Sample records for liquid pil lithium

  1. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquidlithium salt

  2. Lithium-loaded liquid scintillators

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

    2012-05-15T23:59:59.000Z

    The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

  3. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

  4. Liquid Lithium Experiments in CDX-U

    SciTech Connect (OSTI)

    R. Majeski; R. Doerner; R. Kaita; G. Antar; J. Timberlake; et al

    2000-11-15T23:59:59.000Z

    The initial results of experiments involving the use of liquid lithium as a plasma facing component in the Current Drive Experiment-Upgrade (CDX-U) are reported. Studies of the interaction of a steady-state plasma with liquid lithium in the Plasma Interaction with Surface and Components Experimental Simulator (PISCES-B) are also summarized. In CDX-U a solid or liquid lithium covered rail limiter was introduced as the primary limiting surface for spherical torus discharges. Deuterium recycling was observed to be reduced, but so far not eliminated, for glow discharge-cleaned lithium surfaces. Some lithium influx was observed during tokamak operation. The PISCES-B results indicate that the rates of plasma erosion of lithium can exceed predictions by an order of magnitude at elevated temperatures. Plans to extend the CDX-U experiments to large area liquid lithium toroidal belt limiters are also described.

  5. New lithium-based ionic liquid electrolytes that resist salt...

    Energy Savers [EERE]

    lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

  6. area liquid lithium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liquid lithium plasma-facing surface will be used 11 Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl...

  7. Liquid Lithium Wall Experiments in CDX-U R. Majeski,

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Liquid Lithium Wall Experiments in CDX-U R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M ABSTRACT The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used

  8. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  9. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  10. Thin liquid lithium targets for high power density

    E-Print Network [OSTI]

    McDonald, Kirk

    High charge state High velocity flow ~60 m/s High heat capacity of Li Absorbs power depositedThin liquid lithium targets for high power density applications: heavy ion beam strippers and beta Hilton Malmö City #12;Outline Liquid Lithium Stripper idea for FRIB Brief theory of film stability

  11. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    of ionic liquids in lithium-ion battery test systems J.battery point of view, it is essential that an ionic liquid – lithiumlead to battery short-out. The ionic-liquid / lithium-salt

  12. Testing of Liquid Lithium Limiters in CDX-U

    SciTech Connect (OSTI)

    R. Majeski; R. Kaita; M. Boaz; P. Efthimion; T. Gray; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; R. Maingi; M. Maiorano; S. Smith; D. Rodgers

    2004-07-30T23:59:59.000Z

    Part of the development of liquid metals as a first wall or divertor for reactor applications must involve the investigation of plasma-liquid metal interactions in a functioning tokamak. Most of the interest in liquid-metal walls has focused on lithium. Experiments with lithium limiters have now been conducted in the Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory. Initial experiments used a liquid-lithium rail limiter (L3) built by the University of California at San Diego. Spectroscopic measurements showed some reduction of impurities in CDX-U plasmas with the L3, compared to discharges with a boron carbide limiter. While no reduction in recycling was observed with the L3, which had a plasma-wet area of approximately 40 cm2, subsequent experiments with a larger area fully toroidal lithium limiter demonstrated significant reductions in both recycling and in impurity levels. Two series of experiments with the toroidal limiter have now be en performed. In each series, the area of exposed, clean lithium was increased, until in the latest experiments the liquid-lithium plasma-facing area was increased to 2000 cm2. Under these conditions, the reduction in recycling required a factor of eight increase in gas fueling in order to maintain the plasma density. The loop voltage required to sustain the plasma current was reduced from 2 V to 0.5 V. This paper summarizes the technical preparations for lithium experiments and the conditioning required to prepare the lithium surface for plasma operations. The mechanical response of the liquid metal to induced currents, especially through contact with the plasma, is discussed. The effect of the lithium-filled toroidal limiter on plasma performance is also briefly described.

  13. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    Studies of ionic liquids in lithium-ion battery test systemsobstacles for their use in lithium-ion batteries. However,devices. For rechargeable lithium-ion batteries, it is

  14. Recent Liquid Lithium Limiter Experiments in CDX-U

    SciTech Connect (OSTI)

    R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers; S. Angelini

    2005-05-03T23:59:59.000Z

    Recent experiments in the Current Drive eXperiment-Upgrade (CDX-U) provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B{sub toroidal} = 2 kG, I{sub P} =100 kA, T{sub e}(0) {approx} 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium pool limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium pool limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

  15. Liquid Lithium Limiter Experiments in CDX-U

    SciTech Connect (OSTI)

    R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers

    2004-10-28T23:59:59.000Z

    Recent experiments in the Current Drive Experiment-Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R = 34 cm, a = 22 cm, B{sub toroidal} = 2 kG, I{sub P} = 100 kA, T{sub e}(0) = 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium-limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

  16. Liquid Lithium Wall Experiments in CDX-U

    SciTech Connect (OSTI)

    R. Doerner; R. Kaita; R. Majeski; S. Luckhardt; et al

    1999-10-01T23:59:59.000Z

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. Sputtering and erosion tests are currently underway in the PISCES device at the University of California at San Diego (UCSD). To complement this effort, plasma interaction questions in a toroidal plasma geometry will be addressed by a proposed new groundbreaking experiment in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The CDX-U plasma is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used for the first time with a toroidal plasma. Since CDX-U is a small ST, only approximately1 liter or less of lithium is required to produce a toroidal liquid lithium limiter target, leading to a quick and cost-effective experiment.

  17. Kinematic and thermodynamic effects on liquid lithium sputterinjg.

    SciTech Connect (OSTI)

    Allain, J. P.; Coventry, M. D.; Ruzic, D. N.; Mathematics and Computer Science; Univ. of Illinois

    2007-01-01T23:59:59.000Z

    The lithium sputtering yield from lithium and tin-lithium surfaces in the liquid state under bombardment by low-energy, singly charged particles as a function of target temperature is measured by using the Ion-surface Interaction Experiment facility. Total erosion exceeds that expected from conventional collisional sputtering after accounting for lithium evaporation for temperatures between 200 and 400 C. Lithium surfaces treated with high-fluence D atoms are bombarded by H{sup +}, D{sup +}, He{sup +}, and Li{sup +} at energies between 200 and 1000 eV and 45{sup o} incidence. Erosion measurements account for temperature-dependent evaporation. For example, 700 eV He{sup +} particles bombarding the D-treated liquid Li surface at room temperature result in a sputter yield of 0.12 Li/ion and at temperatures {approx}2.0T{sub m} (where T{sub m} is the melting temperature of the sample), a yield near and above unity. The enhancement of lithium sputtering is observed to be a strong function of temperature and moderately on particle energy. Bombardment of a low-vapor-pressure lithium alloy (0.8 Sn-Li), used for comparison, also results in nonlinear rise of lithium erosion as a function of temperature. Measurements on both pure liquid Li and the alloy indicate a weak dependence with surface temperature of the secondary ion-induced secondary ion emission. Treatment of liquid Li surfaces with D, yields reduced sputtering under He{sup +} impact by a factor of 5-6 when measured at room temperature due to preferential sputtering effects.

  18. Collisional and thermal effects on liquid lithium sputtering

    SciTech Connect (OSTI)

    Allain, J. P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Coventry, M. D.; Ruzic, D. N. [University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2007-11-15T23:59:59.000Z

    The lithium sputtering yield from lithium and tin-lithium surfaces in the liquid state under bombardment by low-energy, singly charged particles as a function of target temperature is measured by using the Ion-surface Interaction Experiment facility. Total erosion exceeds that expected from conventional collisional sputtering after accounting for lithium evaporation for temperatures between 200 and 400 deg. C. Lithium surfaces treated with high-fluence D atoms are bombarded by H{sup +}, D{sup +}, He{sup +}, and Li{sup +} at energies between 200 and 1000 eV and 45 deg. incidence. Erosion measurements account for temperature-dependent evaporation. For example, 700 eV He{sup +} particles bombarding the D-treated liquid Li surface at room temperature result in a sputter yield of 0.12 Li/ion and at temperatures {approx}2.0T{sub m} (where T{sub m} is the melting temperature of the sample), a yield near and above unity. The enhancement of lithium sputtering is observed to be a strong function of temperature and moderately on particle energy. Bombardment of a low-vapor-pressure lithium alloy (0.8 Sn-Li), used for comparison, also results in nonlinear rise of lithium erosion as a function of temperature. Measurements on both pure liquid Li and the alloy indicate a weak dependence with surface temperature of the secondary ion-induced secondary ion emission. Treatment of liquid Li surfaces with D, yields reduced sputtering under He{sup +} impact by a factor of 5-6 when measured at room temperature due to preferential sputtering effects.

  19. Diagnostics for liquid lithium experiments in CDX-U

    SciTech Connect (OSTI)

    R. Kaita; P. Efthimion; D. Hoffman; B. Jones; H. Kugel; R. Majeski; T. Munsat; S. Raftopoulos; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Stutman; M. Iovea; M. Finkenthal; R. Doerner; S. Luckhardt; R. Maingi; R. Causey

    2000-06-21T23:59:59.000Z

    A flowing liquid lithium first wall or diverter target could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters, large area diverter targets, and walls, discharges will be established in the Current Drive Experiment-Upgrade (CDX-U) where the plasma-wall interactions are dominated by liquid lithium surfaces. Among the unique CDX-U lithium diagnostics is a multi-layer mirror (MLM) array, which will monitor the 135 {angstrom} LiIII line for core lithium concentrations. Additional spectroscopic diagnostics include a grazing incidence XUV spectrometer (STRS) and a filterscope system to monitor D{sub {alpha}} and various impurity lines local to the lithium limiter. Profile data will be obtained with a multichannel tangential bolometer and a multipoint Thomson scattering system configured to give enhanced edge resolution. Coupons on th e inner wall of the CDX-U vacuum vessel will be used for surface analysis. A 10,000 frame per second fast visible camera and an IR camera will also be available.

  20. Diagnostics for liquid lithium experiments in CDX-U

    SciTech Connect (OSTI)

    Kaita, R.; Efthimion, P.; Hoffman, D.; Jones, B.; Kugel, H.; Majeski, R.; Munsat, T.; Raftopoulos, S.; Taylor, G.; Timberlake, J. (and others) [and others

    2001-01-01T23:59:59.000Z

    A flowing liquid lithium first wall or divertor target could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters, large area divertor targets, and walls, discharges will be established in the Current Drive Experiment-Upgrade (CDX-U) where the plasma--wall interactions are dominated by liquid lithium surfaces. Among the unique CDX-U lithium diagnostics is a multilayer mirror (MLM) array, which will monitor the 13.5 nm LiIII line for core lithium concentrations. Additional spectroscopic diagnostics include a grazing incidence extreme ultraviolet (XUV) spectrometer (STRS) and a filterscope system to monitor D{sub {alpha}} and various impurity lines local to the lithium limiter. Profile data will be obtained with a multichannel tangential bolometer and a multipoint Thomson scattering system configured to give enhanced edge resolution. Coupons on the inner wall of the CDX-U vacuum vessel will be used for surface analysis. A 10000 frame per second fast visible camera and an IR camera will also be available.

  1. 6/15/00 1 Diagnostics for Liquid Lithium Experiments in CDXU

    E-Print Network [OSTI]

    in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters­Upgrade (CDX­U) where the plasma­wall interactions are dominated by liquid lithium surfaces. Among the unique6/15/00 ­ 1 ­ Diagnostics for Liquid Lithium Experiments in CDX­U R. Kaita, a P. Efthimion, a D

  2. Spherical Torus Plasma Interactions with Large-Area Liquid Lithium Surfaces in CDX-U

    E-Print Network [OSTI]

    California at Los Angeles, University of

    - 1 - Spherical Torus Plasma Interactions with Large-Area Liquid Lithium Surfaces in CDX-U R. KAITA of this concept, key liquid lithium-plasma interaction questions are being addressed in the CDX-U device[2 (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution

  3. Liquid Lithium Limiter Effects on Tokamak Plasmas and Plasma-Liquid Surface Interactions

    SciTech Connect (OSTI)

    R. Kaita; R. Majeski; R. Doerner; G. Antar; M. Baldwin; R. Conn; P. Efthimion; M. Finkenthal; D. Hoffman; B. Jones; S. Krashenninikov; H. Kugel; S. Luckhardt; R. Maingi; J. Menard; T. Munsat; D. Stutman; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Whyte; R. Woolley; L. Zakharov

    2002-10-15T23:59:59.000Z

    We present results from the first experiments with a large area liquid lithium limiter in a magnetic fusion device, and its effect on improving plasma performance by reducing particle recycling. Using large area liquid metal surfaces in any major fusion device is unlikely before a test on a smaller scale. This has motivated its demonstration in the CDX-U spherical torus with a unique, fully toroidal lithium limiter. The highest current discharges were obtained with a liquid lithium limiter. There was a reduction in recycling, as indicated by a significant decrease in the deuterium-alpha emission and oxygen radiation. How these results might extrapolate to reactors is suggested in recycling/retention experiments with liquid lithium surfaces under high-flux deuterium and helium plasma bombardment in PISCES-B. Data on deuterium atoms retained in liquid lithium indicate retention of all incident ions until full volumetric conversion to lithium deuteride. The PISCES-B results also show a material loss mechanism that lowers the maximum operating temperature compared to that for the liquid surface equilibrium vapor pressure. This may restrict the lithium temperature in reactors.

  4. Modeling of Spherical Torus Plasmas for Liquid Lithium Wall Experiments

    SciTech Connect (OSTI)

    R. Kaita; S. Jardin; B. Jones; C. Kessel; R. Majeski; J. Spaleta; R. Woolley; L. Zakharo; B. Nelson; M. Ulrickson

    2002-01-29T23:59:59.000Z

    Liquid metal walls have the potential to solve first-wall problems for fusion reactors, such as heat load and erosion of dry walls, neutron damage and activation, and tritium inventory and breeding. In the near term, such walls can serve as the basis for schemes to stabilize magnetohydrodynamic (MHD) modes. Furthermore, the low recycling characteristics of lithium walls can be used for particle control. Liquid lithium experiments have already begun in the Current Drive eXperiment-Upgrade (CDX-U). Plasmas limited with a toroidally localized limiter have been investigated, and experiments with a fully toroidal lithium limiter are in progress. A liquid surface module (LSM) has been proposed for the National Spherical Torus Experiment (NSTX). In this larger ST, plasma currents are in excess of 1 MA and a typical discharge radius is about 68 cm. The primary motivation for the LSM is particle control, and options for mounting it on the horizontal midplane or in the divertor region are under consideration. A key consideration is the magnitude of the eddy currents at the location of a liquid lithium surface. During plasma start up and disruptions, the force due to such currents and the magnetic field can force a conducting liquid off of the surface behind it. The Tokamak Simulation Code (TSC) has been used to estimate the magnitude of this effect. This program is a two dimensional, time dependent, free boundary simulation code that solves the MHD equations for an axisymmetric toroidal plasma. From calculations that match actual ST equilibria, the eddy current densities can be determined at the locations of the liquid lithium. Initial results have shown that the effects could be significant, and ways of explicitly treating toroidally local structures are under investigation.

  5. Lithium as a Liquid Limiter in FTU G.Mazzitelli1

    E-Print Network [OSTI]

    Vlad, Gregorio

    Lithium as a Liquid Limiter in FTU G.Mazzitelli1 , M.L. Apicella1 , M.Marinucci1 , C. Mazzotta1 , V@frascati.enea.it Abstract. The experimental results of the use of a liquid lithium limiter on FTU are presented. To avoid. Lithization of the vacuum vessel is performed by exposing lithium limiter to the plasma boundary for three

  6. Simulations of NSTX with a Liquid Lithium Divertor Module

    SciTech Connect (OSTI)

    D. P. Stotler, R. Maingi, H.W. Kugel, A. Yu. Pigarov, T.D. Rognlien, V.A. Soukhanovskii

    2008-07-08T23:59:59.000Z

    The UEDGE edge plasma transport code is used to model the effect of the reduced recycling provided by the Liquid Lithium Divertor (LLD) module that will be installed in NSTX. UEDGE's transport coefficients are calibrated against an existing NSTX shot using midplane and divertor diagnostic data. The LLD is then incorporated into the simulations as a reduction in the recycling coefficient over the outer divertor. Heat transfer calculations performed using the resulting heat flux profiles indicate that lithium evaporation will be negligible for pulse lengths < 2 s at low (? 2 MW) input power. At high input power (? 7 MW), the pulse length may have to be restricted.

  7. Electrical detection of liquid lithium leaks from pipe joints

    SciTech Connect (OSTI)

    Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2014-11-15T23:59:59.000Z

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k? trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  8. Electrical detection of liquid lithium leaks from pipe joints

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, J. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Mehl, J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451, USA

    2014-11-01T23:59:59.000Z

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k#2; trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  9. Current status of the liquid lithium target

    E-Print Network [OSTI]

    McDonald, Kirk

    in target (mm) 252 x 125Maximum beam current (mA) ~1~10~100Beam spot on the target (cm2) >2 (peak)0.52.5Beam Water direction #12;15 Be Trap Heat Exchanger Cross Section Design to remove ~12 kW Lithium tank #12;Oil cycle Flexible tubes Oil pump Heat exchanger Oil chamber Inside the lab Outside the lab #12;Elect

  10. Comparison of H-Mode Plasmas Diverted to Solid and Liquid Lithium Surfaces

    SciTech Connect (OSTI)

    R. Kaita, et. al.

    2012-07-20T23:59:59.000Z

    Experiments were conducted with a Liquid Lithium Divertor (LLD) in NSTX. Among the goals was to use lithium recoating to sustain deuterium (D) retention by a static liquid lithium surface, approximating the ability of flowing liquid lithium to maintain chemical reactivity. Lithium evaporators were used to deposit lithium on the LLD surface. Improvements in plasma edge conditions were similar to those with lithiated graphite plasma-facing components (PFCs), including an increase in confinement over discharges without lithiumcoated PFCs and ELM reduction during H-modes. With the outer strike point on the LLD, the D retention in the LLD was about the same as that for solid lithium coatings on graphite, or about two times that achieved without lithium PFC coatings. There were also indications of contamination of the LLD surface, possibly due erosion and redeposition of carbon from PFCs. Flowing lithium may thus be needed for chemically active PFCs during long-pulse operation.

  11. PilMNOPQ from the Pseudomonas aeruginosa Type IV Pilus System form a Transenvelope1 Protein Interaction Network that Interacts with PilA*

    E-Print Network [OSTI]

    Burrows, Lori

    sub-58 complexes: the cytoplasmic motor subcomplex (consisting of PilB, PilT, PilU, PilCB (pilus62 extension), PilT and PilU (pilus retraction), and the integral membrane protein, PilC

  12. Response of NSTX Liquid Lithium divertor to High Heat Loads

    SciTech Connect (OSTI)

    Abrams, Tyler; Kallman, J; Kaitaa, R; Foley, E L; Grayd, T K; Kugel, H; Levinton, F; McLean, A G

    2012-07-18T23:59:59.000Z

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ~1.5 MW/m2 for 1-3 seconds. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the "bare" sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface. __________________________________________________

  13. A disiloxane-functionalized phosphonium-based ionic liquid as electrolyte for lithium-ion batteries

    SciTech Connect (OSTI)

    Weng, Wei [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Lu, Jun [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.

    2011-01-01T23:59:59.000Z

    A disiloxane-functionalized ionic liquid based on a phosphonium cation and a bis(trifluoromethylsulfonyl)imide (TFSI) anion was synthesized and characterized. This new ionic liquid electrolyte showed good stability with a lithium transition metal oxide cathode and a graphite anode in lithium ion cells.

  14. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    SciTech Connect (OSTI)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; G. Gettelfinger; T. Gray; D. Hoffman; S. Jardin; H. Kugel; P. Marfuta; T. Munsat; C. Neumeyer; S. Raftopoulos; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; L. Delgado-Aparicio; R.P. Seraydarian; G. Antar; R. Doerner; S. Luckhardt; M. Baldwin; R.W. Conn; R. Maingi; M. Menon; R. Causey; D. Buchenauer; M. Ulrickson; B. Jones; D. Rodgers

    2004-06-07T23:59:59.000Z

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter.

  15. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01T23:59:59.000Z

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  16. Temperature dependence of some liquid lithium properties from the ionic pseudopotential

    E-Print Network [OSTI]

    Engel, Anthony Wells

    1977-01-01T23:59:59.000Z

    OF SCIEECE May 1977 Ma)or Sub)ect: Mnclear Engineering TEMPERATURE DEPENDENCE OP SOME LIQUID LITHIUM PROPERTIES PROM THE IONIC PSEUDOPOTENTIAL A Thesis by ANTHONY WELLS ENGEL Approved as to style and content by: ea o spar men em er em er May 1977... ABSTRACT Temperature Dependence of Some Liquid Lithium Properties from the Ionic Pseudopotential. (May 1977) Anthony Wells Engely A B y Rutgers University Chairman of Advisory Committee: Dr. Henri R. Ieribaux The purpose of this investigation...

  17. Plasma Performance Improvements with Liquid Lithium Limiters in CDX-U

    SciTech Connect (OSTI)

    R. Majeski; M. Boaz; D. Hoffman; B. Jones; R. Kaita; H. Kugel; T. Munsat; J. Spaleta; V. Soukhanovskii; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R.W. Conn; M. Finkenthal; D. Stutman; R. Maingi; and M. Ulrickson

    2002-07-12T23:59:59.000Z

    The use of flowing liquid lithium as a first wall for a reactor has potentially attractive physics and engineering features. The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, Btoroidal = 2 kG, IP =100 kA, T(subscript)e(0) {approx} 100 eV, n(subscript)e(0) {approx} 5 x 10{sup 19} m-3] short-pulse (<25 msec) spherical tokamak with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. The total area of the tray is approximately 2000 cm{sup 2}. The tokamak edge plasma, when operated in contact with the lithium-filled tray, shows evidence of reduced impurities and recycling. The reduction in re cycling and impurities is largest when the lithium is liquefied by heating to 250 degrees Celsius. Discharges which are limited by the liquid lithium tray show evidence of performance enhancement. Radiated power is reduced and there is spectroscopic evidence for increases in the core electron temperature. Furthermore, the use of a liquid lithium limiter reduces the need for conditioning discharges prior to high current operation. The future development path for liquid lithium limiter systems in CDX-U is also discussed.

  18. Spherical Torus Plasma Interactions with Large-area Liquid Lithium Surfaces in CDX-U

    SciTech Connect (OSTI)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; B. Jones; D. Hoffman; H. Kugel; J. Menard; T. Munsat; A. Post-Zwicker; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; G. Antar; R. Doerner; S. Luckhardt; R. Maingi; M. Maiorano; S. Smith

    2002-01-18T23:59:59.000Z

    The Current Drive Experiment-Upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego. Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

  19. Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion Microbatteries

    E-Print Network [OSTI]

    Arnold, Craig B.

    Laser Transferable Polymer-Ionic Liquid Separator/Electrolytes for Solid-State Rechargeable Lithium-Ion characterized by ac-impedance spectroscopy and in lithium- ion microbatteries. Size and weight percent effects be laser transferred onto a substrate to form a solid separator/electrolyte layer for a lithium ion power

  20. A high power beam-on-target test of liquid lithium target for RIA.

    SciTech Connect (OSTI)

    Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

    2005-08-29T23:59:59.000Z

    Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

  1. Liquid surface skimmer apparatus for molten lithium and method

    DOE Patents [OSTI]

    Robinson, Samuel C. (Knoxville, TN); Pollard, Roy E. (Maryville, TN); Thompson, William F. (Oak Ridge, TN); Stark, Marshall W. (Gastonia, NC); Currin, Jr., Robert T. (Salisbury, NC)

    1995-01-01T23:59:59.000Z

    This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

  2. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    SciTech Connect (OSTI)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor

    2010-02-16T23:59:59.000Z

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________

  3. High-flux neutron source based on a liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2013-04-19T23:59:59.000Z

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  4. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    E-Print Network [OSTI]

    Cui, Yi

    A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

  5. Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li* and Nina MahootcheianAsl Richard Lugar Center for Renewable Energy, Department of Mechanical Engineering

  6. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

  7. Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio

    E-Print Network [OSTI]

    McFall-Ngai, Margaret

    with the rest of the operon. The pilB, pilC and pilD loci were flanked at the 39 end by yacE, followedB and pilD) are conserved among strains of V. fischeri, but pilC differs in sequence between symbiotic

  8. High-power liquid-lithium jet target for neutron production

    SciTech Connect (OSTI)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel) [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Berkovits, D.; Eliyahu, I.; Hazenshprung, N.; Mardor, I.; Nagler, A.; Shimel, G.; Silverman, I. [Soreq NRC, Yavne 81800 (Israel)] [Soreq NRC, Yavne 81800 (Israel); Paul, M.; Friedman, M.; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2013-12-15T23:59:59.000Z

    A compact liquid-lithium target (LiLiT) was built and tested with a high-power electron gun at the Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the {sup 7}Li(p,n){sup 7}Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy. The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm{sup 3}) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the {sup 7}Li(p,n) neutron yield, energy distribution, and angular distribution. Liquid lithium is circulated through the target loop at ?200 °C and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power areal densities of >4 kW/cm{sup 2} and volume power density of ?2 MW/cm{sup 3} at a lithium flow of ?4 m/s while maintaining stable temperature and vacuum conditions. The LiLiT setup is presently in online commissioning stage for high-intensity proton beam irradiation (1.91–2.5 MeV, 1–2 mA) at SARAF.

  9. PPPL-3455 PPPL-3455 Diagnostics for Liquid Lithium Experiments in CDX-U

    E-Print Network [OSTI]

    . Efthimion, D. Hoffman, B. Jones, H. Kugel, R. Majeski, T. Munsat, S. Raftopoulos, G. Taylor, J. Timberlake. Raftopoulos, a G. Taylor, a J. Timberlake, a V. Soukhanovskii, c D. Stutman, c M. Iovea, c M. Finkenthal, c RPPPL-3455 PPPL-3455 UC-70 Diagnostics for Liquid Lithium Experiments in CDX-U by R. Kaita, P

  10. Liquid Lithium Wall Experiments in CDXU R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M. Finkenthal, c H. Ji, a H. Kugel, a

    E-Print Network [OSTI]

    Liquid Lithium Wall Experiments in CDX­U R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M ABSTRACT The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance is intensely heated and well diagnosed, and an extensive liquid lithium plasma­facing surface will be used

  11. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    SciTech Connect (OSTI)

    Majeski, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2010-05-20T23:59:59.000Z

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700 deg. C. However, at a sufficiently high operating temperature (700 - 1000 deg. C), tungsten is self-annealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment.The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium.Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands and fusion experiments to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 deg. C), it has been now been used as a PFC in several confinement experiments (TFTR, T11-M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  12. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    SciTech Connect (OSTI)

    R. Majeski

    2010-01-15T23:59:59.000Z

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700oC. However, at a sufficiently high operating temperature (700 - 1000 oC), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands1 and fusion experiments2,3 to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 oC), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  13. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  14. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16T23:59:59.000Z

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  15. Physics Design Requirements for the National Spherical Torus Experiment Liquid Lithium Divertor

    SciTech Connect (OSTI)

    Kugel, W.; Bell, M.; Berzak,L.; Brooks, A.; Ellis, R.; Gerhardt, S.; Harjes, H.; Kaita, R.; Kallman, J.; Maingi, R.; Majeski, R.; Mansfield, D.; Menard, J.; Nygren,R. E.; Soukhanovskii, V.; Stotler, D.; Wakeland, P.; Zakharov L. E.

    2008-09-26T23:59:59.000Z

    Recent NSTX high power divertor experiments have shown significant and recurring benefits of solid lithium coatings on PFC's to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. The next step in this work is installation of a liquid lithium divertor (LLD) to achieve density control for inductionless current drive capability (e.g., about a 15-25% ne decrease from present highest non-inductionless fraction discharges which often evolve toward the density limit, ne/nGW~1), to enable ne scan capability (x2) in the H-mode, to test the ability to operate at significantly lower density for future ST-CTF reactor designs (e.g., ne/nGW = 0.25), and eventually to investigate high heat-flux power handling (10 MW/m2) with longpulse discharges (>1.5s). The first step (LLD-1) physics design encompasses the desired plasma requirements, the experimental capabilities and conditions, power handling, radial location, pumping capability, operating temperature, lithium filling, MHD forces, and diagnostics for control and characterization.

  16. Analysis of tritium extraction from liquid lithium by permeation window and solid gettering processes

    SciTech Connect (OSTI)

    Takeda, T. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan); Ying, A.Y.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    Tritium recovery from liquid lithium at low concentration is an important problem for liquid metal breeder-blanket in a fusion reactor. Previous studies have identified tritium recovery methods including molten salt extraction, gettering recovery, permeation window, and vacuum distillation. In this paper, the authors focus on the numerical studies on tritium extraction by permeation window and gettering processes. These studies include for example: dynamic tritium concentration variation along the flow direction, tritium inventory distributions in the permeator and getter bed, along with the effect of dispersion on extraction efficiency. Using a model description makes it possible to determine functional dependence and provide insight into the interrelationships of the various operating conditions and material properties which may affect the behavior of tritium in the material. Clearly, reliable material properties (such as diffusivity, solubility, etc.) are essential for realistic evaluations.

  17. Liquid-solid phase diagrams of binary carbonates for lithium batteries

    SciTech Connect (OSTI)

    Ding, M.S.; Xu, K.; Jow, T.R.

    2000-05-01T23:59:59.000Z

    The authors present the liquid-solid phase diagrams that they mapped with a differential scanning calorimeter (DSC) for the following seven binary carbonates: dimethyl carbonate (DMC)-ethylene carbonate (EC), ethyl methyl carbonate (EMC)-EC, EMC-propylene carbonate (PC), EMC-dimethyl ethylene carbonate (DMEC), EMC-isobutylene carbonate (iBC), PC-EC, and EMC-DMC. Many of these are among the most frequently used solvent systems for making the nonaqueous electrolytes for lithium batteries. The phase diagrams of these carbonate systems are all of the simple eutectic type but with vastly different particular features. Comparison of these phase diagrams shows that to expand the liquid region of a carbonate system toward low temperature, the two components of the system need to have comparable melting temperatures and compatible molecular structures. These results are consistent with thermodynamic considerations and have significant practical implications.

  18. Lithium Ion Transport Mechanism in Ternary Polymer Electrolyte-Ionic Liquid Mixtures - A Molecular Dynamics Simulation Study

    E-Print Network [OSTI]

    Diddo Diddens; Andreas Heuer

    2013-02-20T23:59:59.000Z

    The lithium transport mechanism in ternary polymer electrolytes, consisting of PEO/LiTFSI and various fractions of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide, are investigated by means of MD simulations. This is motivated by recent experimental findings [Passerini et al., Electrochim. Acta 2012, 86, 330-338], which demonstrated that these materials display an enhanced lithium mobility relative to their binary counterpart PEO/LiTFSI. In order to grasp the underlying microscopic scenario giving rise to these observations, we employ an analytical, Rouse-based cation transport model [Maitra at al., PRL 2007, 98, 227802], which has originally been devised for conventional polymer electrolytes. This model describes the cation transport via three different mechanisms, each characterized by an individual time scale. It turns out that also in the ternary electrolytes essentially all lithium ions are coordinated by PEO chains, thus ruling out a transport mechanism enhanced by the presence of ionic-liquid molecules. Rather, the plasticizing effect of the ionic liquid contributes to the increased lithium mobility by enhancing the dynamics of the PEO chains and consequently also the motion of the attached ions. Additional focus is laid on the prediction of lithium diffusion coefficients from the simulation data for various chain lengths and the comparison with experimental data, thus demonstrating the broad applicability of our approach.

  19. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect (OSTI)

    Liao, Chen [ORNL; Shao, Nan [ORNL; Bell, Jason R [ORNL; Guo, Bingkun [ORNL; Luo, Huimin [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

    2013-01-01T23:59:59.000Z

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  20. Liquid-lithium cooling for 100-kW ISOL and fragmentation targets.

    SciTech Connect (OSTI)

    Nolen, J. A.; Reed, C. B.,Hassanein, A.,Gomes, I. C.

    2000-11-10T23:59:59.000Z

    Advanced exotic beam facilities that are currently being developed will use powerful driver accelerator for the production of short-lived rare isotopes. Multi-beam-drivers capable of producing high power beams from very light to very heavy ions are now technically feasible. A challenge for such facilities is the development of production targets to be used for a variety of reaction mechanisms with beam powers of about 100 kilowatts. This paper presents engineering concepts that have been developed recently for using liquid lithium coolant for two types of targets, one for use with light-ion beams on high atomic number (Z) targets and the other for heavy-ion beams on low-Z targets.

  1. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    SciTech Connect (OSTI)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01T23:59:59.000Z

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  2. Liquid Lithium Divertor and Scrape-Off-Layer Interactions on the National Spherical Torus Experiment: 2010 ? 2013 Progress Report

    SciTech Connect (OSTI)

    None

    2013-08-27T23:59:59.000Z

    The implementation of the liquid Lithium Divertor (LLD) in NSTX presented a unique opportunity in plasma-material interactions studies. A high density Langmuir Probe (HDLP) array utilizing a dense pack of triple Langmuir probes was built at PPPL and the electronics designed and built by UIUC. It was shown that the HDLP array could be used to characterize the modification of the EEDF during lithium experiments on NSTX as well as characterize the transient particle loads during lithium experiments as a means to study ELMs. With NSTX being upgraded and a new divertor being installed, the HDLP array will not be used in NSTX-U. However UIUC is currently helping to develop two new systems for depositing lithium into NSTX-U, a Liquid Lithium Pellet Dripper (LLPD) for use with the granular injector for ELM mitigation and control studies as well as an Upward-Facing Lithium Evaporator (U-LITER) based on a flash evaporation system using an electron beam. Currently UIUC has Daniel Andruczyk Stationed at PPPL and is developing these systems as well as being involved in preparing the Materials Analysis Particle Probe (MAPP) for use in LTX and NSTX-U. To date the MAPP preparations have been completed. New sample holders were designed by UIUC?s Research Engineer at PPPL and manufactured at PPPL and installed. MAPP is currently being used on LTX to do calibration and initial studies. The LLPD has demonstrated that it can produce pellets. There is still some adjustments needed to control the frequency and particle size. Equipment for the U-LITER has arrived and initial test are being made of the electron beam and design of the U-LITER in progress. It is expected to have these ready for the first run campaign of NSTX-U.

  3. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26T23:59:59.000Z

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  4. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    SciTech Connect (OSTI)

    Mun, S.Y.; Lee, H.

    1999-12-01T23:59:59.000Z

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  5. Recent Progress in the NSTX/NSTX-U Lithium Program and Prospects for Reactor-Relevant Liquid-Lithium Based Divertor Development

    SciTech Connect (OSTI)

    M. Ono, et al.

    2012-10-27T23:59:59.000Z

    Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. While tungsten has been identified as the most attractive solid divertor material, the NSTX/NSTX-U lithium (Li) program is investigating the viability of liquid lithium (LL) as a potential reactor compatible divertor plasma facing component (PFC) . In the near term, operation in NSTX-U is projected to provide reactor-like divertor heat loads < 40 MW/m^2 for 5 s. During the most recent NSTX campaign, ~ 0.85 kg of Li was evaporated onto the NSTX PFCs where a ~50% reduction in heat load on the Liquid Lithium Divertor (LLD) was observed, attributable to enhanced divertor bolometric radiation. This reduced divertor heat flux through radiation observed in the NSTX LLD experiment is consistent with the results from other lithium experiments and calculations. These results motivate an LL-based closed radiative divertor concept proposed here for NSTX-U and fusion reactors. With an LL coating, the Li is evaporated from the divertor strike point surface due to the intense heat. The evaporated Li is readily ionized by the plasma due to its low ionization energies, and the ionized Li ions can radiate strongly, resulting in a significant reduction in the divertor heat flux. Due to the rapid plasma transport in divertor plasma, the radiation values can be significantly enhanced up to ~ 11 MJ/cc of LL. This radiative process has the desired function of spreading the focused divertor heat load to the entire divertor chamber facilitating the divertor heat removal. The LL divertor surface can also provide a "sacrificial" surface to protect the substrate solid material from transient high heat flux such as the ones caused by the ELMs. The closed radiative LLD concept has the advantages of providing some degree of partition in terms of plasma disruption forces on the LL, Li particle divertor retention, and strong divertor pumping action from the Li-coated divertor chamber wall. By operating at a lower temperature than the first wall, the LLD can serve to purify the entire reactor chamber, as impurities generally migrate toward lower temperature Li-condensed surfaces. To maintain the LL purity, a closed LL loop system with a modest capacity (e.g., ~ 1 Liter/sec for ~ 1% level "impurities") is envisioned for a steady-state 1 GW-electric class fusion power plant.

  6. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL; Wang, Xiqing [ORNL; Mayes, Richard T [ORNL; Dai, Sheng [ORNL

    2012-01-01T23:59:59.000Z

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  7. Lithium purification technique

    DOE Patents [OSTI]

    Keough, R.F.; Meadows, G.E.

    1984-01-10T23:59:59.000Z

    A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.

  8. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    SciTech Connect (OSTI)

    Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

    2013-10-15T23:59:59.000Z

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

  9. alloy-liquid lithium systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    do Nascimento Jr; J. R. De Medeiros 2001-11-28 6 A Mathematical Model for a Lithium-Ion BatteryElectrochemical Capacitor Hybrid System Energy Storage, Conversion and Utilization...

  10. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    SciTech Connect (OSTI)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-01-01T23:59:59.000Z

    Large-scale energy storage represents a key challenge for renewable energy and new systems with low cost, high energy density and long cycle life are desired. In this article, we develop a new lithium/polysulfide (Li/PS) semi-liquid battery for large-scale energy storage, with lithium polysulfide (Li{sub 2}S{sub 8}) in ether solvent as a catholyte and metallic lithium as an anode. Unlike previous work on Li/S batteries with discharge products such as solid state Li{sub 2}S{sub 2} and Li{sub 2}S, the catholyte is designed to cycle only in the range between sulfur and Li{sub 2}S{sub 4}. Consequently all detrimental effects due to the formation and volume expansion of solid Li{sub 2}S{sub 2}/Li{sub 2}S are avoided. This novel strategy results in excellent cycle life and compatibility with flow battery design. The proof-of-concept Li/PS battery could reach a high energy density of 170 W h kg{sup -1} and 190 W h L{sup -1} for large scale storage at the solubility limit, while keeping the advantages of hybrid flow batteries. We demonstrated that, with a 5 M Li{sub 2}S{sub 8} catholyte, energy densities of 97 W h kg{sup -1} and 108 W h L{sup -1} can be achieved. As the lithium surface is well passivated by LiNO{sub 3} additive in ether solvent, internal shuttle effect is largely eliminated and thus excellent performance over 2000 cycles is achieved with a constant capacity of 200 mA h g{sup -1}. This new system can operate without the expensive ion-selective membrane, and it is attractive for large-scale energy storage.

  11. Bis(fluoromalonato)borate (BFMB) Anion Based Ionic Liquid As an Additive for Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL] [ORNL; Liao, Chen [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. However, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. Here we report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. In addition, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

  12. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z. [Soreq NRC, Yavne 81800 (Israel); Paul, M., E-mail: paul@vms.huji.ac.il; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-05-15T23:59:59.000Z

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (?2 × 10{sup 10} n/s having a peak energy of ?27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  13. Method and Apparatus to Produce and Maintain a thick, flowing, Liquid Lithium first wall for Toroidal Magnetic Confinement DT Fusion Reactors

    SciTech Connect (OSTI)

    Woolley, Robert D.

    1998-10-21T23:59:59.000Z

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fission reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  14. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    DOE Patents [OSTI]

    Woolley, Robert D. (Hillsborough, NJ)

    2002-01-01T23:59:59.000Z

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  15. The role of correlation entropy in nuclear fusion in liquid lithium, indium and mercury

    E-Print Network [OSTI]

    Coraddu, M; Quarati, P; Scarfone, A M

    2015-01-01T23:59:59.000Z

    Nuclear fusion cross-sections considerably higher than corresponding theoretical predictions are observed in low-energy experiments with metal matrix targets and accelerated deuteron beams. The cross-section increment is significantly higher for liquid than for solid targets. We propose that the same two-body correlation entropy used in evaluating the metal melting entropy explains the large liquid-solid difference of the effective screening potential that parameterizes the cross-section increment. This approach is applied to the specific case of the $^6$Li(d,$\\alpha$)$^4$He reaction, whose measured screening potential liquid-solid difference is $(235 \\pm 63)$ eV. Cross sections in the two metals with the highest two-body correlation entropy (In and Hg) have not yet been measured: increments of the cross sections in liquid relative to the ones in solid metals are estimated with the same procedure.

  16. The role of correlation entropy in nuclear fusion in liquid lithium, indium and mercury

    E-Print Network [OSTI]

    M. Coraddu; M. Lissia; P. Quarati; A. M. Scarfone

    2015-01-19T23:59:59.000Z

    Nuclear fusion cross-sections considerably higher than corresponding theoretical predictions are observed in low-energy experiments with metal matrix targets and accelerated deuteron beams. The cross-section increment is significantly higher for liquid than for solid targets. We propose that the same two-body correlation entropy used in evaluating the metal melting entropy explains the large liquid-solid difference of the effective screening potential that parameterizes the cross-section increment. This approach is applied to the specific case of the $^6$Li(d,$\\alpha$)$^4$He reaction, whose measured screening potential liquid-solid difference is $(235 \\pm 63)$ eV. Cross sections in the two metals with the highest two-body correlation entropy (In and Hg) have not yet been measured: increments of the cross sections in liquid relative to the ones in solid metals are estimated with the same procedure.

  17. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    SciTech Connect (OSTI)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse

    1988-03-01T23:59:59.000Z

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs.

  18. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems developed cutting-edge battery technologies to meet the world's growing energy storage demand. The Polymer Ionic Liquid (PIL) rechargeable lithium battery has...

  19. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries....

  20. Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2010-01-01T23:59:59.000Z

    Ionic liquids based on methylpropylpyrrolidinium (MPPY) and methylpropylpiperidinium (MPPI) cations and bis(trifluoromethanesulfionyl)imide (TFSI) anion have been synthesized and characterized by thermal analysis, cyclic voltammetry, impedance spectroscopy as well as gavanostatic charge/discharge tests. 10 wt% of vinylene carbonate (VC) was added to the electrolytes of 0.5 M LiTFSI/MPPY.TFSI and 0.5 M LiTFSI/MPPI.TFSI, which were evaluated in Li || natural graphite (NG) half cells at 25 oC and 50 oC under different current densities. At 25 oC, due to their intrinsic high viscosities, the charge/discharge capacities under the current density of 80 A cm-2 were much lower than those under the current density of 40 A cm-2. At 50 oC, with reduced viscosities, the charge/discharge capacities under both current densities were almost indistinguishable, which were also close to the typical values obtained using conventional carbonate electrolytes. In addition, the discharge capacities of the half cells were very stable with cycling, due to the effective formation of solid electrolyte interphase (SEI) on the graphite electrode. On the contrary, the charge/discharge capacities of the Li || LiCoO2 cells using both ionic liquid electrolytes under the current density of 40 A cm-2 decreased continually with cycling, which were primarily due to the low oxidative stability of VC on the surface of LiCoO2.

  1. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  2. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  3. Estimation of Radioactivities in the IFMIF Liquid Lithium Loop Due to the Erosion and Corrosion of Target Back-Wall

    SciTech Connect (OSTI)

    Yamauchi, M. [Japan Atomic Energy Agency (Japan); Takemura, M. [Japan Atomic Energy Agency (Japan); Nakamura, H. [Japan Atomic Energy Agency (Japan); Fischer, U. [Institut fuer Reaktorsicherheit (Germany); Ida, M. [Japan Atomic Energy Agency (Japan); Mori, S. [KHI (Japan); Sato, S. [Japan Atomic Energy Agency (Japan); Nishitani, T. [Japan Atomic Energy Agency (Japan); Simakov, T. [Institut fuer Reaktorsicherheit (Germany); Sugimoto, M. [Japan Atomic Energy Agency (Japan)

    2005-05-15T23:59:59.000Z

    Large amount of radioactive erosion and corrosion products are produced in the IFMIF lithium loop in addition to the deuteron-lithium reaction remnant {sup 7}Be. An analysis was conducted to estimate the radioactive corrosion products with a design code ACT-4 developed in JAERI, the activation cross sections based on the FENDL library and the IEAF-2001 library, the latest version of nuclear activation data in the intermediate energy range up to 150 MeV. The result says the concentration of the corrosion in lithium is not very large compared with that of {sup 7}Be. However, the behavior of the nuclides such as accumulation and detachment on material has not been clarified yet. When the dose rate around the lithium loop was estimated under the condition of 100% plate-out, the value was beyond the acceptable level for the hands-on maintenance near the loop soon after the operation stop. It means that a very efficient cold trap is required so that the 90% activity in the lithium loop is removed.

  4. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammels, A.F.

    1987-08-04T23:59:59.000Z

    A solvated electron lithium negative electrode is described containing: containment means holding a solution of lithium dissolved in liquid ammonia to form a solvated electron solution, the solvated electron solution contacting a lithium intercalating membrane and providing lithium to the intercalating membrane during discharge and accepting it from the intercalating membrane during charge.

  5. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27T23:59:59.000Z

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  6. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01T23:59:59.000Z

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  7. Hydrogen, lithium, and lithium hydride production

    DOE Patents [OSTI]

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25T23:59:59.000Z

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  8. One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries

    SciTech Connect (OSTI)

    Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

    2013-10-15T23:59:59.000Z

    Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup ?1} after 50 cycles @100 mA g{sup ?1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

  9. Stabilization of tokamak plasma by lithium streams L. E. Zakharov,

    E-Print Network [OSTI]

    a stabilization mechanism independent of the plasma properties. 2. Interaction of lithium streams with externalStabilization of tokamak plasma by lithium streams L. E. Zakharov, Princeton Plasma Physics-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated

  10. Stabilization of tokamak plasma by lithium streams L. E. Zakharov,

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    a stabilization mechanism independent of the plasma properties. 2 Interaction of lithium streams with externalStabilization of tokamak plasma by lithium streams L. E. Zakharov, Princeton Plasma Physics-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated

  11. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

    1996-01-01T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  12. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Liu, C.

    1996-04-09T23:59:59.000Z

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  13. Park City/ANS 1 EVOLVE LITHIUM TRAY THERMAL-HYDRAULIC ANALYSIS

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Park City/ANS 1 EVOLVE LITHIUM TRAY THERMAL-HYDRAULIC ANALYSIS M.H. Anderson, J.G. Murphy, M is viable, thermal-hydraulic analyses were performed on the outboard liquid lithium blanket trays. Various

  14. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

    2008-06-24T23:59:59.000Z

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  15. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

    2012-01-31T23:59:59.000Z

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  16. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

    2011-04-05T23:59:59.000Z

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  17. Thin Liquid Wall Concepts and the CLiFF Design APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    material like lithium, lead-lithium, tin-lithium or Flibe. Thus the liquid removed from the reactor can of a hydrogen or impurity getter (like lithium) on the fuel balance in the reactor system, liquid removal or drainage from a zero pressure chamber, corrosion, and nuclear damage of support structures and electrical

  18. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    SciTech Connect (OSTI)

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01T23:59:59.000Z

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  19. Lithium Local Pseudopotential Using

    E-Print Network [OSTI]

    Petta, Jason

    Lithium Local Pseudopotential Using DFT Sergio Orozco Student Advisor: Chen Huang Faculty Mentor Lithium LPS Test Lithium LPS #12;Density Functional Theory (DFT) Successful quantum mechanical approach (1979) #12;Building LPS for Lithium Create a LPS using NLPS density for Lithium Test LPS by comparing

  20. Lithium Circuit Test Section Design and Fabrication

    SciTech Connect (OSTI)

    Godfroy, Thomas; Garber, Anne; Martin, James [NASA Marshall Space Flight Center, Nuclear Systems Engineering Analysis, Huntsville, Alabama 35812 (United States)

    2006-01-20T23:59:59.000Z

    The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  1. (Lithium and lead-lithium corrosion and chemistry)

    SciTech Connect (OSTI)

    Tortorelli, P.F.

    1989-10-09T23:59:59.000Z

    Presentations on Mass Transport Processes in Li/Fe-12Cr-1MoVW Steel,'' A Lower Temperature Lithium Purification Process Incorporating Warm Trapping','' and Kinetic Analysis of Corrosion in Pb-17 at. % Li and Comparison to Pure Lithium'' were given by the traveler at the 1989 European Workshop on Lithium and Lead-Lithium Corrosion and Chemistry in Vienna, Austria. The European effort in lead-lithium appeared to be continuing unabated with a future focus on deposition and surface products reactions that can lead to corrosion control. The temperature gain realized from the use of ferritic/martensitic steels instead of austenitic steels in Pb-17 at. % Li appears to be 25--50{degrees}C. The traveler also visited the European Community's Joint Research Centre at Ispra to discuss Fe-Mn-Cr steels. He presented a seminar on Recent ORNL Results on the Development of Fe-Mn-Cr Steels,'' and toured the liquid metal laboratories. Our developmental Fe-Mn-Cr steels, which are compositionally tailored for shallow land burial, would not qualify as low activation'' materials per European standards. Because of both this and the poor sensitization resistance of these steels, our alloy development strategy for reduced activation materials should be critically reviewed.

  2. The Impact Of Lithium Wall Coatings On NSTX Discharges And The Engineering Of The Lithium Tokamak eXperiment (LTX)

    SciTech Connect (OSTI)

    R. Majeski, H. Kugel and R. Kaita

    2010-03-18T23:59:59.000Z

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both Land H- mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500 - 600 oC to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  3. Corrosion behaviour of materials selected for FMIT lithium system

    SciTech Connect (OSTI)

    Bazinet, G.D.; Brehm, W.F.

    1983-09-01T23:59:59.000Z

    The corrosion behavior of selected materials in a liquid lithium environment was studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. Testing conditions ranged from about 3700 to about6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/ to 270/sup 0/C and static lithium at temperatures from 200/sup 0/ to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects on FMIT lithium system baseline and candidate materials. Material coupons and full-size prototypic components were evaluated to determine corrosion rates, fatigue crack growth rates, structural compatibility, and component acceptability for the lithium system. Based on the results of these studies, concerns regarding system materials and component designs were satisfactorily resolved to support a 20-year design life requirement for the FMIT lithium system.

  4. Joint Center for Energy Storage Research Beyond Lithium-Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research Beyond Lithium-Ion 2012 2017 USE MULTIPLY-CHARGED IONS STORE ENERGY IN CHEMICAL BONDS STORE ENERGY IN LIQUIDS IN THE NEXT FIVE YEARS AT...

  5. Minerals Yearbook 1989: Lithium

    SciTech Connect (OSTI)

    Ober, J.A.

    1989-01-01T23:59:59.000Z

    The United States led the world in lithium mineral and compound production and consumption. Estimated consumption increased slightly, and world production also grew. Sales increased for domestic producers, who announced price increases for the third consecutive year. Because lithium is electrochemically reactive and has other unique properties, there are many commercial lithium products. Producers sold lithium as mineral concentrate, brine, compound, or metal, depending upon the end use. Most lithium compounds were consumed in the production of ceramics, glass, and primary aluminum.

  6. NSTX Plasma Response to Lithium Coated Divertor

    SciTech Connect (OSTI)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21T23:59:59.000Z

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  7. Cells containing solvated electron lithium negative electrodes

    SciTech Connect (OSTI)

    Uribe, F.A.; Semkow, K.W.; Sammells, A.F. (Eltron Research, Incorporated, Aurora, IL (US))

    1989-12-01T23:59:59.000Z

    Preliminary work performed on a novel solvated electron lithium negative electrode which may have application in either high energy density secondary or reserve battery systems is discussed. The lithium electrode investigated consisted of lithium initially dissolved in liquid ammonia to give a solvated electron solution. Containment of this liquid negative active material from direct contact with a liquid nonaqueous electrolyte present in the cell positive electrode compartment was addressed via the use of a lithium intercalated electronically conducting ceramic membrane of the general composition Li{sub x}WO{sub 2}(0.1{lt}x{lt} 1.0). Secondary electrochemical cells having the general configuration Li,NH{sub 3}/Li{sub x}WO{sub 2}NAE/TiS{sub 2} using nonaqueous electrolytes (NAE) based upon both propylene carbonate and 2Me-THF. Depending upon initial lithium activity in the negative electrode compartments the cell possessed an initial open-circuit potential (OCP 3.44V). Both cells, which were operated at ambient pressure (low temperature) and ambient temperature (high pressure) showed evidence for electrochemical reversibility.

  8. Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

  9. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  10. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1982-02-09T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  11. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

    1983-01-01T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  12. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  13. Design Constraints for Liquid-Protected Divertors S. Shin, S. I. Abdel-Khalik

    E-Print Network [OSTI]

    California at San Diego, University of

    , and particle surface interactions to establish the operating windows for candidate liquids [4]. Lithium, Flibe for lithium, Flibe, lithium- lead, tin, and gallium are presented. The generalized charts developed. INTRODUCTION Work on liquid-surface-protected plasma facing components, and plasma surface interactions, has

  14. Lithium pellet production (LiPP): A device for the production of small spheres of lithium

    SciTech Connect (OSTI)

    Fiflis, P.; Andrucyzk, D.; McGuire, M.; Curreli, D.; Ruzic, D. N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2013-06-15T23:59:59.000Z

    With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of {Delta}P= 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D= 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

  15. Lithium Ion Production NDE

    E-Print Network [OSTI]

    Lithium Ion Electrode Production NDE and QC Considerations David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel 12/9/13 EERE Quality Control Workshop #12;2 Presentation name Lithium Ion Electrode to be meaningful and provide electrode and cell QC. #12;3 Presentation name New Directions in Lithium Ion Electrode

  16. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01T23:59:59.000Z

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

  17. High performance batteries with carbon nanomaterials and ionic liquids

    DOE Patents [OSTI]

    Lu, Wen (Littleton, CO)

    2012-08-07T23:59:59.000Z

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  18. Properties of lead-lithium solutions

    SciTech Connect (OSTI)

    Hoffman, N.J.; Darnell, A.; Blink, J.A.

    1980-10-01T23:59:59.000Z

    Lead-lithium solutions are of interest to liquid metal wall ICF reactor designers because Pb may be present to some extent in both heavy ion beam and laser-driven ICF targets; therefore, Pb will be present as an impurity in a flowing lithium wall. In addition, Pb-Li solutions containing approx. 80 a/o Pb are a strong candidate for a heavy ion beam driven HYLIFE converter and a viable alternative to a pure Li wall for a laser driven converter. The properties of Pb-Li solutions including the effect of hydrogen impurities are reviewed, and the reactor design implications are discussed.

  19. A Preliminary Evaluation of Alternative Liquid Desiccants for a Hybrid Desiccant Air Conditioner

    E-Print Network [OSTI]

    Studak, J. W.; Peterson, J. L.

    1988-01-01T23:59:59.000Z

    and the condenser of a vapor-compression air conditioner. The liquid desiccants studied were lithium chloride, lithium bromide, calcium chloride, and triethylene glycol. Each candidate desiccant was subjected to a screening process which weighed the merits...

  20. Conference report on the 3rd international symposium on lithium application for fusion devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-02-01T23:59:59.000Z

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more »T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less

  1. Conference report on the 3rd international symposium on lithium application for fusion devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mazzitelli, G. [Associazione EURATOM-ENEA sulla fusione, Centro Ricerche di Frascati (Italy); Hirooka, Y. [National Institute for Fusion Science and Graduate University for Advanced Studies, Toki (Japan); Hu, J. S. [Chinese Academy of Sciences, Hefei (China); Mirnov, S. V. [TRINITI, Troitsk, Moscow (Russian Federation); NRNU MEPhI, Moscow (Russian Federation); Nygren, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shimada, M. [JAEA-International Fusion Research Centre, IFERC Obuchi (Japan); Ono, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Tabares, F. L. [National Institute for Fusion, As EURATOM/CIEMAT, Madrid (Spain)

    2015-02-01T23:59:59.000Z

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  2. Lithium-system corrosion/erosion studies for the FMIT project

    SciTech Connect (OSTI)

    Bazinet, G.D. (comp.)

    1983-04-01T23:59:59.000Z

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and static lithium at temperatures from 200/sup 0/C to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components.

  3. Particle Control and Plasma Performance in the Lithium Tokamak Experiment (LTX)

    SciTech Connect (OSTI)

    Richard Majeski, et. al.

    2013-02-21T23:59:59.000Z

    The Lithium Tokamak eXperiment (LTX) is a small, low aspect ratio tokamak, which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350{degree}C. Several gas fueling systems, including supersonic gas injection, and molecular cluster injection have been studied, and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 msec. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 msec. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak - thin, evaporated, liquefied coatings of lithium - does not produce an adequately clean surface.

  4. A comparative study of the corrosion resistance of an austenitic steel in lithium and the eutectic lead-lithium alloy

    SciTech Connect (OSTI)

    Gryaznov, G.M.; Evtikhin, V.A.; Kosukhin, A.Y.; Zavyal'skii, L.P.

    1986-05-01T23:59:59.000Z

    In a number of designs of thermonuclear reactors, besides liquid lithium, the use of lead-lithium alloy of the eutectic composition (Pb/sub 83/ Li/sub 17/) is envisaged for tritium breeding, heat transfer, and protecting the primary wall. The interaction of this alloy with water and air is less vigorous as compared to lithium, and the (n, 2n) type reactions involving lead atoms can ensure a tritium-breeding factor exceeding unity in the blanket at a relatively low concentration of lithium in the alloy. Tests are carried out on the 18-10 steel in convective currents of lithium and the Pb-17Li alloy in order to compare their corrosive action on the austenitic chromiumnickel steels that are promising materials for the primary wall and the blanket. Based on the obtained results, the high corrosive activity of the lead-lithium alloy as compared to pure lithium can be explained in the following way: the increased solubility of iron in lead as compared to that in lithium alone cannot ensure the observed rate of mass transfer of the steel by the lead base alloy.

  5. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

  6. MEASUREMENTS OF SPECIFIC ELECTRICAL CONTACT RESISTANCE BETWEEN SIC AND LEAD-LITHIUM EUTECTIC ALLOY

    E-Print Network [OSTI]

    Abdou, Mohamed

    MEASUREMENTS OF SPECIFIC ELECTRICAL CONTACT RESISTANCE BETWEEN SIC AND LEAD-LITHIUM EUTECTIC ALLOY Neil B. Morley, Albert Medina, and Mohamed A. Abdou Mechanical &Aerospace Engineering, UCLA, Los resistance of disks of high purity CVD SiC were measured with liquid lead-lithium eutectic (LLE) alloy melts

  7. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field Leonid E. Zakharov the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks takes into account the propulsion e#11;ect, viscosity and the drag force due to magnetic pumping

  8. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    SciTech Connect (OSTI)

    Corbus, D.; Hammel, C.J.

    1995-02-01T23:59:59.000Z

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  9. Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation through a Glass-Bottom Boat BRETT L and reactivities, we were drawn to lithium hexamethyldisilazide (LiHMDS; (Me3Si)2NLi) by its promi- nence principles of lithium ion coordination chemistry.2 Understanding how solvation influences organolithium

  10. Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide-Mediated Ortholithiations: Lithium Chloride Catalysis Lekha Gupta, 2008 Ortholithiations of a range of arenes mediated by lithium diisopropylamide (LDA) in THF at -78 °C protocols with unpurified commercial samples of n-butyl- lithium to prepare LDA or commercially available

  11. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  12. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-A. Aging Mechanisms in Lithium-Ion Batteries. Journal of

  13. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  14. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  15. Lithium Insertion Chemistry of Some Iron Vanadates

    E-Print Network [OSTI]

    Patoux, Sebastien; Richardson, Thomas J.

    2008-01-01T23:59:59.000Z

    in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sébastien

  16. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

  17. Lithium Insertion Chemistry of Some Iron Vanadates

    E-Print Network [OSTI]

    Patoux, Sebastien; Richardson, Thomas J.

    2008-01-01T23:59:59.000Z

    G.Pistoia (Eds. ), Lithium batteries, Science & Technology,Keywords: Lithium batteries, iron vanadates, insertionelectrode materials for lithium batteries, (mostly layered

  18. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

  19. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  20. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

  1. ARM - Campaign Instrument - pils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to hear from you!jpl Comments? WegovInstrumentsphotoacoustic Comments?

  2. ARM - Instrument - pils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40mgovInstrumentsmwr3c Documentation MWR3CgovInstrumentspgs Documentation PGS : Handbook

  3. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01T23:59:59.000Z

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  4. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  5. Improvement in Plasma Performance with Lithium Coatings in NSTX

    SciTech Connect (OSTI)

    Kaita, R

    2009-02-17T23:59:59.000Z

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFC's) have been demonstrated on many fusion devices, including TFTR, T-11M, and FT-U. Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  6. Improvement in Plasma Performance with Lithium Coatings in NSTX

    SciTech Connect (OSTI)

    Kaita, R; Ahn, J -W; Allain, J P; Bell, M G; Bell, R; Boedo, J; Bush, C; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Wampler, W R; Wilgen, J B

    2008-09-12T23:59:59.000Z

    Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFCOs) have been demonstrated on many fusion devices, including TFTR, [1] T-11M, [2] and FT-U. [3] Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. [4] The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.

  7. Measurement and monitoring of tritium and other critical issues in Lead Lithium Ceramic Breeder (LLCB)

    SciTech Connect (OSTI)

    Tangri, V. K.; Mohan, S. [Heavy Water Div., Bhabha Atomic Research Centre (India); Narayanan, A.; Narayan, K. K. [Radiation Safety Systems Div., Bhabha Atomic Research Centre (India)

    2008-07-15T23:59:59.000Z

    A new Indian concept involving a lead lithium ceramic breeder is being explored. LLCB based tritium blanket modules require tritium extraction from lead-lithium as well as from helium purge gas. This paper addresses the concept of efficiency enhancement using high surface area, low-pressure drop structured gas liquid contactors for tritium extraction from the lead lithium. Conceptual flow schemes for both loops are discussed and critical issues are highlighted. Tritium monitoring systems (TMS) for measurement and monitoring of tritium is also dealt. A fast responding tritium monitor has also been developed for in situ measurement of tritium in water or gas form. It has been tested for liquid effluents. (authors)

  8. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    D. Thin-film lithium and lithium-ion batteries. Solid StateH. Polymer electrolytes for lithium-ion batteries. AdvancedReviews, 2010). Ozawa, K. Lithium-ion rechargeable batteries

  9. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08T23:59:59.000Z

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  10. Electrocatalysts for Nonaqueous Lithium–Air Batteries:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

  11. Stabilization of tokamak plasma by lithium streams Leonid E. Zakharov

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    -boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formu- lated leave discussion of numerous issues speci#12;c for magnetic propulsion and magnetohydrodynamics, 52.65.Kj Typeset using REVT E X 1 #12; Recently, the author proposed a mechanism of magnetic

  12. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  13. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08T23:59:59.000Z

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  14. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    efficiency of dye-sensitized solar cells,’’ J. Phys. Chem.in dye-sensitized nanocrystalline solar cells,’’ J. Phys.

  15. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    conducting polymer electrochromic devices using ionicelectrochemical cells and electrochromic devices, including

  16. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect (OSTI)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20T23:59:59.000Z

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  17. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01T23:59:59.000Z

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  18. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect (OSTI)

    Allain, Jean Paul; Taylor, Chase N. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, Indiana 47907 (United States)

    2012-05-15T23:59:59.000Z

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  19. Fusion Engineering and Design 81 (2006) 15431548 Exploring liquid metal plasma facing component (PFC)

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    of some liquid metals like lithium to Corresponding author. Tel.: +1 310 948 5200; fax: +1 310 825 2599, pound- ing on the plasma facing components and alleviate the very serious problem of melting and erosion interest in studying the behavior of liquid lithium streams, flowing at a velocity of 10 m/s inside

  20. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect (OSTI)

    Masayuki Ono

    2012-09-10T23:59:59.000Z

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

  1. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  2. Micro-and nanoscale domain engineering in lithium niobate and lithium tantalate

    E-Print Network [OSTI]

    Byer, Robert L.

    Micro- and nanoscale domain engineering in lithium niobate and lithium tantalate Vladimir Ya. Shur investigation of the domain evolution in lithium niobate and lithium tantalate during backswitched electric sources based on quasi-phase matching.11 Lithium niobate LiNbO3 (LN) and lithium tantalate LiTaO3 (LT

  3. Graphite Foams for Lithium-Ion Battery Current Collectors

    SciTech Connect (OSTI)

    Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

    2007-01-01T23:59:59.000Z

    Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

  4. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01T23:59:59.000Z

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  5. Lithium disulfide battery

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1988-01-01T23:59:59.000Z

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  6. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    SciTech Connect (OSTI)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25T23:59:59.000Z

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  7. Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation

    SciTech Connect (OSTI)

    Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Maingi, R. [Oak Ridge National Laboratory (ORNL)

    2010-01-01T23:59:59.000Z

    NSTX high power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following the wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a liquid lithium divertor surface on the outer part of the lower divertor.

  8. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanbook is intended for lithium-ion scientists and engineersof the state of the Lithium-ion art and in this they have

  9. Double Photoionization of excited Lithium and Beryllium

    E-Print Network [OSTI]

    Yip, Frank L.

    2010-01-01T23:59:59.000Z

    of excited Lithium and Beryllium F. L. Yip, 1 C. W. McCurdy,ion- ization of lithium and beryllium starting from aligned,DPI from aligned lithium and beryllium atoms in excited P-

  10. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  11. Sputter deposition of lithium silicate - lithium phosphate amorphous electrolytes

    SciTech Connect (OSTI)

    Dudney, N.J.; Bates, J.B.; Luck, C.F. (Oak Ridge National Lab., TN (USA)); Robertson, J.D. (Kentucky Univ., Lexington, KY (USA). Dept. of Chemistry)

    1991-01-01T23:59:59.000Z

    Thin films of an amorphous lithium-conducting electrolyte were deposited by rf magnetron sputtering of ceramic targets containing Li{sub 4}SiO{sub 4} and Li{sub 3}PO{sub 4}. The lithium content of the films was found to depend more strongly on the nature and composition of the targets than on many other sputtering parameters. For targets containing Li{sub 4}SiO{sub 4}, most of the lithium was found to segregate away from the sputtered area of the target. Codeposition using two sputter sources achieves a high lithium content in a controlled and reproducible film growth. 10 refs., 4 figs.

  12. Performance Projections For The Lithium Tokamak Experiment (LTX)

    SciTech Connect (OSTI)

    Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

    2009-06-17T23:59:59.000Z

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

  13. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  14. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  15. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  16. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  17. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials...

  18. Fragmentation of suddenly heated liquids

    SciTech Connect (OSTI)

    Blink, J.A.

    1985-03-01T23:59:59.000Z

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion.

  19. Lithium-based electrochromic mirrors

    E-Print Network [OSTI]

    Richardson, Thomas J.; Slack, Jonathan L.

    2003-01-01T23:59:59.000Z

    LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson*with pure antimony films. Electrochromic cycling speed andand silver. INTRODUCTION Electrochromic devices that exhibit

  20. Lithium Research Status and PlansLithium Research Status and Plans Charles H. Skinner, PPPL

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Lithium Research Status and PlansLithium Research Status and Plans Charles H. Skinner, PPPL Robert February 3-5, 2010 #12;NSTX PAC-27 ­ Lithium Research Status and Plans 2/15February 3-5, 2010 NSTX lithium research is an integral part of a program to develop lithium as a PFC concept for magnetic fusion NSTX w

  1. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-01-01T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  2. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  3. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    ion batteries In current lithium ion battery technology,ion batteries The first commercialized lithium-ion batteryfirst lithium-ion battery. Compared to the other batteries,

  4. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of VariousMiller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology and

  5. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  6. ELLIPSOMETRY OF SURFACE LAYERS ON LEAD AND LITHIUM

    E-Print Network [OSTI]

    Peters, Richard Dudley

    2011-01-01T23:59:59.000Z

    rate. The corrosion reaction between lithium and water vaporOpen Circuit Corrosion Bo Lithium, , L A~ueous Electrolytecalculated representing corrosion of lithium in water vapor,

  7. Effects of Carbonate Solvents and Lithium Salts on Morphology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic...

  8. ELLIPSOMETRY OF SURFACE LAYERS ON LEAD AND LITHIUM

    E-Print Network [OSTI]

    Peters, Richard Dudley

    2011-01-01T23:59:59.000Z

    Surface Layers on Lead and Lithium By Richard Dudley Peterssulfuric acid and and lithium to water, Acid concentrationsbeen observed in the reaction of lithium with water vapor. i

  9. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

  10. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

  11. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

  12. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

  13. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

  14. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

  15. Particle control and plasma performance in the Lithium Tokamak eXperiment

    SciTech Connect (OSTI)

    Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kubota, S. [University of California at Los Angeles, Los Angeles, California 90095 (United States)] [University of California at Los Angeles, Los Angeles, California 90095 (United States); and others

    2013-05-15T23:59:59.000Z

    The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.

  16. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  17. Novel carbonaceous materials for lithium secondary batteries

    SciTech Connect (OSTI)

    Sandi, G.; Winans, R.E.; Carrado, K.A.; Johnson, C.S.

    1997-07-01T23:59:59.000Z

    Carbonaceous materials have been synthesized using pillared clays (PILCs) as templates. The PILC was loaded with organic materials such as pyrene in the liquid and vapor phase, styrene in the vapor phase, trioxane, ethylene and propylene. The samples were then pyrolyzed at 700 C in an inert atmosphere, followed by dissolution of the inorganic template by conventional demineralization methods. X-ray powder diffraction of the carbons showed broad d{sub 002} peaks in the diffraction pattern, indicative of a disordered or turbostratic system. N{sub 2} BET surface areas of the carbonaceous materials range from 10 to 100 m{sup 2}/g. There is some microporosity (r < 1 nm) in the highest surface area carbons. Most of the surface area, however, comes from a mixture of micro and mesopores with radii of 2--5 nm. Electrochemical studies were performed on these carbons. Button cells were fabricated with capacity- limiting carbon pellets electrodes as the cathode a/nd metallic lithium foil as the anode. Large reversible capacities (up to 850 mAh/g) were achieved for most of the samples. The irreversible capacity loss was less than 180 mAh/g after the first cycle, suggesting that these types of carbon materials are very stable to lithium insertion and de-insertion reactions.

  18. High power density self-cooled lithium-vanadium blanket.

    SciTech Connect (OSTI)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01T23:59:59.000Z

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  19. Density functional and neutron diffraction studies of lithium polymer electrolytes.

    SciTech Connect (OSTI)

    Baboul, A. G.

    1998-06-26T23:59:59.000Z

    The structure of PEO doped with lithium perchlorate has been determined using neutron diffraction on protonated and deuterated samples. The experiments were done in the liquid state. Preliminary analysis indicates the Li-O distance is about 2.0 {angstrom}. The geometries of a series of gas phase lithium salts [LiCF{sub 3}SO{sub 3}, Li(CF{sub 3}SO{sub 2}){sub 2}N, Li(CF{sub 3}SO{sub 2}){sub 2}CH, LiClO{sub 4}, LiPF{sub 6}, LiAsF{sub 6}] used in polymer electrolytes have been optimized at B3LYP/6-31G(d) density functional level of theory. All local minima have been identified. For the triflate, imide, methanide, and perchlorate anions, the lithium cation is coordinated to two oxygens and have binding energies of ca 141 kcal/mol at the B3LYP/6-311+G(3df,2p)/B3LYP/6-31G* level of theory. For the hexafluoroarsenate and hexafluorophosphate the lithium cation is coordinated to three oxygens and have binding energies of ca. 136 kcal/mol.

  20. A STUDY OF LIQUID METAL FILM FLOW, UNDER FUSION RELEVANT MAGNETIC FIELDS M. Narula, A. Ying and M.A. Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    of some liquid metals, like lithium to pump hydrogen and getter impurities and hence act as an active on the plasma facing components and alleviate the very serious problem of melting and erosion, inevitably.5%) and is preferred over lithium because of safety issues and ease of handling and operation. The liquid metal

  1. Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX

    SciTech Connect (OSTI)

    Kaita, R; Kugel, H; Bell, M G; Bell, R; Boedo, J; Bush, C; Ellis, R; Gates, D; Gerhardt, S; Gray, T; Kallman, J; Kaye, S; LeBlanc, B; Majeski, R; Maingi, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, S H; Soukhanovskii, V; Stevenson, T; Stotler, D; Timberlake, J; Zakharov, L; Ahn, J; Allain, J P; Wampler, W R

    2009-01-08T23:59:59.000Z

    Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

  2. Plasma Performance Improvement with Lithium-Coated Plasma-Facing Components in NSTX

    SciTech Connect (OSTI)

    Kaita, R., et. al.

    2008-09-29T23:59:59.000Z

    Lithium as a plasma-facing material has many attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Recent NSTX experiments have shown, for the first time, significant and recurring benefits of lithium coatings on plasma-facing components (PFC's) to the performance of divertor plasmas in both L- and H- mode confinement regimes heated by high-power neutral beams. They included decreases in the plasma density and inductive flux consumption, and increases in the electron temperature, ion temperature, energy confinement time, and DD neutron rate. Extended periods of MHD quiescence were also achieved, and measurements of the visible emission from the lower divertor showed a reduction in the deuterium, carbon, and oxygen line emission. Other salient results with lithium evaporation included a broadening of the electron temperature profile, and changes in edge density gradients that benefited electron Bernstein wave coupling. There was also a reduction in ELM frequency and amplitude, followed by a period of complete ELM suppression. In general, it was observed that both the best and the average confinement occurred after lithium deposition and that the increase in WMHD occurs mostly through an increase in We. In addition, a liquid lithium divertor (LLD) is being installed on NSTX this year. As the first fully-toroidal liquid metal divertor target, experiments with the LLD can provide insight into the behavior of metallic ITER PFC's should they liquefy during high-power divertor tokamak operations. The NSTX lithium coating and LLD experiments are important near-term steps in demonstrating the potential of liquid lithium as a solution to the first-wall problem for both magnetic and inertial fusion reactors.

  3. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  4. Electromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    to avoid corrosion or fire. Lithium's high electrical conductivity may possibly permit efficient, compactElectromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999 6-1 CHAPTER 6: ELECTROMAGNETICALLY RESTRAINED LITHIUM BLANKET Contributors Robert Woolley #12;Electromagnetically Restrained Lithium

  5. Lithium Reagents DOI: 10.1002/anie.200603038

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Reagents DOI: 10.1002/anie.200603038 Lithium Diisopropylamide: Solution Kinetics Keywords: kinetics · lithium diisopropylamide · metalation · solvent effects · synthesis design D. B: lithium diiso- propylamide (LDA). LDA has played a profound role in organic synthesis, serving as the base

  6. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01T23:59:59.000Z

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  7. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven J. Visco, CEO & CTO, PolyPlus Battery Company U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 Manufacturing of Protected Lithium...

  8. Magnetic propulsion of liquid Li in tokamaks 1

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Magnetic propulsion of liquid Li in tokamaks 1 Leonid E. Zakharov, Princeton University, Princeton of the torus. This effect of magnetic propulsion can be used for developing new approaches for protecting circumference. On the other hand, when the liquid lithium is held in a closed volume, magnetic propulsion

  9. Anion-driven mesogenicity: ionic liquid crystals based on the [closo-1-Bryan Ringstrand,a

    E-Print Network [OSTI]

    Kaszynski, Piotr

    for their potential applications as electrolytes for e.g. lithium ion batteries. The closest examples of such ILCs been investigated as counterions in ionic liquids29 and for applications as lithium-ion battery interest in developing ion-conduc- tive materials2­6 for applications in batteries7 and dye

  10. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOE Patents [OSTI]

    Nagasubramanian, Ganesan (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  11. Rotational Mixing and Lithium Depletion

    E-Print Network [OSTI]

    Pinsonneault, M H

    2010-01-01T23:59:59.000Z

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  12. Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1 , Wen Chao Lee1 This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li

  13. Development of Lithium Deposition Techniques for TFTR

    SciTech Connect (OSTI)

    Gorman, J.; Johnson, D.; Kugel, H.W.; Labik, G.; Lemunyan, G.; et al

    1997-10-01T23:59:59.000Z

    The ability to increase the quantity of lithium deposition into TFTR beyond that of the Pellet Injector while minimizing perturbations to the plasma provides interesting experimental and operational options. Two additional lithium deposition tools were developed for possible application during the 1996 Experimental Schedule: a solid lithium target probe for real-time deposition, and a lithium effusion oven for deposition between discharges. The lithium effusion oven was operated in TFTR to deposit lithium on the Inner Limiter in the absence of plasma. This resulted in the third highest power TFTR discharge.

  14. Development of lithium deposition techniques for TFTR

    SciTech Connect (OSTI)

    Kugel, H.W.; Gorman, J.; Johnson, D.; Labik, G.; Lemunyan, G.; Mansfield, D.; Timberlake, J.; Vocaturo, M.

    1997-10-01T23:59:59.000Z

    The ability to increase the quantity of lithium deposition into TFTR beyond that of the Pellet Injector while minimizing perturbations to the plasma provides interesting experimental and operational options. Two additional lithium deposition tools were developed for possible application during the 1996 Experimental Schedule: a solid lithium target probe for real-time deposition, and a lithium effusion oven for deposition between discharges. The lithium effusion oven was operated in TFTR to deposit lithium on the Inner Limiter in the absence of plasma. This resulted in the third highest power TFTR discharge.

  15. Air breathing lithium power cells

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15T23:59:59.000Z

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  16. Liquid-Liquid Extraction Processes

    E-Print Network [OSTI]

    Fair, J. R.; Humphrey, J. L.

    1983-01-01T23:59:59.000Z

    Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

  17. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion

  18. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery

    E-Print Network [OSTI]

    Endres. William J.

    Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam.1063/1.3643035] Lithium-ion batteries are of great interest due to their high energy density, however, various safety properties, many applications are pos- sible.10,11 One is the electrolyte of the lithium-ion batteries, where

  19. Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS)

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide, and 13C NMR spectroscopic studies of 6Li-15N labeled lithium hexamethyldisilazide ([6Li,15N]- Li ligand structure and lithium amide aggregation state is a complex and sensitive function of amine alkyl

  20. SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM

    E-Print Network [OSTI]

    Bluemel, Janet

    @ Pergamon SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM performed on powdered and single crystal lithium niobate of defectivecongruent composition (48.4%LirO;51.6% NbrOr) using a magnetic field strength of 7.05 Tesla with the aim to distinguish between a lithium

  1. JOURNAL DE PHYSIQUE CoZZoque C8, suppZ6ment aa n o 8, Tome 42, amAt 2980, page C8-32 NMR STUD1ES OF CONCENTRATED LITHIUM-AMMONIA SOLUTIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    OF CONCENTRATED LITHIUM-AMMONIA SOLUTIONS Y. Nakamura, M. Niibe and M . Shimoji Deparhent o f Chemistry, FaeuZty o in liquid ammonia show very interesting properties with varying metal concentration; from electrolytic results of the Knight shift, KLi, and the spin-lattice relaxation tine, T1, of 7 ~ i in the lithium

  2. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  3. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  6. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  7. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  8. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Design and Simulation of Lithium Rechargeable Batteries by Christopher Marc Doyle Doctor of Philosophy in Chemical EngineeringDesign and Simulation of Lithium Rechargeable Batteries I C. Marc Doyle Department of Chemical Engineering

  9. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOE Patents [OSTI]

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13T23:59:59.000Z

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  10. Lithium metatungstate a safe alternative for washability

    SciTech Connect (OSTI)

    Rademacher, M.J.

    1995-08-01T23:59:59.000Z

    Lithium metatungstate (LMT), originally developed for the separation of heavy mineral sands, has been determined to be a safe and effective alternative to the traditional organic liquids used in determining the washability characteristics of coal. LMT is a non-flammable, very soluble inorganic salt which, when dissolved in water, can be used to replace organic liquids traditionally utilized for the gravity separation procedure. The concentrated LMT solution is commonly produced at a specific gravity of 3.0 g/cc. Solutions with lower specific gravities can be prepared by dilution with distilled water. Solutions with higher specific gravities can be prepared by concentrating the solutions through a reverse osmosis (RO) technique or an evaporation process. LMT was originally developed for the separation of heavy mineral sands, however, due to the similarities between the uses and from positive results of experimental data. It was found that this technology has applications for the gravity separation of coal and other minerals. The LMT technology is discussed.

  11. COSMOLOGICAL LITHIUM PROBLEM: A DIFFERENT APPROACH

    E-Print Network [OSTI]

    ?umer, Slobodan

    LITHIUM 7Li sources BBN cosmic-ray interactions (ingredients: shock waves, magnetic field, chargedCOSMOLOGICAL LITHIUM PROBLEM: A DIFFERENT APPROACH Tijana Prodanovi, University of Novi Sad Tamara Observations - boxes 4He ­ OK D ­ right on! 7Li ­ problem! Factor of 3-4 discrepancy! LITHIUM PROBLEM

  12. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2000-01-01T23:59:59.000Z

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  13. Magnetism in Lithium–Oxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13T23:59:59.000Z

    Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  14. Heterogeneous lithium niobate photonics on silicon substrates

    E-Print Network [OSTI]

    Fathpour, Sasan

    Heterogeneous lithium niobate photonics on silicon substrates Payam Rabiei,1,* Jichi Ma,1 Saeed-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding high- performance lithium niobate microring optical resonators and Mach- Zehnder optical modulators

  15. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30T23:59:59.000Z

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  16. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

    2008-03-18T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  17. Conductive lithium storage electrode

    DOE Patents [OSTI]

    Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

    2012-04-03T23:59:59.000Z

    A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

  18. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

    1999-01-01T23:59:59.000Z

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  19. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04T23:59:59.000Z

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  20. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  1. The Primordial Lithium Problem

    E-Print Network [OSTI]

    Brian D. Fields

    2012-03-15T23:59:59.000Z

    Big-bang nucleosynthesis (BBN) theory, together with the precise WMAP cosmic baryon density, makes tight predictions for the abundances of the lightest elements. Deuterium and 4He measurements agree well with expectations, but 7Li observations lie a factor 3-4 below the BBN+WMAP prediction. This 4-5\\sigma\\ mismatch constitutes the cosmic "lithium problem," with disparate solutions possible. (1) Astrophysical systematics in the observations could exist but are increasingly constrained. (2) Nuclear physics experiments provide a wealth of well-measured cross-section data, but 7Be destruction could be enhanced by unknown or poorly-measured resonances, such as 7Be + 3He -> 10C^* -> p + 9B. (3) Physics beyond the Standard Model can alter the 7Li abundance, though D and 4He must remain unperturbed; we discuss such scenarios, highlighting decaying Supersymmetric particles and time-varying fundamental constants. Present and planned experiments could reveal which (if any) of these is the solution to the problem.

  2. Control System for the NSTX Lithium Pellet Injector

    SciTech Connect (OSTI)

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27T23:59:59.000Z

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  3. Spatial periphery of lithium isotopes

    SciTech Connect (OSTI)

    Galanina, L. I., E-mail: galan_lidiya@mail.ru; Zelenskaja, N. S. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2013-12-15T23:59:59.000Z

    The spatial structure of lithium isotopes is studied with the aid of the charge-exchange and (t, p) reactions on lithium nuclei. It is shown that an excited isobaric-analog state of {sup 6}Li (0{sup +}, 3.56MeV) has a halo structure formed by a proton and a neutron, that, in the {sup 9}Li nucleus, there is virtually no neutron halo, and that {sup 11}Li is a Borromean nucleus formed by a {sup 9}Li core and a two-neutron halo manifesting itself in cigar-like and dineutron configurations.

  4. Solid solution lithium alloy cermet anodes

    DOE Patents [OSTI]

    Richardson, Thomas J.

    2013-07-09T23:59:59.000Z

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  5. LITHIUM--1997 46.1 By Joyce A. Ober

    E-Print Network [OSTI]

    LITHIUM--1997 46.1 LITHIUM By Joyce A. Ober After decades as the world's leading producer of lithium and its compounds, the United States was surpassed in 1997 when Chile became the world's largest lithium carbonate producer. Both lithium carbonate operations at the Salar de Atacama produced during

  6. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  7. Predicting the Voltage Dependence of Interfacial Electrochemical Processes at Lithium-Intercalated Graphite Edge Planes

    E-Print Network [OSTI]

    Leung, Kevin

    2015-01-01T23:59:59.000Z

    The applied potential governs lithium-intercalation and electrode passivation reactions in lithium ion batteries, but are challenging to calibrate in condensed phase DFT calculations. In this work, the "anode potential" of charge-neutral lithium-intercalated graphite (LiC(6)) with oxidized edge planes is computed as a function of Li-content n(Li)) at edge planes, using ab initio molecular dynamics (AIMD), a previously introduced Li+ transfer free energy method, and the experimental Li+/Li(s) value as reference. The voltage assignments are corroborated using explicit electron transfer from fluoroethylene carbonate radical anion markers. PF6- is shown to decompose electrochemically (i.e., not just thermally) at low potentials imposed by our voltage calibration technique. We demonstrate that excess electrons reside in localized states-in-the-gap in the organic carbonate liquid region, which is not semiconductor-like (band-state-like) as widely assumed in the literature.

  8. Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell

    E-Print Network [OSTI]

    Goddard III, William A.

    Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell Hyung as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium- dioxygen

  9. Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures and Relative Reactivities of Mixed

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Ephedrate-Mediated Addition of a Lithium Acetylide to a Ketone: Solution Structures-1301 ReceiVed April 30, 1997. ReVised Manuscript ReceiVed NoVember 26, 1997 Abstract: Addition of lithiumLi and 13C NMR spectroscopies reveal lithium cyclopropylacetylide in THF to be a dimer

  10. Lithium adsorption on armchair graphene nanoribbons Dana Krepel, Oded Hod

    E-Print Network [OSTI]

    Hod, Oded

    Lithium adsorption on armchair graphene nanoribbons Dana Krepel, Oded Hod School of Chemistry e i n f o Available online 7 December 2010 Keywords: Density functional theory Lithium Graphene Armchair graphene nanoribbon Chemical adsorption Lithium adsorption on two dimensional graphene

  11. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  12. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  13. Lithium Diisopropylamide: Oligomer Structures at Low Ligand Concentrations

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide: Oligomer Structures at Low Ligand Concentrations Jennifer L. Rutherford-dimensional 6Li and 15N NMR spectroscopic studies of lithium diisopropylamide (LDA) solvated ligand concentrations are discussed. Introduction Spectroscopic studies of lithium amides at low ligand

  14. Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries

    E-Print Network [OSTI]

    Moore, Charles J. (Charles Jacob)

    2012-01-01T23:59:59.000Z

    A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

  15. Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.

    SciTech Connect (OSTI)

    Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

    2010-01-01T23:59:59.000Z

    Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

  16. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    SciTech Connect (OSTI)

    Oliviero, E. [CSNSM, CNRS-IN2P3-Universite Paris-Sud, Batiment 108, 91405 Orsay (France); David, M. L.; Beaufort, M. F.; Barbot, J. F. [Institut Pprime, CNRS-Universite de Poitiers-ENSMA, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope-Chasseneuil Cedex (France); Fichtner, P. F. P. [Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Av Bento Goncalves 9500, Caixa Postal 15051, 90035-190 Porto Alegre, RS (Brazil)

    2013-02-28T23:59:59.000Z

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

  17. ENDOR study of Cr3 centers substituting for lithium in lithium niobate

    E-Print Network [OSTI]

    Malovichko, Galina

    ENDOR study of Cr3¿ centers substituting for lithium in lithium niobate G. Malovichko,1, * V centers in lithium niobate crystals were investigated with the help of electron nuclear double resonance and the parameters of hyperfine and quadrupole interactions were determined. It is found that Cr3 substitutes for Li

  18. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M'O3 in which 0

  19. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-20T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  20. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

    2008-12-23T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  1. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  2. High-capacity hydrogen storage in lithium and sodium amidoboranes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

  3. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  4. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  5. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K. (Ocean, NJ); Chin, Der-Tau (Winthrop, NY)

    1989-01-01T23:59:59.000Z

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  6. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-02-07T23:59:59.000Z

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  7. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  8. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  9. Lithium Ion Electrode Production NDE and QC Considerations |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Electrode Production NDE and QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood,...

  10. Thermodynamic Investigations of Lithium- and Manganese-Rich Transition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides Thermodynamic Investigations of Lithium- and Manganese-Rich Transition Metal Oxides 2013 DOE...

  11. Exploring the interaction between lithium ion and defective graphene...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

  12. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

  13. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

  14. Interface Modifications by Anion Acceptors for High Energy Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

  15. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Energy Savers [EERE]

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  16. Investigations of Graphite Current Collectors and Metallic Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphite Current Collectors and Metallic Lithium Anodes Investigations of Graphite Current Collectors and Metallic Lithium Anodes Presentation from the U.S. DOE Office of Vehicle...

  17. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    via Self-Healing Electrostatic Shield Mechanism . Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism . Abstract: Lithium metal batteries are called...

  18. Molecular Structure and Stability of Dissolved Lithium Polysulfide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability of Dissolved Lithium Polysulfide Species. Molecular Structure and Stability of Dissolved Lithium Polysulfide Species. Abstract: Ability to predict the solubility and...

  19. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  20. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  1. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

  2. Overcoming Processing Cost Barriers of High-Performance Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes 2012 DOE Hydrogen...

  3. Layered Electrodes for Lithium Cells and Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Layered Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes Lowers...

  4. Examining Hysteresis in Lithium- and Manganese-Rich Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hysteresis in Lithium- and Manganese-Rich Composite Cathode Materials Examining Hysteresis in Lithium- and Manganese-Rich Composite Cathode Materials 2013 DOE Hydrogen and Fuel...

  5. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE...

  6. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  7. Manipulating the Surface Reactions in Lithium Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

  8. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

  9. Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2012 DOE Hydrogen and...

  10. Electrode Structures and Surfaces for Lithium Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures and Surfaces for Lithium Batteries Technology available for licensing: Lithium-metal-oxide electrode materials with modified surfaces to protect the materials from...

  11. Optimization of mesoporous carbon structures for lithium&ndash...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mesoporous carbon structures for lithium–sulfur battery applications. Optimization of mesoporous carbon structures for lithium–sulfur battery applications. Abstract:...

  12. Electrode materials and lithium battery systems

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Belharouak, Ilias (Westmont, IL); Liu, Jun (Naperville, IL)

    2011-06-28T23:59:59.000Z

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  13. Ternary compound electrode for lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  14. Ternary compound electrode for lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D. (Menlo Park, CA); Godshall, Ned A. (Stanford, CA); Huggins, Robert A. (Stanford, CA)

    1982-01-01T23:59:59.000Z

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  15. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-02-28T23:59:59.000Z

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  16. Anodes for rechargeable lithium batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories News Events Find More Like This Return to Search Anodes for rechargeable lithium batteries United States Patent Patent Number: 6,528,208 Issued: March 4, 2003...

  17. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  18. Plasma/liquid metal interactions during tokamak operation.

    SciTech Connect (OSTI)

    Hassanein, A.; Allain, J. P.; Insepov, Z.; Konkashbaev, I.; Energy Technology

    2005-04-01T23:59:59.000Z

    One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin. Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.

  19. Plasma/Liquid-Metal Interactions During Tokamak Operation

    SciTech Connect (OSTI)

    Hassanein, A.; Allain, J.P.; Insepov, Z.; Konkashbaev, I. [Argonne National Laboratory (United States)

    2005-04-15T23:59:59.000Z

    One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin.Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.

  20. Lithium in LMC carbon stars

    E-Print Network [OSTI]

    D. Hatzidimitriou; D. H. Morgan; R. D. Cannon; B. F. W. Croke

    2003-04-16T23:59:59.000Z

    Nineteen carbon stars that show lithium enrichment in their atmospheres have been discovered among a sample of 674 carbon stars in the Large Magellanic Cloud. Six of the Li-rich carbon stars are of J-type, i.e. with strong 13C isotopic features. No super-Li-rich carbon stars were found. The incidence of lithium enrichment among carbon stars in the LMC is much rarer than in the Galaxy, and about five times more frequent among J-type than among N-type carbon stars. The bolometric magnitudes of the Li-rich carbon stars range between -3.3 and -5.7. Existing models of Li-enrichment via the hot bottom burning process fail to account for all of the observed properties of the Li-enriched stars studied here.

  1. Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces

    E-Print Network [OSTI]

    Harilal, S. S.

    Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces Ahmed Hassanein the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem. Hydrogen isotope (DT) particles are likely be trapped in the liquid metal surface (e.g., lithium) due

  2. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01T23:59:59.000Z

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  3. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  4. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  5. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05T23:59:59.000Z

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  6. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2002-03-13T23:59:59.000Z

    The paper gives the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integro-differential equation which takes into account the propulsion effect, viscosity and the drag force due to magnetic pumping and other interactions with the magnetic field. A criterion is obtained for the stabilization of the ''sausage'' instability of the streams by centrifugal force.

  7. XPS analysis of lithium surface and modification of surface state for uniform deposition of lithium

    SciTech Connect (OSTI)

    Kanamura, K.; Shiraishi, S.; Takehara, Z. [Kyoto Univ. (Japan)

    1995-12-31T23:59:59.000Z

    The surface modification of lithium deposited at various current densities in propylene carbonate containing 1.0 ml dm{sup {minus}3} LiClO{sub 4} was performed by addition of various amounts of HF into the electrolyte, in order to investigate the effect of the HF addition on the surface reaction of lithium. XPS and SEM analyses showed that the surface state of lithium was influenced by the concentration of HF and the electrodeposition current. These two parameters are related to the chemical reaction rate of the lithium surface with HF and the electrodeposition rate of lithium, respectively. The surface modification was highly effective in suppressing lithium dendrite formation when the chemical reaction rate with HF was greater than the electrochemical deposition rate of lithium.

  8. Topics for letter "l" | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Trap Linux cluster liquid chromatography (LC) liquid samples liquids lithium ion lithium ion batteries lithium sulfur lithium-ion batteries Lithium-sulfur Lithium-sulfur...

  9. Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte

    E-Print Network [OSTI]

    Ho, Christine Chihfan

    2010-01-01T23:59:59.000Z

    Polymer Electrolytes for Lithium-Ion Batteries." Advancedpolymer electrolytes for lithium-ion batteries." Journal ofinclude lithium and lithium-ion chemistries with various

  10. Lithium electric dipole polarizability M. Puchalski

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    Lithium electric dipole polarizability M. Puchalski Faculty of Chemistry, Adam Mickiewicz, 00-681 Warsaw, Poland The electric dipole polarizability of the lithium atom in the ground state phenomena, such as van der Waals interactions in ultra-cold collisions [1­3] and Bose- Einstein condensation

  11. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19T23:59:59.000Z

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  12. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19T23:59:59.000Z

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  13. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

  14. Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat TransferStartupHe! NERSCHelen

  15. Improved Lithium-Loaded Liquid Scintillators for Neutron Detection - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |HotImpactControl - EnergyDetection System

  16. Active Radiatiive Liquid Lithium (metal) Divertor | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 IntroductionActinide Chemistry TurbinesPhysics Lab

  17. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriersPipeline ResearchSalts

  18. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy

  19. Impact of Lithium Availability on Vehicle Electrification (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.

    2011-07-01T23:59:59.000Z

    This presentation discusses the relationship between electric drive vehicles and the availability of lithium.

  20. Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov,

    E-Print Network [OSTI]

    Zakharov, Leonid E.

    Intense Lithium Streams in Tokamaks 1 Leonid E. Zakharov, Princeton University, Princeton Plasma. Temperature of the streams. 2. Lithium jets. 3. Injection into vacuum chamber. 4. Propulsion inside the vacuum chamber. 5. Stability of the lithium streams. 6. Expulsion of the lithium. 7. Summary. PRINCETON PLASMA

  1. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of Variousare presented for lithium-ion cells and modules utilizingAdvisor utilizing lithium-ion batteries of the different

  2. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Miller, M. , Emerging Lithium-ion Battery Technologies forCharacteristics of Lithium-ion Batteries of Variousand Simulation Results with Lithium-ion Batteries, paper

  3. Characterization of high-power lithium-ion cells-performance and diagnostic analysis

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    by an arrow. Key words: Lithium ion battery, diagnostics,Development Program for Lithium-Ion Batteries: Handbook ofTechnology Development For Lithium- Ion Batteries: Gen 2

  4. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  5. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    in Secondary Lithium Batteries Guoying Chen, Karen E.protection agents in lithium batteries is relatively new,rechargeable lithium batteries with a variety of different

  6. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  7. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Copolymer: Application in Lithium Battery Electrodes. Angew.Schematic of the Proposed lithium battery electrode with aBlock Copolymers for Lithium Battery Electrodes By Shrayesh

  8. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  9. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01T23:59:59.000Z

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  10. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    the lithium- transition metal electrostatic interaction. Thecation electrostatic interactions. 1 Lithium ions occupy theinteractions or by inhibiting the complete removal of lithium

  11. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Abstract: Suppressing lithium (Li)...

  12. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

  13. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

  14. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

  15. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

  16. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

  17. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

  18. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    E-Print Network [OSTI]

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-01-01T23:59:59.000Z

    Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

  19. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  20. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01T23:59:59.000Z

    Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

  1. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

  2. Neutron and X-ray scattering experiments on lithium polymer electrolytes

    SciTech Connect (OSTI)

    Saboungi, M.L.; Price, D.L.

    1997-09-01T23:59:59.000Z

    The authors are carrying out structural, dynamical and transport measurements of lithium polymer electrolytes, in order to provide information needed to improve the performance of secondary lithium battery systems. Microscopically, they behave as liquids under conditions of practical interest. Development of batteries based on these materials has focused on rechargeable systems with intercalation/insertion cathodes and lithium or lithium-containing materials as anodes. The electrolytes are generally composites of a polyethylene oxide (PEO) or another modified polyether and a salt such as LiClO{sub 4}, LiAsF{sub 6} or LiCF{sub 3}SO{sub 3}. Research on electrolyte materials for lithium batteries has focused on synthesis, characterization, and development of practical devices. Some characterization work has been carried out to determine the properties of the ion polymer and ion interactions, principally through spectroscopic, thermodynamic and transport measurements. It is generally believed that ionic conduction is a property of the amorphous phase of these materials. It is also believed that ion association, ion polymer interactions and local relaxations of the polymer strongly influence the ionic mobility. However, much about the nature of the charge carriers, the ion association processes, and the ion polymer interactions and the role that these play in the ionic conductivity of the electrolytes remains unknown. The authors have initiated a combined experimental and theoretical study of the structure and dynamics of lithium polymer electrolytes. They plan to investigate the effects of the polymer host on ion solvation and the attendant effects of ion pairing, which affect the ionic transport in these systems.

  3. Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells

    E-Print Network [OSTI]

    Schmidt, Volker

    Anodes in Lithium-Ion Cells Yvonne Krämer*[a] , Claudia Birkenmaier[b] , Julian Feinauer[a,c] , Andreas lithium-ion cells is presented. Graphite anode samples were extracted from pristine and differently aged lithium-ion cells. The samples present a variety of anodes with various states of lithium plating

  5. J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides

    E-Print Network [OSTI]

    Collum, David B.

    J. Am. Chem. SOC.1991, 113,9575-9585 9575 Mixed Aggregation of Lithium Enolates and Lithium Halides with Lithium 2,2,6,6-Tetramethylpiperidide(LiTMP) Patricia L. Hall, James H. Gilchrist, Aidan T. Harrison]-lithiumdi-tert-butylamide and conformationally locked [6Li]-lithium2,2,4,6,6-pentamethylpiperidide shed further light

  6. Optimization of Acetylene Black Conductive Additive and Polyvinylidene Difluoride Composition for High Power Rechargeable Lithium-Ion Cells

    E-Print Network [OSTI]

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-01-01T23:59:59.000Z

    Lithium-Ion Battery; Electrode Design; Polymer Composite. Introduction Lithium-ion rechargeable batteries

  7. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    Solid Solutions: Coupled Lithium-Ion and Electron Mobility.lithium batteries, II. Lithium ion rechargeable batteries.1/4)Ni(3/4)O(2) for lithium-ion batteries. Electrochimica

  8. Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl Carbamates: Role of

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide-Mediated Ortholithiation and Anionic Fries Rearrangement of Aryl of the lithium diisopropylamide (LDA)-mediated anionic Fries rearrangements of aryl carbamates are described, an LDA-lithium phenolate mixed dimer, and homoaggregated lithium phenolates. The highly insoluble

  9. Lithium abundances in exoplanet-hosts stars

    E-Print Network [OSTI]

    M. Castro; S. Vauclair; O. Richard; N. C. Santos

    2008-03-20T23:59:59.000Z

    Exoplanet-host stars (EHS) are known to present surface chemical abundances different from those of stars without any detected planet (NEHS). EHS are, on the average, overmetallic compared to the Sun. The observations also show that, for cool stars, lithium is more depleted in EHS than in NEHS. The overmetallicity of EHS may be studied in the framework of two different scenarii. We have computed main sequence stellar models with various masses, metallicities and accretion rates. The results show different profiles for the lithium destruction according to the scenario. We compare these results to the spectroscopic observations of lithium.

  10. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  11. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  12. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  13. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  14. Lithium-cation conductivity and crystal structure of lithium diphosphate

    SciTech Connect (OSTI)

    Voronin, V.I., E-mail: voronin@imp.uran.ru [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Sherstobitova, E.A. [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Blatov, V.A., E-mail: blatov@samsu.ru [Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac.Pavlov Street 1, 443011 Samara (Russian Federation); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shekhtman, G.Sh., E-mail: shekhtman@ihte.uran.ru [Institute of High Temperature Electrochemistry Urals Branch RAS, Akademicheskaya 20, 620990 Ekaterinburg (Russian Federation)

    2014-03-15T23:59:59.000Z

    The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Å, b=5.2028(4) Å, c=13.3119(2) Å, ?=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

  15. Solid State Thin Film Lithium Microbatteries

    E-Print Network [OSTI]

    Shi, Z.

    Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

  16. Hierarchically Structured Materials for Lithium Batteries. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric...

  17. Layered electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Johnson; Christopher S. (Naperville, IL), Thackeray; Michael M. (Naperville, IL), Vaughey; John T. (Elmhurst, IL), Kahaian; Arthur J. (Chicago, IL), Kim; Jeom-Soo (Naperville, IL)

    2008-04-15T23:59:59.000Z

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  18. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11T23:59:59.000Z

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  19. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  20. materialsELSEVIER Journal of Nuclear Materials 233-237 (1996) 1547-1551 Deuteron beam interaction with lithium jet in a neutron source test

    E-Print Network [OSTI]

    Harilal, S. S.

    -speed flowing jet of liquid Li, as shown in Fig. 1. This system must also be capable of operating under the high tank where complete mixing occurs with the large volume of Li in the tank. Some of the concerns beam interaction with lithium jet in a neutron source test facility I A. Hassanein Argonne National

  1. Lithium-Beryllium-Boron : Origin and Evolution

    E-Print Network [OSTI]

    Elisabeth Vangioni-Flam; Michel Casse; Jean Audouze

    1999-07-13T23:59:59.000Z

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to supernova explosions in galactic superbubbles.

  2. Rechargeable lithium-ion cell

    DOE Patents [OSTI]

    Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

    1999-01-01T23:59:59.000Z

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  3. Electrode for a lithium cell

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Dees, Dennis W. (Downers Grove, IL)

    2008-10-14T23:59:59.000Z

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  4. Predissociation dynamics of lithium iodide

    E-Print Network [OSTI]

    Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

    2015-01-01T23:59:59.000Z

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  5. Glass for sealing lithium cells

    DOE Patents [OSTI]

    Leedecke, C.J.

    1981-08-28T23:59:59.000Z

    Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

  6. Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Sacci, Robert L [ORNL] [ORNL; Adamczyk, Leslie A [ORNL] [ORNL; Alsem, Daan Hein [Hummingbird Scientific] [Hummingbird Scientific; Dai, Sheng [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; More, Karren Leslie [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  7. Deproto-metallation using mixed lithium-zinc and lithium-copper bases and computed CH acidity of 2-substituted quinolines

    E-Print Network [OSTI]

    Boyer, Edmond

    Deproto-metallation using mixed lithium-zinc and lithium-copper bases and computed CH acidity of 2 corresponding iodo derivatives or 2-chlorophenyl ketones using the lithium-zinc or the lithium using the lithium-zinc base. With 3-pyridyl, 2-furyl and 2-thienyl substituents, the reaction took place

  8. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,

    E-Print Network [OSTI]

    , but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

  9. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator FY 2012 Annual Progress Report for Energy Storage R&D...

  10. Design of novel lithium storage materials with a polyanionic framework

    E-Print Network [OSTI]

    Kim, Jae Chul, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Lithium ion batteries for large-scale applications demand a strict safety standard from a cathode material during operating cycles. Lithium manganese borate (LiMnBO?) that crystallizes into a hexagonal or monoclinic framework ...

  11. LITHIUM--2002 46.1 By Joyce A. Ober

    E-Print Network [OSTI]

    domestic producer of lithium carbonate from brine is Chemetall Foote's operation in Nevada. Nevada brines enriched in lithium chloride, which averaged about 300 parts per million (ppm) when Foote Mineral Co. (the

  12. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever...

  13. California: Geothermal Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the...

  14. Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Abstract: In this paper,...

  15. Novel Lithium Ion Anode Structures: Overview of New DOE BATT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects 2011 DOE Hydrogen and Fuel Cells...

  16. Molecular Structures of Polymer/Sulfur Composites for Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

  17. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

  18. Interaction of Lithium Hydride and Ammonia Borane in THF . |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Hydride and Ammonia Borane in THF . Interaction of Lithium Hydride and Ammonia Borane in THF . Abstract: The two-step reaction between LiH and NH3BH3 in THF leads to the...

  19. Lithium-based inorganic-organic framework materials

    E-Print Network [OSTI]

    Yeung, Hamish Hei-Man

    2013-01-01T23:59:59.000Z

    This dissertation describes research into lithium-based inorganic-organic frameworks, which has led to an increased understanding of the structural diversity and properties of these materials. The crystal structures of 11 new forms of lithium...

  20. Shell Model for Atomistic Simulation of Lithium Diffusion in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Abstract: Mixed...

  1. aqueous lithium hydroxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Prediction of the theoretical capacity of non-aqueous lithium-air batteries Peng Tan, Zhaohuan Wei of non-aqueous lithium-air batteries is predicted. Key...

  2. aqueous lithium bromide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    France Abstract In order to develop a LISICON separator for an aqueous lithium-air battery, a thin was coated with a lithium oxynitrured phosphorous (LiPON) thin film to...

  3. Electrochemical Isotope Effect and Lithium Isotope Separation Jay R. Black,

    E-Print Network [OSTI]

    Mcdonough, William F.

    results showing a large lithium isotope separation due to electrodeposition. The fractionation is tunable lithium were plated from solutions of 1 M LiClO4 in propylene carbonate (PC) on planar nickel electrodes

  4. Methods for making lithium vanadium oxide electrode materials

    DOE Patents [OSTI]

    Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

    2000-01-01T23:59:59.000Z

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  5. Lithium based electrochemical cell systems having a degassing agent

    DOE Patents [OSTI]

    Hyung, Yoo-Eup (Naperville, IL); Vissers, Donald R. (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2012-05-01T23:59:59.000Z

    A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an electrolyte; and a degassing agent.

  6. 2008 Nature Publishing Group High-performance lithium battery

    E-Print Network [OSTI]

    Cui, Yi

    © 2008 Nature Publishing Group High-performance lithium battery anodes using silicon nanowires in lithium batteries have shown capacity fading and short battery lifetime due to pulverization and loss December 2007; doi:10.1038/nnano.2007.411 There is great interest in developing rechargeable lithium

  7. Author's personal copy Reactivity of lithium exposed graphite surface

    E-Print Network [OSTI]

    Harilal, S. S.

    on the surface [18]. Hence the effect of lithium on plasma­wall interactions is expected to dependAuthor's personal copy Reactivity of lithium exposed graphite surface S.S. Harilal a, *, J in fusion devices [1­5]. For example, wall conditioning with thin lithium layers gives rise to low hydrogen

  8. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering

    E-Print Network [OSTI]

    Paytan, Adina

    Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering 70 Ma · Overview of the Marine Lithium Cycle · Analytical Challenges · 68 Million Year Seawater Lithium Isotope Record (Forams) · Interpretation Standard: NIST L-SVEC Li (SRM 8545) #12;100 Ma Climate

  9. LITHIUM--2003 45.1 By Joyce A. Ober

    E-Print Network [OSTI]

    .S. operations. The single U.S. lithium carbonate producer, Chemetall Foote Corp. (a subsidiary of the German). Chemetall Foote produced lithium carbonate from brines near Silver Peak, NV. The company's other U for further processing. The only domestic producer of lithium carbonate from brine is Chemetall Foote

  10. Lithium-Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons

    E-Print Network [OSTI]

    Hod, Oded

    Lithium-Mediated Benzene Adsorption on Graphene and Graphene Nanoribbons Dana Krepel and Oded Hod on lithium adsorption sites at the surface of graphene and nanoribbons thereof are investigated. The effects, bare lithium adsorption turns armchair graphene nanoribbons metallic and their zigzag counterparts half

  11. Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide Solvated by Hexamethylphosphoramide: Substrate-Dependent Mechanisms-1301 Received February 9, 2006; E-mail: dbc6@cornell.edu Abstract: Lithium diisopropylamide of lithium-ion solvation at a molecular level of resolution.5 Our interest in HMPA stems from studies

  12. Lithium Insertion In Silicon Nanowires: An ab Initio Study

    E-Print Network [OSTI]

    Cui, Yi

    Lithium Insertion In Silicon Nanowires: An ab Initio Study Qianfan Zhang, Wenxing Zhang, Wenhui Wan, and § School of Physics, Peking University, Beijing 100871, China ABSTRACT The ultrahigh specific lithium ion opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains

  13. Lithium acetate transformation of yeast Maitreya Dunham August 2004

    E-Print Network [OSTI]

    Dunham, Maitreya

    Lithium acetate transformation of yeast Maitreya Dunham August 2004 Original protocol from Katja until the OD600 is around 0.7-0.8 (~7 hours). Spin down the cells. Resuspend in 5 ml lithium acetate mix. Spin. Resuspend in 0.5 ml lithium acetate mix. Transfer to an eppendorf tube. Incubate 60 minutes

  14. Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide-Mediated Enolization: Catalysis by Hemilabile Ligands Antonio Ramirez of a lithium diisopropylamide (LDA)-mediated ester enolization. Hemilabile amino ether MeOCH2CH2NMe2, binding-based catalysis are thwarted by the occlusion of the catalyst on the lithium salt products and byproducts (eq 1

  15. Use of Lithium Hexafluoroisopropoxide as a Mild Base for

    E-Print Network [OSTI]

    Use of Lithium Hexafluoroisopropoxide as a Mild Base for Horner-Wadsworth-Emmons Olefination The weak base lithium 1,1,1,3,3,3-hexafluoroisopropoxide (LiHFI) is shown to be highly effective of base-sensitive substrates, leading to the discovery that lithium 1,1,1,3,3,3-hexafluoroisopropoxide (Li

  16. Description: Lithium batteries are used daily in our work

    E-Print Network [OSTI]

    Description: Lithium batteries are used daily in our work activities from flashlights, cell phones containing one SureFire 3-volt non-rechargeable 123 lithium battery and one Interstate 3-volt non-rechargeable 123 lithium battery. A Garage Mechanic had the SureFire flashlight in his shirt pocket with the lens

  17. The Lithium-Ion Cell: Model, State Of Charge Estimation

    E-Print Network [OSTI]

    Schenato, Luca

    The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

  18. High energy density lithium-oxygen secondary battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1989-02-07T23:59:59.000Z

    A high energy density lithium-oxygen secondary cell is described comprising a lithium-containing negative electrode; a lithium ion conducting molten salt electrolyte contacting the negative electrode; an oxygen ion conducting solid electrolyte contacting and containing the molten salt electrolyte; and an oxygen redox positive electrode contacting the oxygen ion conducting solid electrolyte.

  19. Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    García, R. Edwin

    Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium

  20. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    -ion batteries like on the inside Anode Separator Cathode 500 nm 20 um20 um Anode: Graphite SeparatorMechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

  1. Evaporated Lithium Surface Coatings in NSTX

    SciTech Connect (OSTI)

    Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

    2009-04-09T23:59:59.000Z

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.

  2. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    of ultracapacitors or even lithium-ion batteries. This isof ultracapacitors or even lithium-ion batteries. This isand Simulation Results with Lithium-ion Batteries. EET-2008

  3. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    4 , natural graphite, lithium-ion battery, diagnosticsand efficiency of pouch lithium-ion cells for constant C/24 -BASED HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim,

  4. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim, Azucenaof rechargeable lithium batteries for application in hybridin consumer-size lithium batteries, such as the synthetic

  5. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project, Report3 for the advanced lithium battery chemistries are based onwith ultracapacitors, the LTO lithium battery should be

  6. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    using Advanced Lithium Batteries and Ultracapacitors onusing advanced lithium batteries having energy densities ofA number of lithium batteries and ultracapacitors have been

  7. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    study of rechargeable lithium batteries for application inin consumer-size lithium batteries, such as the synthetic4 -BASED HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim,

  8. Interactions between Liquid-Wall Vapor and Edge Plasmas

    SciTech Connect (OSTI)

    Rognlien, T D; Rensink, M E

    2000-05-25T23:59:59.000Z

    The use of liquid walls for fusion reactors could help solve problems associated with material erosion from high plasma heat-loads and neutronic activation of structures. A key issue analyzed here is the influx of impurity ions to the core plasma from the vapor of liquid side-walls. Numerical 2D transport simulations are performed for a slab geometry which approximates the edge region of a reactor-size tokamak. Both lithium vapor (from Li or SnLi walls) and fluorine vapor (from Flibe walls) are considered for hydrogen edge-plasmas in the high- and low-recycling regimes. It is found that the minimum influx is from lithium with a low-recycling hydrogen plasma, and the maximum influx occurs for fluorine with a high-recycling hydrogen plasma.

  9. Characterization of positronium properties in doped liquid scintillators

    E-Print Network [OSTI]

    Consolati, G; Hans, S; Jollet, C; Meregaglia, A; Perasso, S; Tonazzo, A; Yeh, M

    2013-01-01T23:59:59.000Z

    Ortho-positronium (o-Ps) formation and decay can replace the annihilation process, when positron interacts in liquid scintillator media. The delay induced by the positronium decay represents either a potential signature for anti-neutrino detection, via inverse beta decay, or to identify and suppress positron background, as recently demonstrated by the Borexino experiment. The formation probability and decay time of o-Ps depend strongly on the surrounding material. In this paper, we characterize the o-Ps properties in liquid scintillators as function of concentrations of gadolinium, lithium, neodymium, and tellurium, dopers used by present and future neutrino experiments. In particular, gadolinium and lithium are high neutron cross section isotopes, widely used in reactor anti-neutrino experiments, while neodymium and tellurium are double beta decay emitters, employed to investigates the Majorana neutrino nature. Future neutrino experiments may profit from the performed measurements to tune the preparation of ...

  10. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOE Patents [OSTI]

    Slayzak, Steven J. (Denver, CO); Anderson, Ren S. (Broomfield, CO); Judkoff, Ronald D. (Golden, CO); Blake, Daniel M. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ryan, Joseph P. (Golden, CO)

    2007-12-11T23:59:59.000Z

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  11. Durable electrooptic devices comprising ionic liquids

    SciTech Connect (OSTI)

    Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

    2005-11-01T23:59:59.000Z

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  12. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Wan, Shun [ORNL; Jiang, Xueguang [ORNL; Guo, Bingkun [ORNL; Dai, Sheng [ORNL; Sun, Xiao-Guang [ORNL

    2015-01-01T23:59:59.000Z

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  13. Deuterium Retention in NSTX with Lithium Conditioning

    SciTech Connect (OSTI)

    C.H. Skinner, J.P. Allain, W. Blanchard, H.W. Kugel, R. Maingi, L. Roquemore, V. Soukhanovskii, C.N. Taylor

    2010-06-02T23:59:59.000Z

    High (? 90%) deuterium retention was observed in NSTX gas balance measurements both withand without lithiumization of the carbon plasma facing components. The gas retained in ohmic discharges was measured by comparing the vessel pressure rise after a discharge to that of a gasonly pulse with the pumping valves closed. For neutral beam heated discharges the gas input and gas pumped by the NB cryopanels were tracked. The discharges were followed by outgassing of deuterium that reduced the retention. The relationship between retention and surface chemistry was explored with a new plasma-material interface probe connected to an in-vacuo surface science station that exposed four material samples to the plasma. XPS and TDS analysis showed that the binding of D atoms is fundamentally changed by lithium - in particular atoms are weakly bonded in regions near lithium atoms bound to either oxygen or the carbon matrix.

  14. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOE Patents [OSTI]

    Coops, Melvin S. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  15. Lithium/water interactions: Experiments and analysis

    SciTech Connect (OSTI)

    Lomperski, S.; Corradini, M.L. (Univ. of Wisconsin, Madison, WI (United States))

    1993-08-01T23:59:59.000Z

    The interaction of molten-lithium droplets with water is studied experimentally. In one set of experiments, droplets of [approximately]10- to 15-mm diameter are injected into a vessel filled with water. The reaction is filmed, and pressure measurements are made. The initial metal and water temperatures range from 200 to 500[degrees]C and 20 to 70[degrees]C, respectively. It is found that when reactant temperatures are high, an explosive reaction often occurs. When the initial lithium temperature is >400[degrees]C and the water is >30[degrees]C, the explosive reactions become much more probable, with pressure peaks as high as 4 MPa. The reaction is modeled to explain the temperature threshold for this metal-ignition phenomena. Results with the model support the hypothesis that explosive reactions occur when the lithium droplet surface reaches its saturation temperature while the hydrogen film surrounding the drop is relatively thin. A second set of experiments measures the reaction rate of nonexplosive lithium-water reactions. The test geometry parallels that of the previous experiments, and the reactant temperature combinations are deliberately kept below the observed ignition threshold. Two separate methods are used to determine the reaction rate in each test: One uses a three-color pyrometer to measure the drop temperature as the lithium rises through the water, while the other consists of a photographic technique that measures the amount of hydrogen generated. Measured reaction rates range from [approximately]10 to 50 mol/s[center dot]m[sup 2] with good agreement between the two measurement techniques. The data do not show any significant variation in the reaction rate as a function of either the initial water or initial lithium temperature. 17 refs., 15 figs.

  16. Lithium, compression and high-pressure structure

    SciTech Connect (OSTI)

    Olinger, B.; Shaner, J.W.

    1983-03-04T23:59:59.000Z

    Lithium is found to transform from a body-centered cubic (bcc) to a face-centered cubic (fcc) structure at 6.9 gigapascals (69 kilobars) and 296 kelvin. The relative volume of the bcc structured lithium at 6.9 gigapascals is 0.718, and the fcc structure is 0.25 percent denser. The bulk modulus and its pressure derivative for the bcc structure are 11.57 gigapascals and 3.4, and for the fcc structure are 13.1 gigapascals and 2.8. Extrapolation of the bcc-fcc phase boundary and the melting curve indiactes a triple point around 15 gigapascals and 500 kelvin.

  17. Corrosion Resistance of Niobium Alloys in Lithium

    SciTech Connect (OSTI)

    Ignativ, M.I.

    1986-03-01T23:59:59.000Z

    NbP1-1 niobium and NV-7, NTsU, and 5VMTs alloys, the chemical composition of which and the experimental method for were presented earlier, were investigated. The specimens were heat treated after which they were held in lithium. It was shown that in long holds of niobium alloys in lithium at temperatures below 1050/sup 0/C, the increase in their corrosion resistance is obtained not by combining the oxygen in oxides, but by the increase in the equilibrium concentration of oxygen in the investigated material by solid solution alloying of it with a metal more active toward oxygen.

  18. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  19. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  20. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2001-01-01T23:59:59.000Z

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  1. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    SciTech Connect (OSTI)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19T23:59:59.000Z

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  2. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.

    1999-10-07T23:59:59.000Z

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  3. MHD problems in free liquid surfaces as plasma-facing materials in magnetically confined reactors

    E-Print Network [OSTI]

    Harilal, S. S.

    -producing magnetically confined reactors. Solid PFC cannot be reliably used because of the large erosion losses during is in 5 T, the density r is g/cm3 , and the liquid metal is lithium. The velocity V0 and thickness/depth h

  4. Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including devices. Lithium titanium oxide (Li4Ti5O12), lithium magnesium oxide (LiMn2O4) and lithium cobalt oxide

  5. Dispenser Printed Zinc Microbattery with an Ionic Liquid Gel Electrolyte

    E-Print Network [OSTI]

    Ho, Christine Chihfan

    2010-01-01T23:59:59.000Z

    Glassy materials for lithium batteries: electrochemicalal. "Solid-state microscale lithium batteries prepared withSolid-State Rechargeable Lithium Batteries." Journal of The

  6. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01T23:59:59.000Z

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  7. Lithium in LP 944-20

    E-Print Network [OSTI]

    Ya. V. Pavlenko; H. R. A. Jones; E. L. Martin; E. Guenther; M. A. Kenworthy; M. R. Zapatero Osorio

    2007-07-14T23:59:59.000Z

    We present a new estimate of the lithium abundance in the atmosphere of the brown dwarf LP 944-20. Our analysis is based on a self-consistent analysis of low, intermediate and high resolution optical and near-infrared spectra. We obtain log N(Li) = 3.25 +/-0.25 using fits of our synthetic spectra to the Li I resonance line doublet profiles observed with VLT/UVES and AAT/SPIRAL. This lithium abundance is over two orders of magnitude larger than previous estimates in the literature. In order to obtain good fits of the resonance lines of K I and Rb I and better fits to the TiO molecular absorption around the Li I resonance line, we invoke a semi-empirical model atmosphere with the dusty clouds located above the photosphere. The lithium abundance, however, is not changed by the effects of the dusty clouds. We discuss the implications of our estimate of the lithium abundance in LP 944-20 for the understanding of the properties of this benchmark brown dwarf.

  8. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01T23:59:59.000Z

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  9. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteriesTransparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices

  10. Implications of NSTX Lithium Results for Magnetic Fusion Research

    SciTech Connect (OSTI)

    M. Ono, M.G. Bell, R.E. Bell, R. Kaita, H.W. Kugel, B.P. LeBlanc, J.M. Canik, S. Diem, S.P.. Gerhardt, J. Hosea, S. Kaye, D. Mansfield, R. Maingi, J. Menard, S. F. Paul, R. Raman, S.A. Sabbagh, C.H. Skinner, V. Soukhanovskii, G. Taylor, and the NSTX Research Team

    2010-01-14T23:59:59.000Z

    Lithium wall coating techniques have been experimentally explored on NSTX for the last five years. The lithium experimentation on NSTX started with a few milligrams of lithium injected into the plasma as pellets and it has evolved to a lithium evaporation system which can evaporate up to ~ 100 g of lithium onto the lower divertor plates between lithium reloadings. The unique feature of the lithium research program on NSTX is that it can investigate the effects of lithium in H-mode divertor plasmas. This lithium evaporation system thus far has produced many intriguing and potentially important results; the latest of these are summarized in a companion paper by H. Kugel. In this paper, we suggest possible implications and applications of the NSTX lithium results on the magnetic fusion research which include electron and global energy confinement improvements, MHD stability enhancement at high beta, ELM control, H-mode power threshold reduction, improvements in radio frequency heating and non-inductive plasma start-up performance, innovative divertor solutions and improved operational efficiency.

  11. Lithium Depletion of Nearby Young Stellar Associations

    E-Print Network [OSTI]

    Erin Mentuch; Alexis Brandeker; Marten H. van Kerkwijk; Ray Jayawardhana; Peter H. Hauschildt

    2008-08-26T23:59:59.000Z

    We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.

  12. Diagnostic Evaluation of Detrimental Phenomena in High-Power Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kostecki, Robert; Lei, Jinglei; McLarnon, Frank; Shim, Joongpyo; Striebel, Kathryn

    2005-01-01T23:59:59.000Z

    Phenomena in High-Power Lithium-Ion Batteries RobertAbstract A pouch-type lithium-ion cell, with graphite anodewith model pouch-type lithium-ion cells, with graphite

  13. Performance and degradation evaluation of five different commercial lithium-ion cells

    E-Print Network [OSTI]

    Striebel, Kathryn A.; Shim, Joongpyo

    2004-01-01T23:59:59.000Z

    Capacity Plots for 5 lithium-ion cells, normalized to aDOD cycling of five lithium-ion cells. Coulombic Ratio (Qd/Different Commercial Lithium-Ion Cells Kathryn A, Striebel

  14. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    for ATD 18650 GEN 1 lithium ion cells, Revision 4, DecemberFAILURE MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE INdevelopment of high-power lithium-ion batteries for hybrid

  15. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    41 Analysis on Performances of Lithium-Ion Polymerenergy for the system and lithium-ion batteries will be usedFIVE Performance of Lithium-Ion Polymer Battery Introduction

  16. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    J. Newman, Advances in Lithium-Ion Batteries, ch. Modelingfor Overcharge Protection of Lithium-Ion Batteries Karen E.overcharge protec- tion for lithium-ion batteries. The model

  17. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–Material in Lithium Ion Batteries. Adv. Energy Mater. n/a–n/decomposition in lithium ion batteries: first-principles

  18. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    and J. Newman, Advances in Lithium-Ion Batteries, ch.Modeling of Lithium Batteries. Kluwer Academic Publishers,Protection of Lithium-Ion Batteries Karen E. Thomas-Alyea,

  19. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01T23:59:59.000Z

    Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

  20. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

  1. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode. J. Phys.Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  2. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01T23:59:59.000Z

    for a 2 V Rechargeable Lithium Battery. Journal of Thein a rechargeable lithium battery. Journal of Power Sourcesexception being the lithium-ion battery (Table 2.1). Table

  3. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    of LiFePO(4) as lithium battery cathode and comparison withImproved LiFePO(4) Lithium Battery Cathode. ElectrochemicalOptimized LiFePO(4) for lithium battery cathodes. Journal of

  4. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    of the different lithium battery chemistries are presentedMiller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy density

  5. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    grid storage. The lithium-ion battery is the most advancedtoday [1, 2]. A lithium-ion battery is comprised of adendrite formation in lithium metal battery systems [12, 14,

  6. Lithium Diisopropylamide-Mediated Ortholithiation of 2Fluoropyridines: Rates, Mechanisms, and the Role of Autocatalysis

    E-Print Network [OSTI]

    Collum, David B.

    Lithium Diisopropylamide-Mediated Ortholithiation of 2Fluoropyridines: Rates, Mechanisms, Ithaca, New York 14853-1301, United States *S Supporting Information ABSTRACT: Lithium diisopropylamide herein mechanistic studies of the lithium diisopropylamide (LDA)-mediated ortholithiation of 2-fluoro

  7. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  8. Lithium Diffusion in Li4Ti5O12 at High Temperatures. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Diffusion in Li4Ti5O12 at High Temperatures. Lithium Diffusion in Li4Ti5O12 at High Temperatures. Abstract: Synthesis of the spinel lithium titanate Li4Ti5O12 by an...

  9. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

  10. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

  11. PHYSICAL REVIEW B 84, 205446 (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery

    E-Print Network [OSTI]

    Ceder, Gerbrand

    2011-01-01T23:59:59.000Z

    of lithium peroxide in the lithium-air battery Yifei Mo, Shyue Ping Ong, and Gerbrand Ceder* Department) The lithium-air chemistry is an interesting candidate for the next-generation batteries with high specific-air battery systems have the potential to provide significantly higher specific energies than current lithium

  12. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

  13. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  14. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  15. Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work

    E-Print Network [OSTI]

    Langendoen, Koen

    Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby only LiPo Chargers with Error Detection - It is always recommended that you charge your lithium polymer batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

  16. Lithium 2,2,6,6-Tetramethylpiperidide and Lithium 2,2,4,6,6-Pentamethylpiperidide: Influence of TMEDA and Related

    E-Print Network [OSTI]

    Collum, David B.

    Lithium 2,2,6,6-Tetramethylpiperidide and Lithium 2,2,4,6,6-Pentamethylpiperidide: Influence,2,6,6-tetramethylpiperidide (LiTMP) and the conformationally locked (but otherwise isostructural) lithium 2 and conformational preferences of lithium 2,2,6,6-tetramethylpiperidide (LiTMP) in the solid state studied by Lappert

  17. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    100 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia, and the United States also were major producers. Australia, Canada, and Zimbabwe were major producers of lithium

  18. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  19. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    98 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia, and the United States also were major producers. Australia, Canada, and Zimbabwe were major producers of lithium

  20. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from

  1. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES235 SEM/FIB, microstructure characterization, and local electron atom probe........................................................................................................................16 1.1 Lithium Ion Batteries

  2. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Lithium-ion battery modules for testing Table 2: BatteriesBatteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Battery

  3. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium batteries

    E-Print Network [OSTI]

    Hu, Yaoqin; Doeff, Marca M.; Kostecki, Robert; Finones, Rita

    2003-01-01T23:59:59.000Z

    LiFePO 4 in Lithium Batteries Yaoqin Hu,* Marca M. Doeff,*material in lithium ion batteries based on environmental and

  4. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    The Electrochemical Society (Batteries and Energy ConversionDeposition for Lithium Batteries Seung-Wan Song, a, * Ronaldrechargeable lithium batteries. Introduction Sb-containing

  5. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  6. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Environmental Management (EM)

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean...

  7. ELECTROCHEMICAL STUDIES OF THE FILM FORMATION ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS UNDER OPEN CIRCUIT CONDITIONS

    E-Print Network [OSTI]

    Geronov, Y.

    2014-01-01T23:59:59.000Z

    for film growth and lithium corrosion. The increase in LiCl0drastically decreases the lithium corrosion and reduces the

  8. Effects of Cesium Cations in Lithium Deposition via Self-Healing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Effects of Cesium Cations in Lithium Deposition via Self-Healing Electrostatic Shield...

  9. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries CarbonSulfur Nanocomposites and Additives for High-Energy Lithium Sulfur Batteries Vehicle...

  10. au-implanted lithium niobate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on silicon-on-lithium-niobate photonics JEFF. By transferring large areas of thin, monocrystalline silicon to bulk lithium niobate (LiNbO3) substrates difference...

  11. Lithium: Measurement of Young's Modulus and Yield Strength

    SciTech Connect (OSTI)

    Ryan P Schultz

    2002-11-07T23:59:59.000Z

    The Lithium Collection Lens is used for anti-proton collection. In analyzing the structural behavior during operation, various material properties of lithium are often needed. properties such as density, coefficient of thermal expansion, thermal conductivity, specific heat, compressability, etc.; are well known. However, to the authors knowledge there is only one published source for Young's Modulus. This paper reviews the results from the testing of Young's Modulus and the yield strength of lithium at room temperature.

  12. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28T23:59:59.000Z

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  13. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    and characterization of spinel Li 4 Ti 5 O 12 nanoparticles anode materials for lithium ion battery.Li-ion battery performance. Figure 34. Characterization of

  14. Overcoming Processing Cost Barriers of High-Performance Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    aqueous formulation designs by standardized dispersant selection and rheological optimization methods - Tailored Aqueous Colloids for Lithium-Ion Electrodes (TACLE) B.L....

  15. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

  16. Polymer Electrolytes for High Energy Density Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes for High Energy Density Lithium Batteries Ashoutosh Panday Scott Mullin Nitash Balsara Proposed Battery anode (Li metal) Li Li + + e - e - Li salt in a hard solid...

  17. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  18. Promises and Challenges of Lithium- and Manganese-Rich Transition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Modeling of LMR-NMC Materials and Electrodes Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials PHEV Battery Cost Assessment...

  19. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Environmental Management (EM)

    Recycling Facilities Lithium-Ion Battery Recycling Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  20. Development of High Energy Lithium Batteries for Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

  1. Studies on Lithium Manganese Rich MNC Composite Cathodes

    Broader source: Energy.gov (indexed) [DOE]

    America Inc. 3 Presentation name Project Objectives - Relevance Undertake advanced materials research in the area of high energy (capacity) electrode materials for lithium-ion...

  2. Surface Modification Agents for Lithium-Ion Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Modification Agents for Lithium-Ion Batteries Technology available for licensing: A process to modify the surface of the active material used in an electrochemical device...

  3. Lithium Ion Battery Performance of Silicon Nanowires With Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

  4. Development of Novel Electrolytes for Use in High Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes...

  5. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

  6. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

  7. Sandia National Laboratories: Solid-State Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Batteries ARPAe: Innovation Activities On November 25, 2013, in Technology Showcase Nominees Partnering with Sandia Research Facilities Current Projects Technology Showcase...

  8. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  9. Intermetallic Electrodes Improve Safety and Performance in Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion Batteries Technology available for licensing: A new class of intermetallic material that can be used as a...

  10. Stabilized Lithium Metal Powder, Enabling Material and Revolutionary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation es011yakovleva2011p.pdf More Documents & Publications Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion...

  11. Edge Turbulence Velocity Changes with Lithium Coating on NSTX

    SciTech Connect (OSTI)

    Cao, A.; Zweben, S. J.; Stotler, D. P.; Bell, M.; Diallo, A.; Kaye, S. M.; LeBlanc, B.

    2012-08-10T23:59:59.000Z

    Lithium coating improves energy confinement and eliminates edge localized modes in NSTX, but the mechanism of this improvement is not yet well understood. We used the gas-puff-imaging (GPI) diagnostic on NSTX to measure the changes in edge turbulence which occurred during a scan with variable lithium wall coating, in order to help understand the reason for the confinement improvement with lithium. There was a small increase in the edge turbulence poloidal velocity and a decrease in the poloidal velocity fluctuation level with increased lithium. The possible effect of varying edge neutral density on turbulence damping was evaluated for these cases in NSTX. __________________________________________________

  12. Electrode Materials for Rechargeable Lithium-Ion Batteries: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

  13. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

  14. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    No. 5,763,119. “Redox Shuttle Additives for Overchargeprotection, electrolytes, additives, redox shuttleREDOX SHUTTLE ADDITIVES FOR OVERCHARGE PROTECTION IN LITHIUM

  15. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability...

  16. JCESR: Moving Beyond Lithium-Ion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCESR: Moving Beyond Lithium-Ion Share Topic Energy Energy usage Energy storage Batteries Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive...

  17. Lithium In Tufas Of The Great Basin- Exploration Implications...

    Open Energy Info (EERE)

    Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  18. Fundamental Studies of Lithium-Sulfur Cell Chemistry

    Broader source: Energy.gov (indexed) [DOE]

    Studies of Lithium-Sulfur Cell Chemistry PI: Nitash Balsara LBNL June 17, 2014 Project ID ESS224 This presentation does not contain any proprietary, confidential, or otherwise...

  19. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

  20. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

    2009-12-22T23:59:59.000Z

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.