Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mixing in a liquid metal electrode  

E-Print Network [OSTI]

Fluid mixing has first-order importance for many engineering problems in mass transport, including design and optimization of liquid-phase energy storage devices. Liquid metal batteries are currently being commercialized ...

Kelley, Douglas H.

2

Positive electrode current collector for liquid metal cells  

DOE Patents [OSTI]

A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

Shimotake, Hiroshi (Hinsdale, IL); Bartholme, Louis G. (Joliet, IL)

1984-01-01T23:59:59.000Z

3

Positive-electrode current collector for liquid-metal cells  

DOE Patents [OSTI]

A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

Shimotake, H.; Bartholme, L.G.

1982-09-27T23:59:59.000Z

4

Liquid electrode  

DOE Patents [OSTI]

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

5

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

Sheng, Lei; Liu, Jing

2014-01-01T23:59:59.000Z

6

Liquid-Metal Electrode to Enable Ultra-Low Temperature Sodium-Beta Alumina Batteries for Renewable Energy Storage  

SciTech Connect (OSTI)

Metal electrodes have a high capacity for energy storage but have found limited applications in batteries because of dendrite formation and other problems. In this paper, we report a new alloying strategy that can significantly reduce the melting temperature and improve wetting with the electrolyte to allow the use of liquid metal as anode in sodium-beta alumina batteries (NBBs) at much lower temperatures (e.g., 95 to 175°C). Commercial NBBs such as sodium-sulfur (Na-S) battery and sodium-metal halide (ZEBRA) batteries typically operate at relatively high temperatures (e.g., 300-350°C) due to poor wettability of sodium on the surface of ?"-Al2O3. Our combined experimental and computational studies suggest that Na-Cs alloy can replace pure sodium as the anode material, which provides a significant improvement in wettability, particularly at lower temperatures (i.e., <200°C). Single cells with the Na-Cs alloy anode exhibit excellent cycling life over those with pure sodium anode at 175 and 150°C. The cells can even operate at 95°C, which is below the melting temperature of pure sodium. These results demonstrate that NBB can be operated at ultra lower temperatures with successfully solving the wetting issue. This work also suggests a new strategy to use liquid metal as the electrode materials for advanced batteries that can avoid the intrinsic safety issues associated with dendrite formation on the anode.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Mei, Donghai; Lemmon, John P.; Sprenkle, Vincent L.; Liu, Jun

2014-08-01T23:59:59.000Z

7

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

Lei Sheng; Jie Zhang; Jing Liu

2014-01-30T23:59:59.000Z

8

Three-Electrode Metal Oxide Reduction Cell  

DOE Patents [OSTI]

A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

Dees, Dennis W. (Downers Grove, IL); Ackerman, John P. (Downers Grove, IL)

2005-06-28T23:59:59.000Z

9

Three-electrode metal oxide reduction cell  

DOE Patents [OSTI]

A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

Dees, Dennis W. (Downers Groves, IL); Ackerman, John P. (Downers Grove, IL)

2008-08-12T23:59:59.000Z

10

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

11

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

12

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

13

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

14

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi2-yHyO.xM'O2.(1-x)Li1-zHzMO2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi2-yHy.xM'O2.(1-x)Li1-zHzMO2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi2M'O3.(1-x)LiMO2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

2010-06-08T23:59:59.000Z

15

Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in  

E-Print Network [OSTI]

Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices metallic films as transparent conductive electrodes in optoelectronic devices. We find that the physics electrodes are critical to the operation of optoelectronic devices. Effective elec- trodes need to combine

Fan, Shanhui

16

Electrically conductive polycrystalline diamond and particulate metal based electrodes  

DOE Patents [OSTI]

An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

Swain, Greg M.; Wang, Jian

2005-04-26T23:59:59.000Z

17

The design of a microfabricated air electrode for liquid electrolyte fuel cells  

E-Print Network [OSTI]

In this dissertation, the microfabricated electrode (MFE) concept was applied to the design of an air electrode for liquid electrolyte fuel cells. The catalyst layer of the electrode is envisioned to be fabricated by using ...

Pierre, Fritz, 1977-

2007-01-01T23:59:59.000Z

18

Investigation of redox processes at semiconductor electrode liquid junctions  

SciTech Connect (OSTI)

Research in fundamental aspects of photoelectrochemical cells has been in the following areas: chemical probes for hot carrier processes, electrostatic theory for describing electrical interactions at interfaces, and kinetics of electron transfer at ideal semiconductor solution interfaces. Our goal is to achieve a better understanding of dark and photo-induced current flow at the semiconductor electrode/redox electrolyte interface (SEI) so that devices and processes utilizing this interface for solar energy conversion can be developed or improved. Our most important accomplishment has been the development of a redox system capable of detecting hot electrons at the p-InP/acetonitrile interface. Also, we have examined electrostatic theory for the image potential of an ion as a function of distance from the SEI. Finally, our group was one of the first to realize that the 2-dimensional metal chalcogenides (MC) are excellent materials for fundamental studies of electron transfer at the SEI. One of the chief potential advantages for use of MC's is the formation of semiconductor/liquid junctions with nearly ideal electrochemical properties. 27 refs., 1 fig.

Koval, C.A.

1990-08-01T23:59:59.000Z

19

Ceramic to metal attachment system. [Ceramic electrode to metal conductor in MHD generator  

DOE Patents [OSTI]

A composition and method are described for attaching a ceramic electrode to a metal conductor. A layer of randomly interlocked metal fibers saturated with polyimide resin is sandwiched between the ceramic electrode and the metal conductor. The polyimide resin is then polymerized providing bonding.

Marchant, D.D.

1983-06-10T23:59:59.000Z

20

Development of a metal hydride electrode waste treatment process  

SciTech Connect (OSTI)

Manufacturing residues of metal hydride electrodes for nickel - metal hydride batteries were chemically processed to recover the metal part and heat treated for the organic part. Chemical recovery yielded Ni-Co alloy after electrolysis of the solution and hydroxides of other metal, mainly rare earths. The organic part, pyrolyzed at 700 C, led to separation between carbon and fluorinated matter. Infrared coupling at the output of the pyrolysis furnace was used to identify the pyrolysis gases.

Bianco, J.C.; Martin, D.; Ansart, F.; Castillo, S.

1999-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Liquid metal Flow Meter - Final Report  

SciTech Connect (OSTI)

Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

Andersen C, Hoogendoom S, Hudson B, Prince J, Teichert K, Wood J, Chase K

2007-01-30T23:59:59.000Z

22

Surface attack on metals in the presence of liquid metals. Final report  

SciTech Connect (OSTI)

A study was undertaken to evaluate liquid metals as electrical collectors in contact with solid metal alloys. Surface attack of the liquid metal on the solid metal is expected to be a major challenge to the development of a credible system. Low-melting-temperature metals and alloys of the fusible type are to be utilized for a collector that will operate in the 200-500 F range, with emphasis towards the lower end. Solid metals have been selected for experimental work based on their electrical properties and minimal potential reaction with the candidate liquid-metal alloys. Material properties of both liquid and solid metals were reviewed to identify initial material combinations for evaluation. Thorough literature searches were conducted to obtain as much pertinent physical-property and metallurgical data as possible, prior to actual experimental work. Process and material modelling was adopted to select candidate materials for both solids and liquids. Consideration of practical requirements for the eventual collectors is an integral part of the study. Work effort has concentrated on apparatus construction, evaluation and a program of testing to obtain screening data on materials selected and the chosen test method. Results have identified limitations of the test unit design and maximum current loads under test conditions with experimental current collectors. Candidate electrode materials have been exposed in low-melting fusible alloys for direct-dissolution data.

Beal, R.E.

1986-04-10T23:59:59.000Z

23

Liquid metal cooled nuclear reactor plant system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

24

Sewage sludge dewatering using flowing liquid metals  

DOE Patents [OSTI]

A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

Carlson, Larry W. (Oswego, IL)

1986-01-01T23:59:59.000Z

25

Metal electrode for amorphous silicon solar cells  

DOE Patents [OSTI]

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01T23:59:59.000Z

26

Method for forming consumable electrodes from metallic chip scraps  

DOE Patents [OSTI]

The method relates to metallurgical recycling of waste products, preferably titanium alloys chips scrap. Accordingly after crushing and cleaning, the chip scrap is subjected to vacuum-thermal degassing (VTD); the chip scrap is pressed into briquettes; the briquettes are placed into a mould allowing sufficient remaining space for the addition of molten metal alloy; the mould is pre-heated before filling with the molten metal alloy; the mould remaining space is filled with molten metal alloy. After cooling, the electrode is removed from the mould. The method provides a means for 100% use of chip scrap in producing consumable electrodes having increased mechanical strength and reduced interstitial impurities content leading to improved secondary cast alloys.

Girshov, Vladimir Leonidovich (St. Petersburg, RU); Podpalkin, Arcady Munjyvich (St. Petersburg, RU); Treschevskiy, Arnold Nikolayevich (St. Petersburg, RU); Abramov, Alexey Alexandrovich (St. Petersburg, RU)

2005-10-11T23:59:59.000Z

27

Hydraulically refueled battery employing a packed bed metal particle electrode  

DOE Patents [OSTI]

A secondary zinc air cell, or another selected metal air cell, employing a spouted/packed metal particle bed and an air electrode is described. More specifically, two embodiments of a cell, one that is capable of being hydraulically recharged, and a second that is capable of being either hydraulically or electrically recharged. Additionally, each cell includes a sloped bottom portion to cause stirring of the electrolyte/metal particulate slurry when the cell is being hydraulically emptied and refilled during hydraulically recharging of the cell. 15 figs.

Siu, S.C.; Evans, J.W.

1998-12-15T23:59:59.000Z

28

Hydraulically refueled battery employing a packed bed metal particle electrode  

DOE Patents [OSTI]

A secondary zinc air cell, or another selected metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically, two embodiments of a cell, one that is capable of being hydraulically recharged, and a second that is capable of being either hydraulically or electrically recharged. Additionally, each cell includes a sloped bottom portion to cause stirring of the electrolyte/metal particulate slurry when the cell is being hydraulically emptied and refilled during hydraulically recharging of the cell.

Siu, Stanley C. (Castro Valley, CA); Evans, James W. (Piedmont, CA)

1998-01-01T23:59:59.000Z

29

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2001-01-01T23:59:59.000Z

30

Inert electrode containing metal oxides, copper and noble metal  

DOE Patents [OSTI]

A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA); Dawless, Robert K. (Monroeville, PA); Hosler, Robert B. (Sarver, PA)

2000-01-01T23:59:59.000Z

31

Liquid metal cooled divertor for ARIES  

SciTech Connect (OSTI)

A liquid metal, Ga-cooled divertor design was completed for the double null ARIES-II divertor design. The design analysis indicated a surface heat flux removal capability of up to 15 MW/m{sup 2}, and its relative easy maintenance. Design issues of configuration, thermal hydraulics, thermal stresses, liquid metal loop and safety effects were evaluated. For coolant flow control, it was found that it is necessary to use some part of the blanket cooling ducts for the draining of liquid metal from the top divertor. In order to minimize the inventory of Ga, it was recommended that the liquid metal loop equipment should be located as close to the torus as possible. More detailed analysis of transient conditions especially under accident conditions was identified as an issue that will need to be addressed.

Muraviev, E. [Gosudarstvennyj Komitet po Ispol`zovaniyu Atomnoj Ehnergii SSSR, Moscow (Russian Federation). Inst. Atomnoj Ehnergii

1995-01-01T23:59:59.000Z

32

Improved automated lens design for liquid metal ion sources  

SciTech Connect (OSTI)

Our method for optimum design of electrostatic lenses with high target current densities has been improved. The constraints are periodically tightened and loosened during the optimization procedure resulting in a more effective optimization. The inputs of the computerized method are the given source parameters, the first-order properties of the lens, and some other constraints like a potential limit on the electrodes and a maximum allowed electric field. The output is the potential distribution on the electrodes of a given multielectrode lens or the spline coefficients of a spline lens model. Some computational results are presented for a Ga liquid metal ion source. Keeping the given source parameters and working distances constant, essential improvements of the optical properties of some well-known designs could be achieved by replacing the lenses with those designed by our procedures. A sensitivity analysis is given in conclusion.

Szep, J.; Szilagyi, M. (Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ (USA))

1990-09-01T23:59:59.000Z

33

Mixed ionic and electronic conducting electrode studies for an alkali metal thermal to electric converter  

E-Print Network [OSTI]

This research focuses on preparation, kinetics, and performance studies of mixed ionic and electronic conducting electrodes (MIEE) applied in an alkali metal thermal to electric converter (AMTEC). Two types of MIEE, metal/sodium titanate and metal...

Guo, Yuyan

2009-05-15T23:59:59.000Z

34

Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon  

DOE Patents [OSTI]

A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

Byrne, Stephen C. (Monroeville, PA); Ray, Siba P. (Pittsburgh, PA); Rapp, Robert A. (Columbus, OH)

1984-01-01T23:59:59.000Z

35

Non-stoichiometric AB5 alloys for metal hydride electrodes  

DOE Patents [OSTI]

The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.

Reilly, James J. (Bellport, NY); Adzic, Gordana D. (Setauket, NY); Johnson, John R. (Calverton, NY); Vogt, Thomas (Cold Spring Harbor, NY); McBreen, James (Bellport, NY)

2001-01-01T23:59:59.000Z

36

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

37

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents [OSTI]

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

38

Double-duct liquid metal magnetohydrodynamic engine  

DOE Patents [OSTI]

An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

Haaland, Carsten M. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

39

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents [OSTI]

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

Siu, Stanley C. (Alameda, CA); Evans, James W. (Piedmont, CA); Salas-Morales, Juan (Berkeley, CA)

1995-01-01T23:59:59.000Z

40

Extrusion of electrode material by liquid injection into extruder barrel  

DOE Patents [OSTI]

An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells. 1 fig.

Keller, D.G.; Giovannoni, R.T.; MacFadden, K.O.

1998-03-10T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Extrusion of electrode material by liquid injection into extruder barrel  

DOE Patents [OSTI]

An electrode sheet product is formed using an extruder having a feed throat and a downstream section by separately mixing an active electrode material and a solid polymer electrolyte composition that contains lithium salt. The active electrode material is fed into the feed throat of the extruder, while a portion of at least one fluid component of the solid polymer electrolyte composition is introduced to the downstream section. The active electrode material and the solid polymer electrolyte composition are compounded in a downstream end of the extruder. The extruded sheets, adhered to current collectors, can be formed into battery cells.

Keller, David Gerard (Baltimore, MD); Giovannoni, Richard Thomas (Reisterstown, MD); MacFadden, Kenneth Orville (Highland, MD)

1998-01-01T23:59:59.000Z

42

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

43

A method of measuring a molten metal liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

1990-12-12T23:59:59.000Z

44

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M'O3 in which 0

Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

2006-11-14T23:59:59.000Z

45

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

46

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

47

Metal-air low temperature ionic liquid cell  

DOE Patents [OSTI]

The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

Friesen, Cody A; Buttry, Daniel A

2014-11-25T23:59:59.000Z

48

Fabrication methods for low impedance lithium polymer electrodes  

DOE Patents [OSTI]

A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

Chern, Terry Song-Hsing (Midlothian, VA); MacFadden, Kenneth Orville (Highland, MD); Johnson, Steven Lloyd (Arbutus, MD)

1997-01-01T23:59:59.000Z

49

Fabrication methods for low impedance lithium polymer electrodes  

DOE Patents [OSTI]

A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.

Chern, T.S.; MacFadden, K.O.; Johnson, S.L.

1997-12-16T23:59:59.000Z

50

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode  

E-Print Network [OSTI]

Electrically switchable finite energy Airy beams generated by a liquid crystal cell with patterned electrode D. Luo, H.T. Dai, X.W. Sun , H.V. Demir School of Electrical and Electronic Engineering, Nanyang Keywords: Diffraction Liquid crystal devices Propagation A pair of electrically switchable finite energy

Demir, Hilmi Volkan

51

Liquid suspensions of reversible metal hydrides  

DOE Patents [OSTI]

The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

1983-12-08T23:59:59.000Z

52

Electrospun carbon nanofiber electrodes decorated with palladium metal nanoparticles : fabrication and characterization  

E-Print Network [OSTI]

A new method was investigated to produce a novel oxygen reduction electrode comprised of carbon nanofibers for use in polymer electrolyte membrane (PEM) fuel cells and metal-air batteries. The process involved electrospinning ...

Kurpiewski, John Paul

2005-01-01T23:59:59.000Z

53

Electrically recharged battery employing a packed/spouted bed metal particle electrode  

DOE Patents [OSTI]

A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode, is described. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged. 5 figs.

Siu, S.C.; Evans, J.W.; Salas-Morales, J.

1995-08-15T23:59:59.000Z

54

Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells  

E-Print Network [OSTI]

Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning

Park, Namkyoo

55

Simplified process for leaching precious metals from fuel cell membrane electrode assemblies  

DOE Patents [OSTI]

The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley Heights, NJ)

2009-12-22T23:59:59.000Z

56

Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes  

SciTech Connect (OSTI)

We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage ? to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ?. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of ?. Based on this theory, we predict a dependency of ? on ? that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

Wissman, J., E-mail: jwissman@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Finkenauer, L. [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Deseri, L. [DICAM, Department of Mechanical, Civil and Environmental Engineering, University of Trento, via Mesiano 77 38123 Trento (Italy); TMHRI-Department of Nanomedicine, The Methodist Hospital Research Institute, 6565 Fannin St., MS B-490 Houston, Texas 77030 (United States); Mechanics, Materials and Computing Center, CEE and ME-CIT, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Majidi, C. [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Robotics Institute and Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

2014-10-14T23:59:59.000Z

57

Improving nickel metal hydride batteries through research in negative electrode corrosion control and novel electrode materials  

E-Print Network [OSTI]

electrode materials. In order to fully understand the processes involved in the corrosion study, tests were carried at Brookhaven National Laboratory using X-ray Absorption Near Edge Spectroscopy. These tests showed that Zn prevented the corrosion of Ni-a...

Alexander, Michael Scott

1997-01-01T23:59:59.000Z

58

The importance of ion size and electrode curvature on electrical double layers in ionic liquids  

SciTech Connect (OSTI)

Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF{sub 6}] (near the positive electrode) ? [BMIM][Cl] (near the negative electrode) ? [BMIM][PF{sub 6}] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a “Multiple Ion Layers with Overscreening” (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

Feng, G.; Qiao, R.; Huang, J; Dai, S.; Sumpter, B. G.; Meunier, V.

2011-01-01T23:59:59.000Z

59

The Importance of Ion Size and Electrode Curvature on Electrical Double Layers in Ionic Liquids  

SciTech Connect (OSTI)

Room-temperature ionic liquids (ILs) are an emerging class of electrolytes for supercapacitors. We investigate the effects of ion size and electrode curvature on the electrical double layers (EDLs) in two ILs 1-butyl-3-methylimidazolium chloride [BMIM][Cl] and 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF(6)], using a combination of molecular dynamics (MD) and quantum density functional theory (DFT) simulations. The sizes of the counter-ion and co-ion affect the ion distribution and orientational structure of EDLs. The EDL capacitances near both planar and cylindrical electrodes were found to follow the order: [BMIM][Cl] (near the positive electrode) > [BMIM][PF(6)] (near the positive electrode) {approx} [BMIM][Cl] (near the negative electrode) {approx} [BMIM][PF(6)] (near the negative electrode). The EDL capacitance was also found to increase as the electrode curvature increases. These capacitance data can be fit to the Helmholtz model and the recently proposed exohedral electrical double-cylinder capacitor (xEDCC) model when the EDL thickness is properly parameterized, even though key features of the EDLs in ILs are not accounted for in these models. To remedy the shortcomings of existing models, we propose a 'Multiple Ion Layers with Overscreening' (MILO) model for the EDLs in ILs that takes into account two critical features of such EDLs, i.e., alternating layering of counter-ions and co-ions and charge overscreening. The capacitance computed from the MILO model agrees well with the MD prediction. Although some input parameters of the MILO model must be obtained from MD simulations, the MILO model may provide a new framework for understanding many important aspects of EDLs in ILs (e.g., the variation of EDL capacitance with the electrode potential) that are difficult to interpret using classical EDL models and experiments.

Feng, Guang [Clemson University; Qiao, Rui [ORNL; Huang, Jingsong [ORNL; Dai, Sheng [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL

2010-01-01T23:59:59.000Z

60

Numerical simulation of the Tayler instability in liquid metals  

E-Print Network [OSTI]

The electrical current through an incompressible, viscous and resistive liquid conductor produces an azimuthal magnetic field that becomes unstable when the corresponding Hartmann number exceeds a critical value in the order of 20. This Tayler instability, which is not only discussed as a key ingredient of a non-linear stellar dynamo model (Tayler-Spruit dynamo), but also as a limiting factor for the maximum size of large liquid metal batteries, was recently observed experimentally in a column of a liquid metal (Seilmayer et al., Phys. Rev. Lett. 108, 244501, 2012}. On the basis of an integro-differential equation approach, we have developed a fully three-dimensional numerical code, and have utilized it for the simulation of the Tayler instability at typical viscosities and resistivities of liquid metals. The resulting growth rates are in good agreement with the experimental data. We illustrate the capabilities of the code for the detailed simulation of liquid metal battery problems in realistic geometries.

Weber, Norbert; Stefani, Frank; Weier, Tom; Wondrak, Thomas

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells  

E-Print Network [OSTI]

Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved ...

Bradwell, David (David Johnathon)

2011-01-01T23:59:59.000Z

62

Heat transfer during film condensation of a liquid metal vapor  

E-Print Network [OSTI]

The object of this investigation is to resolve the discrepancy between theory and experiment for the case of heat transfer durirnfilm condensation of liquid metal vapors. Experiments by previous investigators have yielded ...

Sukhatme, S. P.

1964-01-01T23:59:59.000Z

63

Studies of electrical breakdown processes across vacuum gaps between metallic electrodes  

E-Print Network [OSTI]

Studies of electrical breakdown processes across vacuum gaps between metallic electrodes L Available online 3 June 2013 Keywords: Magnetic insulation Vacuum electrical breakdown Bacteria-induced electrical breakdown Accelerator a b s t r a c t An experimental program to elucidate the physical causes

Gilson, Erik

64

Studies of electrical breakdown processes across vacuum gaps between metallic electrodes  

E-Print Network [OSTI]

Studies of electrical breakdown processes across vacuum gaps between metallic electrodes L Keywords: Magnetic insulation Vacuum electrical breakdown Bacteria-induced electrical breakdown Accelerator a b s t r a c t An experimental program to elucidate the physical causes of electrical breakdown

Gilson, Erik

65

High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings  

E-Print Network [OSTI]

to be reached between 2010 and 2015 are clear: the catalyst of a fuel cell can cost no more than 4 per kilowatt1 High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings C in plasma fuel cell deposition devices. Pt loadings lower than 0.01 mg cm-2 have been realized. The Pt

Paris-Sud XI, Université de

66

Coated metal sintering carriers for fuel cell electrodes  

DOE Patents [OSTI]

A carrier is described for conveying components of a fuel cell to be sintered through a sintering furnace. The carrier comprises a metal sheet coated with a water-based carbon paint, the water-based carbon paint comprising water, powdered graphite, an organic binder, a wetting agent, a dispersing agent and a defoaming agent.

Donelson, R.; Bryson, E.S.

1998-11-10T23:59:59.000Z

67

Redox chromophore compounds and electrodes of metal containing substituted bipyridines  

DOE Patents [OSTI]

Chromophoric compounds, each having a wide range of distinct color changes in response to changes in the oxidation states thereof, are provided in the form of polymerizable monomers, and polymers thereof, of certain metal containing, and electron group substituted, 2,2'-bipyridine compounds.

Elliott, Cecil M. (Fort Collins, CO); Redepenning, Jody G. (Fort Collins, CO)

1986-01-01T23:59:59.000Z

68

E-Print Network 3.0 - argonne liquid-metal advanced Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquid-metal advanced Search Powered by Explorit Topic List Advanced Search Sample search results for: argonne liquid-metal advanced Page: << < 1 2 3 4 5 > >> 1 CONCAVE LIQUID...

69

Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature  

SciTech Connect (OSTI)

Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield “rectangular” I?V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ?12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

Nakanishi, Hideyuki [Northwestern Univ., Evanston, IL (United States); Grzybowski, Bartosz A. [Northwestern Univ., Evanston, IL (United States)

2010-01-01T23:59:59.000Z

70

Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer  

DOE Patents [OSTI]

High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

Adzic, Radoslav; Harris, Alexander

2014-04-15T23:59:59.000Z

71

Metal-sulfur type cell having improved positive electrode  

DOE Patents [OSTI]

An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

Dejonghe, Lutgard C. (Berkeley, CA); Visco, Steven J. (Berkeley, CA); Mailhe, Catherine C. (Berkeley, CA); Armand, Michel B. (St. Martin D'Uriage, FR)

1989-01-01T23:59:59.000Z

72

Hydridable material for the negative electrode in a nickel-metal hydride storage battery  

DOE Patents [OSTI]

A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

Knosp, Bernard (Neuilly-sur-Seine, FR); Bouet, Jacques (Paris, FR); Jordy, Christian (Dourdan, FR); Mimoun, Michel (Neuilly-sur-Marne, FR); Gicquel, Daniel (Lanorville, FR)

1997-01-01T23:59:59.000Z

73

Recently published research from the National Renewable Energy Laboratory (NREL) reports that biohybrid hydrogen electrodes comprising metallic single-  

E-Print Network [OSTI]

, for application in photoelectrochemical or fuel cells. The high-performance hydrogen electrodes are based cells. Such an application could contribute to the large-scale deployment of fuel cells and other high that biohybrid hydrogen electrodes comprising metallic single- walled carbon nanotube (SWNT) networks

74

Composite carbon foam electrode  

DOE Patents [OSTI]

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1997-01-01T23:59:59.000Z

75

Composite carbon foam electrode  

DOE Patents [OSTI]

Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-05-06T23:59:59.000Z

76

High performance cermet electrodes  

DOE Patents [OSTI]

Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

Isenberg, Arnold O. (Forest Hills Boro, PA); Zymboly, Gregory E. (Penn Hills, PA)

1986-01-01T23:59:59.000Z

77

ESS liquid-metal target design using computational fluid dynamics  

SciTech Connect (OSTI)

The thermal-hydraulic performance of a spallation neutron source target limits the highest neutron fluxes that can be generated. The current design for the European spallation source consists of a liquid metal encased within a containing shell, wedge-shaped in the direction of the incoming proton beam, with rounded sides in a cross section through a plane normal to the beam.

Dury, T.V. [Paul Scherrer Institute, Villigen (Switzerland)

1997-12-01T23:59:59.000Z

78

Liquid metal cooled nuclear reactors with passive cooling system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

1991-01-01T23:59:59.000Z

79

Weight and volume changing device with liquid metal transfer  

E-Print Network [OSTI]

This paper presents a weight-changing device based on the transfer of mass. We chose liquid metal (Ga-In-Tin eutectic) and a bi-directional pump to control the mass that is injected into or removed from a target object. ...

Niiyama, Ryuma

80

Mesoporous metal oxide microsphere electrode compositions and their methods of making  

SciTech Connect (OSTI)

Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

2014-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An electrochemical investigation of the chemical diffusivity in liquid metal alloys  

E-Print Network [OSTI]

The liquid metal battery has been shown to be a viable candidate for grid-scale energy storage, due to its fast kinetics and ability to be constructed from economically feasible materials. Various of the liquid metal couples ...

Barriga, Salvador A. (Salvador Aguilar)

2013-01-01T23:59:59.000Z

82

A Liquid Metal PMI/PFC Initiative ! R. Maingi, on behalf of  

E-Print Network [OSTI]

A Liquid Metal PMI/PFC Initiative ! R. Maingi, on behalf of a Liquid Metal PFC Working Group FESAC a number of challenges; focal area of worldwide PMI program 3 · Accepted heat flux exhaust limit for W is 5

83

Observation of Liquid Metal Actuation in Microfluidic Channels and Implementation to Tunable RF Inductors  

E-Print Network [OSTI]

The overreaching goal of this thesis research is to analyze liquid metal plug actuation in microfluidic channels and to exemplify this actuation in a tunable inductor design using liquid metal as a switching material, and to demonstrate...

Dogan, Yusuf

2014-07-18T23:59:59.000Z

84

Supercritical CO2Brayton Cycle Control Strategy for Autonomous Liquid Metal-Cooled Reactors  

SciTech Connect (OSTI)

This presentation discusses a supercritical carbon dioxide brayton cycle control strategy for autonomous liquid metal-cooled reactors.

Moisseytsev, A.; Sienicki, J.J.

2004-10-06T23:59:59.000Z

85

Plasma/liquid metal interactions during tokamak operation.  

SciTech Connect (OSTI)

One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin. Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.

Hassanein, A.; Allain, J. P.; Insepov, Z.; Konkashbaev, I.; Energy Technology

2005-04-01T23:59:59.000Z

86

Plasma/Liquid-Metal Interactions During Tokamak Operation  

SciTech Connect (OSTI)

One of the critical technological challenges of future tokamak fusion devices is the ability for plasma-facing components to handle both normal and abnormal plasma/surface interaction events that compromise their lifetime and operation of the machine. Under normal operation plasma/surface interactions that are important include: sputtering, particle implantation and recycling, He pumping and ELM (edge localized modes)-induced erosion. In abnormal or off-normal operation: disruptions and vertical displacement events (VDEs) are important. To extend PFC lifetime under these conditions, liquid-metals have been considered as candidate PFCs (Plasma-Facing Components), including: liquid lithium, tin-lithium, gallium and tin.Liquid lithium has been measured to have nonlinear increase of physical sputtering with rise in temperature. Such increase can be a result of exposure to ELM-level particle fluxes. The significant increase in particle flux to the divertor and nearby PFCs can enhance sputtering erosion by an order of magnitude or more. In addition from the standpoint of hydrogen recycling and helium pumping liquid lithium appears to be a good candidate plasma-facing material (PFM). Advanced designs of first wall and divertor systems propose the application of liquid-metals as an alternate PFC to contend with high-heat flux constraints of large-scale tokamak devices. Additional issues include PFC operation under disruptions and long temporal instabilities such as VDEs. A comprehensive two-fluid model is developed to integrate core and SOL (scrape-off layer) parameters during ELMs with PFC surface evolution using the HEIGHTS package. Special emphasis is made on the application of lithium as a candidate plasma-facing liquid-metal.

Hassanein, A.; Allain, J.P.; Insepov, Z.; Konkashbaev, I. [Argonne National Laboratory (United States)

2005-04-15T23:59:59.000Z

87

Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide  

E-Print Network [OSTI]

on the moon and on Mars for the generation of oxygen along with the production of structural metalsProduction of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful

Sadoway, Donald Robert

88

A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments  

SciTech Connect (OSTI)

We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

2008-08-27T23:59:59.000Z

89

Steam generator for liquid metal fast breeder reactor  

DOE Patents [OSTI]

Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.

Gillett, James E. (Greensburg, PA); Garner, Daniel C. (Murrysville, PA); Wineman, Arthur L. (Greensburg, PA); Robey, Robert M. (North Huntingdon, PA)

1985-01-01T23:59:59.000Z

90

Blanket management method for liquid metal fast breeder reactors  

SciTech Connect (OSTI)

The method is described of moving blanket assemblies during refueling in a heterogeneous-type core for a liquid-metal-cooled fast-breeder nuclear reactor to improve the performance thereof. The core consists of fissile-material-containing fuel assemblies and fertile-material-containing blanket assemblies, the blanket assemblies including a plurality of inner blanket assemblies positioned in predetermined different locations within the interior of the core and radial blanket assemblies positioned proximate the periphery of the core.

Carelli, M.D.

1986-04-22T23:59:59.000Z

91

NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger  

SciTech Connect (OSTI)

One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2008-09-01T23:59:59.000Z

92

Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization  

SciTech Connect (OSTI)

This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system was developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.

Holland, Stephen [University of Tennessee, Knoxville (UTK); Mahan, Cody [Western Kentucky University; Kuhn, Michael J [ORNL; Rowe, Nathan C [ORNL

2013-01-01T23:59:59.000Z

93

Protective coating on positive lithium-metal-oxide electrodes for lithium batteries  

DOE Patents [OSTI]

A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

2006-05-23T23:59:59.000Z

94

High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid  

SciTech Connect (OSTI)

It is known that ultrathin (<10 nm) metal films (UTMFs) can achieve high level of optical transparency at the expense of the electrical sheet resistance. In this letter, we propose a design, the incorporation of an ad hoc conductive grid, which can significantly reduce the sheet resistance of UTMF based transparent electrodes, leaving practically unchanged their transparency. The calculated highest figure-of-merit corresponds to a filling factor and a grid spacing-to-linewidth ratio of 0.025 and 39, respectively. To demonstrate the capability of the proposed method the sheet resistance of a continuous 2 nm Ni film (>950 OMEGA/square) is reduced to approx6.5 OMEGA/square when a 100 nm thick Cu grid is deposited on it. The transparency is instead maintained at values exceeding 75%. These results, which can be further improved by making thicker grids, already demonstrate the potential in applications, such as photovoltaic cells, optical detectors and displays.

Ghosh, D. S.; Chen, T. L. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona, 08860 Catalunya (Spain); Pruneri, V. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Castelldefels, Barcelona, 08860 Catalunya (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

2010-01-25T23:59:59.000Z

95

Excitation of electrostatic plasma waves using a dielectric covered metallic electrode  

SciTech Connect (OSTI)

Plasma response to high positive and negative voltage pulses is studied using pulsed capacitive excitation in a uniform and unmagnetized plasma. The positive or negative voltage pulse is applied to a metallic electrode, covered by a dielectric (Kapton) film, immersed in a low pressure argon plasma. The pulse magnitude is much greater than the electron temperature (U{sub 0} >> kT{sub e}/e). Experiments are carried out for different plasma parameters, to find how the plasma perturbations propagate for various applied pulse widths in comparison to ion plasma period ( f{sub i}{sup -1}). Plasma perturbations are studied by varying the thickness of the dielectric. For positive pulse bias, depending on the dielectric thickness, excitation of solitary electron holes, or solitary ion holes are observed. For negative pulse bias, varying the dielectric thicknesses, only ion rarefaction waves are excited.

Kar, S.; Mukherjee, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India)

2011-11-15T23:59:59.000Z

96

Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive  

DOE Patents [OSTI]

An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

2014-08-19T23:59:59.000Z

97

Indirect passive cooling system for liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1990-01-01T23:59:59.000Z

98

Passive cooling safety system for liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA); Hui, Marvin M. (Sunnyvale, CA); Berglund, Robert C. (Saratoga, CA)

1991-01-01T23:59:59.000Z

99

Sandia National Laboratories: LIMITS Liquid Metal Flow Loop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State UniversityFacilityLIMITS Liquid Metal Flow

100

Development of a liquid ferrous metal chemical reactor  

SciTech Connect (OSTI)

Research is in progress to develop a liquid ferrous metal chemical reactor to produce valuable products from petroleum refining waste and to achieve totally contained destruction of toxic chemicals. The work is an extension of a patented HyMelt process developed by the Ashland Petroleum Company. Materials to be processed, such as hydrocarbons, are fed into a crucible of molten iron at 1,650 degrees centigrade. The material decomposes, evolving hydrogen gas and combining carbon with the iron to form molten steel. Research is being doe to develop a continuous process by (1) solving problems of carbonization of feed before it enters the molten metal and (2) using physics and chemistry of oxygen sparging to remove the carbon from the melt as carbon dioxide gas. Research is being pursued as a collaborative effort of Ashland Petroleum Company, Westinghouse Savannah River Company, Houston Advanced Research center, and others.

Randolph, H.W. [Westinghouse Savannah River Technology Center, Aiken SC (United States); Malone, D.P. [Ashland Petroleum Co., Houston, TX (United States). Research and Development Dept.; Margrave, J.L. [Rice Univ., Houston, TX (United States). Dept. of Chemistry

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Performance of Liquid Metals in Natural Circulation Cooled Nuclear Reactors  

SciTech Connect (OSTI)

The inherent safety capability of natural circulation makes reactor design more reliable. Additionally, the construction and operation of a nuclear power plant with natural circulation in the primary cooling circuit is an interesting alternative for nuclear plant designers, due to their lower operational and investment costs obtained by simplifying systems and controls. This paper deals with the feasibility of application of natural circulation in the primary cooling circuit of a liquid metal fast reactor. The methodology employed is a non-dimensional analysis, which describes the relationship between the physical properties and system variables. The performance criterion is bounded by a safety argument, referring to the maximum cladding temperature allowed during operation. The study considers several coolants, which can play a part in reactor cooling systems, such as lead, lead-bismuth and sodium. Bismuth and gallium are included in this analysis, in order to extend the range of properties for reference purposes. The results present a characterization of natural circulation flow in a reactor and compare the cooling capabilities from different liquid metals coolants. (authors)

Ceballos, Carlos; Lathouwers, Danny; Verkooijen, Adrian [Interfacultair Reactor Instituut, Technische Universiteit Delft, Mekelweg 15, Delft (Netherlands)

2004-07-01T23:59:59.000Z

102

Low resistance fuel electrodes  

DOE Patents [OSTI]

An electrode 6 bonded to a solid, ion conducting electrolyte 5 is made, where the electrode 6 comprises a ceramic metal oxide 18, metal particles 17, and heat stable metal fibers 19, where the metal fibers provide a matrix structure for the electrode. The electrolyte 5 can be bonded to an air electrode cathode 4, to provide an electrochemical cell 2, preferably of tubular design.

Maskalick, Nichols J. (Pittsburgh, PA); Folser, George R. (Lower Burrell, PA)

1989-01-01T23:59:59.000Z

103

Graphene-based battery electrodes having continuous flow paths  

SciTech Connect (OSTI)

Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

2014-05-24T23:59:59.000Z

104

Thermodynamic properties and atomic structure of Ca-based liquid alloys  

E-Print Network [OSTI]

To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were ...

Poizeau, Sophie (Sophie Marie Claire)

2013-01-01T23:59:59.000Z

105

Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes  

SciTech Connect (OSTI)

The performance of thin film metal-insulator-metal (MIM) diodes is investigated for a variety of large and small electron affinity insulators using ultrasmooth amorphous metal as the bottom electrode. Nb{sub 2}O{sub 5}, Ta{sub 2}O{sub 5}, ZrO{sub 2}, HfO{sub 2}, Al{sub 2}O{sub 3}, and SiO{sub 2} amorphous insulators are deposited via atomic layer deposition (ALD). Reflection electron energy loss spectroscopy (REELS) is utilized to measure the band-gap energy (E{sub G}) and energy position of intrinsic sub-gap defect states for each insulator. E{sub G} of as-deposited ALD insulators are found to be Nb{sub 2}O{sub 5}?=?3.8?eV, Ta{sub 2}O{sub 5}?=?4.4?eV, ZrO{sub 2}?=?5.4?eV, HfO{sub 2}?=?5.6?eV, Al{sub 2}O{sub 3}?=?6.4?eV, and SiO{sub 2}?=?8.8?eV with uncertainty of ±0.2?eV. Current vs. voltage asymmetry, non-linearity, turn-on voltage, and dominant conduction mechanisms are compared. Al{sub 2}O{sub 3} and SiO{sub 2} are found to operate based on Fowler-Nordheim tunneling. Al{sub 2}O{sub 3} shows the highest asymmetry. ZrO{sub 2}, Nb{sub 2}O{sub 5}, and Ta{sub 2}O{sub 5} based diodes are found to be dominated by Frenkel-Poole emission at large biases and exhibit lower asymmetry. The electrically estimated trap energy levels for defects that dominate Frenkel-Poole conduction are found to be consistent with the energy levels of surface oxygen vacancy defects observed in REELS measurements. For HfO{sub 2}, conduction is found to be a mix of trap assisted tunneling and Frenkel-Poole emission. Insulator selection criteria in regards to MIM diodes applications are discussed.

Alimardani, Nasir; Tan, Cheng; Lampert, Benjamin P.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, Arizona 85248 (United States)

2014-07-14T23:59:59.000Z

106

Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces  

E-Print Network [OSTI]

Hydrogen and helium entrapment in flowing liquid metal plasma-facing surfaces Ahmed Hassanein the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem. Hydrogen isotope (DT) particles are likely be trapped in the liquid metal surface (e.g., lithium) due

Harilal, S. S.

107

Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device  

DOE Patents [OSTI]

A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

Haaland, Carsten M. (Dadeville, AL); Deeds, W. Edward (Knoxville, TN)

1999-01-01T23:59:59.000Z

108

Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device  

DOE Patents [OSTI]

A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

Haaland, C.M.; Deeds, W.E.

1999-07-13T23:59:59.000Z

109

Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors  

DOE Patents [OSTI]

An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

Brehm, Jr., William F. (Richland, WA); Colburn, Richard P. (Pasco, WA)

1982-01-01T23:59:59.000Z

110

A Study of Liquid Metal Film Flow, Under Fusion Relevant Magnetic Fields  

SciTech Connect (OSTI)

The use of flowing liquid metal streams or 'liquid walls' as a plasma contact surface is a very attractive option and has received considerable attention over the past several years both in the plasma physics and fusion engineering programs. A key issue for the feasibility of flowing liquid metal plasma facing component (PFC) systems, lies in their magnetohydrodynamic (MHD) behavior. The spatially varying magnetic field environment, typical of a fusion device can lead to serious flow disrupting MHD forces that hinder the development of a smooth and controllable flow needed for PFC applications. The present study builds up on the ongoing research effort at UCLA, directed towards providing qualitative and quantitative data on liquid metal free surface flow behavior under fusion relevant magnetic fields, to aid in better understanding of flowing liquid metal PFC systems.

Narula, M.; Ying, A.; Abdou, M.A. [UCLA (United States)

2005-04-15T23:59:59.000Z

111

A grid-level alkali liquid metal battery recycling process : design, implementation, and characterization  

E-Print Network [OSTI]

The application of liquid metal batteries for large scale grid-level energy storage is being enabled through the development of research conducted at the Massachusetts Institute of Technology (MIT) in 2006. A recycling ...

Thomas, Dale Arlington, III

2014-01-01T23:59:59.000Z

112

E-Print Network 3.0 - autonomous liquid metal-cooled Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 12 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS Summary: , Heavy metal-cooled, Gas-cooled, Molten salt-cooled, Liquid- core and Gas-core l Assessed...

113

Mechanism and behavior of nucleate boiling heat transfer to the alkalai liquid metals  

E-Print Network [OSTI]

A model of boiling heat transfer to the alkali liquid metals is postulated from an examination of the events and phases of the nucleate boiling cycle. The model includes the important effect of microlayer evaporation which ...

Deane, Charles William

1969-01-01T23:59:59.000Z

114

Transient liquid-phase infiltration of a powder-metal skeleton  

E-Print Network [OSTI]

Transient Liquid-Phase Infiltration (TLI) is a new method for densifying a powder-metal skeleton that produces a final part of homogeneous composition without significant dimensional change, unlike traditional infiltration ...

Lorenz, Adam Michael, 1974-

2002-01-01T23:59:59.000Z

115

A Wireless Passive RCS-based Temperature Sensor using Liquid Metal and Microfluidics Technologies  

E-Print Network [OSTI]

this technique by using the thermal volume expansion of liquid metal to progressively short circuit a linear be applied to other geometries like the bow-tie antenna or other scatterers whose RCS is highly sensitive

Tentzeris, Manos

116

EIS-0085-S: Liquid-Metal Fast Breeder Reactor Program, Supplemental  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this supplemental statement to examine the reduced scope of the Liquid Metal Fast Breeder Reactor (LMFBR) program and the environmental impacts associated therewith, including a re-examination of the purpose, need and timing of the program, the present program structure, including reasonable program alternatives, and alternative electricity production technologies anticipated to be available within the same timeframe as the LMFBR technology option. This statement supplements ERDA-1535, Liquid Metal Fast Breeder Reactor Program.

117

Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink  

E-Print Network [OSTI]

Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addit...

Wang, Lei

2014-01-01T23:59:59.000Z

118

Silver nanowire transparent electrodes for liquid crystal-based smart windows  

E-Print Network [OSTI]

privacy glass or as energy saving windows through the modulation of solar heat gain [1,3,4]. The operating sheet resistance, and low-cost. While the benefits of increased transparency and low-cost are obvious Polymer dispersed liquid crystal Smart window a b s t r a c t A significant manufacturing cost of polymer

Goldthorpe, Irene

119

Fusion Engineering and Design 81 (2006) 15431548 Exploring liquid metal plasma facing component (PFC)  

E-Print Network [OSTI]

of some liquid metals like lithium to Corresponding author. Tel.: +1 310 948 5200; fax: +1 310 825 2599, pound- ing on the plasma facing components and alleviate the very serious problem of melting and erosion interest in studying the behavior of liquid lithium streams, flowing at a velocity of 10 m/s inside

Abdou, Mohamed

2006-01-01T23:59:59.000Z

120

Capacitor with a composite carbon foam electrode  

DOE Patents [OSTI]

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Capacitor with a composite carbon foam electrode  

DOE Patents [OSTI]

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1999-04-27T23:59:59.000Z

122

Sidewall containment of liquid metal with horizontal alternating magnetic fields  

DOE Patents [OSTI]

An apparatus is disclosed for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers. 19 figs.

Praeg, W.F.

1995-01-31T23:59:59.000Z

123

ccsd00000736 Electron correlation e ects on the dielectric function of liquid metals  

E-Print Network [OSTI]

metals, since the speed of sound in these systems is related to the screening action of the electrons between the ions, the speed of sound, c, can be expressed as: c = pi Q p #15;(Q) : (1) Here Q is the wave of liquid metals P. Giura 1 , R. Angelini 1 , C. A. Burns 2 , G. Monaco 1 and F. Sette 1 . 1 European

124

Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report  

SciTech Connect (OSTI)

Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced cost. During the execution of the project, main efforts were focused on the synthesis of new charge-bearing organic materials, such as CPEs and COEs, and block copolymers with neutral and ionic segments, studies of mechanisms responsible for the charge injection modulation in devices with ionic interlayers, and use of naturally occurring charged molecules for creation of enhanced devices. The studies allowed PIs to demonstrate the usefulness of the proposed approach for the improvement of operational parameters in model OLED and FET systems resulting in increased efficiency, decreased contact resistance, and possibility to use stable metals for fabrication of device electrodes. The successful proof-of-the-principle results potentially promise development of light-weight, low fabrication cost devices which can be used in consumer applications such as displays, solar cells, and printed electronic devices. Fundamental mechanisms responsible for the phenomena observed have been identified thus advancing the fundamental knowledgebase.

Nguyen, Thuc-Quyen [UCSB; Bazan, Guillermo [UCSB; Mikhailovsky, Alexander [UCSB

2014-04-15T23:59:59.000Z

125

Sidewall containment of liquid metal with vertical alternating magnetic fields  

DOE Patents [OSTI]

An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel.

Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL); Battles, James E. (Oak Forest, IL); Hull, John R. (Hinsdale, IL); Rote, Donald M. (Lagrange, IL)

1990-01-01T23:59:59.000Z

126

Sidewall containment of liquid metal with vertical alternating magnetic fields  

DOE Patents [OSTI]

An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

1988-06-17T23:59:59.000Z

127

Uniformly Embedded Metal Oxide Nanoparticles in Vertically Aligned Carbon Nanotube Forests as Pseudocapacitor Electrodes for  

E-Print Network [OSTI]

applications. A vacuum-assisted, in situ electrodeposition process has been used to achieve the three-dimensional functionalization of CNT forests with inserted nickel nanoparticles as pseudocapacitor electrodes. Experimental CNT forest samples, and the oxidized nickel nanoparticle/CNT supercapacitor retained 94.2% of its

Lin, Liwei

128

Liquid Phase 3D Printing for Quickly Manufacturing Metal Objects with Low Melting Point Alloy Ink  

E-Print Network [OSTI]

Conventional 3D printings are generally time-consuming and printable metal inks are rather limited. From an alternative way, we proposed a liquid phase 3D printing for quickly making metal objects. Through introducing metal alloys whose melting point is slightly above room temperature as printing inks, several representative structures spanning from one, two and three dimension to more complex patterns were demonstrated to be quickly fabricated. Compared with the air cooling in a conventional 3D printing, the liquid-phase-manufacturing offers a much higher cooling rate and thus significantly improves the speed in fabricating metal objects. This unique strategy also efficiently prevents the liquid metal inks from air oxidation which is hard to avoid otherwise in an ordinary 3D printing. Several key physical factors (like properties of the cooling fluid, injection speed and needle diameter, types and properties of the printing ink, etc.) were disclosed which would evidently affect the printing quality. In addition, a basic route to make future liquid phase 3D printer incorporated with both syringe pump and needle arrays was also suggested. The liquid phase 3D printing method, which owns potential values not available in a conventional modality, opens an efficient way for quickly making metal objects in the coming time.

Lei Wang; Jing Liu

2014-02-25T23:59:59.000Z

129

Supported liquid membrane electrochemical separators  

DOE Patents [OSTI]

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

130

Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode  

DOE Patents [OSTI]

A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

Kim, Yu Seung (Los Alamos, NM); Choi, Jong-Ho (Los Alamos, NM); Zelenay, Piotr (Los Alamos, NM)

2009-08-18T23:59:59.000Z

131

Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

Bugga, Ratnakumar V. (Arcadia, CA); Halpert, Gerald (Pasadena, CA); Fultz, Brent (Pasadena, CA); Witham, Charles K. (Pasadena, CA); Bowman, Robert C. (La Mesa, CA); Hightower, Adrian (Whittier, CA)

1997-01-01T23:59:59.000Z

132

Fabricating solid carbon porous electrodes from powders  

DOE Patents [OSTI]

Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

1997-01-01T23:59:59.000Z

133

Fabricating solid carbon porous electrodes from powders  

DOE Patents [OSTI]

Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

1997-06-10T23:59:59.000Z

134

Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.  

SciTech Connect (OSTI)

A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

Moore, Robert Charles; Conboy, Thomas M.

2012-02-01T23:59:59.000Z

135

A new family of metal chalogenide thin film electrodes for photoelectrochemical applications  

SciTech Connect (OSTI)

A new family of metal/semiconductor electrocomposite photoelectrodes is described for photoelectrochemical (PEC) applications. These electrocomposites are prepared from an aqueous dispersion containing the targeted metal (in ionic form) and the semiconductor particles. Electrodeposition of the metal affords a matrix in which the semiconductor particles are occluded. This approach is illustrated for nickel/TiO{sub 2} and nickel/CdS model candidates. The influence of preparation variables (deposition potential, temperature, pH, semiconductor content) on the PEC behavior is described.

Rajeshwar, K.; Tacconi, N.R. de [Univ. of Texas, Arlington, TX (United States)

1996-10-01T23:59:59.000Z

136

Microstructure and characteristics of the metalceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration  

E-Print Network [OSTI]

in calcium phosphate bioceramics. Recently metal matrix composites (MMC), consisting of an adequate ceramicMicrostructure and characteristics of the metal­ceramic composite (MgCa-HA/TCP) fabricated and characteristics of the metal­ ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. J Biomed

Zheng, Yufeng

137

Engineering Escherichia coli for molecularly defined electron transfer to metal oxides and electrodes  

E-Print Network [OSTI]

A mediator-less microbial fuel cell using a metal reducingExperiments on a Microbial Fuel Cell. Science 1962, 137,from a miniature microbial fuel cell using Shewanella

Jensen, Heather Marie

2013-01-01T23:59:59.000Z

138

LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

1999-03-30T23:59:59.000Z

139

Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals  

DOE Patents [OSTI]

A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink. 5 figs.

Kuznetsov, S.B.

1987-01-13T23:59:59.000Z

140

Double-sided electromagnetic pump with controllable normal force for rapid solidification of liquid metals  

DOE Patents [OSTI]

A system for casting liquid metals is provided with an electromagnetic pump which includes a pair of primary blocks each having a polyphase winding and being positioned to form a gap through which a movable conductive heat sink passes. A solidifying liquid metal sheet is deposited on the heat sink and the heat sink and sheet are held in compression by forces produced as a result of current flow through the polyphase windings. Shaded-pole interaction between the primary windings, heat sink and solidifying strip produce transverse forces which act to center the strip on the heat sink.

Kuznetsov, Stephen B. (Pittsburgh, PA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Implications of Li divertor and other liquid-metal technologies  

E-Print Network [OSTI]

plasma-facing systems can rapidly remove heat. h Continuous recovery of damaged surfaces exposed to large. Nuclear Mater. 290-293 (2001) 19. #12;Secondary ion fraction and deuterium- saturation studies of liquid (sputteringions/sputteredatoms) Incident particle energy (eV) Secondary Li ion fraction (non D-sat.) Secondary Li

142

Overview of EU activities on DEMO liquid metal breeder blanket  

SciTech Connect (OSTI)

The European test-blanket development programme, started in 1988, is aiming at the selection by 1995 of two DEMO-relevant blanket lines to be tested in ITER. At present, four lines of blanket are under development, two of them using solid and the other two liquid breeder materials. As far as liquid breeders are concerned, two lines of blankets have been selected within the European Union, the water-cooled lithium-lead (the eutectic Pb-17Li) blankets and the dual-coolant Pb-17Li blankets. Designs have been developed considering an agreed set of DEMO specifications, such as, for instance, a fusion power of 2,200 MW, a neutron wall-loading of 2MW/m{sup 2}, a life-time of 20,000 hours, and the use of martensitic steel as a structural material. Moreover, an experimental program has been set up in order to address the main critical issues for each line. The present paper gives an overview of both design and experimental activities within the European Union concerning these two lines of liquid breeder blankets.

Giancarli, L.; Proust, E. [DRN/DMT/SERMA, Gif-sur-Yvette (France); Benamati, G. [CRE Brasimone, Camugnano (Italy)] [and others

1994-12-31T23:59:59.000Z

143

Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces  

SciTech Connect (OSTI)

A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

Timothy Chainer

2012-11-30T23:59:59.000Z

144

Interfacial Properties of Ultrathin- Film Metal Electrodes: Studies by Combined Electron Spectroscopy and Electrochemistry  

E-Print Network [OSTI]

A pair of studies investigating the deposition and surface chemical properties of ultrathin metal films were pursued: (i) Pt-Co alloys on Mo(110); and (ii) Pd on Pt(111). Experimental measurement was based on a combination of electron spectroscopy...

Cummins, Kyle

2012-07-16T23:59:59.000Z

145

PHOTOEMISSION YIELD SPECTROSCOPY OF METAL ELECTRODES J. K. SASS and H. 5. LEWERENZ  

E-Print Network [OSTI]

character of the metal-electrolyte contact with a variable threshold for electron emission allows with various electrolytes was heavily emphasized. Therefore the thermalization of hot electrons, the formation of solvated electrons and their subsequent chemical and electrochemical reac- tions were extensively

Boyer, Edmond

146

Method for passive cooling liquid metal cooled nuclear reactors, and system thereof  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

Hunsbedt, Anstein (Los Gatos, CA); Busboom, Herbert J. (San Jose, CA)

1991-01-01T23:59:59.000Z

147

Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma-facing components in  

E-Print Network [OSTI]

Modeling hydrogen and helium entrapment in flowing liquid metal surfaces as plasma the PFC surface (helium and hydrogen isotopes) while accommodating high heat loads. To study this problem rather than requiring a standard vacuum system. Hydrogen isotope (DT) particles that strike the surface

Harilal, S. S.

148

Bellows-Type Accumulators for Liquid Metal Loops of Space Reactor Power Systems  

SciTech Connect (OSTI)

In many space nuclear power systems, the primary and/or secondary loops use liquid metal working fluids, and require accumulators to accommodate the change in the liquid metal volume and maintain sufficient subcooling to avoid boiling. This paper developed redundant and light-weight bellows-type accumulators with and without a mechanical spring, and compared the operating condition and mass of the accumulators for different types of liquid metal working fluids and operating temperatures: potassium, NaK-78, sodium and lithium loops of a total capacity of 50 liters and nominal operating temperatures of 840 K, 860 K, 950 K and 1340 K, respectively. The effects of using a mechanical spring and different structural materials on the design, operation and mass of the accumulators are also investigated. The structure materials considered include SS-316, Hastelloy-X, C-103 and Mo-14Re. The accumulator without a mechanical spring weighs 23 kg and 40 kg for a coolant subcooling of 50 K and 100 K, respectively, following a loss of the fill gas. The addition of a mechanical spring comes with a mass penalty, in favor of higher redundancy and maintaining a higher liquid metal subcooling.

Tournier, Jean-Michel; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2006-01-20T23:59:59.000Z

149

Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode  

SciTech Connect (OSTI)

GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

None

2010-09-01T23:59:59.000Z

150

Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction  

DOE Patents [OSTI]

Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

Ellis, Timothy W. (Ames, IA); Schmidt, Frederick A. (Ames, IA)

1995-08-01T23:59:59.000Z

151

Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction  

DOE Patents [OSTI]

A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

Ellis, T.W.; Schmidt, F.A.

1995-08-01T23:59:59.000Z

152

Novel air electrode for metal-air battery with new carbon material and method of making same  

DOE Patents [OSTI]

This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.

Ross, P.N. Jr.

1988-06-21T23:59:59.000Z

153

Electromagnetic induction pump for pumping liquid metals and other conductive liquids  

DOE Patents [OSTI]

An electromagnetic induction pump is described in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

Smither, R.K.

1993-05-11T23:59:59.000Z

154

Electromagnetic induction pump for pumping liquid metals and other conductive liquids  

DOE Patents [OSTI]

An electromagnetic induction pump in which an electrically conductive liquid is made to flow by means of a force created by interaction of a permanent magnetic field and a DC current. The pump achieves high efficiency through combination of: powerful permanent magnet materials which provide a high strength field that is uniform and constant; steel tubing formed into a coil which is constructed to carry conducting liquids with minimal electrical resistance and heat; and application of a voltage to induce a DC current which continuously produces a force in the direction of the desired flow.

Smither, Robert K. (Hinsdale, IL)

1993-01-01T23:59:59.000Z

155

Smooth electrode and method of fabricating same  

DOE Patents [OSTI]

A smooth electrode is provided. The smooth electrode includes at least one metal layer having thickness greater than about 1 micron; wherein an average surface roughness of the smooth electrode is less than about 10 nm.

Weaver, Stanton Earl (Northville, NY); Kennerly, Stacey Joy (Albany, NY); Aimi, Marco Francesco (Niskayuna, NY)

2012-08-14T23:59:59.000Z

156

Microscopic Motion of Liquid Metal Plasma Facing Components In A Diverted Plasma  

SciTech Connect (OSTI)

Liquid metal plasma facing components (PFCs) have been identified as an alternative material for fusion plasma experiments. The use of a liquid conductor where significant magnetic fields are present is considered risky, with the possibility of macroscopic fluid motion and possible ejection into the plasma core. Analysis is carried out on thermoelectric magnetohydrodynamic (TEMHD) forces caused by temperature gradients in the liquid-container system itself in addition to scrape-off-layer currents interacting with the PFC from a diverted plasma. Capillary effects at the liquid-container interface will be examined which govern droplet ejection criteria. Stability of the interface is determined using linear stability methods. In addition to application to liquidmetal PFCs, thin film liquidmetal effects have application to current and future devices where off-normal events may liquefy portions of the first wall and other plasma facing components.

Jaworski, M A; Morley, N B; Abrams, T; Kaita, R; Kallman, J; Kugel, H; Majeski, R

2010-09-22T23:59:59.000Z

157

Thermomechanical aspects of the liquid metal cooled limiter  

SciTech Connect (OSTI)

Analysis has been performed to evaluate the possibility of using liquid lithium as a coolant for the limiter. A global analysis was carried out to determine limiter's shape and configuration, and then detailed MHD, heat transfer, and structural analysis, were performed to determine limiting coolant velocities, operating pressures, Nusselt number, and allowable heat fluxes. For one of the most suitable choices of materials i.e. vanadium structure, lithium coolant, and Be coating (10 mm), the limiting heat flux has been found to be 2.5 MW/m/sup 2/. For High, Z coating of tungsten the limiting heat flux has been found to be 5.7 MW/m/sup 2/. In both cases the operating pressure was maintained at 10 MPa.

Majid, A.; Abdou, M.A.

1989-03-01T23:59:59.000Z

158

Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes  

SciTech Connect (OSTI)

A particular edge-dependent inversion current behavior of metal-oxide-semiconductor (MOS) tunneling diodes was investigated utilizing square and comb-shaped electrodes. The inversion tunneling current exhibits the strong dependence on the tooth size of comb-shaped electrodes and oxide thickness. Detailed illustrations of current conduction mechanism are developed by simulation and experimental measurement results. It is found that the electron diffusion current and Schottky barrier height lowering for hole tunneling current both contribute on inversion current conduction. In MOS tunneling photodiode applications, the photoresponse can be improved by decreasing SiO{sub 2} thickness and using comb-shaped electrodes with smaller tooth spacing. Meantime, the high and steady photosensitivity can also be approached by introducing HfO{sub 2} into dielectric stacks.

Lin, Chien-Chih; Hsu, Pei-Lun; Lin, Li; Hwu, Jenn-Gwo, E-mail: jghwu@ntu.edu.tw [Graduate Institute of Electronics Engineering, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

2014-03-28T23:59:59.000Z

159

Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment  

SciTech Connect (OSTI)

Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________

Kaita, Robert; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor

2010-02-16T23:59:59.000Z

160

Tunable nanostructured composite with built-in metallic wire-grid electrode  

SciTech Connect (OSTI)

In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ?20 dB, and a “blueshift” of ?600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

Micheli, Davide, E-mail: davide.micheli@uniroma1.it; Pastore, Roberto; Marchetti, Mario [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy)] [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy); Gradoni, Gabriele [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)] [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging  

SciTech Connect (OSTI)

Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

Arne J. Pearlstein; Alexander Scheeline

2002-08-30T23:59:59.000Z

162

Pervasive liquid metal based direct writing electronics with roller-ball pen  

SciTech Connect (OSTI)

A roller-ball pen enabled direct writing electronics via room temperature liquid metal ink was proposed. With the rolling to print mechanism, the metallic inks were smoothly written on flexible polymer substrate to form conductive tracks and electronic devices. The contact angle analyzer and scanning electron microscope were implemented to disclose several unique inner properties of the obtained electronics. An ever high writing resolution with line width and thickness as 200 ?m and 80 ?m, respectively was realized. Further, with the administration of external writing pressure, GaIn{sub 24.5} droplets embody increasing wettability on polymer which demonstrates the pervasive adaptability of the roller-ball pen electronics.

Zheng, Yi; Zhang, Qin [Beijing Key Lab of CryoBiomedical Eng. and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)] [Beijing Key Lab of CryoBiomedical Eng. and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Jing, E-mail: jliu@mail.ipc.ac.cn [Beijing Key Lab of CryoBiomedical Eng. and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China) [Beijing Key Lab of CryoBiomedical Eng. and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China)

2013-11-15T23:59:59.000Z

163

One electron oxygen reduction in room temperature ionic liquids: A comparative study of Butler-Volmer and Symmetric Marcus-Hush theories using microdisc electrodes  

E-Print Network [OSTI]

The voltammetry for the reduction of oxygen at a microdisc electrode is reported in two room temperature ionic liquids: 1-butyl-1-methylpyyrolidinium bis(trifluoromethylsulfonyl) imide ([Bmpyrr][NTf2]) and trihexyltetradecylphosphonium bis9trifluoromethylsulfonyl) imide ([P14,6,6,6][NTf2]) at 298 K. Simulated voltammograms using Butler-Volmer theory and Symmetric Marcus-Hush (SMH) theory were compared with experimental data. Butler-Volmer theory consistently provided experimental parameters with a higher level of certainty than SMH theory. A value of solvent reorganisation energy for oxygen reduction in ionic liquids was inferred for the first time as 0.4-0.5 eV, which is attributable to inner-sphere reorganisation with a negligible contribution from solvent reorganisation. The developed Butler-Volmer and Symmetric Marcus-Hush programs are also used to theoretically study the possibility of kinetically limited steady state currents, and to establish an approximate equivalence relationship between microdisc el...

Tanner, Eden E L; Barnes, Edward O; Compton, Richard G

2015-01-01T23:59:59.000Z

164

Establishing low-power operating limits for liquid metal heat pipes  

SciTech Connect (OSTI)

Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

Secary, J. (Phillips Lab., Kirtland AFB, NM (United States)); Merrigan, M.A.; Keddy, M.D. (Los Alamos National Lab., NM (United States))

1992-01-01T23:59:59.000Z

165

Establishing low-power operating limits for liquid metal heat pipes  

SciTech Connect (OSTI)

Liquid metal heat pipes operated at power throughputs well below their design point for long durations may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and hot returning to the evaporator section. Eventually sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort between the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate the phenomena. Experiments include both high temperature liquid metal and low temperature organic heat pipes. To date, a low temperature working fluid has been selected and its performance in a heat pipe validated. Additionally, a low-temperature heat pipe has been fabricated and is presently being tested.

Secary, J. [Phillips Lab., Kirtland AFB, NM (United States); Merrigan, M.A.; Keddy, M.D. [Los Alamos National Lab., NM (United States)

1992-05-01T23:59:59.000Z

166

Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An  

DOE Patents [OSTI]

A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

Loustau, Marie-Therese (Bordeaux, FR); Verhoog, Roelof (Bordeaux, FR); Precigout, Claude (Lormont, FR)

1996-09-24T23:59:59.000Z

167

Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study  

SciTech Connect (OSTI)

Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

Bedrov, Dmitry [University of Utah] [University of Utah

2013-08-15T23:59:59.000Z

168

Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path  

DOE Patents [OSTI]

A liquid metal cooled nuclear fission reactor plant having a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during reactor shutdown, or heat produced during a mishap. This reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary system when rendered inoperable.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

169

Passive cooling system for top entry liquid metal cooled nuclear reactors  

DOE Patents [OSTI]

A liquid metal cooled nuclear fission reactor plant having a top entry loop joined satellite assembly with a passive auxiliary safety cooling system for removing residual heat resulting from fuel decay during shutdown, or heat produced during a mishap. This satellite type reactor plant is enhanced by a backup or secondary passive safety cooling system which augments the primary passive auxiliary cooling system when in operation, and replaces the primary cooling system when rendered inoperative.

Boardman, Charles E. (Saratoga, CA); Hunsbedt, Anstein (Los Gatos, CA); Hui, Marvin M. (Cupertino, CA)

1992-01-01T23:59:59.000Z

170

Measurements of thermal-hydraulic parameters in liquid-metal-cooled fast-breeder reactors  

SciTech Connect (OSTI)

This paper discusses instrumentation for liquid-metal-cooled fast breeder reactors (LMFBR's). Included is instrumentation to measure sodium flow, pressure, temperature, acoustic noise, sodium purity, and leakage. The paper identifies the overall instrumentation requirements for LMFBR's and those aspects of instrumentation which are unique or of special concern to LMFBR systems. It also gives an overview of the status of instrument design and performance.

Sackett, J.I.

1983-01-01T23:59:59.000Z

171

Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment  

SciTech Connect (OSTI)

The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is marginally damped but will become destabilized by the magnetorotational instability with a modest increase in rotation rate.

M.D. Nornberg, H. Ji, E. Schartman, A. Roach, and J. Goodman

2009-09-14T23:59:59.000Z

172

Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment  

SciTech Connect (OSTI)

The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J. [Center for Magnetic Self Organization in Laboratory and Astrophysical Plasmas and Princeton Plasma Physics Laboratory, P.O. Box 451 Princeton, New Jersey 08543 (United States)

2010-02-19T23:59:59.000Z

173

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network [OSTI]

Absorption Metal (Zr) Metal (Mo) Carbide Nitride Oxidef /? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide Table? a k ? Metal (Zr) Metal (Mo) Carbide Nitride Oxide CHAPTER

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

174

Instability of a liquid metal surface in an electromagnetic field and relevance to EMC  

SciTech Connect (OSTI)

In electromagnetic casting (EMC) the surface of the molten metal, at the solidification front around the periphery of the melt pool, is not confirmed by a solid mold (as in, say, direct chill casting) but is free to move. Consequently disturbances of the melt surface are reflected in defects (waviness) in the solid ingot. The present paper examines the dynamics of a liquid metal surface in an electromagnetic field comparable to that of EMC. Numerical calculations of the flow of metal and motion of the melt surface have been accompanied by laboratory experiments in which a laser vibrometer has been used to measure the oscillations of the free surface of a mercury pool. Surface oscillations growth with increasing electromagnetic field strength in both the computations and the experiment, probably originating from the turbulent flow in the melt. The implications for EMC are discussed.

Kageyama, R.; Evans, J.W. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

1996-10-01T23:59:59.000Z

175

Dual porosity gas evolving electrode  

DOE Patents [OSTI]

A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

Townsend, C.W.

1994-11-15T23:59:59.000Z

176

ccsd-00000736(version2):22Oct2003 Electron correlation effects on the dielectric function of liquid metals  

E-Print Network [OSTI]

of a system of interacting electrons is to study the acoustic excitations of liquid metals, since the speed, the speed of sound, c, can be expressed as: c = pi Q (Q) . (1) Here Q is the wave number, (Q) is the total response of the liquid is to- tally elastic and one measures the infinite-frequency value of the sound

Paris-Sud XI, Université de

177

Ice electrode electrolytic cell  

DOE Patents [OSTI]

This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

Glenn, David F. (Idaho Falls, ID); Suciu, Dan F. (Idaho Falls, ID); Harris, Taryl L. (Idaho Falls, ID); Ingram, Jani C. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

178

Ice electrode electrolytic cell  

DOE Patents [OSTI]

This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

1993-04-06T23:59:59.000Z

179

Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA  

SciTech Connect (OSTI)

Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of the lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.

Hassanein, Ahmed [Purdue University

2013-05-24T23:59:59.000Z

180

Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks  

SciTech Connect (OSTI)

At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700oC. However, at a sufficiently high operating temperature (700 - 1000 oC), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands1 and fusion experiments2,3 to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 oC), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

R. Majeski

2010-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks  

SciTech Connect (OSTI)

At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700 deg. C. However, at a sufficiently high operating temperature (700 - 1000 deg. C), tungsten is self-annealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment.The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium.Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands and fusion experiments to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 deg. C), it has been now been used as a PFC in several confinement experiments (TFTR, T11-M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

Majeski, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

2010-05-20T23:59:59.000Z

182

Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods  

SciTech Connect (OSTI)

A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

Donald Olander

2005-08-24T23:59:59.000Z

183

Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications  

SciTech Connect (OSTI)

Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

1985-01-01T23:59:59.000Z

184

Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors  

SciTech Connect (OSTI)

This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

2009-03-27T23:59:59.000Z

185

Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals  

SciTech Connect (OSTI)

This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

Anglart, Henryk [Div. of Nuclear Technology, School of Engineering Sciences, Royal Institute of Technology Roslagstullsbacken 21, 106-91 Stockholm (Sweden)

2012-06-19T23:59:59.000Z

186

Liquid crystalline phase synthesis of nanoporous MnO{sub 2} thin film arrays as an electrode material for electrochemical capacitors  

SciTech Connect (OSTI)

Graphical abstract: Three-dimensional (3D) MnO{sub 2} thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO{sub 2} materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of ?0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g{sup ?1} are achieved in 0.5 M Na{sub 2}SO{sub 4} solution at a charge/discharge current density of 4 A g{sup ?1}. Highlights: ? 3D MnO{sub 2} thin film arrays with nanoporous structure is fabricated for the first time. ? A maximum specific capacitance as high as 462 F g{sup ?1} is obtained. ? The 3D and nanoporous superarchitecture facilitate electrolyte penetration. -- Abstract: Three-dimensional (3D) MnO{sub 2} thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO{sub 2} materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of ?0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g{sup ?1} are achieved in 0.5 M Na{sub 2}SO{sub 4} solution at a charge/discharge current density of 4 A g{sup ?1}.

Yang, Guangwu, E-mail: yanggw@upc.edu.cn [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China) [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China); Key Laboratory of New Energy Physics and Materials Science in Universities of Shandong, China University of Petroleum, Qingdao, Shandong 266555 (China); Wang, Baoli [School of Geosciences, China University of Petroleum, Qingdao, Shandong 266555 (China)] [School of Geosciences, China University of Petroleum, Qingdao, Shandong 266555 (China); Guo, Wenyue, E-mail: wyguo@upc.edu.cn [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China) [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China); Key Laboratory of New Energy Physics and Materials Science in Universities of Shandong, China University of Petroleum, Qingdao, Shandong 266555 (China); Bu, Zhongheng; Miao, Chengcheng [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China)] [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China); Xue, Tong; Li, Hulin [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)] [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

2012-11-15T23:59:59.000Z

187

Safeguards and security concept for the Secure Automated Fabrication (SAF) and Liquid Metal Reactor (LMR) fuel cycle, SAF line technical support  

SciTech Connect (OSTI)

This report is a safeguards and security concept system review for the secure automated fabrication (SAF) and national liquid metal reactor (LMR) fuel programs.

Schaubert, V.J.; Remley, M.E.; Grantham, L.F.

1986-02-21T23:59:59.000Z

188

The influence of current collectors on Tayler instability and electro-vortex flows in liquid metal batteries  

E-Print Network [OSTI]

The Tayler instability is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently shown to be also a limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability, and, secondly, on the occurrence of electro-vortex flows and their relevance for liquid metal batteries.

Weber, N; Priede, J; Stefani, F; Weier, T

2014-01-01T23:59:59.000Z

189

Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes  

SciTech Connect (OSTI)

Thin (ca. one to three monolayers) films of platinum and palladium electrodeposited on electrochemically roughened gold are observed to yield surface-enhanced Raman (SER) spectra for adsorbed carbon monoxide. The major vibrational band(s) on these surfaces are diagnosed from their frequencies as arising from C-O stretching vibrations, nu/sub CO/ bound to the transition-metal overlayers rather than to residual gold sites. The observed SFR nu/sub CO/ frequencies are closely similar to (within ca. 10 cm/sup -1/ of) those obtained for these systems from potential-difference infrared (PDIR) spectra. The major SERS and PDIR nu/sub CO/ features for the platinum and palladium surfaces appear at 2060-2090 and 1965-1985 cm/sup -1/, respectively, consistent with the presence of terminal and bridging CO on these two electrodes. The infrared as well as electrochemical properties of these systems are closely similar to those for the corresponding polycrystalline bulk electrodes. A difference between the SER- and IR-active adsorbed CO, however, is that the former undergoes electrooxidation on both surfaces at 0.2-0.3 V higher overpotentials than the latter form. Examination of the potential-dependent SERS bands for metal oxide vibrations, nu/sub PtO/, on the platinum surface shows that the electrooxidation potential for the SERS-active adsorbed CO coincides with that for the appearance of the nu/sub PtO/ band. Some broader implications to the utilization of SERS for examining transition-metal surfaces are pointed out.

Leung, L.W.H.; Weaver, M.J.

1987-08-19T23:59:59.000Z

190

Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability  

DOE Patents [OSTI]

A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

Hunsbedt, A.; Boardman, C.E.

1995-04-11T23:59:59.000Z

191

Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability  

DOE Patents [OSTI]

A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1995-01-01T23:59:59.000Z

192

Radiant heating tests of several liquid metal heat-pipe sandwich panels  

SciTech Connect (OSTI)

Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

Camarda, C.J.; Basiulis, A.

1983-08-01T23:59:59.000Z

193

A method for measurement of delayed neutron parameters for liquid-metal-cooled power reactors  

SciTech Connect (OSTI)

The trend toward increased reliance on passive features for power reactor safety makes it important to obtain the characteristics of the reactor system from measurements on the system. A method is described for solving for the delayed neutron parameters in a liquid-metal power reactor by fitting an analytic solution of the point-kinetics equations to the flux die-away from a dropped rod in an initially critical core. The method includes treatment of those conditions found in a power reactor that depart from those in a critical assembly experiment. These include a comparatively long rod drop time and a detector signal that instead of providing an integrated count rate is a sampled data signal proportional to the instantaneous fission power. The delayed neutron parameter values calculated from a rod drop experiment in the Experimental Breeder Reactor II are in agreement with values calculated using first principles and knowledge of core material composition and nuclear cross sections.

Vilim, R.B. [Argonne National Lab., IL (United States); Brock, R.W. [Babcock and Wilcox, Lynchburg, VA (United States)

1996-06-01T23:59:59.000Z

194

Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals  

DOE Patents [OSTI]

Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

Hobson, David O. (Oak Ridge, TN); Alexeff, Igor (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

1988-01-01T23:59:59.000Z

195

A STUDY OF LIQUID METAL FILM FLOW, UNDER FUSION RELEVANT MAGNETIC FIELDS M. Narula, A. Ying and M.A. Abdou  

E-Print Network [OSTI]

of some liquid metals, like lithium to pump hydrogen and getter impurities and hence act as an active on the plasma facing components and alleviate the very serious problem of melting and erosion, inevitably.5%) and is preferred over lithium because of safety issues and ease of handling and operation. The liquid metal

Abdou, Mohamed

196

Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*  

E-Print Network [OSTI]

final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants* R. W. Moir November 29, 1999 Lawrence Livermore National Laboratory

California at Los Angeles, University of

197

Fusion Engineering and Design 41 (1998) 561567 Combination of a self-cooled liquid metal breeder blanket with  

E-Print Network [OSTI]

with self-cooled blankets is the high chemical reactivity of lithium with water. A secondary heat transport. This goal should set the guidelines for the selection of concepts and materials for nuclear components blan- kets is the high chemical reactivity of this liquid metal with water. To avoid such a reaction

198

MODELING LIQUID METAL CORROSION IN A FERRITIC STEEL PbLi SYSTEM WITH AND WITHOUT A MAGNETIC FIELD  

E-Print Network [OSTI]

MODELING LIQUID METAL CORROSION IN A FERRITIC STEEL ­ PbLi SYSTEM WITH AND WITHOUT A MAGNETIC FIELD associated with corrosion of ferritic steel in the flowing eutectic alloy lead-lithium (PbLi). New computer to perform more analysis and comparisons against available experimental data on corrosion in various flow

Abdou, Mohamed

199

Method for manufacturing magnetohydrodynamic electrodes  

DOE Patents [OSTI]

A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

Killpatrick, D.H.; Thresh, H.R.

1980-06-24T23:59:59.000Z

200

Composite electrode/electrolyte structure  

DOE Patents [OSTI]

Provided is an electrode fabricated from highly electronically conductive materials such as metals, metal alloys, or electronically conductive ceramics. The electronic conductivity of the electrode substrate is maximized. Onto this electrode in the green state, a green ionic (e.g., electrolyte) film is deposited and the assembly is co-fired at a temperature suitable to fully densify the film while the substrate retains porosity. Subsequently, a catalytic material is added to the electrode structure by infiltration of a metal salt and subsequent low temperature firing. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in ionic (electrochemical) devices such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2004-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHD modelling of liquid metal films for fusion divertor surface protection  

SciTech Connect (OSTI)

In order to counter adverse effects resulting from the impingement of high energy plasmas on solid material surfaces, especially as this relates to fusion reactor high heat flux components, the idea of protecting the material surface with a thin film of liquid metal has been advanced. In principle, this film would protect the underlying substrate from physical sputtering and reduce thermal stresses in the structure. However, serious concerns related to establishing such a liquid metal flow and its performance in a fusion environment need to be addressed. In particular, the interaction of the conducting metal film with the complicated magnetic fields typical of a diverted reactor plasma may lead to retardation of the film resulting in channel flooding, velocity profiles not conducive to effective heat transfer, and possibly even detachment of the film from the substrate. In addition, the momentum carried by the plasma particles may deform the film shape to a significant extent, possibly disrupting the flow or leaving sections on the substrate inadequately protected. Proposed here are several mathematical and experimental models intended to address these specific questions. Mathematical models will be derived from the basic set of incompressible magnetohydrodynamic equations for the cases of fully developed and developing film flow. The fully developed flow model allows simplification of the governing equations to two dimensions, facilitating their solution. The data obtained from this formulation will yield the velocity, induced magnetic field, and height of the film as a function of space and flow parameters. From this data the effect of the plasma momentum on the shape of the surface will be seen, as will the velocity structure across the channel, a structure that is only assumed in previous modeling attempts. The developing film model, based on simplifying assumptions for the height and velocity profiles determined from the previous model for the fully developed case, will account for spatial and temporal varying magnetic fields. In this way it will be possible to model more fusion relevant field distributions and establish their effect on the evolution of the film and its possible flooding or detachment as it flows along the substrate.

Morley, N.B.

1991-12-31T23:59:59.000Z

202

Electrode compositions  

DOE Patents [OSTI]

An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

Block, J.; Fan, X.

1998-10-27T23:59:59.000Z

203

Sintered electrode for solid oxide fuel cells  

DOE Patents [OSTI]

A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

Ruka, Roswell J. (Pittsburgh, PA); Warner, Kathryn A. (Bryan, TX)

1999-01-01T23:59:59.000Z

204

LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells  

DOE Patents [OSTI]

An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

Bugga, Ratnakumar V. (Arcadia, CA); Fultz, Brent (Pasadena, CA); Bowman, Robert (La Mesa, CA); Surampudi, Subra Rao (Glendora, CA); Witham, Charles K. (Pasadena, CA); Hightower, Adrian (Pasadena, CA)

1999-01-01T23:59:59.000Z

205

Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids  

SciTech Connect (OSTI)

Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (?0.9 J m{sup ?2}) and the Tolman length (0.4–0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10{sup 33?34} s{sup ?1} m{sup ?3}) and critical size (3–4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

Cai, Y. [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Wu, H. A., E-mail: wuha@ustc.edu.cn [Department of Modern Mechanics, CAS Key Laboratory of Materials Behavior and Design, University of Science and Technology of China, Hefei, Anhui 230027 (China); Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China)

2014-06-07T23:59:59.000Z

206

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect (OSTI)

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

207

Review of In-Service Inspection and Repair Technique Developments for French Liquid Metal Fast Reactors  

SciTech Connect (OSTI)

In-service monitoring of nuclear plants is indispensable for both the Operator and the Regulator. The notion of in-service monitoring ranges from the continuous monitoring of the reactor in operation to the thorough in-service reactor inspection during programmed shutdowns. However, the highly specific environment found in French liquid metal fast reactor plants - Phenix and Superphenix - makes monitoring and inspection complicated because of the use of a sodium coolant that is hot, opaque, and difficult to drain.The Commissariat a l'Energie Atomique, in collaboration with its traditional French partners, Electricite de France utilities and FRAMATOME/Novatome Engineering, decided to conduct a 6-yr research and development program (1994-2000) to explore this problem vis-a-vis Superphenix, as well as the possibilities of intervening within the reactor block or on components in a sodium environment. Furthermore, the safety reevaluation of Phenix, conducted between 1994 and 2003, represented an excellent 'test bench' during which the limits of inspection processes - applied to an integrated reactor concept - were surpassed using techniques such as fuel subassembly head scanning, ultrasonic examination of the core support, and visual inspection of the cover-gas plenum following a partial sodium draining. Repair techniques were investigated for cleaning of sodium wet structure surfaces, cutting of damaged parts, and welding in sodium aerosol atmosphere. Both conventional and laser processes were tested.

Baque, F. [Commissariat a l'Energie Atomique Cadarache (France)

2005-04-15T23:59:59.000Z

208

Natural Circulation and Linear Stability Analysis for Liquid-Metal Reactors with the Effect of Fluid Axial Conduction  

SciTech Connect (OSTI)

The effect of fluid axial thermal conduction on one-dimensional liquid metal natural circulation and its linear stability was performed through nondimensional analysis, steady-state assessment, and linear perturbation evaluation. The Nyquist criterion and a root-search method were employed to find the linear stability boundary of both forward and backward circulations. The study provided a relatively complete analysis method for one-dimensional natural circulation problems with the consideration of fluid axial heat conduction. The results suggest that fluid axial heat conduction in a natural circulation loop should be considered only when the modified Peclet number is {approx}1 or less, which is significantly smaller than the practical value of a lead liquid metal-cooled reactor.

Piyush Sabharwall; Qiao Wu; James J. Sienicki

2012-06-01T23:59:59.000Z

209

Atomized Spraying of Liquid Metal Droplets on Desired Substrate Surfaces as a Generalized Way for Ubiquitous Printed Electronics  

E-Print Network [OSTI]

A direct electronics printing technique through atomized spraying for patterning room temperature liquid metal droplets on desired substrate surfaces is proposed and experimentally demonstrated for the first time. This method has generalized purpose and is highly flexible and capable of fabricating electronic components on any desired target objects, with either flat or rough surfaces, made of different materials, or different orientations from 1-D to 3-D geometrical configurations. With a pre-designed mask, the liquid metal ink can be directly deposited on the substrate to form various specific patterns which lead to the rapid prototyping of electronic devices. Further, extended printing strategies were also suggested to illustrate the adaptability of the method such that the natural porous structure can be adopted to offer an alternative way of making transparent conductive film with an optical transmittance of 47% and a sheet resistance of 5.167{\\Omega}/O. Different from the former direct writing technolog...

Zhang, Qin; Liu, Jing

2013-01-01T23:59:59.000Z

210

Numerical simulation of intermediate heat exchanger of the liquid metal fast breeder reactor using COMMIX-1B  

E-Print Network [OSTI]

Sodium Flow Through FFTF Reactor Vessel 28 COLD LEG ISOLATION VALVE IIGG SELLDWS SEAL' HOT LEG ISOLATION VALVE QS" I t ?A OUTLET ' L'. : '. i NOZZLE '. : PESSARY~ PUMP IHX INLET NOZZLE CHECK VALVE SELLDWS SEAL' GRAVED MONITOR HOT LEG...NUMERICAL SIMULATION OF INTERMEDIATE HEAT EXCHANGER OF THE LIQUID METAL FAST BREEDER REACTOR USING COMMIX-1B A Thesis by HABEEB H. SALEH Submitted to the Office of Graduate Studies of Texas A@M University in partial fulfillment...

Saleh, Habeeb H.

2012-06-07T23:59:59.000Z

211

Experiments and analysis for an axially heterogeneous liquid-metal reactor assembly at the zero-power physics reactor  

SciTech Connect (OSTI)

Experiments in zero-power physics reactor 17 provided physics data for a full-scale axially heterogeneous 650-MW(electric) liquid-metal reactor. Measurements and analysis are reported for control rod worths, reaction rate distributions, gamma dose distributions, sodium void worths, and criticality. Agreement between measurement and calculation is generally satisfactory, but the axial heterogeneity did introduce analytical complications. Design-level calculation methods gave somewhat worse agreement with measurement than in previous homogeneous or radially heterogeneous assemblies.

Brumbach, S.B.; Collins, P.J. (Argonne National Lab., Idaho Falls, ID (USA))

1989-11-01T23:59:59.000Z

212

Flow through electrode with automated calibration  

DOE Patents [OSTI]

The present invention is an improved automated flow through electrode liquid monitoring system. The automated system has a sample inlet to a sample pump, a sample outlet from the sample pump to at least one flow through electrode with a waste port. At least one computer controls the sample pump and records data from the at least one flow through electrode for a liquid sample. The improvement relies upon (a) at least one source of a calibration sample connected to (b) an injection valve connected to said sample outlet and connected to said source, said injection valve further connected to said at least one flow through electrode, wherein said injection valve is controlled by said computer to select between said liquid sample or said calibration sample. Advantages include improved accuracy because of more frequent calibrations, no additional labor for calibration, no need to remove the flow through electrode(s), and minimal interruption of sampling.

Szecsody, James E [Richland, WA; Williams, Mark D [Richland, WA; Vermeul, Vince R [Richland, WA

2002-08-20T23:59:59.000Z

213

Low resistance electrode construction  

DOE Patents [OSTI]

An electrochemical cell having a cathode and an anode in contact with an electrolyte. Both electrodes or one of them has an electrically conducting non-metal receptacle defining a chamber with a first metal having a melting point in the range of from about room temperature to about 800.degree. C. inside said receptacle chamber. A second metal with a melting point greater than about 800.degree. C. is in contact with the first metal inside the receptacle chamber and extends outside of the receptacle chamber to form a terminal for the anode. The electrolyte may include the oxides, halides or mixtures thereof of one or more of Li, V, U, Al and the lanthanides. Metal may be produced at the cathode during operation of the cell and oxygen or chlorine at the anode.

Redey, Laszlo (Downers Grove, IL); Karell, Eric J. (Woodridge, IL)

2002-01-01T23:59:59.000Z

214

MHD Electrode and wall constructions  

DOE Patents [OSTI]

Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

Way, Stewart (Columbia, MD); Lempert, Joseph (Penn Hills, PA)

1984-01-01T23:59:59.000Z

215

Carbon nanotube micro-electrodes for neuronal interfacing  

E-Print Network [OSTI]

is based on planar metallic electrochemical electrode arrays (multi- electrodes arrays, MEAs). When in contact with ionic solution (i.e. biological medium), these electrodes can be regarded as electrochemical. This parameter defines the impedance of the electrode and determines its noise level, how well it can record

Jacob, Eshel Ben

216

Electrode for a lithium cell  

DOE Patents [OSTI]

This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Dees, Dennis W. (Downers Grove, IL)

2008-10-14T23:59:59.000Z

217

Solution of a Standard Thermal Hydraulics Problem in a Liquid Metal Subassembly  

SciTech Connect (OSTI)

The model subassembly of the BREST-type reactor core consists of a pin bundle of square arrangement. In this bundle there are two zones which differ in the pin diameter and heat production. The model pin bundle contains one spacer grid which is located near the mid-plane of the rod bundle geometry. The working is a eutectic alloy of 22% sodium (Na) plus 78% potassium (K). Three kinds of experiments were performed to observe the thermal and hydraulic behavior of the liquid metal coolant in the BREST core simulator. Results were obtained for the coolant exit temperature distribution, central measuring pin simulator external surface temperature distribution, and coolant velocity distribution over the perimeter of the measuring pin simulator. The experiments were performed five times with increasing pin power ratios. Analysis was performed on the model subassembly of the BREST-type reactor core using a subchannel analysis code MATRA and a computational fluid dynamics code CFX. Calculational results were compared against the experimental data. The experiment revealed that the temperature rise was strongly dependent upon the geometry of the pin simulator. In contrast to the experimental results, the MATRA results were mainly dependent upon the thermal and hydraulic conditions. It was concluded that MATRA requires modifications for the pressure drop correlations that were considered inappropriate for accurately simulating the coolant behavior near the BREST-type grid spacer. Hand calculations were additionally carried out under different assumptions to determine the coolant exit temperature distribution in the pin simulator. First, the hand calculation was performed to find the coolant exit temperature distribution assuming that there is no momentum or energy transfer between subchannels. Second, an assumption was made that the coolant mixing in the subchannel assembly took place instantaneously and the pressure was equilibrated at the channel exit. Since MATRA is based on a lumped parameter model, it only calculates the subchannel averaged velocity values. Here, CFX based on the finite volume method was utilized to calculate the velocity fields over the perimeter. Results from the experiment and CFX were averaged in each subchannel region so as to check on the tendency. The CFX analysis showed reasonable results which can be improved by imposing more detailed geometry accounting for the angle of the inclination of the grid spacer. (authors)

Son, Hyoung M.; Suh, Kune Y. [Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

2006-07-01T23:59:59.000Z

218

Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them  

E-Print Network [OSTI]

The use of liquid metal batteries is considered as one promising option for electric grid stabilisation. While large versions of such batteries are preferred in view of the economies of scale, they are susceptible to various magnetohydrodynamic instabilities which imply a risk of short-circuiting the battery due to the triggered fluid flow. Here we focus on the current driven Tayler instability and give critical electrical currents for its onset as well as numerical estimates for the appearing flow structures and speeds. Scaling laws for different materials, battery sizes and geometries are found. We further discuss and compare various means for preventing the instability.

Weber, Norbert; Stefani, Frank; Weier, Tom

2013-01-01T23:59:59.000Z

219

Studies on the applicability of a flow coupler to a liquid-metal fast breeder reactor plant  

SciTech Connect (OSTI)

A flow coupler is considered as an alternative to the conventional primary pump in a liquid-metal fast breeder reactor (LMFBR). A conceptual design of a flow coupler combined with an intermediate heat exchanger in a pool-type LMFBR was done. Based on this design, a one-tenth-scale flow coupler model was built and successfully operated in a high-temperature sodium loop. To estimate the flow coupler characteristics, a quasi-one-dimensional code was developed. From these studies, the flow coupler pump concept appears to be feasible for actual use in an LMFBR.

Hattori, S.; Takuma, S.; Nemoto, K. (Central Research Institute of the Electric Power Industry, 1-6-1 Ohtemachi,, Chiyoda-ku, Tokyo 100 (JP)); Terada, M.; Sano, T. (Mitsubishi Heavy Industries, Ltd., 2-5-1 Marunouchi, Chiyoda-ku, Tokyo 100 (JP))

1990-04-01T23:59:59.000Z

220

Long life lithium batteries with stabilized electrodes  

DOE Patents [OSTI]

The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

Amine, Khalil (Downers Grove, IL); Liu, Jun (Naperville, IL); Vissers, Donald R. (Naperville, IL); Lu, Wenquan (Darien, IL)

2009-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electronically and ionically conducting electrodes for thermoelectric generators  

DOE Patents [OSTI]

A composite article comprising a porous cermet electrode on a dense solid electrolyte and method of making same. The cerment electrode comprises beta-type-alumina and refractory metal.

Novak, Robert F. (Farmington Hills, MI); Weber, Neill (Murray, UT)

1987-01-01T23:59:59.000Z

222

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents [OSTI]

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1987-01-01T23:59:59.000Z

223

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents [OSTI]

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1988-01-01T23:59:59.000Z

224

Autothermal oxidative pyrolysis of biomass feedstocks over noble metal catalysts to liquid products.  

E-Print Network [OSTI]

??Two thermal processing technologies have emerged for processing biomass into renewable liquid products: pyrolysis and gasification/Fischer-Tropsch processing. The work presented here will demonstrate oxidative pyrolysis… (more)

Balonek, Christine Marie

2011-01-01T23:59:59.000Z

225

Redox polymer electrodes for advanced batteries  

DOE Patents [OSTI]

Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

Gregg, Brian A. (Golden, CO); Taylor, A. Michael (Golden, CO)

1998-01-01T23:59:59.000Z

226

Electrodeposition of ultrathin Pd, Co and Bi films on well-defined noble-metal electrodes: studies by ultrahigh vacuum-electrochemistry (UHV-EC)  

E-Print Network [OSTI]

admetal on a noble-metal surface; and (iii) Co on polycrystalline Pd and Pd(111), a reactive metal on a noble-metal surface. The interfacial electrochemistry of these prototypical systems was characterized using a combination of electrochemical methods...

Baricuatro, Jack Hess L

2006-10-30T23:59:59.000Z

227

E-Print Network 3.0 - advanced liquid metal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Page: << < 1 2 3 4 5 > >> Page: << < 1 2 3 4 5 > >> 21 Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1 Summary: on...

228

Drop short control of electrode gap  

DOE Patents [OSTI]

During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

Fisher, Robert W. (Albuquerque, NM); Maroone, James P. (Albuquerque, NM); Tipping, Donald W. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

1986-01-01T23:59:59.000Z

229

Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications  

DOE Patents [OSTI]

Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

Huang, Yuhong (West Hills, CA); Wei, Oiang (West Hills, CA); Chu, Chung-tse (Chatsworth, CA); Zheng, Haixing (Oak Park, CA)

2001-01-01T23:59:59.000Z

230

Liquid metal feeding through dendritic region in Ni-Hard white iron  

SciTech Connect (OSTI)

Liquid permeability in the dendritic regions is one of the factors that determine porosity formation and macro segregation in castings. Permeability in the dendritic structure of Ni-Hard white iron was measured as a function of temperature. Effect of microstructural coarsening on the permeability was also investigated. Permeability increased with coarsening dendritic structure in Ni-Hard white iron.

Oryshchyn, Danylo B.; Dogan, Omer N.

2005-01-01T23:59:59.000Z

231

Capacitance enhancement via electrode patterning  

SciTech Connect (OSTI)

The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

Ho, Tuan A.; Striolo, Alberto, E-mail: a.striolo@ucl.ac.uk [School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019 (United States) [School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

2013-11-28T23:59:59.000Z

232

ENHANCEMENT OF HEAT REMOVAL USING CONCAVE LIQUID METAL TARGETS FOR HIGH-POWER ACCELERATORS  

E-Print Network [OSTI]

areas for the production of intense beams of secondary particles (IFMIF, SNS, RIA, LHC). The energy metal flow targets can be useful for future accelerator projects such as RIA, SNS, and ILC [1 dump areas for the production of intense beams of secondary particles. The severe constraints arising

Harilal, S. S.

233

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, E.

1984-04-10T23:59:59.000Z

234

Fuel cell having dual electrode anode or cathode  

DOE Patents [OSTI]

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, Eugene (Coram, NY)

1985-01-01T23:59:59.000Z

235

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect (OSTI)

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine's helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-01-01T23:59:59.000Z

236

Design, fabrication and testing of a 15-kW gas-fired liquid-metal evaporator  

SciTech Connect (OSTI)

This paper describes the development and testing of a compact heat- pipe heat exchanger that is designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW{sub e} Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases and the liquid metal then condenses on the heater tubes of a Stirling engine where energy is transferred to the engine`s helium working fluid. Recent tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15-kW{sub t} of energy at an operating vapor temperature of 760{degrees}C. Four of these prototype units will eventually be used to power a 25-kW{sub e} Stirling engine system. Design details and test results from the prototype unit are presented in this paper.

Adkins, D.R.; Rawlinson, K.S.

1992-07-01T23:59:59.000Z

237

Effects of imperfect insulating coatings on the flow partitioning between parallel channels in self-cooled liquid metal blankets  

SciTech Connect (OSTI)

Fully developed liquid-metal flow in a system of three straight rectangular ducts is investigated. The ducts are electrically coupled by common conducting walls covered with an imperfect insulating layer. A numerical model of magnetohydrodynamic (MHD) flow in the system is described. Since no additional assumptions, such as in the core-flow solution, have been made, this model can be used for the analysis of MHD flow in parallel ducts with nearly perfect insulating coating. Any orientation of the applied uniform magnetic field is possible. Electrical conductivities of the dividing and exterior walls, and of the insulating layers in individual channels can be varied independently, as well as characteristics of insulating imperfections in each channel. A restriction of equal pressure gradients in all ducts is imposed, and the flow partitioning between parallel channels is examined. Results of the numerical simulation of the influence of insulation imperfections on flow distribution and velocity profiles are presented. 9 refs., 6 figs.

Gaizer, A.A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1996-12-31T23:59:59.000Z

238

Material for electrodes of low temperature plasma generators  

DOE Patents [OSTI]

Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron:3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

Caplan, Malcolm (Fremont, CA); Vinogradov, Sergel Evge'evich (St. Peterburg, RU); Ribin, Valeri Vasil'evich (St. Peterburg, RU); Shekalov, Valentin Ivanovich (St. Peterburg, RU); Rutberg, Philip Grigor'evich (St. Peterburg, RU); Safronov, Alexi Anatol'evich (St. Peterburg, RU); Shiryaev, Vasili Nikolaevich (St. Peterburg, RU)

2010-03-02T23:59:59.000Z

239

Material for electrodes of low temperature plasma generators  

DOE Patents [OSTI]

Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

Caplan, Malcolm (Fremont, CA); Vinogradov, Sergel Evge'evich (St. Peterburg, RU); Ribin, Valeri Vasil'evich (St. Peterburg, RU); Shekalov, Valentin Ivanovich (St. Peterburg, RU); Rutberg, Philip Grigor'evich (St. Peterburg, RU); Safronov, Alexi Anatol'evich (St. Peterburg, RU)

2008-12-09T23:59:59.000Z

240

Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S-band frequency  

E-Print Network [OSTI]

Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotubes operating at the S (eutectic gallium indium) blended with single-wall carbon-nanotube (SWNTs). The nanocomposite­24 For instance, Cheng et al.15 and So and coworkers14 reported an unbalanced loop antenna and a half- wave dipole

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New metal-organic nanomaterials synthesized by laser irradiation of organic liquids  

SciTech Connect (OSTI)

A new type of metal-organic composition consisting of clusters of nanoparticles has been synthesised by laser irradiation of metallocene/benzene solutions. The metallocene molecules in this reaction become the source of the metal. Exposure to high-energy femtosecond laser pulses dehydrogenate benzene molecules and initiate the high-temperature high-pressure conditions that results in the synthesis of new materials. Irradiation experiments have been carried out on ferrocene/benzene and on other solutions. With ferrocene the synthesis of a new compound has been confirmed by X-ray powder diffraction as the peaks detected do not correspond to any known substance in the Crystallography Open Database. Theoretical simulation of the periodic structure of this new carbide predicts that it has hexagonal symmetry and a unit cell with a = 3.2A and c =2.8A. The exact structure is still uncertain but may be determined from scanning tunneling microscope (STM) studies.

Kuzmin, Stanislav L.; Wesolowski, Michal J.; Duley, Walter W. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 (Canada)

2014-03-31T23:59:59.000Z

242

Shielded capacitive electrode  

DOE Patents [OSTI]

A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

Kireeff Covo, Michel

2013-07-09T23:59:59.000Z

243

Liquid metal heat exchanger for efficient heating of soils and geologic formations  

DOE Patents [OSTI]

Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

DeVault, Robert C. (Knoxville, TN) [Knoxville, TN; Wesolowski, David J. (Kingston, TN) [Kingston, TN

2010-02-23T23:59:59.000Z

244

The Influence of MSI (Metal-Support Interactions) and the Solvent in Liquid-Phase Reactions  

SciTech Connect (OSTI)

Results were repeatedly obtained that were consistent with a hypothesis proposed at the beginning of this program, i.e., due to Metal-Support Interactions (MSI), unique active sites can be created in the metal-support interfacial region to enhance activity and improve selectivity in certain types of reactions, especially those involving the hydrogenation of carbonyl and unsaturated C=C bonds. Higher turnover frequencies (TOF-molecule/s/site) and increased selectivity for C=O bond versus C=C bond hydrogenation was established in the hydrogenation reactions of: acetone, crotonaldehyde, acetophenone, phenylethanol, acetylcyclohexane, benzaldehyde, benzyl alcohol, phenylacetaldehyde and citral over Pt/TiO{sub 2} MSI catalysts. Higher rates of hydrogenation benzene, toluene and xylene could be obtained over certain supported Pt and Pd catalysts. Au/TiO{sub 2} catalysts were developed that were active for CO hydrogenation at subambient temperatures. The influence of support and metal crystallite size were established for the adsorption of H{sub 2}, CO and O{sub 2} on families of Pt and Pd catalysts.

Vannice, M. A.

2003-05-30T23:59:59.000Z

245

Sintered electrode for solid oxide fuel cells  

DOE Patents [OSTI]

A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

Ruka, R.J.; Warner, K.A.

1999-06-01T23:59:59.000Z

246

Packaging a liquid metal ESD with micro-scale mercury droplet.  

SciTech Connect (OSTI)

Micro-Gas-Analyzers have many applications in detecting chemical compounds present in the air. MEMS valves are used to perform sampling of gasses, as they enable control of fluid flow at the micro level. Current generation electrostatically actuated MEMS valves were tested to determine their ability to hold off a given gauge pressure with an applied voltage. Current valve designs were able to hold off 98 psi with only 82 V applied to the valves. The valves were determined to be 1.83 times more efficient than older valve designs, due to increasing the electrostatic area of the valve and trapping oxide between polysilicon layers. Newer valve designs were also proposed and modeled using ANSYS multiphysics, which should be able to hold off 100 psi with only 29 V needed. This performance would be 2.82 times more efficient than current designs, or 5.17 times more efficient than older valve designs. This will be accomplished by further increasing the valve radius and decreasing the gap between the valve boss and electrode.

Not Available

2012-01-01T23:59:59.000Z

247

Method of making an electrode  

DOE Patents [OSTI]

Disclosed is a method of coating an electrode on a solid oxygen conductive oxide layer. A coating of particles of an electronic conductor is formed on one surface of the oxide layer and a source of oxygen is applied to the opposite surface of the oxide layer. A metal halide vapor is applied over the electronic conductor and the oxide layer is heated to a temperature sufficient to induce oxygen to diffuse through the oxide layer and react with the metal halide vapor. This results in the growing of a metal oxide coating on the particles of electronic conductor, thereby binding them to the oxide layer.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1986-01-01T23:59:59.000Z

248

Status of ANL out-of-pile investigations of severe accident phenomena for liquid metal reactors  

SciTech Connect (OSTI)

Research addressing LMFBR whole core accidents has been terminated, and there is now emphasis on quantifying reactivity feedbacks, and in particular enhancing negative feedback, so that advanced LMR designs will provide inherently safe operation. The status of recent HCDA-related laboratory research performed at ANL, up to the time that such activities were no longer needed to support CRBR licensing, is described. Included are descriptions of programs addressing sodium channel voiding, fuel sweepout, fuel dispersal and plugging, boiled-up pool, UO/sub 2//sodium FCI, and debris coolability. Descriptions of recent investigations involving the metal fuel/sodium system are also included.

Spencer, B.W.; Marchaterre, J.F.; Anderson, R.P.; Armstrong, D.R.; Baker, L.; Cho, D.H.; Gabor, J.D.; Pedersen, D.R.; Sienicki, J.J.; Stein, R.P.

1986-01-01T23:59:59.000Z

249

Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors  

SciTech Connect (OSTI)

Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

William Linak

2004-12-16T23:59:59.000Z

250

Method of measuring a liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

Garcia, Gabe V. (Las Cruces, NM); Carlson, Nancy M. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

251

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

252

Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors  

SciTech Connect (OSTI)

The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.

Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak

2003-08-06T23:59:59.000Z

253

Preapplication safety evaluation report for the Power Reactor Innovative Small Module (PRISM) liquid-metal reactor. Final report  

SciTech Connect (OSTI)

This preapplication safety evaluation report (PSER) presents the results of the preapplication desip review for die Power Reactor Innovative Small Module (PRISM) liquid-mew (sodium)-cooled reactor, Nuclear Regulatory Commission (NRC) Project No. 674. The PRISM conceptual desip was submitted by the US Department of Energy in accordance with the NRC`s ``Statement of Policy for the Regulation of Advanced Nuclear Power Plants`` (51 Federal Register 24643). This policy provides for the early Commission review and interaction with designers and licensees. The PRISM reactor desip is a small, modular, pool-type, liquid-mew (sodium)-cooled reactor. The standard plant design consists of dim identical power blocks with a total electrical output rating of 1395 MWe- Each power block comprises three reactor modules, each with a thermal rating of 471 MWt. Each module is located in its own below-grade silo and is co to its own intermediate heat transport system and steam generator system. The reactors utilize a metallic-type fuel, a ternary alloy of U-Pu-Zr. The design includes passive reactor shutdown and passive decay heat removal features. The PSER is the NRC`s preliminary evaluation of the safety features in the PRISM design, including the projected research and development programs required to support the design and the proposed testing needs. Because the NRC review was based on a conceptual design, the PSER did not result in an approval of the design. Instead it identified certain key safety issues, provided some guidance on applicable licensing criteria, assessed the adequacy of the preapplicant`s research and development programs, and concluded that no obvious impediments to licensing the PRISM design had been identified.

Donoghue, J.E.; Donohew, J.N.; Golub, G.R.; Kenneally, R.M.; Moore, P.B.; Sands, S.P.; Throm, E.D.; Wetzel, B.A. [Nuclear Regulatory Commission, Washington, DC (United States). Associate Directorate for Advanced Reactors and License Renewal

1994-02-01T23:59:59.000Z

254

RETGEM with polyvinylchloride (PVC) electrodes  

E-Print Network [OSTI]

This paper presents a new design of the RETGEM (Resistive Electrode Thick GEM) based on electrodes made of a polyvinylchloride material (PVC). Our device can operate with gains of 10E5 as a conventional TGEM at low counting rates and as RPC in the case of high counting rates without of the transit to the violent sparks. The distinct feature of present RETGEM is the absent of the metal coating and lithographic technology for manufacturing of the protective dielectric rms. The electrodes from PVC permit to do the holes by a simple drilling machine. Detectors on a RETGEM basis could be useful in many fields of an application requiring a more cheap manufacturing and safe operation, for example, in a large neutrino experiments, in TPC, RICH systems.

Razin, V I; Reshetin, A I; Filippov, S N

2009-01-01T23:59:59.000Z

255

Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA  

SciTech Connect (OSTI)

Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of physical processes has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation. However, a tremendous computational resource (GPGPU) are recently being utilized for general purpose computing due to its high performance of floating-point arithmetic operation, wide memory bandwidth and enhanced programmability. As for the most time-consuming component in MD simulation calculation during the case of studying liquid metal solidification processes, this paper presents a fine-grained spatial decomposition method to accelerate the computation of update of neighbor lists and interaction force calculation by take advantage of modern graphics processors units (GPU), enlarging the scale of the simulation system to a simulation system involving 10?000?000 atoms. In addition, a number of evaluations and tests, ranging from executions on different precision enabled-CUDA versions, over various types of GPU (NVIDIA 480GTX, 580GTX and M2050) to CPU clusters with different number of CPU cores are discussed. The experimental results demonstrate that GPU-based calculations are typically 9?11 times faster than the corresponding sequential execution and approximately 1.5?2 times faster than 16 CPU cores clusters implementations. On the basis of the simulated results, the comparisons between the theoretical results and the experimental ones are executed, and the good agreement between the two and more complete and larger cluster structures in the actual macroscopic materials are observed. Moreover, different nucleation and evolution mechanism of nano-clusters and nano-crystals formed in the processes of metal solidification is observed with large-sized system.

Jie, Liang [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China)] [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Li, KenLi, E-mail: lkl@hnu.edu.cn [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China) [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); National Supercomputing Center in Changsha, 410082 (China); Shi, Lin [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China)] [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China); Liu, RangSu [School of Physics and Micro Electronic, Hunan University, Changshang, 410082 (China)] [School of Physics and Micro Electronic, Hunan University, Changshang, 410082 (China); Mei, Jing [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China)] [School of Information Science and Engineering, Hunan University, Changshang, 410082 (China)

2014-01-15T23:59:59.000Z

256

Estimates of the effect of a plasma momentum flux on the free surface of a thin film of liquid metal  

SciTech Connect (OSTI)

The idea of using a flowing thin film of liquid metal (LM) to protect the divertor surface of a tokamak from untimely erosion and radiation damage has gained some attention over the years but has met with criticism on several key issues. One such issue in particular is the effect the momentum flux of a very obliquely incident plasma particle stream on the shape of the free surface of LM. This momentum may push to LM to one side of the duct and cause the formation of dry spots no longer protected from the plasma beam. It is this issue that this paper addresses in the air of a first approximation. Estimates are made of the magnitude and direction of the flux of plasma momentum at the LM divertor surface. The effect of this flux is modeled with a modified version of the ordinary fluid dynamics code RIPPLE, designed for transient free surface fluid flow problems in which surface tension plays an important role. Initial results indicate that in the OHD approximation, ITER-like magnitudes of the momentum flux are comparable to the hydrostatic pressure of a thin LM film. The momentum can have a significant effect on the form of the free surface, causing both significant splashing as well as shifting of the LM to one side of the channel. Due to the inertial nature of this problem, movement of the metal cannot occur instantaneously and a maximum exposure time of the LM to the plasma, as a function of momentum flux magnitude and direction, is defined and estimated from the results of RIPPLE predictions. Full MHD calculations, while beyond the scope of this initial assessment, will be required to more fully and accurately characterize this effect.

Morley, N.B.; Gaizer, A.A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1994-12-31T23:59:59.000Z

257

Thermal-performance study of liquid metal fast breeder reactor insulation  

SciTech Connect (OSTI)

Three types of metallic thermal insulation were investigated analytically and experimentally: multilayer reflective plates, multilayer honeycomb composite, and multilayer screens. Each type was subjected to evacuated and nonevacuated conditions, where thermal measurements were made to determine thermal-physical characteristics. A variation of the separation distance between adjacent reflective plates of multilayer reflective plates and multilayer screen insulation was also experimentally studied to reveal its significance. One configuration of the multilayer screen insulation was further selected to be examined in sodium and sodium oxide environments. The emissivity of Type 304 stainless steel used in comprising the insulation was measured by employing infrared technology. A comprehensive model was developed to describe the different proposed types of thermal insulation. Various modes of heat transfer inherent in each type of insulation were addressed and their relative importance compared. Provision was also made in the model to allow accurate simulation of possible sodium and sodium oxide contamination of the insulation. The thermal-radiation contribution to heat transfer in the temperature range of interest for LMFBR's was found to be moderate, and the suppression of natural convection within the insulation was vital in preserving its insulating properties. Experimental data were compared with the model and other published results. Moreover, the three proposed test samples were assessed and compared under various conditions as viable LMFBR thermal insulations.

Shiu, Kelvin K.

1980-09-01T23:59:59.000Z

258

Method for uniformly distributing carbon flakes in a positive electrode, the electrode made thereby and compositions  

DOE Patents [OSTI]

A positive electrode for a secondary electrochemical cell wherein an electrically conductive current collector is in electrical contact with a particulate mixture of gray cast iron and an alkali metal sulfide and an electrolyte including alkali metal halides or alkaline earth metal halides. Also present may be a transition metal sulfide and graphite flakes from the conversion of gray cast iron to iron sulfide. Also disclosed is a method of distributing carbon flakes in a cell wherein there is formed an electrochemical cell of a positive electrode structure of the type described and a suitable electrolyte and a second electrode containing a material capable of alloying with alkali metal ions. The cell is connected to a source of electrical potential to electrochemically convert gray cast iron to an iron sulfide and uniformly to distribute carbon flakes formerly in the gray cast iron throughout the positive electrode while forming an alkali metal alloy in the negative electrode. Also disclosed are compositions useful in preparing positive electrodes.

Mrazek, Franklin C. (Hickory Hills, IL); Smaga, John A. (Lemont, IL); Battles, James E. (Oak Forest, IL)

1983-01-01T23:59:59.000Z

259

Heat removal aspects of Liquid Metal Fast Breeder Reactor safety in light of the Three Mile Island incident  

SciTech Connect (OSTI)

The safety aspects of the Liquid Metal Fast Breeder Reactor (LMFBR) loop design are compared with those of the Light Water Reactor (LWR), in light of the Three Mile Island (TMI) incident. The events at TMI are briefly described, the fundamental differences between the LWR water coolant and the LMFBR sodium coolant are presented, and the design of analogous LMFBR safety systems under similar events as those at TMI is discussed. A preliminary qualitative evaluation of a TMI-equivalent accident for an LMFBR indicates that there is likely to be: (1) negligible pressure transients in the primary loop, (2) no core damage, (3) isolation of the incident at the steam generator, and (4) no radiation release to the environment, except a negligible amount of tritium from the secondary sodium. Furthermore, with the absence of the ECCS (Emergency Core Cooling System), pressurizer, and other pressure-related components in the LMFBR design, operator action for a LMFBR should be much simpler in dealing with the coolant upset condition and the decay heat removal problems.

Victor, H.R.; Graf, D.G.

1980-12-01T23:59:59.000Z

260

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z, or (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001electrodes and storage batteries.

Chiang, Yet-Ming; Chung, Sung-Yoon; Bloking, Jason T; Andersson, Anna M

2014-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape  

SciTech Connect (OSTI)

Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed.

DeVault, G.P.; Bell, C.R.

1985-01-01T23:59:59.000Z

262

Manganese oxide composite electrodes for lithium batteries  

DOE Patents [OSTI]

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5electrode and 0.ltoreq.y<1 in which the Li.sub.2MnO.sub.3 and LiMn.sub.2-yM.sub.yO.sub.4 components have layered and spinel-type structures, respectively, and in which M is one or more metal cations. The electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

2009-12-22T23:59:59.000Z

263

Controlling electrode gap during vacuum arc remelting at low melting current  

DOE Patents [OSTI]

An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

Williamson, R.L.; Zanner, F.J.; Grose, S.M.

1997-04-15T23:59:59.000Z

264

Controlling electrode gap during vacuum arc remelting at low melting current  

DOE Patents [OSTI]

An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

Williamson, Rodney L. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM); Grose, Stephen M. (Glenwood, WV)

1997-01-01T23:59:59.000Z

265

Layered electrodes for lithium cells and batteries  

DOE Patents [OSTI]

Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

2008-04-15T23:59:59.000Z

266

Electrochemical cell having cylindrical electrode elements  

DOE Patents [OSTI]

A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.

Nelson, Paul A. (Wheaton, IL); Shimotake, Hiroshi (Hinsdale, IL)

1982-01-01T23:59:59.000Z

267

High frequency reference electrode  

DOE Patents [OSTI]

A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

Kronberg, J.W.

1994-05-31T23:59:59.000Z

268

Molecular Structure of Water at Gold Electrodes Revealed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Structure of Water at Gold Electrodes Revealed Print The structure of liquid water has been intensely studied, but until recently, it has not been clear what happens to...

269

Metal atomization spray nozzle  

DOE Patents [OSTI]

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

270

Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

Lu, X. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nakajima, K.; Sakanakura, H. [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Matsubae, K. [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan); Bai, H. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nagasaka, T., E-mail: t-nagasaka@m.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan)

2012-06-15T23:59:59.000Z

271

Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes  

SciTech Connect (OSTI)

BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

None

2010-07-01T23:59:59.000Z

272

Longitudinal discharge laser electrodes  

DOE Patents [OSTI]

The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

Warner, B.E.; Miller, J.L.; Ault, E.R.

1994-08-23T23:59:59.000Z

273

Near-electrode imager  

DOE Patents [OSTI]

An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

Rathke, Jerome W. (Lockport, IL); Klingler, Robert J. (Westmont, IL); Woelk, Klaus (Wachtberg, DE); Gerald, II, Rex E. (Brookfield, IL)

2000-01-01T23:59:59.000Z

274

Controlled atmosphere for fabrication of cermet electrodes  

DOE Patents [OSTI]

A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

Ray, S.P.; Woods, R.W.

1998-08-11T23:59:59.000Z

275

Controlled atmosphere for fabrication of cermet electrodes  

DOE Patents [OSTI]

A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA)

1998-01-01T23:59:59.000Z

276

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

None

2009-12-21T23:59:59.000Z

277

Metal inks  

DOE Patents [OSTI]

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

278

In situ X-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes  

SciTech Connect (OSTI)

Aspects of the structural and electronic properties of hydrous oxide films of composite (9:1) Ni/Co and (9:1) Ni/Fe, prepared by electrodeposition, have been examined in alkaline electrolytes using in situ X-ray absorption fine structure (XAFS). An analysis of the X-ray absorption near the edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) for the Co and Fe K-edges of these composite hydrous oxides revealed that, regardless of the oxidation state of nickel sites in the films, the guest metal ions are present as Co[sup 3+] and Fe[sup 3+] and that the cobalt-oxygen distance d(Co-O) = 1.9 [+-] 0.02 [angstrom] and d(Fe-O) = 1.92 [+-] 0.02 [angstrom]. The latter values are in excellent agreement with d(Me-O) (Me = Co or Fe) in CoOOH and [beta]- and [gamma]-FeOOH, respectively, determined by conventional X-ray diffraction. Two clearly defined Me-Ni first coordination shells could be observed in the Fourier transforms (FT) of the K-edge EXAFS of the guest metal recorded at a potential at which both Ni[sup 2+] and Ni[sup 3+] sites are expected to be present. 28 refs., 10 figs., 3 tabs.

Kim, Sunghyun; Tryk, D.A.; Scherson, D. (Case Western Reserve Univ., Cleveland, OH (United States)); Antonio, M.R. (Argonne National Lab., IL (United States)); Carr, R. (Stanford Synchrotron Radiation Lab., CA (United States))

1994-10-06T23:59:59.000Z

279

Nanostructured Solid Oxide Fuel Cell Electrodes  

SciTech Connect (OSTI)

The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

Sholklapper, Tal Zvi

2007-12-15T23:59:59.000Z

280

RAPID FREE FLOW ISOELECTRIC FOCUSING VIA NOVEL ELECTRODE STRUCTURES  

E-Print Network [OSTI]

RAPID FREE FLOW ISOELECTRIC FOCUSING VIA NOVEL ELECTRODE STRUCTURES Jacob Albrecht, Suzanne Gaudet for micro free flow electrophoresis devices. Packed polymer beads or agar were used to isolate the sample from the electrochemical reactions at the metal electrode surface. These materials allow for applied

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Manganese oxide composite electrodes for lithium batteries  

DOE Patents [OSTI]

An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0metal cations. The electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

2007-12-04T23:59:59.000Z

282

Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode  

E-Print Network [OSTI]

Semitransparent Organic Photovoltaic Cells with Laminated Top Electrode Jung-Yong Lee, Steve T demonstrate semitransparent small molecular weight organic photovoltaic cells using a laminated silver metal cathode due to differences in optical absorption. KEYWORDS Organic photovoltaics, transparent

Cui, Yi

283

Device and technique for in-process sampling and analysis of molten metals and other liquids presenting harsh sampling conditions  

DOE Patents [OSTI]

An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid is sheared into small particles which are of a size and uniformity to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas. 5 figs.

Alvarez, J.L.; Watson, L.D.

1988-01-21T23:59:59.000Z

284

Nanoscopic electrode molecular probes  

DOE Patents [OSTI]

The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

Krstic, Predrag S. (Knoxville, TN); Meunier, Vincent (Knoxville, TN)

2012-05-22T23:59:59.000Z

285

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

286

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

287

High temperature liquid level sensor  

DOE Patents [OSTI]

A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

Tokarz, Richard D. (West Richland, WA)

1983-01-01T23:59:59.000Z

288

Jaworski Liquid metal PSI science and component development FESAC Meeting, Washington DC July 8-10, 2014  

E-Print Network [OSTI]

): ­ No permanent damage ­ Increased power loading, relaxed design constraints ­ Enhanced confinement regimes · LM-cooled targets: with thin liquid layers need to demonstrate integrated performance in a high-power device. ­ We Science-driven program will address critical physics unknowns and guide technology 4 Heat Conduction

289

Method of measuring a liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools is disclosed, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figures.

Garcia, G.V.; Carlson, N.M.; Donaldson, A.D.

1991-03-19T23:59:59.000Z

290

Layered electrode for electrochemical cells  

DOE Patents [OSTI]

There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

Swathirajan, Swathy (West Bloomfield, MI); Mikhail, Youssef M. (Sterling Heights, MI)

2001-01-01T23:59:59.000Z

291

Method of making a layered composite electrode/electrolyte  

DOE Patents [OSTI]

An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-01-25T23:59:59.000Z

292

Multi-layer electrode for high contrast electrochromic devices  

DOE Patents [OSTI]

An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.

Schwendeman, Irina G. (Wexford, PA); Finley, James J. (Pittsburgh, PA); Polcyn, Adam D. (Pittsburgh, PA); Boykin, Cheri M. (Wexford, PA)

2011-11-01T23:59:59.000Z

293

Focused shock spark discharge drill using multiple electrodes  

DOE Patents [OSTI]

A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

294

Positive electrode for electrical energy storage device  

SciTech Connect (OSTI)

A rechargeable electrical energy storage device is described that includes a spaced-apart negative electrode and positive electrode structures immersed in an electrolyte which is molten at the operating temperature of the device wherein the positive electrode structure comprises a housing for containing a body of electropositive active material, said housing having at least one open face, an electrolyte permeable member affixed to the housing and covering said open face for retaining said active material in said housing and said housing and electrolyte permeable member comprising material selected from the group consisting of steel, nickel, copper and alloys thereof having at least an 8 ..mu..M thick electroless nickel coating thereon. In accordance with the present invention, it has been found that such an electroless nickel coating permits the use of relatively inexpensive conductive materials such as steel, nickel, copper and alloys thereof and provides the corrosion resistance required in the molten electrolyte. The present invention is particularly applicable to electrical energy storage devices which utilize a transition metal chalcogenide as a positive electrode active material and a lithium alloy as the negative electrode active material.

Heredy, L.A.; McCoy, L.R.

1980-10-14T23:59:59.000Z

295

Battery using a metal particle bed electrode  

DOE Patents [OSTI]

A zinc-air battery in a case including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit.

Evans, James V. (Piedmont, CA); Savaskan, Gultekin (Albany, CA)

1991-01-01T23:59:59.000Z

296

Battery using a metal particle bed electrode  

DOE Patents [OSTI]

A zinc-air battery in a case is described including a zinc particle bed supported adjacent the current feeder and diaphragm on a porous support plate which holds the particles but passes electrolyte solution. Electrolyte is recycled through a conduit between the support plate and top of the bed by convective forces created by a density of differential caused by a higher concentration of high density discharge products in the interstices of the bed than in the electrolyte recycle conduit. 7 figures.

Evans, J.V.; Savaskan, G.

1991-04-09T23:59:59.000Z

297

Overview of Transparent Metal Mesh Electrode Technologies  

Energy Savers [EERE]

range that is transmitted by the conductive coating and substrate. Often the absorption of the substrate is subtracted and the transmission of the coating itself reported....

298

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

299

Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center  

SciTech Connect (OSTI)

In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.

Jablonski, Paul D.; Turner, Paul C.

2005-09-01T23:59:59.000Z

300

EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS  

SciTech Connect (OSTI)

This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

2010-03-26T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Studies of ionic liquids in lithium-ion battery test systems  

SciTech Connect (OSTI)

In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-06-01T23:59:59.000Z

302

Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.  

SciTech Connect (OSTI)

This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

2007-06-30T23:59:59.000Z

303

Carbon Nanotubes as Electrodes for Dielectrophoresis of DNA  

E-Print Network [OSTI]

Dielectrophoresis can potentially be used as an efficient trapping tool in the fabrication of molecular devices. For nanoscale objects, however, the Brownian motion poses a challenge. We show that the use of carbon nanotube electrodes makes it possible to apply relatively low trapping voltages and still achieve high enough field gradients for trapping nanoscale objects, e.g., single molecules. We compare the efficiency and other characteristics of dielectrophoresis between carbon nanotube electrodes and lithographically fabricated metallic electrodes, in the case of trapping nanoscale DNA molecules. The results are analyzed using finite element method simulations and reveal information about the frequency dependent polarizability of DNA.

Sampo Tuukkanen; J. Jussi Toppari; Anton Kuzyk; Lasse Hirviniemi; Vesa P. Hytonen; Teemu Ihalainen; Paivi Torma

2006-07-18T23:59:59.000Z

304

Polarization dependence of the temporal response of metal-semiconductor-metal photodetectors  

E-Print Network [OSTI]

of MSM-PD effi- ciency when the electrode period ( ) is comparable to the wavelength of the incident-semiconductor-metal photodetector temporal response is shown to be significant, and largest for devices with electrode periods less insensitive devices require special electrode patterning7 or . When used as a polarization analyzer/ detector

Van Driel, Henry M.

305

Synthesis of ionic liquids  

DOE Patents [OSTI]

Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

2008-09-09T23:59:59.000Z

306

Negative void reactivity in a large liquid-metal fast breeder reactor with hydrogenous moderator (ZrH[sub 1. 7]) layers  

SciTech Connect (OSTI)

Placing a thin hydrogenous moderator (ZrH[sub 1.7]) layer between the seed and the blanket is very effective in reducing the sodium void reactivity of a liquid-metal fast breeder reactor (LMFBR). The void reactivity reduction is attributed to the decrease in neutron production and increase in neutron absorption in the blanket at voiding due to the slowing down of fast neutrons in the layer. This dominates the whole core neutron balance. The fixed hydrogenous layer concept is much more effective than the conventional uniform introduction of such moderator in a core. Furthermore, it does not seriously deteriorate the breeding capability. For realizing the negative sodium void reactivity in a large-sized core, the seeds should be divided by blankets with the layers. The conceptual design of a nonflat LMFBR core is presented for demonstrating the effectiveness of the layer. Negative void reactivity is realized in a radially heterogeneous core of 1,000-MW(electric) class output. The active core is 2.9 m high. It is much taller than the conventional LMFBR core, which is [approximately]1 m high. A wide pitch-to-fuel diameter ratio was chosen so as not to increase the pressure drop in the core. The compound system doubling time is 12.5 yr.

Oka, Yoshiaki; Jevremovic, T.; Koshizuka, Seiichi (Univ. of Tokyo, Ibaraki (Japan). Nuclear Engineering Research Lab.)

1994-07-01T23:59:59.000Z

307

al-casi-misch metal struktura: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental conditions (more) Cameron, Vyllinniskii 2008-01-01 9 Liquid Metal Transformers CERN Preprints Summary: The room temperature liquid metal is quickly emerging as an...

308

Modified cermet fuel electrodes for solid oxide electrochemical cells  

DOE Patents [OSTI]

An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

Ruka, Roswell J. (Churchill Boro, PA); Spengler, Charles J. (Murrysville, PA)

1991-01-01T23:59:59.000Z

309

Structured Pillar Electrodes - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the distance charge carriers must travel to encounter an electrode. Description An optoelectronic device comprises a photoactive layer having a heterojunction; and electrode(s)...

310

Screen Electrode Materials & Cell Chemistries and Streamlining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cell Chemistries and Streamlining Optimization of Electrode Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode 2010 DOE Vehicle Technologies...

311

Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell  

DOE Patents [OSTI]

The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

Otto, N.C.; Warner, B.T.; Smaga, J.A.; Battles, J.E.

1982-07-07T23:59:59.000Z

312

Corrosion resistant positive electrode for high-temperature, secondary electrochemical cell  

DOE Patents [OSTI]

The corrosion rate of low carbon steel within a positive electrode of a high-temperature, secondary electrochemical cell that includes FeS as active material is substantially reduced by incorporating therein finely divided iron powder in stoichiometric excess to the amount required to form FeS in the fully charged electrode. The cell typically includes an alkali metal or alkaline earth metal as negative electrode active material and a molten metal halide salt as electrolyte. The excess iron permits use of inexpensive carbon steel alloys that are substantially free of the costly corrosion resistant elements chromium, nickel and molybdenum while avoiding shorten cell life resulting from high corrosion rates.

Otto, Neil C. (Chicago, IL); Warner, Barry T. (South Holland, IL); Smaga, John A. (Lemont, IL); Battles, James E. (Oak Forest, IL)

1983-01-01T23:59:59.000Z

313

Cold cap subsidence for in situ vitrification and electrodes therefor  

DOE Patents [OSTI]

An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.

Buelt, James L. (Richland, WA); Carter, John G. (Richland, WA); Eschbach, Eugene A. (Richland, WA); FitzPatrick, Vincent F. (Richland, WA); Koehmstedt, Paul L. (Richland, WA); Morgan, William C. (Richland, WA); Oma, Kenton H. (Richland, WA); Timmerman, Craig L. (Richland, WA)

1992-01-01T23:59:59.000Z

314

Liquid membranes. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations of selected patents concerning liquid membranes (LM) and LM processes. Included are patents for LM formulations and compositions, separation of aqueous and gas mixtures, and LM type electrodes. Applications are discussed, including use in drug release control, water and wastewater treatment, metal recovery, high temperature and high pressure LM processes, artificial LM lung and LM red cells, and LM scale removal from oil and gas production equipment. Citations concerning ion exchange resins are excluded and examined in a separate bibliography. (Contains a minimum of 99 citations and includes a subject term index and title list.)

Not Available

1994-04-01T23:59:59.000Z

315

Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment  

SciTech Connect (OSTI)

Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding ?/2 at 1.0 THz was achieved in a ?517??m-thick cell. The phase shifter exhibits high transmittance (?78%). The driving voltage required for quarter-wave operation is as low as 5.66?V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

Yang, Chan-Shan [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Tang, Tsung-Ta [Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan (China); Pan, Ru-Pin [Department of Electrophysics, National Chiao Tung University, Hsinchu 30078, Taiwan (China); Yu, Peichen [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Pan, Ci-Ling, E-mail: clpan@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Science of Matters, Hsinchu 30013, Taiwan (China)

2014-04-07T23:59:59.000Z

316

An Estimate of the Order of Magnitude of the Explosion During a Core Meltdown-Compaction Accident for Heavy Liquid Metal Fast Reactors: A disquieting result updating the Bethe-Tait model  

E-Print Network [OSTI]

but lasting over a timescale of milliseconds. The forms of the energy release and of the resulting struc- tural damage differ significantly between a high explosive detonation and a propellant conflagration. Considering the yield of TNT Containment Law... gravitational compaction of the 100 MWth core, the ves- sel could withstand the 60 kg TNT-equivalent explosion from a 100 $/s reactivity insertion if a bare core is as- sumed; however, allowing for the presence of the unboiled heavy liquid metal coolant...

Arias, Francisco J.; Parks, Geoffrey T.

2014-12-09T23:59:59.000Z

317

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

318

E-Print Network 3.0 - alkali metal thermal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

319

E-Print Network 3.0 - alkali metals phase Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

320

E-Print Network 3.0 - alkali metal dimers Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E-Print Network 3.0 - alkali metals final Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

322

E-Print Network 3.0 - alkali metal complexes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

323

E-Print Network 3.0 - alkali metal extraction Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: , calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids... , sodium carbide, turpentine, finely divided metals...

324

Method for making thin carbon foam electrodes  

DOE Patents [OSTI]

A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

Pekala, Richard W. (Pleasant Hill, CA); Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Morrison, Robert L. (Modesto, CA)

1999-01-01T23:59:59.000Z

325

Method for making thin carbon foam electrodes  

DOE Patents [OSTI]

A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

1999-08-03T23:59:59.000Z

326

Polyoxometalate-Graphene Nanocomposite Modified Electrode for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Polyoxometalate-Graphene Nanocomposite Modified Electrode for Electrocatalytic Detection of Ascorbic Acid. Polyoxometalate-Graphene Nanocomposite Modified Electrode for...

327

The use of ionic liquid ion sources (ILIS) in FIB applications  

E-Print Network [OSTI]

A new monoenergetic, high-brightness ion source can be constructed using an arrangement similar to liquid metal ion sources (LMIS) by substituting the liquid metal with an ionic liquid, or room temperature molten salt. Ion ...

Zorzos, Anthony Nicholas

2009-01-01T23:59:59.000Z

328

In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications  

SciTech Connect (OSTI)

Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

Daniel A Scherson

2013-03-14T23:59:59.000Z

329

Liquid-Liquid Extraction Processes  

E-Print Network [OSTI]

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

330

Refractory electrodes for joule heating and methods of using same  

SciTech Connect (OSTI)

A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1200 C. in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof.

Lamar, David A. (West Richland, WA); Chapman, Chris C. (Richland, WA); Elliott, Michael L. (Kennewick, WA)

1998-01-01T23:59:59.000Z

331

Refractory electrodes for joule heating and methods of using same  

DOE Patents [OSTI]

A certain group of electrically conductive refractory materials presently known for use in high temperature applications as throat constructions, melter sidewalls, forehearth, stacks, port sills, hot face lining for slagging coal gasifiers, slag runners, and linings for nuclear waste encapsulation furnaces may be used as electrodes permitting joule heating at temperatures in excess of 1,200 C in excess of about 4400 hours even in the presence of transition group element(s). More specifically, the invention is an electrode for melting earthen materials, wherein the electrode is made from an electrically conductive refractory material, specifically at least one metal oxide wherein the metal is selected from the group consisting of chrome, ruthenium, rhodium, tin and combinations thereof. 2 figs.

Lamar, D.A.; Chapman, C.C.; Elliott, M.L.

1998-05-12T23:59:59.000Z

332

Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials  

DOE Patents [OSTI]

Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

2014-02-04T23:59:59.000Z

333

Membrane reference electrode  

DOE Patents [OSTI]

A reference electrode utilizes a small thin, flat membrane of a highly conductive glass placed on a small diameter insulator tube having a reference material inside in contact with an internal voltage lead. When the sensor is placed in a non-aqueous ionic electrolytic solution, the concentration difference across the glass membrane generates a low voltage signal in precise relationship to the concentration of the species to be measured, with high spatial resolution. 2 figs.

Redey, L.; Bloom, I.D.

1988-01-21T23:59:59.000Z

334

Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils  

DOE Patents [OSTI]

An electrokinetic electrode assembly is described for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. An electrode system and method are also revealed for extraction of soil contaminants. The system and method utilize at least two electrode assemblies as described above. 5 figs.

Lindgren, E.R.; Mattson, E.D.

1995-07-25T23:59:59.000Z

335

Electrokinetic electrode system for extraction of soil contaminants from unsaturated soils  

DOE Patents [OSTI]

There is presented an electrokinetic electrode assembly for use in extraction of soil contaminants from unsaturated soil in situ. The assembly includes a housing for retaining a liquid comprising an electrolyte solution, pure water, and soil water, the housing being in part of porous material capable of holding a vacuum. An electrode is mounted in the housing. The housing is provided with a vacuum orifice for effecting a vacuum within the housing selectively to control flow of soil water through the housing into the chamber and to control outflow of the liquid from the chamber. The assembly further includes conduit means for removing the liquid from the housing and returning the electrolyte solution to the housing, and a conduit for admitting pure water to the housing. There is further presented an electrode system and method for extraction of soil contaminants, the system and method utilizing at least two electrode assemblies as described above.

Lindgren, Eric R. (Albuquerque, NM); Mattson, Earl D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

336

Liquid Wall Chambers  

SciTech Connect (OSTI)

The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

Meier, W R

2011-02-24T23:59:59.000Z

337

Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays  

E-Print Network [OSTI]

Microporous Patterned Electrodes for Color-Matched Electrochromic Polymer Displays Pierre of electroactive and conducting polymers offers new opportunities for the design of materials for electrochromic the most promising electrochromic (EC) properties. Here, we report the use of highly porous metallized

Tanner, David B.

338

Mediated electrochemical oxidation of organic wastes without electrode separators  

DOE Patents [OSTI]

An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

1996-05-14T23:59:59.000Z

339

Ternary compound electrode for lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, Ian D. (Menlo Park, CA); Godshall, Ned A. (Stanford, CA); Huggins, Robert A. (Stanford, CA)

1982-01-01T23:59:59.000Z

340

Ternary compound electrode for lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

1980-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

In situ surface pH measurement during electrolysis using a rotating pH electrode  

SciTech Connect (OSTI)

An in situ technique has been developed for measuring the surface pH adjacent to a solid electrode/liquid interface during electrolysis. Measurements of the surface pH can be used to obtain insights regarding the electrodeposition of various transition metals and to obtain a better understanding of associated in situ surface chemistry effects. Many transition metals and alloys deposit with simultaneous hydrogen evolution and, as a result, are accompanied by a pH rise near the cathode, thereby affecting the reactivity of the nearby metal-ion species. Measurements of the surface pH of a solution containing simple salts during hydrogen evolution from a cathode were performed. The surface pH of a cathode during Ni and NiFe electrodeposition was also measured. The experiments demonstrated that, in the absence of buffers or metal ions, the surface pH rises many pH units above the bulk value. During Ni and NiFe electrodeposition, however, the surface pH of solutions consisting of simple salts and starting from a bulk pH level of 2 does not increase more than 3 pH units from the bulk value. In the case of Ni and NiFe electrodeposition, surface buffering occurs because of the hydrolysis of the metal-ion species present. Additionally, it is found that during the anomalous codeposition of NiFe, the surface pH is much lower than that required by the Dahms-Cross hypothesis.

Deligianni, H.; Romankiw, L.T.

1993-03-01T23:59:59.000Z

342

Transient-Liquid-Phase and Liquid-Film-Assisted Joining ofCeramics  

SciTech Connect (OSTI)

Two joining methods, transient-liquid-phase (TLP) joining and liquid-film-assisted joining (LFAJ), have been used to bond alumina ceramics. Both methods rely on multilayer metallic interlayers designed to form thin liquid films at reduced temperatures. The liquid films either disappear by interdiffusion (TLP) or promote ceramic/metal interface formation and concurrent dewetting of the liquid film (LFAJ). Progress on extending the TLP method to lower temperatures by combining low-melting-point (<450 C) liquids and commercial reactive-metal brazes is described. Recent LFAJ work on joining alumina to niobium using copper films is presented.

Sugar, Joshua D.; McKeown, Joseph T.; Akashi, Takaya; Hong, SungM.; Nakashima, Kunihiko; Glaeser, Andreas M.

2005-02-09T23:59:59.000Z

343

Nanoparticle enhanced ionic liquid heat transfer fluids  

DOE Patents [OSTI]

A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

2014-08-12T23:59:59.000Z

344

Electrode-active material for electrochemical batteries and method of preparation  

DOE Patents [OSTI]

A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

Varma, R.

1983-11-07T23:59:59.000Z

345

Electrode-active material for electrochemical batteries and method of preparation  

DOE Patents [OSTI]

A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

Varma, Ravi (Hinsdale, IL)

1987-01-01T23:59:59.000Z

346

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies  

SciTech Connect (OSTI)

Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

2013-09-20T23:59:59.000Z

347

Advantages of flattened electrode in bottom contact single-walled carbon nanotube field-effect transistor  

SciTech Connect (OSTI)

We fabricated single-walled carbon nanotube (SWNT) field-effect transistor (FET) devices on flattened electrodes, in which there are no height difference between metal electrodes and the substrate. SWNT-FET fabricated using bottom contact technique have some advantages, such that the SWNTs are free from electron irradiation, have direct contact with the desired metal electrodes, and can be functionalized before or after deposition. However, the SWNTs can be bent at the contact point with the metal electrodes leading to a different electrical characteristic of the devices. The number of SWNT direct junctions in short channel length devices is drastically increased by the use of flattened electrodes due to strong attractive interaction between SWNT and the substrate. The flattened electrodes show a better balance between their hole and electron mobility compared to that of the non-flattened electrodes, that is, ambipolar FET characteristic. It is considered that bending of the SWNTs in the non-flattened electrode devices results in a higher Schottky barrier for the electrons.

Setiadi, Agung; Akai-Kasaya, Megumi, E-mail: kasaya@prec.eng.osaka-u.ac.jp; Saito, Akira; Kuwahara, Yuji [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 565-0871 Suita (Japan)

2014-09-01T23:59:59.000Z

348

Enzyme nanoband electrodes  

SciTech Connect (OSTI)

Enzyme nanoelectrodes have been constructed by immobilizing glucose oxidase, alcohol oxidase or tyrosinase onto ultrathin carbon films (of 35-50 nm thickness). The enzyme immobilization is accomplished via entrapment within electropolymerized poly(o-phenylenediamine) coatings. Cyclic voltammetry and controlled-potential amperometry are used to characterize the performance of the new nanoscopic biosensors under different preparation and operation conditions. The resulting electrodes offer convenient and rapid measurements of millimolar substrate concentrations, and (to the best of the authors' knowledge) are the smallest enzyme probes reported to date. 10 refs., 7 figs.

Wang, J.; Naser, N. (New Mexico State Univ., Las Cruces (United States)); Renschler, C.L. (Sandia National Labs., Albuquerque, NM (United States))

1993-07-01T23:59:59.000Z

349

Nanostructured Electrode Materials for Supercapacitors  

E-Print Network [OSTI]

and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

Wu, Shin-Tson

350

Coated carbon nanotube array electrodes  

DOE Patents [OSTI]

The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

2006-12-12T23:59:59.000Z

351

Coated carbon nanotube array electrodes  

DOE Patents [OSTI]

The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

Ren, Zhifeng (Newton, MA); Wen, Jian (Newton, MA); Chen, Jinghua (Chestnut Hill, MA); Huang, Zhongping (Belmont, MA); Wang, Dezhi (Wellesley, MA)

2008-10-28T23:59:59.000Z

352

Aluminum reduction cell electrode  

DOE Patents [OSTI]

The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

Goodnow, W.H.; Payne, J.R.

1982-09-14T23:59:59.000Z

353

A study of certain trace metals in sea water using anodic stripping voltammetry  

E-Print Network [OSTI]

Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

Fitzgerald, William Francis, 1926-

1970-01-01T23:59:59.000Z

354

Electrokinetic Hydrogen Generation from Liquid WaterMicrojets  

SciTech Connect (OSTI)

We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

Duffin, Andrew M.; Saykally, Richard J.

2007-05-31T23:59:59.000Z

355

Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)  

SciTech Connect (OSTI)

The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

Meilin Liu, James Gole

2006-12-14T23:59:59.000Z

356

High temperature solid electrolyte fuel cell with ceramic electrodes  

DOE Patents [OSTI]

A solid oxide electrolyte fuel cell is described having a central electrolyte comprised of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized and rendered ionically conductive by the addition of Ca, Mg, Y, La, Nd, Sm, Gd, Dy Er, or Yb. The electrolyte is sandwiched between porous electrodes of a HfO.sub.2 or ZrO.sub.2 ceramic stabilized by the addition of a rare earth and rendered electronically conductive by the addition of In.sub.2 O.sub.3. Alternatively, the anode electrode may be made of a metal such as Co, Ni, Ir Pt, or Pd.

Marchant, David D. (Richland, WA); Bates, J. Lambert (Richland, WA)

1984-01-01T23:59:59.000Z

357

A comparative evaluation of low-cycle fatigue behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joint  

SciTech Connect (OSTI)

A comparative evaluation of the low-cycle fatigue (LCF) behavior of type 316LN base metal, carried out at 773 and 873 K. Total strain-controlled LCF tests were conducted at a constant strain rate of 3 {times} 10{sup {minus}3} s{sup {minus}1} with strain amplitudes in the range {+-}0.20 to {+-}1.0 pct. Weld pads with single V and double V configuration were prepared by the shielded metal-arc welding (SMAW) process using 316 electrodes for weld-metal and weld-joint specimens. Optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of the untested and tested samples were carried out to elucidate the deformation and the fracture behavior. The cyclic stress response of the base metal shows a very rapid hardening to a maximum stress followed by a saturated stress response. Weld metal undergoes a relatively short initial hardening followed by a gradual softening regime. Weld joints exhibit an initial hardening and a subsequent softening regime at all strain amplitudes, except at low strain amplitudes where a saturation regime is noticed. The initial hardening observed in base metal has been attributed to interaction between dislocations and solute atoms/complexes and cyclic saturation to saturation in the number density of slip bands. The 18-8 group of austenitic stainless steels, such as AISI type 316, 304, and their modified grades, finds applications as structural material for various components of the liquid-metal-cooled fast breeder reactor (LMFBR).

Valsan, M.; Sundararaman, D.; Sankara Rao, K.B.; Mannan, S.L. [Indira Gandhi Centre for Atomic Research, Tamil Nadu (India)

1995-05-01T23:59:59.000Z

358

Determination of iridium in industrial concentrates by controlled-potential coulometry with a glassy-carbon electrode  

SciTech Connect (OSTI)

The authors present a coulometric method for determining iridium without separating nonferrous and noble metals using a glassy-carbon (GC) crucible instead of the expensive platinum electrode. The crucible also serves as the electrochemical cell for the coulometric determination and as a vessel in which an aliquot weight of the analyzed solution is taken. The KP-3 concentrate contains several metals that accompany iridium. The main metals which interfere in the electrochemical determination of iridium with the use of a platinum electrode are iron and ruthenium. This paper describes the authors' proposed procedure for determining iridium in hydrochloric acid solutions with the GC crucible-electrode.

Stril'chenko, T.G.; Kabanova, O.L.; Danilova, F.I.

1987-02-01T23:59:59.000Z

359

Electrochemical photovoltaic cells and electrodes  

DOE Patents [OSTI]

Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, Terje A. (East Patchogue, NY)

1984-01-01T23:59:59.000Z

360

Improved photovoltaic cells and electrodes  

DOE Patents [OSTI]

Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

Skotheim, T.A.

1983-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode  

E-Print Network [OSTI]

Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode.1088/0022-3727/44/4/045102 Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal in this article are in colour only in the electronic version) 1. Introduction Dye-sensitized solar cells (DSCs

Demir, Hilmi Volkan

362

All-solid electrodes with mixed conductor matrix  

DOE Patents [OSTI]

Alkali metal based electrochemical cells offer a great deal of promise for applications in many areas such as electric vehicles and load leveling purposes in stationary power plants. Lithium is an attractive candidate as the electroactive species in such cells since lithium is very electropositive, abundant and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated at elevated temperatures. The subject invention provides an electrochemical cell in one embodiment of which lithium is the electroactive species. The cell comprises an electrolyte, a positive electrode, and a negative electrode, either or both of which is an all-solid, composite microstructural electrode containing both a reactant phase and a mixed ionic-electronic conducting phase. The cells of the subject invention exhibit improved kinetic features, current and power densities. Repeated charging and discharging of these cells can be accomplished without appreciable loss of capacity.

Huggins, Robert A. (Stanford, CA); Boukamp, Bernard A. (Achterste Kamp, NL)

1984-01-01T23:59:59.000Z

363

Silicon metal-semiconductor-metal photodetector  

DOE Patents [OSTI]

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

364

Silicon metal-semiconductor-metal photodetector  

DOE Patents [OSTI]

Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

365

Aluminum reduction cell electrode  

DOE Patents [OSTI]

The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

Payne, J.R.

1983-09-20T23:59:59.000Z

366

Diffuse charge and Faradaic reactions in porous electrodes  

E-Print Network [OSTI]

Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage

Biesheuvel, P. M.

367

Composite substrate for bipolar electrodes  

DOE Patents [OSTI]

Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the pesent invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process.

Tekkanat, Bora (Milwaukee, WI); Bolstad, James J. (Shorewood, WI)

1992-12-22T23:59:59.000Z

368

Composite substrate for bipolar electrodes  

DOE Patents [OSTI]

Substrates for electrode systems, particularly those to be used for bipolar electrodes in zinc-bromine batteries, are disclosed. The substrates preferably include carbon-black as a conductive filler in a polymeric matrix, with reinforcing materials such as glass fibers. Warpage of the zinc-bromine electrodes which was experienced in the prior art and which was believed to be caused by physical expansion of the electrodes due to bromine absorption by the carbon-black, is substantially eliminated when new substrate fabrication techniques are employed. In the present invention, substrates are prepared using a lamination process known as glass mat reinforced thermoplastics technology or, in an alternate embodiment, the substrate is made using a slurry process. 4 figs.

Tekkanat, B.; Bolstad, J.J.

1992-12-22T23:59:59.000Z

369

ATOMISTIC MODELING OF ELECTRODE MATERIALS  

Broader source: Energy.gov (indexed) [DOE]

life and rate * High cost of electrode materials * Project lead: Venkat Srinivasan (LBNL) * Marca Doeff (LBNL): Al-substituted layered Li-TM-O 2 * Phil Ross (LBNL) and Gerbrand...

370

Atomistic Modeling of Electrode Materials  

Broader source: Energy.gov (indexed) [DOE]

and rate * High cost of electrode materials * Project lead: John Newman * Marca Doeff (LBNL) on layered Li-TM-O 2 for effects of Al substitution * Phil Ross (LBNL) on nano-LiFePO...

371

Nonequilibrium Thermodynamics of Porous Electrodes  

E-Print Network [OSTI]

We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic ...

Ferguson, Todd Richard

372

Properties of Liquid Plutonium  

SciTech Connect (OSTI)

Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

373

Cathodic reduction of sulfur dioxide at porous, phthalocyanine-containing electrodes in nonaqueous electrolytes  

SciTech Connect (OSTI)

Electrodes containing catalysts, particularly electrodes containing metal chelate compounds, were studied for their effect on reducing cathodic sulfur dioxide. The electrodes were prepared with an iron phthalocyanine polymer deposited onto activated carbon. Fluoropolymer dispersions was used as the binder and electrochemical studies were performed in a glove box under dry argon. Lithium perchlorate solution in propylene carbonate was used as the electrolyte solution. The results indicate that materials with high catalytic activity show promise in raising the discharge voltage in power sources of the lithium-sulfur dioxide system.

Shembel', E.M.; Ksenzhek, O.S.; Danilova, N.P.; Shustov, V.A.

1988-03-01T23:59:59.000Z

374

Oxygen electrodes for energy conversion and storage. Annual report, 1 October 1977-30 September 1978  

SciTech Connect (OSTI)

Research on the development of high performance, long life O/sub 2/ cathodes for both alkaline and acid electrolytes for a spectrum of applications including industrial electrolysis, fuel cells, and metal-air batteries is described. Oxygen electrocatalysts studied include platinum, silver, underpotential deposited layers and alloy metal layers on noble metal substrates, intercalated graphite, transition metal macrocyclic complexes, and transition metal oxides. Research on gas fed electrodes is also described. Results are presented and discussed in detail. An appendix on the electrodeposition of platinum crystallites on graphite substrates is included. (WHK)

None

1980-01-15T23:59:59.000Z

375

Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids  

SciTech Connect (OSTI)

The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7¯ ion was in the range from 6.5 to 3.9×10–7 cm2?s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help t

Dr. R. G. Reddy

2007-09-01T23:59:59.000Z

376

Methods of recovering alkali metals  

DOE Patents [OSTI]

Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

Krumhansl, James L; Rigali, Mark J

2014-03-04T23:59:59.000Z

377

Atomically flat La-silicate/Si interface using tungsten carbide gate electrode with nano-sized grain  

SciTech Connect (OSTI)

Interface properties of La-silicate gate dielectrics on Si substrates with W or nano-sized grain W{sub 2}C gate electrodes have been investigated. A low interface state density of 2.5?×?10{sup 11}?cm{sup ?2}/eV has been achieved with W{sub 2}C gate electrodes, which is one third of those with W gate electrode. An interface roughness of 0.33?nm with spatial frequency comparable to the grain size of W gate electrode has been observed. Besides, an atomically flat interface of 0.12?nm has been obtained with W{sub 2}C gate electrode. The origin of flat interface may be attributed to the elimination of inhomogeneous stress by grains in metal electrode.

Tuokedaerhan, K.; Natori, K.; Iwai, H. [Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Kakushima, K., E-mail: kakushima@ep.titech.ac.jp; Kataoka, Y.; Nishiyama, A.; Sugii, N.; Wakabayashi, H.; Tsutsui, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

2014-01-13T23:59:59.000Z

378

Screening of Electrode Materials & Cell Chemistries and Streamlining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrodes Screening of Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

379

Screening of Electrode Materials & Cell Chemistries and Streamlining...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrodes Screening of Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

380

Pyrolytic carbon electrodes Lithographically Defined Porous Carbon Electrodes**  

E-Print Network [OSTI]

to the intrinsic material properties of carbon, functionalized films can be produced through chemical modification fabrication method capable of producing large area (%100 s cm2 ) submicrometer porous carbon films. In our methodology. The palladium-modified electrodes exhibit a catalytic response for methanol oxidation

New Mexico, University of

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CMPO-functionalized C{sub 3}-symmetric tripodal ligands in liquid/liquid extractions : efficient, selective recognition of Pu(IV) with low affinity for 3+ metal ions.  

SciTech Connect (OSTI)

Structural modifications of carbamoylmethylphosphine oxide (CPMO)-functionalized triphenoxymethane platforms are described, and the influence of these changes on the ability of the ligand to extract actinides from simulated acidic nuclear waste streams has been evaluated. The ligand system has been shown to have excellent binding efficiency and a selectivity for An(IV) in comparison to the a simple monomeric CMPO ligand under analogous conditions. Both the extraction efficiency and selectivity are strongly dependent on the flexibility and electronic properties of the ligating units in the triphenoxymethane construct. The Tb(III) and Bi(III) nitrate complexes of tris-CMPO derivatives have been isolated, and their structures were elucidated by NMR, ESI FT-ICR MS, and X-ray analysis, providing information on the interactions between metal ions and the tris-CMPO molecules.

Matloka, K.; Sah, A. K.; Peters, M. W.; Srinivasan, P.; Gelis, A. V.; Regalbuto, M.; Scott, M. J.; Univ. of Florida

2007-12-10T23:59:59.000Z

382

"Analysis of SOFCs using reference electrodes?  

SciTech Connect (OSTI)

Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

Finklea, Harry; Chen,Xiaoke; Gerdes,Kirk; Pakalapati, Suryanarayana; Celik, Ismail

2013-07-01T23:59:59.000Z

383

Plasma-Surface Interactions on Liquids  

SciTech Connect (OSTI)

Liquid plasma-facing surfaces have been suggested as an option for advanced fusion devices, particularly in regions where solid materials may not survive over long operating periods. Because liquid surfaces can be replenished, they offer the possibility of tolerating intense particle bombardment and of recovering from off-normal events. As a preliminary step in understanding the nature of plasma-surface interactions on liquids, the authors consider some of the surface processes occurring in liquids undergoing irradiation by energetic particles. These include (1) sputtering, (2) segregation of liquid component species and impurities, (3) evaporation, and (4) trapping and release of incident particles. Aspects of these processes are examined for several candidate liquids, which represent three types of low-Z liquids: pure metals (Li), metallic alloys (Sn-Li), and compound insulators (Li{sub 2}BeF{sub 4}).

R. Bastasz; W. Eckstein

2000-05-01T23:59:59.000Z

384

Use of ionic liquids as coordination ligands for organometallic catalysts  

DOE Patents [OSTI]

Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

2009-11-10T23:59:59.000Z

385

Multiple input electrode gap controller  

DOE Patents [OSTI]

A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

1999-07-27T23:59:59.000Z

386

Sheet electrode for electrochemical systems  

DOE Patents [OSTI]

An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

Tsien, Hsue C. (Chatham Township, Morris County, NJ); Newby, Kenneth R. (Berkeley Heights, NJ); Grimes, Patrick G. (Westfield, NJ); Bellows, Richard J. (Westfield, NJ)

1983-04-12T23:59:59.000Z

387

E-Print Network 3.0 - active filler metal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. The dissolution of the base metal in the liquid filler metal could eventually shift the eutectic point, however... -temperature brazing with nickel-based filler ... Source:...

388

Continuity and Performance in Composite Electrodes  

E-Print Network [OSTI]

C Figure 6 Au coating Cathode composite C coating - Currentof as-received LiFePCv composite electrodes: a) top and b)paths in A u coated composite electrode. The spheres

Chen, Guoying

2010-01-01T23:59:59.000Z

389

Liquid soap film generates electricity  

E-Print Network [OSTI]

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

390

Automated catalyst processing for cloud electrode fabrication for fuel cells  

DOE Patents [OSTI]

A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.

Goller, Glen J. (West Springfield, MA); Breault, Richard D. (Coventry, CT)

1980-01-01T23:59:59.000Z

391

Minimizing electrode contamination in an electrochemical cell  

SciTech Connect (OSTI)

An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

2014-12-09T23:59:59.000Z

392

Retrograde Melting and Internal Liquid Gettering in Silicon  

SciTech Connect (OSTI)

Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

2011-07-01T23:59:59.000Z

393

Catalyst for hydrotreating carbonaceous liquids  

DOE Patents [OSTI]

A catalyst for denitrogenating and desulfurating carbonaceous liquid such as solvent refined coal includes catalytic metal oxides impregnated within a porous base of mostly alumina with relatively large pore diameters, surface area and pore volume. The base material includes pore volumes of 0.7-0.85 ml/g, surface areas of 200-350 m.sup.2 /g and pore diameters of 85-200 Angstroms. The catalytic metals impregnated into these base materials include the oxides of Group VI metals, molybdenum and tungsten, and the oxides of Group VIII metals, nickel and cobalt, in various combinations. These catalysts and bases in combination have effectively promoted the removal of chemically combined sulfur and nitrogen within a continuous flowing mixture of carbonaceous liquid and hydrogen gas.

Berg, Lloyd (Bozeman, MT); McCandless, Frank P. (Bozeman, MT); Ramer, Ronald J. (Idaho Falls, ID)

1982-01-01T23:59:59.000Z

394

Solvent Effects on Metal Complexation with Crown Ethers from Liquid to Supercritical Fluids (DE-FG07-98ER 149 13)  

SciTech Connect (OSTI)

The purpose of this project is to study the salvation effects of metal-crown ether complexation in different solvents. It has been suggested in the literature that supercritical fluid carbon dioxide (SF-CO2) is a tunable solvent because its salvation environment can be varied with the fluid density. In this project, spectroscopic techniques including nuclear magnetic resonance (NMR) and Fourier Transform Infrared (FTIR) were used to evaluate salvation effects of metal crown complexation in organic solvents and in SF-CO2. In most solvent extraction systems, water is often involved in the extraction processes. We have carried out extensive studies of water-crown ether interactions in different solvents and in SF-CO2 using NMR and FTIR techniques. Water molecules can be attached to crown ethers through hydrogen bonding of H-0-H to the oxygen atoms of crown ether cavities. This type of interaction is like a Lewis acid-Lewis base complexation. During the course of this project, we noticed that some CO2 soluble Lewis base such as tri-n-butyl-phosphate (TBP) can also form such Lewis acid-Lewis base complexes with water and other inorganic acids including nitric acid and hydrochloric acid. Inorganic acids (e.g. nitric acid) are normally not soluble in SF-CO2. However, because TBP is highly soluble in SF-CO2, an inorganic acid bound to TBP via hydrogen bonding becomes CO2 soluble. This Lewis acid-Lewis base complex approach provides a method of introducing inorganic acids into supercritical fluid CO2 for chemical reactions.

Wai, C.M.

2002-06-01T23:59:59.000Z

395

Novel transparent electrodes allow sustainable production of electronic devices  

SciTech Connect (OSTI)

A novel technique for fabricating inexpensive, transparent electrodes from common metals has been developed by engineers and scientists at Iowa State University and Ames Laboratory. They exhibit very high transparency and are very good electrical conductors. This is a combination of properties that is difficult to achieve with common materials. The most frequently used transparent electrode in today's high-technology devices (such as LCD screens) is indium tin oxide (ITO). While ITO performs well in these applications, the supply of indium is very limited. In addition, it is rapidly decreasing as consumer demand for flat-panel electronics is skyrocketing. According to a 2004 US Geological Survey report, as little as 14 years exploitation of known indium reserves remains. In addition to increasing prices, the dwindling supply of indium suggests its use is not sustainable for future generations of electronics enthusiasts. Solar cells represent another application where transparent electrodes are used. To make solar-energy collection economically feasible, all parts of solar photovoltaics must be made more efficient and cost-effective. Our novel transparent electrodes have the potential to do both. In addition, there is much interest in developing more efficient, cost-effective, and environmentally friendly lighting. Incandescent light bulbs are very inefficient, because most of their energy consumption is wasted as heat. Fluorescent lighting is much more efficient but still uses mercury, an environmental toxin. An attractive alternative is offered by LEDs, which have very high efficiencies and long lifetimes, and do not contain mercury. If made bright enough, LED use for general lighting could provide a viable alternative. We have fabricated electrodes from more commonly available materials, using a technique that is cost effective and environmentally friendly. Most of today's electronic devices are made in specialized facilities equipped with low-particle-count clean-room facilities and multimillion-dollar equipment. On the other hand, the novel process we developed uses a method that makes use of polymer molds and standard deposition techniques in an ambient laboratory environment. The final structure consists of tall ribbons of metal (standing on edge) that are so thin that they do not block light but are very good conductors. The advantage of this design is that it avoids the competition between conductivity and transparency inherent in transparent oxide electrodes. By making the structure taller, conductivity can be increased without impacting transparency. We have measured both electrical conductivity and transparency for these structures. We performed two-wire electrical measurements to quantify the structures resistance using metal contacts deposited on each end. The total sample area was 4 x 4mm{sup 2}. We measured a resistance of structures with 40nm gold sidewalls of 7.3{Omega}, which is lower than that of ITO glass (which has a sheet resistance around 10O/square). We investigated the structures optical properties based on both specular- and total-transmission measurements. Specular transmission is measured by collecting the transmitted light at normal incidence, while total transmission is obtained by collecting transmitted light at normal incidence and diffracted light using an integrating sphere. Figure 3 shows the total transmission of a grating with 40nm gold or silver sidewalls on a glass substrate compared to that of ITO. Additionally, the transparency changes very little within 30{sup o} off normal incidence. This high visible-light transmission of our metal-patterned structures is very promising for their application as transparent electrodes, because most visible light was allowed to propagate through the patterned metallic/polymeric structures. Researchers in our group continue to refine the fabrication methods and are investigating methods to make large-scale structures for use in a variety of applications that require both transparency and high electrical conductivity. We are also applying these fab

Constant, Kristen

2010-12-27T23:59:59.000Z

396

E-Print Network 3.0 - acidic transition metals Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

liquids, chlorates, nitrites, sulfur, finely... hypochlorite, all oxidizing agents Carbon tetrachloride Sodium Chlorates Ammonium salts, acids, powdered metals... , copper,...

397

Process for recycling components of a PEM fuel cell membrane electrode assembly  

DOE Patents [OSTI]

The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

Shore, Lawrence (Edison, NJ)

2012-02-28T23:59:59.000Z

398

Determination of Stability Constants of Hydrogen and Aluminum Fluorides with a Fluoride-Selective Electrode  

SciTech Connect (OSTI)

The ability to directly determine free fluoride ion concentration (or mean activity) simplifies gathering and interpretation of experimental data for studies of metal complexes. In this work, the new lanthanum fluoride electrode was used to measure free fluoride ion in an investigation of the hydrogen-fluoride and aluminum-fluoride systems in NH4NO3.

Baumann, E.W.

2003-01-06T23:59:59.000Z

399

INFLUENCE OF TEMPERATURE ON THE CORROSION POTENTIAL OF THE 241-AN-102 MULTI PROBE CORROSION MONITORING SYSTEM SECONDARY REFERENCE ELECTRODES  

SciTech Connect (OSTI)

A test program using 241-AN-102 waste simulants and metallic secondary reference electrodes similar to those used on the 241-AN-102 MPCMS was performed to characterize the relationship between temperature and secondary reference electrode open-circuit corrosion potential. This program showed that the secondary reference electrodes can be used to make tank and tank steel corrosion potential measurements, but that a correction factor of approximately 2 mV per degree Celsius of temperature difference must be applied, where temperature difference is defined as the difference between tank temperature at the time of measurement and 30 C, the average tank temperature during the first several months of 241-AN-102 MPCMS operation (when the corrosion potentials of the secondary reference electrodes were being recorded relative to the primary reference electrodes).

EDGEMON GL; TAYLOR TM

2008-09-30T23:59:59.000Z

400

Structure and performance of carbon aerogel electrodes  

SciTech Connect (OSTI)

The chemistry and physics of small clusters of atoms (1--100 nm) has received considerable attention in recent years because these assemblies often have properties between the molecular and bulk solid-state limits. The different properties can be explained in terms of the large fraction of atoms that are at the surface of a cluster as compared to the interior. Although the synthesis and properties of metal and. semiconductor clusters, metallocarbohedrenes, fullerenes, and nanotubes are the subject of extensive investigations, little attention has been paid to cluster-assembled porous materials. This oversight is of particular interest to us since we believe that aerogels are one of the few monolithic materials presently available where the benefits of cluster assembly can be demonstrated. In particular, the unique optical, thermal, acoustic, mechanical, and electrical properties of aerogels are directly related to their nanostructure, which is composed of interconnected particles (3--30 nm) with small interstitial pores (< 50 nm). This structure leads to extremely high surface areas (400--1100 m{sup 2}/g) with a large fraction of the atoms covering the surface of the interconnected particles. As a result of these structural features, carbon aerogels are finding applications as electrodes in supercapacitors with high energy and power densities.

Pekala, R.W.; Mayer, S.T.; Poco, J.F.; Kaschmitter, J.L.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electrode materials for the electrolysis of metal oxides  

E-Print Network [OSTI]

Carbon, tungsten, platinum, and iridium were examined as candidate anode materials for an electrolytic cell. The materials were pre-selected to endure high process temperatures and were characterized for inertness and high ...

Cooper, Benjamin D

2006-01-01T23:59:59.000Z

402

High Aspect Ratio Metallic Structures for Use as Transparent Electrodes -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the Madison Symmetric TorusInnovation

403

High Aspect Ratio Metallic Structures for Use as Transparent Electrodes -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearchGulfCenterHeavy Ions HeavyEnergy

404

Simplified Electrode Formation using Stabilized Lithium Metal Powder  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2)Sharing Smart GridShiftMethod for Estimating and

405

Semiconductor electrodes. 40. Photoassisted hydrogen evolution at poly(benzyl viologen)-coated p-type silicon electrodes  

SciTech Connect (OSTI)

Poly(benzyl viologen) (PBV) shows two reduction waves in aqueous (at -0.37 and -0.88 V vvvs. SSCE) or N,N-dimethylformamide (at -0.22 and -0.64 V s. SSCE) solutions. A film of PBV on the surface of a p-type silicon electrode can be photoreduced at more positive potentials. When metallic Pt is incorporated into the film, the photoproduction of hydrogen occurs with an underpotential of ca. 0.4 V. The decrease in the photocurrent with time suggests that slow decomposition of the viologen occurs.

Abruna, H.D.; Bard, A.J.

1981-11-18T23:59:59.000Z

406

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

1986-01-01T23:59:59.000Z

407

Electrolytic production of metals using a resistant anode  

DOE Patents [OSTI]

An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

1986-11-04T23:59:59.000Z

408

Hierarchical electrode architectures for electrical energy storage & conversion.  

SciTech Connect (OSTI)

The integration and stability of electrocatalytic nanostructures, which represent one level of porosity in a hierarchical structural scheme when combined with a three-dimensional support scaffold, has been studied using a combination of synthetic processes, characterization techniques, and computational methods. Dendritic platinum nanostructures have been covalently linked to common electrode surfaces using a newly developed chemical route; a chemical route equally applicable to a range of metals, oxides, and semiconductive materials. Characterization of the resulting bound nanostructure system confirms successful binding, while electrochemistry and microscopy demonstrate the viability of these electroactive particles. Scanning tunneling microscopy has been used to image and validate the short-term stability of several electrode-bound platinum dendritic sheet structures toward Oswald ripening. Kinetic Monte Carlo methods have been applied to develop an understanding of the stability of the basic nano-scale porous platinum sheets as they transform from an initial dendrite to hole containing sheets. Alternate synthetic strategies were pursued to grow dendritic platinum structures directly onto subunits (graphitic particles) of the electrode scaffold. A two-step photocatalytic seeding process proved successful at generating desirable nano-scale porous structures. Growth in-place is an alternate strategy to the covalent linking of the electrocatalytic nanostructures.

Zavadil, Kevin Robert; Missert, Nancy A.; Shelnutt, John Allen; van Swol, Frank B.

2012-01-01T23:59:59.000Z

409

Aluminum-carbon composite electrode  

DOE Patents [OSTI]

A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

Farahmandi, C.J.; Dispennette, J.M.

1998-07-07T23:59:59.000Z

410

Aluminum-carbon composite electrode  

DOE Patents [OSTI]

A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

1998-07-07T23:59:59.000Z

411

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

412

Semiconductor electrode with improved photostability characteristics  

DOE Patents [OSTI]

An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

Frank, A.J.

1985-02-19T23:59:59.000Z

413

Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma  

DOE Patents [OSTI]

Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

2013-09-17T23:59:59.000Z

414

Electric filter with movable belt electrode  

DOE Patents [OSTI]

A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

Bergman, W.

1983-09-20T23:59:59.000Z

415

Carbon aerogel electrodes for direct energy conversion  

DOE Patents [OSTI]

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

1997-02-11T23:59:59.000Z

416

Carbon aerogel electrodes for direct energy conversion  

DOE Patents [OSTI]

A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

1997-01-01T23:59:59.000Z

417

Chemical and Microstructural Effects in Electrode Polarization  

SciTech Connect (OSTI)

This presentation discusses the chemical and microstructural effects in electrode polarization and a relative comparison of contributions of the various polarizations in anode-supported cells.

Virkar, A.; Armstrong, T.; Radhakrishman, R.; Ramanan, G.; Zhao, F.; Singhal, S.

2005-01-28T23:59:59.000Z

418

Electrically conductive connection for an electrode  

DOE Patents [OSTI]

An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

Hornack, T.R.; Chilko, R.J.

1986-09-02T23:59:59.000Z

419

Preparation of Mesoporous Silica Templated Metal Nanowire Films on Foamed Nickel Substrates  

SciTech Connect (OSTI)

A method has been developed for the formation of high surface area nanowire films on planar and three-dimensional metal electrodes. These nanowire films are formed via electrodeposition into a mesoporous silica film. The mesoporous silica films are formed by a sol-gel process using Pluronic tri-block copolymers to template mesopore formation on both planar and three-dimensional metal electrodes. Surface area increases of up to 120-fold have been observed in electrodes containing a templated film when compared to the same types of electrodes without the templated film.

Campbell, Roger [University of Alabama, Tuscaloosa; Kenik, Edward A [ORNL; Bakker, Martin [University of Alabama, Tuscaloosa; Havrilla, George [Los Alamos National Laboratory (LANL); Montoya, Velma [Los Alamos National Laboratory (LANL); Shamsuzzoha, Mohammed [University of Alabama, Tuscaloosa

2006-01-01T23:59:59.000Z

420

Air Electrode Design for Sustained High Power Operation of Li/air Batteries  

SciTech Connect (OSTI)

The rapid development of portable electronic devices increasingly requires much more energy to support advanced functions. However, currently available batteries do not meet the high energy requirement of these devices. Metal/air batteries, especially Li/air batteries, have a much higher specific energy than most other available batteries, but their power rate is limited by the accumulation of reaction products in the air electrode. Several approaches to improve the power rate of Li/air batteries have been analyzed in this work, including adjustment of air electrode porosity and catalyst reactivity distributions to minimize diffusion limitations and maximize air electrode material utilization. An interconnected dual pore system (one catalyzed and one noncatalyzed) is proposed to improve oxygen transport into the inner regions of the air electrode, but this approach alone cannot supply high power for long term applications. A time-release multiple catalyst approach is analyzed to provide temporal release of reactivity in the air electrode. When coupled with the dual pore configuration and catalysts with high reactivities, the time-release catalyst concept can extend the duration of higher powers to longer times, and result in maximum utilization of air electrode materials.

Williford, Ralph E.; Zhang, Jiguang

2009-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cathodic reduction of sulfur dioxide in nonaqueous electrolytes. polarization curves at porous Electrodes  

SciTech Connect (OSTI)

This paper describes some results obtained from studying the poloarization characteristics of cathodic sulfur dioxide reduction at porous electrodes made by applying a mixture of carbon black, graphite, and binder to a metal screen serving as current collector. Solutions of lithium perchlorate in propylene carbonate and in a mixture of propylene carbonate and acetonitrile were used as the electrolytes. Some typical galvanostatic discharge curves are shown for sulfur dioxide reduction at porous electrodes. The discharge capacity increases with increasing electrode porosity and decreasing current density. One can see when comparing the curves that the discharge capacities differ substantially for highly porous electrodes which had practically the same porosity of about 70%. The effect of current density is more important in solutions with a high SO/sub 2/ concentration. The operating efficiency of porous electrodes which serve as cathodes in high power Li-SO/sub 2/ power sources can be predicted on the basis of polorization curves for the porous electrodes which reflect the influence of macrostructure on the cathodic process.

Shembel, E.M.; Danilova, N.P.; Ksenzhek, O.S.

1986-03-01T23:59:59.000Z

422

Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications for radioactivity in the Earth's core  

E-Print Network [OSTI]

Experimental partitioning of uranium between liquid iron sulfide and liquid silicate: Implications Measurable uranium (U) is found in metal sulfide liquids in equilibrium with molten silicate at conditions shows that K is depleted in the Earth by $50%, while U and Th are slightly enriched (Palme and O

Minarik, William

423

An investigation of the transfer of alkali metal chlorides from dimethyl sulfoxide to water  

E-Print Network [OSTI]

-to-back' with water as the solvent in one cell and a non- aqueous solvent in the other. The two cells used in this investigation were each composed of silver-silver chloride electrodes in the same solution with dropping alkali metal amalgam electrodes. The solute.... The dropping amalgam electrodes are written only once since they were connected by a common amalgam reservoir. When the external circuit between the two silver-silver chloride electrodes was closed a current flowed and the net result oi the electrode...

Williams, Roger

1966-01-01T23:59:59.000Z

424

Desalination with carbon aerogel electrodes  

SciTech Connect (OSTI)

An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

Farmer, J.C.; Richardson, J.H.; Fix, D.V.

1996-10-21T23:59:59.000Z

425

Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts  

SciTech Connect (OSTI)

Carbon nanotube nanogaps have been used to contact individual organic molecules. However, the reliable fabrication of a truly nanometer-sized gap remains a challenge. We use helium ion beam lithography to sputter nanogaps of only (2.8 ± 0.6) nm size into single metallic carbon nanotubes embedded in a device geometry. The high reproducibility of the gap size formation provides a reliable nanogap electrode testbed for contacting small organic molecules. To demonstrate the functionality of these nanogap electrodes, we integrate oligo(phenylene ethynylene) molecular rods, and measure resistance before and after gap formation and with and without contacted molecules.

Thiele, Cornelius, E-mail: Cornelius.Thiele@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Vieker, Henning; Beyer, André; Gölzhäuser, Armin [Faculty of Physics, Bielefeld University, 33615 Bielefeld (Germany)] [Faculty of Physics, Bielefeld University, 33615 Bielefeld (Germany); Flavel, Benjamin S.; Hennrich, Frank [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany)] [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Muñoz Torres, David; Eaton, Thomas R. [Department of Chemistry, University of Basel, 4056 Basel (Switzerland)] [Department of Chemistry, University of Basel, 4056 Basel (Switzerland); Mayor, Marcel [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Department of Chemistry, University of Basel, 4056 Basel (Switzerland); Kappes, Manfred M. [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Institut für Physikalische Chemie, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Löhneysen, Hilbert v. [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); DFG Center for Functional Nanostructures (CFN), 76028 Karlsruhe (Germany); Physikalisches Institut, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Institut für Festkörperphysik, Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); and others

2014-03-10T23:59:59.000Z

426

Adsorption and electrode reactions of disulfonated anthraquinones at mercury electrodes  

SciTech Connect (OSTI)

Three sulfonated compounds were examined; 2,6-anthraquinonedisulfonate, sodium salt (2,6-AQDS); 1,5-anthraquinone- disulfonate, sodium salt (1,5-AQDS); and 2-anthraquinonemonosulfonate, sodium salt (2-AQMS). Extensive studies of 2,6-AQDS were carried out. This compound undergoes reversible charge exchange with the electrode in an adsorbed state. Electrocapillary curves show that desorption occurs near -0.8 V vs Ag/AgCl, KCl (1 M). Chronocoulometry and cyclic voltammetry were used to evaluate surface coverage vs the concentration of 2,6-AQDS in 0.1 M HNO{sub 3}. Under all conditions, the adsorbed couple shows a standard potential more positive than that for the couple involving dissolved species; hence, the reduced form is the more strongly adsorbed. Effects of pH were examined extensively. In solutions with 2,6-AQDS concentrations above 2 {times} 10{sup 5} M an extremely sharp, reversible pair of spikes develops in the cyclic voltammetry for the adsorbed couple. The spikes are not seen for 1,5-AQDS, but other aspects of behavior for 1,5-AQDS are similar to those of 2,6-AQDS. The Origin of the spikes is discussed via a model involving hydrogen-bonded aggregates. Extensive exposure of a mercury surface to high concentrations of 2,6-AQDS produces a catalytic effect on the electrode reaction involving the dissolved quinone. Further exposure causes an inhibition of the same process. These effects are attributed to the growth of extended films on the mercury.

He, P.; Crooks, R.M.; Faulkner, L.R. (Univ. of Illinois, Urbana (USA))

1990-02-08T23:59:59.000Z

427

A novel plating process for microencapsulating metal hydrides  

SciTech Connect (OSTI)

One approach to increasing the lifetime of the metal hydride electrode has been the use of conventional electroless plating to produce a coating of copper or nickel on the surface of the metal hydride powders. In this paper, a novel method for microencapsulating the active electrode powders is presented. This new plating technique takes advantage of the reducing power of hydrogen already stored inside the metal hydride to plate a variety of metals onto metal hydride materials. This method greatly simplifies electroless plating for these powders, eliminating the need for stabilizers and additives typically required for conventional electroless plating solutions. Metals that can be electrolessly plated with stored hydrogen have been identified based on thermodynamic considerations. Experimentally, micrometers thick coatings of copper, silver, and nickel have been plated on several metal hydrides.

Law, H.H.; Vyas, B.; Zahurak, S.M.; Kammlott, G.W. [AT and T Bell Labs., Murray Hill, NJ (United States)

1996-08-01T23:59:59.000Z

428

Continuous transitions between composite Fermi liquid and Landau Fermi liquid: A route to fractionalized Mott insulators  

E-Print Network [OSTI]

One of the most successful theories of a non-Fermi-liquid metallic state is the composite Fermi-liquid (CFL) theory of the half-filled Landau level. In this paper, we study continuous quantum phase transitions out of the ...

Barkeshli, Maissam

429

Method and device for electroextraction of heavy metals from technological solutions and wastewater  

DOE Patents [OSTI]

The basic principles of the method for heavy metals electroextraction from technological solutions and wastewater includes pretreating to remove Chromium-6 and high concentrations of heavy metals and periodically treating in a six-electrode bipolar cylindrical electroreactor made of non-conducting material to achieve lower accepted levels of impurities. Six cylindrical steel electrodes form two triode stacks and are fed with three-phase alternating current of commercial frequency (50-60 Hz), which can be pulsed. Each phase of the three-phase current is connected to three electrodes of one triode stack or in parallel to two triode stacks. The parallel connection of three-phase current to two triode stacks is performed so that the same phase of the three phase current is connected in parallel with each two opposite electrodes of six electrodes located along the periphery, or with two adjacent electrodes. A bipolar stationary aluminum electrode is situated in the inter-electrode space. In one of the embodiments, the bipolar electrode is made of a perforated heat-resistant plastic container filled with secondary aluminum and duralumin scrap. In another embodiment, the bipolar electrode of aluminum or duralumin scrap may be made without a perforated container and is placed in the inter-electrode space as a bulk scrap. In this case, to prevent shorts, each of six steel electrodes is placed in isolated perforated plastic shell with holes of 5 mm in diameter. Non-ferrous metals are extracted in a form of ferrite-chromites, and aluminates as well as hydroxyl salts deposited in the inter-electrode space without electrolysis deposits on electrodes. Deposits are separated from solution by known methods of filtration.

Khalemsky, Aron Mikhailov; Payusov, Sergei Abramovic; Kelner, Leonid; Jo, Jae

2005-05-03T23:59:59.000Z

430

Adsorption of Chromium (VI) by metal hydroxide sludge from the metal finishing  

E-Print Network [OSTI]

and Management, United States (2008)" #12;2 1 Introduction Industrial aqueous pollution (heavy metals) accounts sludge (MHS) during the treatment of their liquid effluents charged with heavy metals. Generally, a small for 30 to 40% of industrial pollution. Metal finishing is one of the sectors which contributes mostly

Paris-Sud XI, Université de

431

Means for limiting and ameliorating electrode shorting  

SciTech Connect (OSTI)

A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

Van Konynenburg, Richard A. (Livermore, CA); Farmer, Joseph C. (Tracy, CA)

1999-01-01T23:59:59.000Z

432

Means for limiting and ameliorating electrode shorting  

SciTech Connect (OSTI)

A fuse and filter arrangement is described for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

Konynenburg, R.A. van; Farmer, J.C.

1999-11-09T23:59:59.000Z

433

Gas tungsten arc welder with electrode grinder  

DOE Patents [OSTI]

A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA)

1984-01-01T23:59:59.000Z

434

Organic conductive films for semiconductor electrodes  

DOE Patents [OSTI]

According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

Frank, A.J.

1984-01-01T23:59:59.000Z

435

A sensitive enzyme electrode for phenol monitoring  

SciTech Connect (OSTI)

Tyrosinase (EC.1.14.18.1) was immobilized onto graphite electrodes, which had been modified with tetracyanoquinodimethane (TCNQ). The response time, 12 or 35 s, was dependent on the enzyme immobilization technique used. The electrodes showed a linear calibration function up to 25 or 65 {mu}M phenol, and a sensitivity of 0.36 or 2.2 A/M was achieved which was also dependent on the enzyme immobilization technique used. The detection limit for phenol was 0.23 {mu}M. The electrodes acted from potentials of {minus}200 to +180 mV (vs. a saturated Ag/AgCl electrode). The electrode signal was independent of pH within the pH range 4.5-6.0. The enzyme electrode responded to phenol (100%), p-cresol (93%) and catechol (330%), but not to o-cresol and L-tyrosine. The electrodes showed a stability for more than one week. The electrodes can be utilized for the sensitive assay of phenol in water.

Kulys, J.; Schmid, R.D. (GBF-Gesellschaft fuer Biotechnologische Forschung mbH, Braunschweig (West Germany))

1990-01-01T23:59:59.000Z

436

Electrocatalytic hydrogenation using precious metal microparticles in redox-active polymer films  

SciTech Connect (OSTI)

Glassy carbon felt electrodes have been modified by electrodeposition of poly(pyrrole-viologen) films (derived from N,N{prime}-dialkyl-4,4{prime}-bipyridinium salts), followed by electroprecipitation of precious metal (Pt, Pd, Rh, or Ru) microparticles. The resulting electrodes have been proved to be active for the electrocatalytic hydrogenation of conjugated enones (2-cyclohexen-1-one, cryptone, carvone, isophorone), styrene, and benzonitrile in aqueous media (pH 1). Despite low loadings of metal catalysts, high electric and products yields and a long term stability of these cathodes have been observed. The influence of the metal loading and the polymer structure on the catalytic efficiency as well as the selectivity obtained according to the metal catalyst used have been studied. Comparison with results previously reported for other catalytic cathodes like Pt/Pt, Pd/C, or Raney nickel electrodes proves the high efficiency of these metal microparticles within redox polymer film based electrodes.

Coche, L.; Ehui, B.; Limosin, D.; Moutet, J.C. (Univ. Joseph Fourier, Grenoble (France))

1990-11-09T23:59:59.000Z

437

Ionization detector, electrode configuration and single polarity charge detection method  

DOE Patents [OSTI]

An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

He, Zhong (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

438

Ionization detector, electrode configuration and single polarity charge detection method  

DOE Patents [OSTI]

An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge. 10 figs.

He, Z.

1998-07-07T23:59:59.000Z

439

Fuel cell with metal screen flow-field  

DOE Patents [OSTI]

A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

Wilson, M.S.; Zawodzinski, C.

1998-08-25T23:59:59.000Z

440

Fuel cell with metal screen flow-field  

DOE Patents [OSTI]

A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

Wilson, Mahlon S. (Los Alamos, NM); Zawodzinski, Christine (Los Alamos, NM)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel cell with metal screen flow-field  

DOE Patents [OSTI]

A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

Wilson, Mahlon S. (Los Alamos, NM); Zawodzinski, Christine (Los Alamos, NM)

2001-01-01T23:59:59.000Z

442

Memristor using a transition metal nitride insulator  

DOE Patents [OSTI]

Apparatus is disclosed in which at least one resistive switching element is interposed between at least a first and a second conducting electrode element. The resistive switching element comprises a metal oxynitride. A method for making such a resistive switching element is also disclosed.

Stevens, James E; Marinella, Matthew; Lohn, Andrew John

2014-10-28T23:59:59.000Z

443

Metal-supported solid oxide fuel cells  

SciTech Connect (OSTI)

Low cost, colloidal deposition methods have been utilized to produce novel solid oxide fuel cell structures on metal alloy support electrodes. YSZ films were deposited on iron-chrome supports on top of a thin Ni/YSZ catalytic layer, and sintered at 1350 degrees C, in a reducing atmosphere. Dense, 20??m YSZ electrolyte films were obtained on highly porous stainless steel substrates.

Villarreal, I.; Jacobson, C.; Leming, A.; Matus, Y.; Visco, S.; De Jonghe, L.

2003-01-07T23:59:59.000Z

444

Integrated photoelectrochemical cell and system having a liquid electrolyte  

DOE Patents [OSTI]

An integrated photoelectrochemical (PEC) cell generates hydrogen and oxygen from water while being illuminated with radiation. The PEC cell employs a liquid electrolyte, a multi-junction photovoltaic electrode, and a thin ion-exchange membrane. A PEC system and a method of making such PEC cell and PEC system are also disclosed.

Deng, Xunming (Sylvania, OH); Xu, Liwei (Sylvania, OH)

2010-07-06T23:59:59.000Z

445

Liquid Metal Fast Breeder Reactors: a bibliography  

SciTech Connect (OSTI)

This bibliography includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

Raleigh, H.D. (ed.) [ed.

1980-11-01T23:59:59.000Z

446

Liquid Metal Fast Breeder Reactors: a bibliography  

SciTech Connect (OSTI)

This bibliogralphy includes 5465 selected citations on LMFBR development. The citations were compiled from the DOE Energy Data Base covering the period January 1978 (EDB File No. 78R1087) through August 1980 (EDB File No. 80C79142). The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. Report citations are arranged alphanumerically by report number; nonreport literature citations are arranged chronologically. Corporate, Personal Author, Subject, and Report Number Indexes are provided in Volume 2.

Raleigh, H.D. (ed.) [ed.

1980-11-01T23:59:59.000Z

447

Liquid metal reactor air cooling baffle  

DOE Patents [OSTI]

A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

Hunsbedt, A.

1994-08-16T23:59:59.000Z

448

Liquid metal reactor air cooling baffle  

DOE Patents [OSTI]

A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

Hunsbedt, Anstein (Los Gatos, CA)

1994-01-01T23:59:59.000Z

449

Sewage sludge dewatering using flowing liquid metals  

DOE Patents [OSTI]

This invention relates generally to the dewatering of sludge, and more particularly to the dewatering of a sewage sludge having a moisture content of about 50 to 80% in the form of small cellular micro-organism bodies having internally confined water.

Carlson, L.W.

1985-08-30T23:59:59.000Z

450

Apparatus and method for making metal chloride salt product  

DOE Patents [OSTI]

A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Homer Glen, IL); Richmann, Michael K. (Carlsbad, NM)

2007-05-15T23:59:59.000Z

451

Electrochemical Studies of Packed Iron Powder Electrodes: Effects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Packed Iron Powder Electrodes: Effects of Common Constituents of Natural Waters on Corrosion Electrochemical Studies of Packed Iron Powder Electrodes: Effects of Common...

452

Manufacturing of Protected Lithium Electrodes for Advanced Lithium...  

Broader source: Energy.gov (indexed) [DOE]

Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries, April 2013 Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air,...

453

The Electrode as Organolithium Reagent: Catalyst-Free Covalent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide The Electrode as Organolithium Reagent: Catalyst-Free...

454

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2010 DOE...

455

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2009 DOE...

456

Optimization of A Portable Microanalytical System to Reduce Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

System to Reduce Electrode Fouling from Proteins Associated with Biomonitoring of Optimization of A Portable Microanalytical System to Reduce Electrode Fouling from Proteins...

457

Glucose oxidase-graphene-chitosan modified electrode for direct...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and...

458

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

459

Flexible Pillared Graphene-Paper Electrodes for High-Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical...

460

Metal aminoboranes  

DOE Patents [OSTI]

Metal aminoboranes of the formula M(NH2BH3)n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya; Shrestha, Roshan P.

2010-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "liquid metal electrodes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Method For Characterizing Residual Stress In Metals  

DOE Patents [OSTI]

A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

Jacobson, Loren A. (Santa Fe, NM); Michel, David J. (Alexandria, VA); Wyatt, Jeffrey R. (Burke, VA)

2002-12-03T23:59:59.000Z

462

Gas permeable electrode for electrochemical system  

DOE Patents [OSTI]

An electrode apparatus adapted for use in electrochemical systems having an anode compartment and a cathode compartment in which gas and ions are produced and consumed in the compartments during generation of electrical current. The electrode apparatus includes a membrane for separating the anode compartment from the cathode compartment wherein the membrane is permeable to both ions and gas. The cathode and anode for the assembly are provided on opposite sides of the membrane. During use of the membrane-electrode apparatus in electrochemical cells, the gas and ions generated at the cathode or anode migrate through the membrane to provide efficient transfer of gas and ions between the anode and cathode compartments.

Ludwig, Frank A. (Rancho Palos Verdes, CA); Townsend, Carl W. (Los Angeles, CA)

1989-01-01T23:59:59.000Z

463

Modelling of the bead formation during multi pass hybrid laser/gas metal arc welding  

E-Print Network [OSTI]

- 1 - Modelling of the bead formation during multi pass hybrid laser/gas metal arc welding Olivier dimensional finite element model has been developed to simulate weld bead formation in multi pass hybrid laser/gas metal arc welding. The model considers both a gas metal arc welding (GMAW) electrode and a laser beam

Paris-Sud XI, Université de

464

A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography  

SciTech Connect (OSTI)

Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R{sub s} = 10 ohms/square ({Omega}#2;/?)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowire and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2{Omega}#2;/?. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.

Kuang, Ping

2011-05-15T23:59:59.000Z

465

In-situ measurement of interfacial pH using a rotating ring-disk electrode  

SciTech Connect (OSTI)

A nonintrusive technique for the in-situ measurement of interfacial pH and current efficiency has been developed. A ring electrode, operated potentiometrically at open-circuit, is used to measure the pH change at a rotating disk electrode. The technique takes advantage of the well-characterized hydrodynamics at the rotating disk electrode and has the added advantage that the pH probe, the ring electrode, is not interfering with the flow field and the current distribution on the disk. To determine the pH at the disk electrode by measuring the potential of the ring, the radial transport of hydronium ions across the insulating gap and on the ring is analyzed taking into account the effect of homogeneous dissociation reactions of water and metal-hydroxide ion complexes. Shifts in the ring potential caused by hydrogen super-saturation and ohmic drop are also evaluated. A platinized ring electrode in a hydrogen-saturated electrolyte is shown to provide a stable and reproducible hydrogen ion sensor with a Nernstian response to the changes in the bulk pH. Performance of the ring is evaluated by generating hydrogen at the disk electrode from a dilute acid solution, in the absence of other electrochemical reactions. The technique is then applied to determine the interfacial pH of nickel, iron and nickel-iron alloy electrodeposition with concurrent hydrogen evolution. This method was also used to measure the current efficiency of nickel electrodeposition in a fast, nonintrusive and in-situ manner.

Hessami, S.; Tobias, C.W. (Lawrence Berkeley Lab., CA (United States))

1993-01-01T23:59:59.000Z

466

Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode  

DOE Patents [OSTI]

A method of making a negative electrode, the electrode made thereby and a secondary electrochemical c

Gilbert, M.; Kaun, T.

1984-01-20T23:59:59.000Z

467

Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell  

DOE Patents [OSTI]

A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.

Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL)

2012-03-20T23:59:59.000Z

468

Nitrided Metallic Bipolar Plates  

SciTech Connect (OSTI)

The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

Brady, Michael P [ORNL; Tortorelli, Peter F [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; More, Karren Leslie [ORNL; Meyer III, Harry M [ORNL; Vitek, John Michael [ORNL; Wang, Heli [National Renewable Energy Laboratory (NREL); Turner, John [National Renewable Energy Laboratory (NREL); Wilson, Mahlon [Los Alamos National Laboratory (LANL); Garzon, Fernando [Los Alamos National Laboratory (LANL); Rockward, Tommy [Los Alamos National Laboratory (LANL); Connors, Dan [GenCell Corp; Rakowski, Jim [Allegheny Ludlum; Gervasio, Don [Arizona State University

2008-01-01T23:59:59.000Z

469

Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant  

DOE Patents [OSTI]

An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

Gillaspie, Dane T; Weir, Douglas G

2014-04-01T23:59:59.000Z

470

Field Emission Measurements from Niobium Electrodes  

SciTech Connect (OSTI)

Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

2011-03-01T23:59:59.000Z

471

Advanced membrane electrode assemblies for fuel cells  

DOE Patents [OSTI]

A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

Kim, Yu Seung; Pivovar, Bryan S

2014-02-25T23:59:59.000Z

472

Challenges for Na-ion Negative Electrodes  

E-Print Network [OSTI]

Na-ion batteries have been proposed as candidates for replacing Li-ion batteries. In this paper we examine the viability of Na-ion negative electrode materials based on Na alloys or hard carbons in terms of volumetric ...

Chevrier, V. L.

473

Process for the manufacture of an electrode for electrochemical process and a cathode for the electrolytic production of hydrogen  

SciTech Connect (OSTI)

An electrically conductive substrate is coated with a material containing an unsintered powder of a metal active for electrochemical proton reduction and colloidal silica and the said material is heated on the substrate successively in an oxidizing atmosphere and then in a reducing atmosphere. The electrode may be employed as a cathode for electrolytic production of hydrogen in an alkaline medium.

Nicolas, E.; Merckaert, L.

1985-08-13T23:59:59.000Z

474

Negative Electrodes for Li-Ion Batteries  

SciTech Connect (OSTI)

Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

Kinoshita, Kim; Zaghib, Karim

2001-10-01T23:59:59.000Z

475

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS  

SciTech Connect (OSTI)

A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

Keqin Huang

2003-04-30T23:59:59.000Z

476

Low energy milling method, low crystallinity alloy, and negative electrode composition  

DOE Patents [OSTI]

A method of making nanostructured alloy particles includes milling a millbase in a pebble mill containing milling media. The millbase comprises: (i) silicon, and (ii) at least one of carbon or a transition metal, and wherein the nanostructured alloy particles are substantially free of crystalline domains greater than 50 nanometers in size. A method of making a negative electrode composition for a lithium ion battery including the nanostructured alloy particles is also disclosed.

Le, Dihn B; Obrovac, Mark N; Kube, Robert Y; Landucci, James R

2012-10-16T23:59:59.000Z

477

SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base  

SciTech Connect (OSTI)

The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

2014-07-23T23:59:59.000Z

478

Potentiometric measurement of polymer-membrane electrodes based on lanthanum  

SciTech Connect (OSTI)

Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup ?1}, 1031 cm{sup ?1} and 794.7 cm{sup ?1} for P=O stretching and stretching POC from group ?OP =O. The result showed shift wave number for P =O stretching of the cluster (?OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup ?1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup ?3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup ?5} and 10{sup ?1} M.

Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com [Department of Chemistry, Bandung Institute of Technology (Indonesia); Sy