel temperature. Alth...

  5. Interface dynamics for layered structures

    E-Print Network [OSTI]

    Takao Ohta; David Jasnow

    1997-07-17T23:59:59.000Z

    We investigate dynamics of large scale and slow deformations of layered structures. Starting from the respective model equations for a non-conserved system, a conserved system and a binary fluid, we derive the interface equations which are a coupled set of equations for deformations of the boundaries of each domain. A further reduction of the degrees of freedom is possible for a non-conserved system such that internal motion of each domain is adiabatically eliminated. The resulting equation of motion contains only the displacement of the center of gravity of domains, which is equivalent to the phase variable of a periodic structure. Thus our formulation automatically includes the phase dynamics of layered structures. In a conserved system and a binary fluid, however, the internal motion of domains turns out to be a slow variable in the long wavelength limit because of concentration conservation. Therefore a reduced description only involving the phase variable is not generally justified.

  6. Nanofluidics, from bulk to interfaces

    E-Print Network [OSTI]

    Lyderic Bocquet; Elisabeth Charlaix

    2009-09-03T23:59:59.000Z

    Nanofluidics has emerged recently in the footsteps of microfluidics, following the quest of scale reduction inherent to nanotechnologies. By definition, nanofluidics explores transport phenomena of fluids at the nanometer scales. Why is the nanometer scale specific ? What fluid properties are probed at nanometric scales ? In other words, why 'nanofluidics' deserves its own brand name ? In this critical review, we will explore the vast manifold of length scales emerging for the fluid behavior at the nanoscales, as well as the associated mechanisms and corresponding applications. We will in particular explore the interplay between bulk and interface phenomena. The limit of validity of the continuum approaches will be discussed, as well as the numerous surface induced effects occuring at these scales, from hydrodynamic slippage to the various electro-kinetic phenomena originating from the couplings between hydrodynamics and electrostatics. An enlightening analogy between ion transport in nanochannels and transport in doped semi-conductors will be discussed.

  7. Liquid filtration simulation

    SciTech Connect (OSTI)

    Corey, I.; Bergman, W.

    1996-06-01T23:59:59.000Z

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  8. Monash researchers led by Dr. Dan Li have developed a novel method for converting natural graphite into highly porous

    E-Print Network [OSTI]

    Albrecht, David

    natural graphite into highly porous graphene film for advanced applications. Figure 1: illustrates the conversion of inexpensive & abundant graphite into highly porous, mechanically robust conductive films (eg capacitors, batteries and fuel cells) n LCD displays and photovoltaic devices n Composites

  9. Schrodinger Fermi Liquids

    E-Print Network [OSTI]

    Wang, Juven

    2013-01-01T23:59:59.000Z

    We study a class of strongly interacting many-body fermionic systems in 2+1D non-relativistic conformal field theory via holography. The 5D charged black hole with asymptotic Schrodinger isometry in the bulk gravity side introduces parameters of background density and finite particle number into the boundary field theory. We propose the holographic dictionary, and realize a quantum phase transition of this fermionic liquid with fixed particle number by tuning the background density $\\beta$ at zero temperature. On the larger $\\beta$ side, we find the signal of a sharp quasiparticle pole on the spectral function A(k,w), indicating a well-defined Fermi surface. On the smaller $\\beta$ side, we find only a hump with no sharp peak for A(k,w), indicating the disappearance of Fermi surface. The dynamical exponent $z$ of quasiparticle dispersion goes from being Fermi-liquid-like $z\\simeq1$ scaling at larger $\\beta$ to a non-Fermi-liquid scaling $z\\simeq 3/2$ at smaller $\\beta$. By comparing the structure of Green's fu...

  10. A simple OASIS interface E. Maisonnave

    E-Print Network [OSTI]

    A simple OASIS interface for CESM E. Maisonnave TR/CMGC/11/63 #12;#12;Index Strategy............................................................................................. 7 Annex 1: OASIS3 interface implementation on CESM..................................... 9 Annex 2. Taking advantage of the IS-ENES OASIS Dedicated User Support program, a COSMO/CLM coupling framework has

  11. OASIS4 coupling interface implementation on ETHZ'

    E-Print Network [OSTI]

    OASIS4 coupling interface implementation on ETHZ' land-atmosphere coupled model E. Maisonnave WN 9 2010 at ETH, Zürich(Switzerland), I implement and validate an OASIS4 interface for a regional) and a land scheme (CLM, NCAR) model have been coupled with OASIS4, at low resolution on a MPP scalar machine

  12. Internal and Interface Shear Strength of

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    1 Internal and Interface Shear Strength of Geosynthetic Clay Liners (GCLs): Additional Data by John Liners (GCLs): Additional Data Geosynthetic Clay Liners (GCLs) are prefabricated geocomposite materials., Zornberg, Jorge G., and Swan, Jr., Robert H. Internal and Interface Shear Strength of Geosynthetic Clay

  13. Model Checking User Interfaces Abigail Cauchi

    E-Print Network [OSTI]

    Pace, Gordon J.

    Model Checking User Interfaces Abigail Cauchi Dept of Computer Science University of Malta acau0004@um.edu.mt Gordon Pace Dept of Computer Science University of Malta gordon.pace@um.edu.mt Sandro Spina Dept of Computer Science University of Malta sandro.spina@um.edu.mt Abstract User interfaces

  14. Millisecond time resolution neutron reflection from a nematic liquid crystal

    SciTech Connect (OSTI)

    Dalgliesh, R.M.; Lau, Y.G.J.; Richardson, R.M.; Riley, D.J. [ISIS Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS (United Kingdom)

    2004-09-01T23:59:59.000Z

    The director reorientation of the liquid crystal 4,4' octyl cyanobiphenyl in the nematic phase under application of bursts of ac field have been observed using time-resolved neutron scattering in reflection geometry. The relaxation of the director has been shown to agree with existing theory, as determined by material and cell parameters. This result shows that it is possible to use neutron reflection measurements from buried interfaces to follow kinetic processes on a time scale comparable with the pulse length of the ISIS neutron source (20 ms)

  15. Fundamental studies of fluid mechanics and stability in porous media. Progress report

    SciTech Connect (OSTI)

    Homsy, G.M.

    1991-08-01T23:59:59.000Z

    This report summarizes accomplished and proposed work for the fundamental studies of fluid mechanics and stability in porous media. Topics discussed include: viscous fingering in miscible displacements; polymer flow interactions in free shear layers of viscoelastic fluids; effect of nonmonotonic viscosity profiles on the stability of miscible displacements in porous media; and references. (JL)

  16. Studying colloid transport in porous media using a geocentrifuge Prabhakar Sharma,1,2,3

    E-Print Network [OSTI]

    Flury, Markus

    Studying colloid transport in porous media using a geocentrifuge Prabhakar Sharma,1,2,3 Markus enhance the transport of contaminants. The excessive time required to conduct flow and transport experiments in porous media led to the use of centrifuges to evaluate subsurface transport processes

  17. A Markov Random Field model of contamination source identification in porous media flow

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    A Markov Random Field model of contamination source identification in porous media flow Jingbo Wang A contamination source identification problem in constant porous media flow is addressed by solving the advection-dispersion equation (ADE) with a hierarchical Bayesian computation method backward through time. The contaminant

  18. A dual approach to tuning the porosity of porous organic polymers: controlling the porogen size and

    E-Print Network [OSTI]

    . Consequently, the majority of POPs are interpenetrating networks with rela- tively low total pore volumesA dual approach to tuning the porosity of porous organic polymers: controlling the porogen size. Weston, Omar K. Farha,* Joseph T. Hupp* and SonBinh T. Nguyen* Porous organic polymers (POPs

  19. On the Effect of Porous Layers on Melting Heat Transfer in an Enclosure

    E-Print Network [OSTI]

    Beckermann, Christoph

    : melting, porous media, thermal energy storage, natural convection INTRODUCTION Latent heat thermal energy-change materials used in such thermal energy storage devices have a relatively low thermal conductivity, means investigated in detail. The presence of the porous medium can considerably reduce the thermal energy storage

  20. Fabrication of adherent porous diamond films on sintered WC-13 wt.%Co

    E-Print Network [OSTI]

    Bristol, University of

    and lower threshold voltages for field emission [10]. Conductive polycrystalline diamond films are alsoFabrication of adherent porous diamond films on sintered WC-13 wt.%Co substrates by bias enhanced 2011, accepted 3 May 2011 Published online 10 August 2011 Keywords diamond films, HFCVD, porous, WC