Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID4,2,"Alabama","Alabama","Electric6"10Oil and

2

AEO 2013 Liquid Fuels Markets Working Group  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (ThousandsAboutsite. IfHome

3

Liquid Fuels Market Model (LFMM) Unveiling LFMM  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYearFeet) Year Jan Feb Mar

4

AEO 2013 Liquid Fuels Markets Working Group 2  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue (ThousandsAboutsite. IfHome2

5

AEO2014 Liquid Fuels Markets Working Group Meeting 1  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and Gas Supply AEO2014

6

AEO2015 Liquid Fuels Markets Working Group Presentation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3 Oil and GasPURPOSES. DO

7

First AEO2015 Liquid Fuels Markets Working Group Meeting  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5 Figure 2.Stocks 2009July 21,

8

Second AEO2014 Liquids Fuels Markets Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year

9

Assumptions for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5: Oil and Gas Workingfor

10

Marketing alternative fueled automobiles  

E-Print Network [OSTI]

Marketing alternative fueled vehicles is a difficult challenge for automakers. The foundation of the market, the terms of competition, and the customer segments involved are still being defined. But automakers can draw ...

Zheng, Alex (Yi Alexis)

2011-01-01T23:59:59.000Z

11

Second AEO2-015 Liquid Fuels Markets Working Group Meeting Summary  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year JanC.9.3.Feet)September

12

Liquid Fuels Market Module  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

In order to account for ultra-low-sulfur diesel (ULSD) regulations related to Clean Air Act Amendments of 1990 (CAAA90), ultra- low-sulfur diesel is differentiated from other...

13

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

14

Can hedge funds time market liquidity?  

E-Print Network [OSTI]

We explore a new dimension of fund managers' timing ability by examining whether they can time market liquidity through adjusting their portfolios' market exposure as aggregate liquidity conditions change. Using a large ...

Cao, Charles

15

Shell Gas to Liquids in the context of a Future Fuel Strategy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing...

16

Creating Liquidity for Energy Efficiency Loans in Secondary Markets...  

Broader source: Energy.gov (indexed) [DOE]

Creating Liquidity for Energy Efficiency Loans in Secondary Markets Creating Liquidity for Energy Efficiency Loans in Secondary Markets Provides information on secondary markets in...

17

Market Transformation: Fuel Cell Early Adoption (Presentation...  

Office of Environmental Management (EM)

Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

18

Renewable Liquid Fuels Reforming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Liquid Fuels Reforming The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used...

19

2008 FUEL CELL TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance

20

Scrap tire derived fuel: Markets and issues  

SciTech Connect (OSTI)

More than 250 million scrap tires are generated annually in the United States and their proper management continues to be a solid waste management concern. Sound markets for scrap tires are growing and are consuming an ever increasing percentage of annual generation, with market capacity reaching more than 75% of annual generation in 1996. Of the three major markets - fuel, civil engineering applications, and ground rubber markets - the use of tires as a fuel is by far the largest market. The major fuel users include cement kilns, pulp and paper mills, electrical generation facilities, and some industrial facilities. Current issues that may impact the tire fuel market include continued public concern over the use of tires as fuels, the new EPA PM 2.5 standard, possible additional Clean Air emissions standards, access to adequate supplies of scrap tires, quality of processed tire derived fuel, and the possibility of creating a commodity market through the development of ASTM TDF standards.

Serumgard, J. [Scrap Tire Management Council, Washington, DC (United States)

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Moving toward a commercial market for hydrogen fuel cell vehicles...  

Energy Savers [EERE]

Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

22

Alternative Fuels Market and Policy Trends (Presentation)  

SciTech Connect (OSTI)

Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

Schroeder, A. N.

2013-09-01T23:59:59.000Z

23

A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ConocoPhillips and Nexant Corporatin 2004deerabbott.pdf More Documents & Publications Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects...

24

Advancing Alternative Fuel Markets in Florida  

Broader source: Energy.gov (indexed) [DOE]

Advancing Alternative Fuel Markets in Florida Colleen Kettles University of Central Florida June 20, 2014 Project ID TI052 This presentation does not contain any proprietary,...

25

Report: Efficiency, Alternative Fuels to Impact Market Through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency, Alternative Fuels to Impact Market Through 2040 Report: Efficiency, Alternative Fuels to Impact Market Through 2040 February 26, 2014 - 12:00am Addthis Fuel efficiency...

26

2009 Fuel Cell Market Report, November 2010  

SciTech Connect (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

27

CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT  

E-Print Network [OSTI]

, Contract Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director gas, propane, ethanol, electricity, alternative diesel fuels such as biodiesel and Fischer Tropsch, natural gas vehicles, propane vehicles, electric vehicles, ethanol fuel, E-85, biodiesel, Fischer

28

2010 FUEL CELL TECHNOLOGIES MARKET REPORT  

E-Print Network [OSTI]

2010 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2011 #12;i Authors This report was a collaborative and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance

29

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

30

Combined Heat and Power Market Potential for Opportunity Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

31

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

Broader source: Energy.gov (indexed) [DOE]

The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity Presentation slides from the...

32

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network [OSTI]

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

33

Market penetration scenarios for fuel cell vehicles  

SciTech Connect (OSTI)

Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

34

2007 Fuel Cell Technologies Market Report  

SciTech Connect (OSTI)

The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

McMurphy, K.

2009-07-01T23:59:59.000Z

35

2010 Fuel Cell Technologies Market Report, June 2011  

SciTech Connect (OSTI)

This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.

Not Available

2011-06-01T23:59:59.000Z

36

Low contaminant formic acid fuel for direct liquid fuel cell  

DOE Patents [OSTI]

A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

2009-11-17T23:59:59.000Z

37

Nonconventional Liquid Fuels (released in AEO2006)  

Reports and Publications (EIA)

Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

2006-01-01T23:59:59.000Z

38

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

39

Prospecting the Future for Hydrogen Fuel Cell Vehicle Markets  

E-Print Network [OSTI]

as those for hydrogen and fuel cell vehicles (FCVs). 1 Wein the market if hydrogen and fuel cells are the best energypaper we argue that hydrogen and fuel cells will effectively

Kurani, Kenneth S.; Turrentine, Thomas S.; Heffner, Reid R.; Congleton, Christopher

2003-01-01T23:59:59.000Z

40

Liquid fuels production from biomass. Final report  

SciTech Connect (OSTI)

The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

1980-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cell Vehicles and Hydrogen in Preparing for market launch  

E-Print Network [OSTI]

Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

California at Davis, University of

42

Liquid Fuels from Lignins: Annual Report  

SciTech Connect (OSTI)

This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

Chum, H. L.; Johnson, D. K.

1986-01-01T23:59:59.000Z

43

Introduction Data Methodology Liquidity Hoarding in the Interbank Market  

E-Print Network [OSTI]

(Armantier & Copeland, 2012) · Or transactions from only a part of the market (eMid) · Secured lendingIntroduction Data Methodology Liquidity Hoarding in the Interbank Market: Evidence from Mexican Interbank Overnight Loan and Repo Transactions Marco J. van der Leij1 Seraf´in Mart´inez-Jaramillo2 Jos

Wirosoetisno, Djoko

44

Data Analysis for ARRA Early Fuel Cell Market Demonstrations (Presentation)  

SciTech Connect (OSTI)

Presentation about ARRA Early Fuel Cell Market Demonstrations, including an overview of the ARRE Fuel Cell Project, the National Renewable Energy Laboratory's data analysis objectives, deployment composite data products, and planned analyses.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

2010-05-01T23:59:59.000Z

45

The Northeast heating fuel market: Assessment and options  

SciTech Connect (OSTI)

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

46

Reimagining liquid transportation fuels : sunshine to petrol.  

SciTech Connect (OSTI)

Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

Johnson, Terry Alan (Sandia National Laboratories, Livermore, CA); Hogan, Roy E., Jr.; McDaniel, Anthony H. (Sandia National Laboratories, Livermore, CA); Siegel, Nathan Phillip; Dedrick, Daniel E. (Sandia National Laboratories, Livermore, CA); Stechel, Ellen Beth; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Ambrosini, Andrea; Coker, Eric Nicholas; Staiger, Chad Lynn; Chen, Ken Shuang; Ermanoski, Ivan; Kellog, Gary L.

2012-01-01T23:59:59.000Z

47

Developments in U.S. Alternative Fuel Markets  

Reports and Publications (EIA)

The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

2001-01-01T23:59:59.000Z

48

Connecticut Fuel Cell Activities: Markets, Programs, & Models  

E-Print Network [OSTI]

· Connecticut DOT Plan for Hydrogen Stations and Zero Emission Fuel Cell Vehicles (In Development) · Renewable) Passenger Car Light Truck Transit Bus Hydrogen Fuel Cell Gasoline Powered Car Hydrogen Fuel Cell Gasoline fleets, delivery fleets, major highway fueling stations, etc. Connecticut Hydrogen Roadmap #12;9 9

49

2007 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE6 DRAFTResearch: Requirement

50

Data Analysis of Early Fuel Cell Market Demonstrations (Presentation)  

SciTech Connect (OSTI)

Presentation about early fuel cell markets, the National Renewable Energy Laboratory's Hydrogen Secure Data Center and its role in data analysis and demonstrations, and composite data products, and results reported to multiple stakeholders.

Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

2009-11-17T23:59:59.000Z

51

2008 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryof EnergyFUEL

52

2013 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year10Department of EnergyEnergyFuel Cell

53

2008 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

54

Early Markets: Fuel Cells for Material  

E-Print Network [OSTI]

lift trucks, pallet jacks, and stock pickers. MHE can use Polymer Electrolyte Membrane (PEM) fuel cell. Fuel cell powered lift trucks can reduce the labor cost of refueling/recharging by up to 80 be cost-competitive with batteries on a lifecycle basis. Additionally, fuel cells are currently eligible

55

2011 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergy back_cover.pdf MoreReview Report: AlgaeCostDOE

56

2012 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergyof Environmental Management |FY12 DOEEnergy 2

57

Early Markets: Fuel Cells for Backup Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM Included NotFederal4 - In

58

Fuel Cell Markets Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInputDamFreshTracksFrisco,Frybrid

59

2011 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

This report describes data compiled in 2012 on trends in the fuel cell industry for 2011 with some comparison to previous years.

60

2010 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

This report describes data compiled in 2011 on trends in the fuel cell industry for 2010 with some comparison to previous years.

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Conversion of olefins to liquid motor fuels  

DOE Patents [OSTI]

Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

1988-01-01T23:59:59.000Z

62

Biomass gasification for liquid fuel production  

SciTech Connect (OSTI)

In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they do?t compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Vclav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

2014-08-06T23:59:59.000Z

63

Fuel gas production by microwave plasma in liquid  

SciTech Connect (OSTI)

We propose to apply plasma in liquid to replace gas-phase plasma because we expect much higher reaction rates for the chemical deposition of plasma in liquid than for chemical vapor deposition. A reactor for producing microwave plasma in a liquid could produce plasma in hydrocarbon liquids and waste oils. Generated gases consist of up to 81% hydrogen by volume. We confirmed that fuel gases such as methane and ethylene can be produced by microwave plasma in liquid.

Nomura, Shinfuku; Toyota, Hiromichi; Tawara, Michinaga; Yamashita, Hiroshi; Matsumoto, Kenya [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Shikoku Industry and Technology Promotion Center, 2-5 Marunouchi, Takamatsu, Kagawa 760-0033 (Japan)

2006-06-05T23:59:59.000Z

64

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

65

Market Transformation: Fuel Cell Early Adoption (Presentation) | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturingMarginalMarket Transformation

66

Hydrogen Storage Needs for Early Motive Fuel Cell Markets  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

2012-11-01T23:59:59.000Z

67

NREL: Hydrogen and Fuel Cells Research - Market Transformation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria PhotoCellMarket Transformation

68

An analysis of heating fuel market behavior, 1989--1990  

SciTech Connect (OSTI)

The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

Not Available

1990-06-01T23:59:59.000Z

69

Hydrogen PEM Fuel Cells: A Market Need Provides Research Opportunities  

SciTech Connect (OSTI)

It has been said that necessity is the mother of invention. Another way this can be stated is that market demands create research opportunities. Because of the increasing demand for oil (especially for fueling vehicles utilizing internal combustion engines) and the fact that oil is a depleting (not renewable) energy source, a market need for a renewable source of energy has created significant opportunities for research. This paper addresses the research opportunities associated with producing a market competitive (i.e., high performance, low cost and durable) hydrogen proton exchange membrane (PEM) fuel cell. Of the many research opportunities, the primary ones to be addressed directly are: Alternative membrane materials, Alternative catalysts, Impurity effects, and Water transport. A status of Department of Energy-sponsored research in these areas will be summarized and the impact of each on the ability to develop a market-competitive hydrogen PEM fuel cell powered vehicle will be discussed. Also, activities of the International Partnership for the Hydrogen Economy in areas such as advanced membranes for fuel cells and materials for storage will be summarized.

Payne, Terry L [ORNL; Brown, Gilbert M [ORNL; Bogomolny, David [Sentech, Inc.

2010-01-01T23:59:59.000Z

70

Cellulosic Liquid Fuels Commercial Production Today  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day with Secretary ChuEnergy

71

Alternative Liquid Fuels (ALF) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy FocusBenefit Tool |

72

Liquid Fuels from Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty

73

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

74

Nuclear tanker producing liquid fuels from air and water  

E-Print Network [OSTI]

Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

Galle-Bishop, John Michael

2011-01-01T23:59:59.000Z

75

Cellulosic Liquid Fuels Commercial Production Today | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment ofCarrie Noonan About UsEnergy SheriCellulosic Liquid Fuels

76

Liquid fuels perspective on ultra low carbon vehicles | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 LiquidEnergy fuels

77

U.S. Fuel Cell Market Production and Deployment Continues Strong...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. Fuel Cell Market Production and Deployment Continues Strong Growth U.S. Fuel Cell Market Production and Deployment Continues Strong Growth January 8, 2014 - 12:00am Addthis...

78

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network [OSTI]

models require accurate estimates of how the market shares of different fuel choices (electricity, gas, or oil)

Wood, D.J.

2010-01-01T23:59:59.000Z

79

Overview of Aviation Fuel Markets for Biofuels Stakeholders  

SciTech Connect (OSTI)

This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

2014-07-01T23:59:59.000Z

80

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...  

Energy Savers [EERE]

Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Liquid fuel microcombustor using microfabricated multiplexed electrospray sources  

E-Print Network [OSTI]

Engineering, Yale Center for Combustion Studies, New Haven, CT 06520, USA b Department of Electrical by microfabricating the fuel distributor in Si using deep reactive ion etching. Tests were performed using JP-8- ies, that is, of portable electricity generators operating on liquid fuels, may result in dramatic

Gomez, Alessandro

82

ACTIVE INSTABILITY CONTROL EFFECTIVENESS IN A LIQUID FUELED COMBUSTOR  

E-Print Network [OSTI]

ACTIVE INSTABILITY CONTROL EFFECTIVENESS IN A LIQUID FUELED COMBUSTOR ADAM COKER YEDIDIA NEUMEIER-fueled combustor that were performed to improve understanding of the factors limiting control performance. A set varied. They show that the combustor's nominal dynamics (i.e., without Received 23 March 2005; accepted 7

Lieuwen, Timothy C.

83

Alternative Liquid Fuels Simulation Model (AltSim).  

SciTech Connect (OSTI)

The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

Baker, Arnold Barry; Williams, Ryan (Hobart and William Smith Colleges, Geneva, NY); Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

2007-10-01T23:59:59.000Z

84

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

SciTech Connect (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

85

Enhanced catalyst for conversion of syngas to liquid motor fuels  

DOE Patents [OSTI]

Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

1985-01-01T23:59:59.000Z

86

Enhanced conversion of syngas to liquid motor fuels  

DOE Patents [OSTI]

Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

1986-01-01T23:59:59.000Z

87

Enhanced catalyst for conversion of syngas to liquid motor fuels  

DOE Patents [OSTI]

Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

Coughlin, P.K.; Rabo, J.A.

1985-12-03T23:59:59.000Z

88

Liquid Transportation Fuels from Coal and Biomass | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid

89

Geography of Existing and Potential Alternative Fuel Markets in the United States  

SciTech Connect (OSTI)

When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

Johnson, C.; Hettinger, D.

2014-11-01T23:59:59.000Z

90

Liquid Fuels and Natural Gas in the Americas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332EIAYearLiquid

91

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect (OSTI)

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

92

Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering  

SciTech Connect (OSTI)

Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

Dr. Paul A. Lessing

2012-03-01T23:59:59.000Z

93

A fresh look at coal-derived liquid fuels  

SciTech Connect (OSTI)

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

94

Technique for estimating jet fuel prices from energy futures market  

SciTech Connect (OSTI)

This report presents a statistical analysis of future prices of petroleum products for use in predicting the monthly average retail price of kerosene-type jet fuel. The method of least squares was employed to examine the relationship between kerosene-type jet fuel retail prices and energy futures prices. Regression equations were constructed for four of the petroleum commodities traded on the energy futures market: heating oil No. 2, leaded regular gasoline, crude oil, and unleaded gasoline. Thirty-nine regression equations were estimated by the method of least squares to relate the cash price of kerosene-type jet fuel to the futures prices of the above four petroleum commodities for contract periods of 1 to 12 months. The analysis revealed that 19 of the 39 first-order linear regression equations provided a good fit to the data. Specifically, heating oil No. 2 performed better than the order energy futures in predicting the price of kerosene-type jet fuel. The only information required to use these regression equations are energy futures prices which are available daily from the Wall Street Journal. 5 refs., 4 tabs.

Vineyard, T.A.

1988-05-01T23:59:59.000Z

95

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents [OSTI]

A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

Kuester, J.L.

1987-07-07T23:59:59.000Z

96

Process of producing liquid hydrocarbon fuels from biomass  

DOE Patents [OSTI]

A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

Kuester, James L. (Scottsdale, AZ)

1987-07-07T23:59:59.000Z

97

Fuel Cell Project Selected for First Ever Technology-to-Market...  

Energy Savers [EERE]

cell electric vehicles to enable significant reductions in greenhouse gas emissions and air pollution. In addition to this technology-to-market award, two fuel cell projects were...

98

Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets  

Fuel Cell Technologies Publication and Product Library (EERE)

This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

99

Analysis of liquid natural gas as a truck fuel: a system dynamics approach  

SciTech Connect (OSTI)

The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

1996-10-01T23:59:59.000Z

100

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

SciTech Connect (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Assessment of Energy and Environmental Issues Related to the Use of Gas-to-Liquid Fuels in Transportation  

SciTech Connect (OSTI)

Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO2 emissions produced during the conversion process.

Greene, D.L.

1999-11-01T23:59:59.000Z

102

An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation  

SciTech Connect (OSTI)

Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

Greene, D.L.

1999-11-01T23:59:59.000Z

103

An Update in the Development of Alternate Liquid Fuels  

E-Print Network [OSTI]

. It is classified by the U.S. Department of Energy as a non-critical or preferred fuel. 2. It is a cost effective high yield BTU fuel that can be produced with readily available feedstocks utilizing standard hardware and processing equipment. j 3. It has a low... for the disposal of spent industrial (flammable) liquids. 5. Certified laboratory analyses indicate that ALF feedstocks are free of all known carcinogens, and hazardous elements. 6. Utilization of ALF can provide a 20% business energy tax credit, in addition...

Rose, M. J.

1979-01-01T23:59:59.000Z

104

Producing liquid fuels from coal: prospects and policy issues  

SciTech Connect (OSTI)

The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

James T. Bartis; Frank Camm; David S. Ortiz

2008-07-01T23:59:59.000Z

105

Catalyst for converting synthesis gas to liquid motor fuels  

DOE Patents [OSTI]

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1986-01-01T23:59:59.000Z

106

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network [OSTI]

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel Matthew Eisaman and their impact Technology: Extracting CO2 from seawater Application: Renewable liquid fuel #12;Outline: Renewable liquid fuel #12;The data on atmospheric CO2 2000 years ago http://cdiac.ornl.gov/trends/co2

Homes, Christopher C.

107

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network [OSTI]

model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviationMarket Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester

108

NREL Research on Converting Biomass to Liquid Fuels  

ScienceCinema (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2013-05-29T23:59:59.000Z

109

NREL Research on Converting Biomass to Liquid Fuels  

SciTech Connect (OSTI)

Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

None

2010-01-01T23:59:59.000Z

110

EIA model documentation: Electricity market module - electricity fuel dispatch  

SciTech Connect (OSTI)

This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

NONE

1997-01-01T23:59:59.000Z

111

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents [OSTI]

A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

Robben, F.A.

1984-10-19T23:59:59.000Z

112

Superheated fuel injection for combustion of liquid-solid slurries  

DOE Patents [OSTI]

A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

Robben, Franklin A. (Berkeley, CA)

1985-01-01T23:59:59.000Z

113

American Institute of Aeronautics and Astronautics Development of a Compact Liquid Fueled Pulsed Detonation  

E-Print Network [OSTI]

automotive ignition system. Pre-heated liquid fuel is sprayed into a current of pre-heated air and thoroughly Hz. The PDE set up is water cooled allowing long duration testing. Diagnostics are performed using it necessary to preheat the fuel and/or air and to use nozzles to finely atomize the fuel spray. Liquid fueled

Texas at Arlington, University of

114

Direct conversion of light hydrocarbon gases to liquid fuel  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

115

Catalysts for conversion of syngas to liquid motor fuels  

DOE Patents [OSTI]

Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

1987-01-01T23:59:59.000Z

116

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect (OSTI)

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-01-01T23:59:59.000Z

117

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect (OSTI)

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-12-31T23:59:59.000Z

118

2013 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWindProject Management3 Awards forReport

119

Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easterStatistical Self-Similarity in

120

Connecticut Fuel Cell Activities: Markets, Programs, and Models  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91 *09 FY 2009 ($1

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Connecticut Fuel Cell Activities: Markets, Programs, and Models |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering New Thermochemical StorageBudgetJuly

122

Recovery Act Projects Funded for Fuel Cell Market Transformation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediated | Department of

123

DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOEDepartment of

124

Report: Efficiency, Alternative Fuels to Impact Market Through 2040 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashesEnergy byNuclear

125

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect (OSTI)

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

126

Alternative Liquid Fuels Simulation Model (AltSim).  

SciTech Connect (OSTI)

The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL options to be included under the EISA mandate. The estimated GHG emissions associated with the production of gasoline and diesel are 19.80 and 18.40 kg of CO{sub 2} equivalent per MMBtu (kgCO{sub 2}e/MMBtu), respectively (NETL, 2008). The estimated emissions are significantly higher for several alternatives: ethanol from corn (70.6), GTL (51.9), and CTL without biomass or sequestration (123-161). Projected emissions for several other alternatives are lower; integrating biomass and sequestration in the CTL processes can even result in negative net emissions. For example, CTL with 30% biomass and 91.5% sequestration has estimated production emissions of -38 kgCO{sub 2}e/MMBtu. AltSim also estimates the projected well-to-wheel, or lifecycle, emissions from consuming each of the various fuels. Vehicles fueled with conventional diesel or gasoline and driven 12,500 miles per year emit 5.72-5.93 tons of CO{sub 2} equivalents per year (tCO{sub 2}e/yr). Those emissions are significantly higher for vehicles fueled with 100% ethanol from corn (8.03 tCO{sub 2}e/yr) or diesel from CTL without sequestration (10.86 to 12.85 tCO{sub 2}/yr). Emissions could be significantly lower for vehicles fueled with diesel from CBTL with various shares of biomass. For example, for CTL with 30% biomass and carbon sequestration, emissions would be 2.21 tCO{sub 2}e per year, or just 39% of the emissions for a vehicle fueled with conventional diesel. While the results presented above provide very specific estimates for each option, AltSim's true potential is as a tool for educating policy makers and for exploring 'what if?' type questions. For example, AltSim allows one to consider the affect of various levels of carbon taxes on the production cost estimates, as well as increased costs to the end user on an annual basis. Other sections of AltSim allow the user to understand the implications of various polices in terms of costs to the government or land use requirements. AltSim's structure allows the end user to explore each of these alternatives and understand the sensitivities implications a

Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

2009-12-01T23:59:59.000Z

127

2008 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryof EnergyFUEL08

128

2007 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year inDepartment ofPresentations ||77 Fuel Cell

129

2010 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year inDepartmentReview09Fuel Cell Technologies

130

2011 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year10 SmartReport | DepartmentFuel Cell

131

2012 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year10 SmartReportof Energy2Fuel Cell

132

Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.  

SciTech Connect (OSTI)

The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

1999-09-08T23:59:59.000Z

133

alternative liquid fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 The Effect of Using an Alternative Fuel...

134

alternative liquid fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 The Effect of Using an Alternative Fuel...

135

Early Market Applications for Fuel Cell Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, Septemberof EnergyM A N AManyFuel

136

Early Markets: Fuel Cells for Material Handling Equipment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM Included NotFederal4 - InMaterial

137

2008 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year inDepartment ofPresentationsEPA

138

2009 Fuel Cell Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year inDepartmentReview andEnergy 9 Federal9

139

Moving toward a commercial market for hydrogen fuel cell vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a Peaceful Nuclear Future Moving Toward aMOVING

140

Moving toward a commercial market for hydrogen fuel cell vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012 Monthly ProjectEnterprisesRepair

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sandia National Laboratories: DOE EERE Fuel Cell Market Transformation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOEactivity EERE Fuel

142

Phantom Power: The Status of Fuel Cell Technology Markets  

E-Print Network [OSTI]

overall fuel cell costs begin to come down due to the lower overall electrical efficiencies (30-40% compared to 40-50% for SOFC and MCFC). PAFC's also require a fuel reformer to extract hydrogen from a hydrocarbon fuel, whereas some of the higher... temperature technologies such as SOFC and MCFC do not require this extra fuel treatment. 200 kW PAFC Operating Temperature (F) 400 Package Cost ($/kW) 3,500 Installed Cost ($/kW) 4,500 O&M Costs($/kW) 0.03 Electrical Efficiency(HHV) 36% CHP Efficiency...

Shipley, A. M.; Elliott, R. N.

143

DOE Releases 2013 Fuel Cell Technologies Market Report | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOEDOEAVAILABLEDepartment ofHeld this Summer

144

Early Markets: Fuel Cells for Backup Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, Septemberof EnergyM A N

145

Early Markets: Fuel Cells for Material Handling Equipment | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, Septemberof EnergyM A NEnergy

146

Describing Current & Potential Markets for Alternative-Fuel Vehicles  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 00/03)%YearD e s c r i b

147

Describing Current & Potential Markets for Alternative-Fuel Vehicles  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 00/03)%YearD e s c r i

148

Describing Current & Potential Markets for Alternative-Fuel Vehicles  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 00/03)%YearD e s c r i4

149

Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion  

E-Print Network [OSTI]

the Market for Hydrogen Fuel-Cell Vehicles: Stakeholdersdual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

Collantes, Gustavo O

2005-01-01T23:59:59.000Z

150

FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION  

E-Print Network [OSTI]

the Market for Hydrogen Fuel-Cell Vehicles: Stakeholdersdual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

Collantes, Gustavo

2005-01-01T23:59:59.000Z

151

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)  

SciTech Connect (OSTI)

This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-06-01T23:59:59.000Z

152

capacity and the market for bio-fuels, a num-ber of breakthroughs are required  

E-Print Network [OSTI]

. "The world is on the verge of a catastrophe due to global warming." With those words in November 2007capacity and the market for bio-fuels, a num- ber of breakthroughs are required: ·Technical Fundraiser 011-36 31 28 tommy.hoglund@liu.se www.liu.se/expanding_excellence Bio-fuels and energy

Zhao, Yuxiao

153

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network [OSTI]

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

154

Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors  

DOE Patents [OSTI]

An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

Brehm, Jr., William F. (Richland, WA); Colburn, Richard P. (Pasco, WA)

1982-01-01T23:59:59.000Z

155

Meeting U.S. Liquid Transport Fuel Needs with a Nuclear Hydrogen Biomass System  

SciTech Connect (OSTI)

The two major energy challenges for the United States are replacing crude oil in our transportation system and eliminating greenhouse gas emissions. A domestic-source greenhouse-gas-neutral nuclear hydrogen biomass system to replace oil in the transportation sector is described. Some parts of the transportation system can be electrified with electricity supplied by nuclear energy sources that do not emit significant quantities of greenhouse gases. Other components of the transportation system require liquid fuels. Biomass can be converted to greenhouse-gas-neutral liquid fuels; however, the conversion of biomass-to-liquid fuels is energy intensive. There is insufficient biomass to meet U.S. liquid fuel demands and provide the energy required to process the biomass-to-liquid fuels. With the use of nuclear energy to provide heat, electricity, and hydrogen for the processing of biomass-to-liquid fuels, the liquid fuel production per unit of biomass is dramatically increased, and the available biomass could meet U.S. liquid fuel requirements.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

156

Advanced liquid fuel production from biomass for power generation  

SciTech Connect (OSTI)

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

157

Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels  

DOE Patents [OSTI]

A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

2014-12-02T23:59:59.000Z

158

A Global Market in Transition: Local Markets in Jeopardy NASEO-EIA Summer Fuels Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research and EducationF OAGlobal

159

Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?  

SciTech Connect (OSTI)

For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

2011-11-14T23:59:59.000Z

160

Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington  

SciTech Connect (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)  

SciTech Connect (OSTI)

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

162

Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

2013-10-01T23:59:59.000Z

163

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)  

SciTech Connect (OSTI)

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

164

Determination of liquid and solid phase composition in partially frozen middle distillate fuels  

SciTech Connect (OSTI)

One of the tasks of the United States Navy Mobility Fuels program at the Naval Research Laboratory is to determine the effect of composition on the freezing properties of liquid fuels. The combination of requirements for ship and jet aircraft fuels of a low freezing point (to permit cold temperature operations around the world) and a flash point minimum (to reduce the hazard of storage and transport of liquid fuels on board ship) leads to opposing compositional needs. This is because many components of a fuel that tend to lower the freezing point (small hydrocarbons with higher vapor pressures) will also reduce the flash point. Because of these constraints, it is not always practical to produce fuels meeting these requirements from available crudes. This limits the amount of crudes and hence the amount of JP-5, the Navy fuel for carrier based aircraft, which can be produced from ''a barrel of crude.'' With increased knowledge and understanding of the components that first crystallize out of a cold fuel, it may be possible to modify refining techniques to increase the yield of Navy liquid fuels per barrel of crude without compromising either the freezing point or the flash point restrictions. This paper deals with the method used to separate the liquid filtrate from the precipitate in fuels cooled to predetermined temperatures below their freezing points, the method of analyzing the fuel and fuel fractions, and the results obtained from a study of one particular jet fuel.

Van Winkle, T.L.; Affens, W.A.; Beal, E.J.; Mushrush, G.W.; Hazlett, R.N.; DeGuzman, J.

1986-04-01T23:59:59.000Z

165

Biomass and Natural Gas to Liquid Transportation Fuels  

Broader source: Energy.gov [DOE]

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

166

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel  

E-Print Network [OSTI]

Liquid Water Dynamics in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller in a Model Polymer Electrolyte Fuel Cell Flow Channel by Chris Miller Bachelors of Engineering, University in a polymer electrolyte fuel cell is a critical issue in ensuring high cell performance. The water production

Victoria, University of

167

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

SciTech Connect (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

168

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPCElectricalofVoltageEmployeeEmployees

169

Air Liquide - Biogas & Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas: Transmission,

170

Space effect on liquid film flow in a BWR fuel bundle  

SciTech Connect (OSTI)

Critical power at boiling transition is an important factor in a boiling water reactor (BWR) fuel bundle design. Boiling transition under high quality accounts for dryout as the result of the complete disappearance of film flow on a fuel rod. This liquid film vanishing process can be calculated by the liquid film model, which takes into account the evaporation due to heat from the rod surface, liquid film entrainment by steam flow, and liquid droplet deposition. It is known that spacers affect liquid film entrainment and liquid droplet deposition, so the detailed study of spacer effects on hydrodynamic characteristics is necessary for critical power prediction based on the film flow model. Many studies have been conducted to examine spacer effects on liquid film flow. However, most of them are restricted to simple test sections such as a rectangular conduit. There are a few reports on fuel bundle geometry; however the bundle studied was only a 3 by 3 rod array. It is known that spacers affect not only deposition and entrainment but also flow distribution among the subchannels. Therefore, in this research, liquid film thickness measurements were performed to clarify the deposition and entrainment at a spacer in a full-sized fuel bundle. Furthermore, critical power predictions on a BWR fuel bundle were carried out with a film flow model that included a spacer model.

Nishida, Koji; Kanazawa, Toru; Yokomizo, Osamu (Hitachi Ltd., Ibaraki (Japan))

1991-01-01T23:59:59.000Z

171

Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard  

E-Print Network [OSTI]

affected advanced biofuel companies and decreased soybean oil futures prices, while prices in other in biofuel consumption through 2022. To understand RIN market dynamics, we develop a dynamic model mandate, decreased the value of the subsidy (tax) provided by the RFS2 to the biofuel (fossil fuel

Lin, C.-Y. Cynthia

172

Dehydrogenation of liquid fuel in microchannel catalytic reactor  

DOE Patents [OSTI]

The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

Toseland, Bernard Allen (Coopersburg, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

2010-08-03T23:59:59.000Z

173

Liquid Fuels Taxes and Credits (released in AEO2010)  

Reports and Publications (EIA)

Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

2010-01-01T23:59:59.000Z

174

Sandia National Laboratories: convert natural gas to liquid fuel for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogenmaterial elements

175

The design of a microfabricated air electrode for liquid electrolyte fuel cells  

E-Print Network [OSTI]

In this dissertation, the microfabricated electrode (MFE) concept was applied to the design of an air electrode for liquid electrolyte fuel cells. The catalyst layer of the electrode is envisioned to be fabricated by using ...

Pierre, Fritz, 1977-

2007-01-01T23:59:59.000Z

176

Barriers to a biofuels transition in the U.S. liquid fuels sector.  

E-Print Network [OSTI]

??Demand for liquid fuels (i.e., petroleum products) has burdened the U.S. with major challenges, including national security and economic concerns stemming from rising petroleum imports; (more)

O'Donnell, Michael Joseph

2010-01-01T23:59:59.000Z

177

EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantee to Support the Construction and Startup of the Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, Wyoming December 16, 2009 EIS-0432: Scoping...

178

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving AwayAvailability of Feedstock and

179

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen Program and VehicleCoolingCompensation

180

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

SciTech Connect (OSTI)

This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis expected process scale required for favorable economics the availability of MSW in quantities sufficient to meet process scale requirements the state-of-the-art of MSW gasification technology.

Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Experimental investigation of onboard storage and refueling systems for liquid-hydrogen-fueled vehicles  

SciTech Connect (OSTI)

A 2-1/2-year baseline experimental hydrogen-fueled automotive vehicle project was conducted to evaluate and document state-of-the-art capabilities in engine conversion for hydrogen operation, liquid-hydrogen onboard storage, and liquid-hydrogen refueling. The engine conversion, onboard liquid-hydrogen storage tank, and liquid-hydrogen refueling system used in the project represented readily available equipment or technology when the project began. The project information documented herein can serve as a basis of comparison with which to evaluate future vehicles that are powered by hydrogen or other alternative fuels, with different engines, and different fuel-storage methods. The results of the project indicate that liquid-hydrogen storage observed an operating vehicle and routine refueling of the vehicle can be accomplished over an extended period without any major difficulty. Two different liquid-hydrogen vehicle onboard storage tanks designed for vehicular applications were tested in actual road operation: the first was an aluminum dewar with a liquid-hydrogen capacity of 110 l; the second was a Dewar with an aluminum outer vessel, two copper, vapor-cooled thermal-radiation shields, and a stainless-steel inner vessel with a liquid-hydrogen capacity of 155 l. The car was refueled with liquid hydrogen at least 65 times involving more than 8.1 kl of liquid hydrogen during the 17 months that the car was operated on liquid hydrogen. The vehicle, a 1979 Buick Century sedan with a 3.8-l-displacement turbocharged V6 engine, was driven for 3633 km over the road on hydrogen. The vehicle had a range without refueling of about 274 km with the first liquid-hydrogen tank and about 362 km with the second tank. The vehicle achieved 2.4 km/l of liquid hydrogen which corresponds to 9.4 km/l gasoline on an equivalent energy basis.

Stewart, W.F.

1982-09-01T23:59:59.000Z

182

Liquid-liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. 3: Effect of temperature  

SciTech Connect (OSTI)

The authors have measured the ternary liquid-liquid equilibria of water + ethanol mixtures with, separately, 2,2,4-trimethylpentane and toluene at 5 and 40 C, water + tert-amyl alcohol (TAOH) mixtures with, separately, toluene and hexane at 5 and 40 C, and of water + TAOH + pentane mixtures at 5 C. The ethanol-containing systems exhibit type 1 liquid-liquid phase behavior, and the TAOH-containing systems exhibit type 2 behavior. These data, together with the data they have previously reported at 25 C, provide information on how the liquid-liquid equilibria of these systems change as a function of temperature. While the addition of ethanol is found to increase the solubility of hydrocarbons in the aqueous phase, the concentration of the hydrocarbon in the water-rich phase decreases with increasing temperature. With the exception of hydrocarbon in the water-rich phase, the experimental data could be correlated quite well with either the UNIQUAC or NRTL models. For most of the systems considered here the predictions of the phase behavior with the liquid-liquid UNIFAC group-contribution model are only qualitatively correct. However, the liquid-liquid UNIFAC model erroneously predicts type 2 phase behavior to occur for water + ethanol + 2,2,4-trimethylpentane system at 5 C.

Wagner, G. [Universitaet Karlsruhe (Germany). Institut fuer Thermische Verfahrenstechnik; Sandler, S.I. [Univ. of Delaware, Newark, DE (United States). Center for Molecular and Engineering Thermodynamics

1995-09-01T23:59:59.000Z

183

Liquid Fuels and Natural Gas in the Americas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricityrgy81 § ¨,43332EIAYear

184

Liquid Fuels and Natural Gas in the Americas - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shownshortHouseholdsValues shown

185

Turning methane into usable liquid fuel: Illinois Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortalBRDFTunableTurbulence may be keyand

186

Liquid Fuels via Upgrading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid Fuels via Upgrading

187

Liquid Fuels via Uprading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid Fuels via

188

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents [OSTI]

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

189

Production of jet fuels from coal-derived liquids  

SciTech Connect (OSTI)

The US Air Force is evaluating various feedstock sources of endothermic fuels. The technical feasibility of producing endothermic fuel from the naphtha by-product from Great Plains Gasification Plant in Beulah, North Dakota was evaluated. The capital and operating costs of deriving the fuel from coal naphtha were also estimated. The coal naphtha from Great Plains was successfully processed to remove sulfur, nitrogen and oxygen contaminants (UOP HD Unibon{reg sign} Hydrotreating) and then to saturate aromatic molecules (UOP AH Unibon{reg sign}). The AH Unibon product was fractionated to yield endothermic fuel candidates with less than 5% aromatics. The major cycloparaffins in the AH Unibon product were cyclohexane and methylcyclohexane. The production of endothermic fuel from the naphtha by-product stream was estimated to be cost competitive with existing technology. 17 figs., 23 tabs.

Johnson, R.W.; Zackro, W.C.; Czajkowski, G. (Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center); Shah, P.P.; Kelly, A.P. (UOP, Inc., Des Plaines, IL (USA))

1989-03-01T23:59:59.000Z

190

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{  

E-Print Network [OSTI]

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

Angell, C. Austen

191

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect (OSTI)

The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

1993-05-01T23:59:59.000Z

192

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect (OSTI)

The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1993-05-01T23:59:59.000Z

193

Study of the competitive viability of minority fuel oil marketers. Final report  

SciTech Connect (OSTI)

Previous studies on the competitive viability of the fuel oil heating market had addressed some of the unique problems facing minority fuel oil marketers (MFMs) within the total market sector (TMS). This study focused on identifying and developing quantitative information on MFMs in the TMS. The specific objective was to determine whether the business problems experienced by MFMs were directly related to their minority status or were characterstic of any firm in the TMS operating under comparable conditions. As an overall conclusion, thorough investigation of the MFMs considered to constitute the universe of minoriy firms within the TMS did not reveal any evidence of overt discrimination affecting the competitive viability of MFMs. Upon analysis, the problems reported by MFMs could not be reasonably ascribed to discrimination on the basis of their minority business status. The study, however, did point up problems unique to MFMs as the result of typical operational and financial characteristics. For example, MFMs, compared to the TMS norm, have not been in the market as long and are smaller in terms of total assets, number of employees, number of trucks, number of accounts and annual volume of oil delivered. Their primary customers are low-income families in urban areas. Financial indicators suggest that the average MFM does not have long-term financial stability. The basis for this overall conclusion, derived by analyses of information from MFMs, as well as many independent sources, is summarized in three parts: (1) MFM industry profile; (2) financial analyses; and (3) problem analyses.

None

1981-09-30T23:59:59.000Z

194

Turning methane into usable liquid fuel: Illinois Institute of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agency, or DARPA. Argonne was one of 13 projects aimed at developing new fuel cell technology as part of ARPA-E's Reliable Electricity Based on Electrochemical Systems (REBELS)...

195

A liquid water management strategy for PEM fuel cell stacks  

E-Print Network [OSTI]

Gas and water management are key to achieving good performance from a PEM fuel cell stack. Previous experimentation had found, and this experimentation confirms, that one very effective method of achieving proper gas and water management is the use...

Van Nguyen, Trung; Knobbe, M. W.

2003-02-25T23:59:59.000Z

196

World nuclear fuel market: proceedings of the international conference on nuclear energy  

SciTech Connect (OSTI)

Thirteen papers, along with discussion and comments, are divided into four conference sessions covering: the prospect for primary markets for enriched uranium; secondary trading markets for enriched uranium; the management of irradiatied fuel and economics of reprocessing; and an evaluation of plutonium recycling in thermal reactors. The speakers address technical, economic, and political issues relating to both front-end and back-end management of the fuel cycle. The papers were presented at the 9th International Conference on Nuclear Energy in Nice, France during October, 1982. A separate abstract was prepared for each of the 13 papers selected for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis (EAPA). (DCK)

Not Available

1982-01-01T23:59:59.000Z

197

Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility  

SciTech Connect (OSTI)

For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

2011-10-25T23:59:59.000Z

198

Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. 2  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data for methyl tert-butyl ether (MTBE) + 1-heptene, MTBE + four-component gasoline prototype, ethanol + four-component gasoline prototype, and separately MTBE and ethanol with the Auto/Oil Air Quality Improvement Research Gasoline Blend A are reported. Small additions of MTBE have a very small effect on the total equilibrium pressure of this gasoline blend, and at most temperatures will decrease this pressure. In contrast, small additions of ethanol to this gasoline blend result in a significant increase in the equilibrium pressure at all temperatures. Analysis shows that the vapor-liquid equilibrium data for the MTBE-containing systems are easily correlated using a modified Peng-Robinson equation of state with conventional van der Waals one-fluid mixing rules. Data for mixtures containing ethanol cannot be accurately correlated in this way.

Bennett, A.; Lamm, S.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark (United States))

1993-04-01T23:59:59.000Z

199

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network [OSTI]

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

200

Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels  

SciTech Connect (OSTI)

We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annular geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)

St-Aubin, E.; Marleau, G. [Ecole Polytechnique de Montreal, P.O. Box 6079, stn. Centre Ville, Montreal, QC H3C 3A7 (Canada)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid fuels production from biomass. Final report, for period ending June 30, 1980  

SciTech Connect (OSTI)

The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current program are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

1980-01-01T23:59:59.000Z

202

An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England  

E-Print Network [OSTI]

Abstract: In this paper, we develop a novel electric power supply chain network model with fuel supply markets that captures both the economic network transactions in energy supply markets and the physical that the regional electric power prices simulated by the proposed model very well match the actual electricity

Nagurney, Anna

203

Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor  

DOE Patents [OSTI]

The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

2014-03-04T23:59:59.000Z

204

Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels  

SciTech Connect (OSTI)

Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

2013-10-01T23:59:59.000Z

205

Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell  

E-Print Network [OSTI]

. Researchers all over the world are focusing on optimizing this system to be cost competitive with energy conversion devices currently available. It is a well known fact that the cathode of the PEM fuel cell is the performance limiting component due...THREE DIMENSIONAL EFFECTS OF LIQUID WATER FLOODING IN THE CATHODE OF A PEM FUEL CELL by Dilip Natarajan and Trung Van Nguyen* Department of Chemical and Petroleum Engineering University of Kansas Lawrence, KS 66045, USA Submitted...

Natarajan, Dilip; Van Nguyen, Trung

2003-03-27T23:59:59.000Z

206

Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen  

SciTech Connect (OSTI)

Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

None

2010-07-15T23:59:59.000Z

207

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect (OSTI)

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

208

Liquid Fuel From Microbial Communities: Electroalcoholgenesis: Bioelectrochemical Reduction of CO2 to Butanol  

SciTech Connect (OSTI)

Electrofuels Project: MUSC is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but theyve never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

None

2010-07-01T23:59:59.000Z

209

Analysis of H2 storage needs for early market non-motive fuel cell applications.  

SciTech Connect (OSTI)

Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

2012-03-01T23:59:59.000Z

210

Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods  

SciTech Connect (OSTI)

A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

Donald Olander

2005-08-24T23:59:59.000Z

211

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect (OSTI)

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

212

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.9 Market Transformation  

Broader source: Energy.gov [DOE]

Market Transformation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

213

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market  

E-Print Network [OSTI]

Supply Chains and Fuel Markets In the U.S., electric power generation accounts for 30% of the natural gas demand (over 50% in the summer), 90% of the coal demand, and over 45% of the residual fuel oil demand, the wholesale electricity price in New England decreased by 38% mainly because the delivered natural gas price

Nagurney, Anna

214

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

215

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect (OSTI)

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

216

Operating experience with a liquid-hydrogen fueled Buick and refueling system  

SciTech Connect (OSTI)

An investigation of liquid-hydrogen storage and refueling systems for vehicular applications was made in a recently completed project. The vehicle used in the project was a 1979 Buick Century sedan with a 3.8-L displacement turbocharged V6 engine and an automatic transmission. The vehicle had a fuel economy for driving in the high altitude Los Alamos area that was equivalent to 2.4 km/L of liquid hydrogen or 8.9 km/L of gasoline on an equivalent energy basis. About 22% less energy was required using hydrogen rather than gasoline to go a given distance based on the Environmental Protection Agency estimate of 7.2 km/L of gasoline for this vehicle. At the end of the project the engine had been operated for 138 h and the car driven 3633 km during the 17 months that the vehicle was operated on hydrogen . Two types of onboard liquid-hydrogen storage tanks were tested in the vehicle: the first was an aluminum Dewar with a liquid-hydrogen capacity of 110 L; the second was a Dewar with an aluminum outer vessel, two copper vapor-cooled thermal radiation shields, and a stainless steel inner vessel with a liquid-hydrogen capacity of 155 L. The Buick had an unrefueled range of about 274 km with the first liquid-hydrogen tank and about 362 km with the second. The Buick was fueled at least 65 times involving a minimum of 8.1 kL of liquid hydrogen using various liquid-hydrogen storage Dewars at Los Alamos and a semiautomatic refueling station. A refueling time of nine minutes was achieved, and liquid hydrogen losses during refueling were measured. The project has demonstrated that liquid-hydrogen storage onboard a vehicle, and its refueling, can be accomplished over an extended period without any major difficulties; nevertheless, appropriate testing is still needed to quantitatively address the question of safety for liquid-hydrogen storage onboard a vehicle.

Stewart, W.F.

1982-01-01T23:59:59.000Z

217

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

Gerald P. Huffman

2004-09-30T23:59:59.000Z

218

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.9 Market Transformation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and Standards Multi-YearMarket

219

Essays on Efficiency of the Farm Credit System and Dynamic Correlations in Fossil Fuel Markets  

E-Print Network [OSTI]

Markets have always changed in response to either exogenous or endogenous shocks. Many large events have occurred in financial and energy markets the last ten years. This dissertation examines market behavior and volatility in agricultural credit...

Dang, Trang Phuong Th 1977-

2012-11-28T23:59:59.000Z

220

Commercialization of coal to liquids technology  

SciTech Connect (OSTI)

After an overview of the coal market, technologies for producing liquids from coal are outlined. Commercialisation of coal-to-liquid fuels, the economics of coal-to-liquids development and the role of the government are discussed. Profiles of 8 key players and the profiles of 14 projects are finally given. 17 figs., 8 tabs.

NONE

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

222

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

223

Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels  

DOE Patents [OSTI]

A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

2013-04-30T23:59:59.000Z

224

Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels  

SciTech Connect (OSTI)

). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

2011-06-01T23:59:59.000Z

225

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

SciTech Connect (OSTI)

Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

2014-01-29T23:59:59.000Z

226

Catalyst and process for converting synthesis gas to liquid motor fuels  

DOE Patents [OSTI]

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1987-01-01T23:59:59.000Z

227

Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography  

E-Print Network [OSTI]

Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X understanding of the two-phase flow and flooding occurrence in proton exchange membrane PEM fuel cells. We have as ice formation during cold start of PEM fuel cells. The water present in these porous layers

228

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations  

SciTech Connect (OSTI)

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize food versus fuel concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-01-01T23:59:59.000Z

229

Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982  

SciTech Connect (OSTI)

The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

none,

1982-01-01T23:59:59.000Z

230

Market Transformation  

Fuel Cell Technologies Publication and Product Library (EERE)

This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

231

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

232

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II:

233

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA): Quarter 4 2013 Composite Data Products  

SciTech Connect (OSTI)

This report includes the composite data products (CDPs) for early fuel cell market deployments in quarter 4 of 2013. Results are presented for ARRA (projects funded by the American Recovery and Reinvestment Act of 2009 [ARRA]) and Combined (projects funded by DOE Interagency Agreements [IAA], Department of Defense Defense Logistics Agency [DLA], and ARRA).

Kurtz, J.; Sprik, S.

2014-06-01T23:59:59.000Z

234

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 3 2012 Composite Data Products  

SciTech Connect (OSTI)

This report from the U.S. Department of Energy's National Renewable Energy Laboratory includes early fuel cell market composite data products for the third quarter of 2012 for American Recovery and Reinvestment Act (ARRA) and combined (IAA, DLA, ARRA) deployment projects.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.

2013-01-01T23:59:59.000Z

235

The potential utilization of nuclear hydrogen for synthetic fuels production at a coaltoliquid facility / Steven Chiuta.  

E-Print Network [OSTI]

??The production of synthetic fuels (synfuels) in coaltoliquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

236

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS  

SciTech Connect (OSTI)

Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

Fox, E.

2012-05-01T23:59:59.000Z

237

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

SciTech Connect (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

238

Liquid fuels production from biomass. Progress report No. 10, October 1-December 31, 1979  

SciTech Connect (OSTI)

It was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe Electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. A coenzyme M analogue, 2-bromoethanesulfonic acid has been shown to be an effective suppressor of methane in nonsterile anaerobic fermentation of cellulosic substrates. Preliminary experiments have also been completed utilizing corn meal in which 2-bromoethanesulfonic acid and carbon monoxide were both found to be effective methane suppressors. An analysis of the energy outputs and requirements for the production of liquid hydrocarbon fuel from corn has been performed. As a means of expanding the number of potential substrates, pretreatment schemes are being investigated. A tapered auger device has been designed and built which has been demonstrated on the bench to be effective for adding substrate and removing residue in a continuous manner from a fixed packed bed fermenter. A solvent extractor system using kerosene as the nonaqueous phase has been constructed and is currently in operation in series with the 300 liter fixed packed bed fermenter. Although additional work is required to optimize the electrolysis process, the electrolytic oxidation of organic acids produced in the 300 liter fixed packed bed fermenter is operating with a favorable energy balance of 6/1 based on the applied potential.

Sanderson, J.E.; Levy, P.F.; Wise, D.L.; Nabor, M.R.; Molyneaux, M.S.; Hughes, C.A.

1980-02-01T23:59:59.000Z

239

LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS  

SciTech Connect (OSTI)

Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

G. L. Hawkes; J. E. O'Brien; M. G. McKellar

2011-11-01T23:59:59.000Z

240

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2004-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

Gerald P. Huffman

2005-03-31T23:59:59.000Z

242

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an National Carbon Capture Center at ,i This LA:UR- $-3233To Be

243

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network [OSTI]

on the adoption of alternative fuel vehicles: the case ofProgress in Acquiring Alternative Fuel Vehicles and Reachingavailability to choice of alternative fuels and vehicles.

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

244

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983  

SciTech Connect (OSTI)

Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

245

Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications  

SciTech Connect (OSTI)

Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

1985-01-01T23:59:59.000Z

246

Direct conversion of light hydrocarbon gases to liquid fuel. Final report No. 33  

SciTech Connect (OSTI)

Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

Kaplan, R.D.; Foral, M.J.

1992-05-16T23:59:59.000Z

247

Liquid fuels from co-processing coal with bitumen or heavy oil: A review  

SciTech Connect (OSTI)

Coal, bitumen and heavy oil (and various pitches, resids, etc.) are similar in that they require more substantial treatment than does conventional light oil to yield useful liquid fuels. The authors provide a brief and selective review of technologies for liquefying coal, followed by consideration of co-processing coal with bitumen/heavy oil. Such co-processing may be considered as use of bitumen/heavy oil as a solvent and/or hydrogen donor in liquefaction of coal, or as the use of coal to aid upgrading bitumen/heavy oil.

Moschopedis, S.E.; Hepler, L.G.

1987-01-01T23:59:59.000Z

248

Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.  

SciTech Connect (OSTI)

Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

Folk, Richard L.; Govett, Robert L.

1992-07-01T23:59:59.000Z

249

Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael Mitchell, Dilip Natarajan, Larry J. Markoski, and  

E-Print Network [OSTI]

Letters Microfluidic Hydrogen Fuel Cell with a Liquid Electrolyte Ranga S. Jayashree, Michael and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates

Kenis, Paul J. A.

250

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

Gerald P. Huffman

2006-03-30T23:59:59.000Z

251

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components  

SciTech Connect (OSTI)

Management of liquid water is critical for optimal fuel-cell operation, especially at low temperatures. It is therefore important to understand the wetting properties and water holdup of the various fuel-cell layers. While the gas-diffusion layer is relatively hydrophobic and exhibits a strong intermediate wettability, the catalyst layer is predominantly hydrophilic. In addition, the water content of the ionomer in the catalyst layer is lower than that of the bulk membrane, and is affected by platinum surfaces. Liquid-water removal occurs through droplets on the surface of the gas-diffusion layer. In order to predict droplet instability and detachment, a force balance is used. While the pressure or drag force on the droplet can be derived, the adhesion or surface-tension force requires measurement using a sliding-angle approach. It is shown that droplets produced by forcing water through the gas-diffusion layer rather than placing them on top of it show much stronger adhesion forces owing to the contact to the subsurface water.

Das, Prodip K.; Gunterman, Haluna P.; Kwong, Anthony; Weber, Adam Z.

2011-09-23T23:59:59.000Z

252

C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN  

SciTech Connect (OSTI)

The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

Gerald P. Huffman

2003-09-30T23:59:59.000Z

253

Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsins Fuel Choice  

Broader source: Energy.gov [DOE]

Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

254

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

SciTech Connect (OSTI)

The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

Melaina, M.; Bremson, J.; Solo, K.

2013-01-01T23:59:59.000Z

255

C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen  

SciTech Connect (OSTI)

Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

Gerald P. Huffman

2003-03-31T23:59:59.000Z

256

Fuel Cells Market Exceeds $1.3 Billion in Worldwide Sales | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen

257

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.Double | DepartmentofContinues Strong Growth |

258

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. |Technologies on a

259

Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2

260

Modelling the Effects of Nuclear Fuel Reservoir Operation in a Competitive Electricity Market  

E-Print Network [OSTI]

In many countries, the electricity systems are quitting the vertically integrated monopoly organization for an operation framed by competitive markets. In such a competitive regime one can ask what the optimal management ...

Lykidi, Maria

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Safeguards and security concept for the Secure Automated Fabrication (SAF) and Liquid Metal Reactor (LMR) fuel cycle, SAF line technical support  

SciTech Connect (OSTI)

This report is a safeguards and security concept system review for the secure automated fabrication (SAF) and national liquid metal reactor (LMR) fuel programs.

Schaubert, V.J.; Remley, M.E.; Grantham, L.F.

1986-02-21T23:59:59.000Z

262

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect (OSTI)

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

263

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

E-Print Network [OSTI]

Time period Pre 07/2008 Lighting Technology (Nightly Cost,2 Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity

Johnstone, Peter

2009-01-01T23:59:59.000Z

264

2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,Emissions from anFUEL CELL

265

Energy Conservation Potential in Natural Gas Fueled Reciprocating Engines - A Preliminary Market Evaluation  

E-Print Network [OSTI]

A study was undertaken of the usage rates of both fuel and lubricants in reciprocating engines fueled with natural gas. The study was conducted to determine the potential for energy conservation, if use is made of more fuel efficient natural gas...

Johnson, D. M.

1979-01-01T23:59:59.000Z

266

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

267

Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdf Flash2010-57.pdfDepartment(Fact6:21Education |DepartmentFuel

268

The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds FamiliesDepartment ofTheMODELCell

269

2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryofof9Fourth Annual

270

Fuel Cell Project Selected for First Ever Technology-to-Market SBIR Award |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdf Flash2010-72.pdfAccomplishments | DepartmentWolfinger,Financing forSummit

271

The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe Facts on GasThe

272

ITP Industrial Distributed Energy: Combined Heat and Power Market Potential for Opportunity Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | The U.S. Power

273

Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National2This report is a work

274

U.S. Fuel Cell Market Production and Deployment Continues Strong Growth |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office of CivilEnergy U.S.ofDepartment of

275

Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same  

DOE Patents [OSTI]

Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

2011-01-11T23:59:59.000Z

276

Market driven strategy for acquisition of waste acceptance and transportation services for commercial spent fuel in the United States  

SciTech Connect (OSTI)

The Department of Energy has the responsibility for the shipment of spent nuclear fuel (SNF) from commercial reactors to a Federal facility for storage and/or disposal. DOE has developed a strategy for a market driven approach for the acquisition of transportation services and equipment which will maximize the participation of private industry. To implement this strategy, DOE is planning to issue a Request for Proposal (RFP) for the provision of the required services and equipment to accept SNF from the utilities and transport the SNF to a Federal facility. The paper discusses this strategy and describes the RFP.

Lemeshewky, W.; Macaluso, C.; Smith, P. [Dept. of Energy, Washington, DC (United States); Teer, B. [JAI Corp., Fairfax, VA (United States)

1998-05-01T23:59:59.000Z

277

Conforming Secondary Markets Models, Examples | Department of...  

Broader source: Energy.gov (indexed) [DOE]

secondarymarketmodelsexamples.pdf More Documents & Publications Creating Liquidity for Energy Efficiency Loans in Secondary Markets EECBG Creating Liquidity for Energy...

278

Commercialization of Coal-to-Liquids Technology  

SciTech Connect (OSTI)

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

279

Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets Adoption and Growth  

Broader source: Energy.gov [DOE]

Presentation given by Greater Washington Region Clean Cities Coalition at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

280

Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets in Florida  

Broader source: Energy.gov [DOE]

Presentation given by University of Central Florida at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing...

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Secretary Chu Announces $41.9 Million to Spur Growth of Fuel Cell Markets |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1toHeavy-Duty TrucksDepartment of

282

Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cellHeat Transfer in GEoperation inHeavy

283

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThe Office ofScience| Department| Department

284

Geography of Existing and Potential Alternative Fuel Markets in the United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011 Venezia, Italia ResultsGeography of

285

MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents & Publications Lumens Placard (Green) .M E M O R:.

286

A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass  

SciTech Connect (OSTI)

The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

Agrawal, Rakesh

2014-02-21T23:59:59.000Z

287

Vehicle Technologies Office Merit Review 2014: Southeast Regional Alternative Fuels Market Initiatives Program  

Broader source: Energy.gov [DOE]

Presentation given by Center for Transportation and the Environment, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

288

Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine  

E-Print Network [OSTI]

There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

Cedrone, Kevin David

2010-01-01T23:59:59.000Z

289

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network [OSTI]

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

290

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

For example, San Diego has installed 2.4 megawatts of fuel cells and is using purified biogas from the Point Loma wastewater treatment plant to generate clean electricity for the...

291

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1  

SciTech Connect (OSTI)

Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

292

Liquid-Water Uptake and Removal in PEM Fuel-Cell Components  

E-Print Network [OSTI]

Uptake and Removal in PEM Fuel-Cell Components Prodip K. DasWater management in PEM fuel cells is critical for optimumof droplet dynamics in PEM fuel-cell gas flow channels has

Das, Prodip K.

2013-01-01T23:59:59.000Z

293

Evaporation Characteristics of a Liquid Bio-Fuel from Chicken Litter .  

E-Print Network [OSTI]

??Alternative fuels are becoming more important as fossil fuels become more expensive. This thesis describes the production and properties of a bio-oil produced from waste (more)

Tolonen, Erik

2013-01-01T23:59:59.000Z

294

Modifying woody plants for efficient conversion to liquid and gaseous fuels  

SciTech Connect (OSTI)

The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

1990-07-01T23:59:59.000Z

295

Direct conversion of methane to C sub 2 's and liquid fuels  

SciTech Connect (OSTI)

The objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. The behavior of alkaline earth/metal oxide/halide catalysts containing strontium was found to be different from the behavior of catalysts containing barium. Two approaches were pursued to avoid the heterogeneous/homogeneous mechanism in order to achieve higher C{sub 2} selectivity/methane conversion combinations. One approach was to eliminate or minimize the typical gas phase combustion chemistry and make more of the reaction occur on the surface of the catalyst by using silver. Another approach was to change the gas phase chemistry to depart from the typical combustion reaction network by using vapor-phase catalysts. The layered perovskite K{sub 2}La{sub 2}Ti{sub 3}O{sub 10} was further studied. Modifications of process and catalyst variables for LaCaMnCoO{sub 6} catalysts resulted in catalysts with superior performance. Results obtained with a literature catalyst Na{sub 2}CO{sub 3}/Pr{sub 6}O{sub 11} were better than those obtained with NaCO{sub 3}/Pr-Ce oxide or Na{sub 2}CO{sub 3}/Ag-Pr-Ce oxide. 52 refs., 15 figs., 9 tabs.

Warren, B.K.; Campbell, K.D.; Matherne, J.L.; Kinkade, N.E.

1990-03-12T23:59:59.000Z

296

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect (OSTI)

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

297

A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder

298

Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-Duty Diesel

299

Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects  

SciTech Connect (OSTI)

Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

NONE

1998-05-01T23:59:59.000Z

300

Biogas to Liquid Fuels and Chemicals Presentation for BETO 2015 Project Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel Cells Workshop,

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin  

Broader source: Energy.gov [DOE]

NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

302

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2  

SciTech Connect (OSTI)

Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

303

Experimental Investigation of the Effects of Fuel Aging on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-Ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid is a renewable fuel for stationary heat and power generation; however degradation of bio-oil by time, a.k.a. aging, has an impact (more)

Zarghami-Tehran, Milad

2012-01-01T23:59:59.000Z

304

Experimental Investigation of the Effects of Fuel Properties on Combustion Performance and Emissions of Biomass Fast Pyrolysis Liquid-ethanol Blends in a Swirl Burner.  

E-Print Network [OSTI]

??Biomass fast pyrolysis liquid, also known as bio-oil, is a promising renewable fuel for heat and power generation; however, implementing crude bio-oil in some current (more)

Moloodi, Sina

2011-01-01T23:59:59.000Z

305

Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

306

One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels  

DOE Patents [OSTI]

The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.

Sen, Ayusman; Yang, Weiran

2014-03-18T23:59:59.000Z

307

Development of remote disassembly technology for liquid-metal reactor (LMR) fuel  

SciTech Connect (OSTI)

A major objective of the Consolidated Fuel Reprocessing Program (CFRP) is to develop equipment and demonstrate technology to reprocess fast breeder reactor fuel. Experimental work on fuel disassembly cutting methods began in the 1970s. High-power laser cutting was selected as the preferred cutting method for fuel disassembly. Remotely operated development equipment was designed, fabricated, installed, and tested at Oak Ridge National Laboratory (ORNL). Development testing included remote automatic operation, remote maintenance testing, and laser cutting process development. This paper summarizes the development work performed at ORNL on remote fuel disassembly. 2 refs., 1 fig.

Bradley, E.C.; Evans, J.H.; Metz, C.F. III; Weil, B.S.

1990-01-01T23:59:59.000Z

308

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMoving AwayAvailability of Feedstock

309

Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids  

SciTech Connect (OSTI)

This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony; ,

2012-04-13T23:59:59.000Z

310

EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EISStatement |This EIS evaluates thein(HECA)CycleCounty,

311

Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhenJulyBadges atEnergyVehicles

312

Biomass and Coal into Liquid Fuel with CO2 Capture - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuelHelpBiologyB I I O O m m a

313

Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels  

DOE Patents [OSTI]

The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

Wang, Yong (Richland, WA), Liu; Wei (Richland, WA)

2012-01-24T23:59:59.000Z

314

Algae: The Source of Reliable, Scalable, and Sustainable Liquid Transportation Fuels  

Broader source: Energy.gov [DOE]

At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Brian Goodall (Sapphire Energy) spoke on Continental Airlines January 7th Biofuels Test. The flight was fueled, in part, by Sapphires algae-based jet fuel.

315

Near-field dispersal modeling for liquid fuel-air explosives  

SciTech Connect (OSTI)

The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

Gardner, D.R.

1990-07-01T23:59:59.000Z

316

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

SciTech Connect (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

317

Marketing and Market Transformation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident Tolerant Fuel:Market Transformation Marketing

318

Environmental and economic tradeoffs of feedstock usage for liquid fuels and power production  

E-Print Network [OSTI]

The thesis is divided into two parts - 1) assessing the energy return on investment for alternative jet fuels, and 2) quantifying the tradeoffs associated with the aviation and non-aviation use of agricultural residues. ...

Trivedi, Parthsarathi

2014-01-01T23:59:59.000Z

319

High-energy-density solid and liquid hydrocarbon fuels. Final report, July 1987-December 1988  

SciTech Connect (OSTI)

The development of new high-energy hydrocarbon fuels for use in air-breathing missiles has been the objective of a number of investigations which have received support during the past decade through programs sponsored by the Air Force Systems Command and/or the Naval Air Systems Command. The key characteristics which must be met by potential cruise missile fuels have been described by Burdette and coworkers. A primary requirement in this regard is that candidate fuels must possess high net volumetric heat of combustion (preferably greater than 160,000 BTU/gallon). In order to meet the primary requirement of high net volumetric heat of combustion, hydrocarbon systems have been sought which maximize the ratio of carbon-atom to hydrogen-atom content have been sought that maximize the ratio n/m.(JES)

Marchand, A.P.

1989-02-01T23:59:59.000Z

320

What We've Learned from 2.5 Years of Early Market Fuel Cell Operation (Presentation)  

SciTech Connect (OSTI)

This presentation describes the results of NREL technology assessments for two early market full cell applications, backup power and material handling equipment.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method of removing Pu(IV) polymer from nuclear fuel reclaiming liquid  

DOE Patents [OSTI]

A Pu(IV) polymer not extractable from a nuclear fuel reclaiming solution by conventional processes is electrolytically converted to Pu.sup.3+ and PuO.sub.2.sup.2+ ions which are subsequently converted to Pu.sup.4+ ions extractable by the conventional processes.

Tallent, Othar K. (Oak Ridge, TN); Mailen, James C. (Oak Ridge, TN); Bell, Jimmy T. (Kingston, TN); Arwood, Phillip C. (Harriman, TN)

1982-01-01T23:59:59.000Z

322

FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect (OSTI)

Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-09-12T23:59:59.000Z

323

Coliquefaction of coal and black liquor to environmentally acceptable liquid fuels  

SciTech Connect (OSTI)

Previous work in the laboratories has demonstrated that addition to lignin to coal during liquefaction significantly increases the depolymerization of coal and enhances the quality of the liquid products. It is believed that thermolysis of the lignin results in the formation of phenoxyl and other reactive radicals at temperatures too low for significant thermolysis of the coal matrix; such radicals are effective and active intermediates that depolymerize coal by cleaving methylene bridges. It has been reported that alkali is also effective for extraction of liquids from coal. The work presented here combines these two reactive agents by utilizing the black liquor waste stream from the Kraft pulping process for coal depolymerization. That waste stream contains large amounts of lignin and sodium hydroxide, as well as other components. To permit comparative evaluations of the extent of coal depolymerization by coprocessing coal and black liquor, reference runs were performed with tetralin alone, sodium hydroxide in tetralin, and lignin in tetralin. Results indicated that the sodium hydroxide-tetralin system resulted in almost 67% conversion at 375 C, 1 hour. The black liquor system exhibited a lower conversion of 60%, indicating some inhibition of the depolymerization reactions by components in the black liquor.

Kim, J. [Korea Inst. of Energy Research, Taejon (Korea, Republic of); Lalvani, S.B.; Muchmore, C.B.; Akash, B.A. [Southern Illinois Univ., Carbondale, IL (United States)

1999-11-01T23:59:59.000Z

324

EECBG Creating Liquidity for Energy Efficiency Loans in Secondary...  

Broader source: Energy.gov (indexed) [DOE]

EECBG Creating Liquidity for Energy Efficiency Loans in Secondary Markets (Text Version) EECBG Creating Liquidity for Energy Efficiency Loans in Secondary Markets (Text Version)...

325

Photoacoustically Measured Speeds of Sound of Liquid HBO2: On Unlocking the Fuel Potential of Boron  

SciTech Connect (OSTI)

Elucidation of geodynamic, geochemical, and shock induced processes is often limited by challenges to accurately determine molecular fluid equations of state (EOS). High pressure liquid state reactions of carbon species underlie physiochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. Here we introduce a versatile photoacoustic technique developed to measure accurate and precise speeds of sound (SoS) of high pressure molecular fluids and fluid mixtures. SoS of an intermediate boron oxide, HBO{sub 2} are measured up to 0.5 GPa along the 277 C isotherm. A polarized Exponential-6 interatomic potential form, parameterized using our SoS data, enables EOS determinations and corresponding semi-empirical evaluations of > 2000 C thermodynamic states including energy release from bororganic formulations. Our thermochemical model propitiously predicts boronated hydrocarbon shock Hugoniot results.

Bastea, S; Crowhurst, J; Armstrong, M; ., N T

2010-03-24T23:59:59.000Z

326

Evaluation of coal-derived liquids as boiler fuels. Volume 3. Emissions test results. Final report  

SciTech Connect (OSTI)

A combustion demonstration using six coal-derived fuels was conducted on a utility boiler located at the plant, Sweatt Electric Generating Station of Mississippi Power Company, in Meridian, Mississippi. Volume 1, of a 5 volume report, contains a comprehensive report of the whole test program - see abstract of Volume 1 for a detailed abstract of the whole program. Volume 3 contains detailed emissions testing results. 41 figs., 6 tabs. (LTN)

Not Available

1985-09-01T23:59:59.000Z

327

Syngas production from heavy liquid fuel reforming in inert porous media  

E-Print Network [OSTI]

-up), but it will still show a significant efficiency advantage [2]. Eventually, when fuel cells and hydrogen demand will build up, a switch can be made to central hydrogen production, by using fossil sources with CO2 sequestration and finally by the use of low carbon... requirements: Hydrogen production levels smaller than those in chemical plants; Severe constraints on size and weight; Ability to cycle through frequent start-ups and shutdowns; Hydrogen production rate should be responsive to changes in demand...

Pastore, Andrea

2010-11-16T23:59:59.000Z

328

Assessment of coal liquids as refinery feedstocks  

SciTech Connect (OSTI)

The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

329

Assessment of coal liquids as refinery feedstocks  

SciTech Connect (OSTI)

The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

Zhou, P.

1992-02-01T23:59:59.000Z

330

Review of the SIMMER-II analyses of liquid-metal-cooled fast breeder reactor core-disruptive accident fuel escape  

SciTech Connect (OSTI)

Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. This paper presents a review of analyses with the SIMMER-II computer program of the effectiveness of possible fuel escape paths. Where possible, how SIMMER-II compares with or is validated against experiments that simulated the escape paths also is discussed.

DeVault, G.P.; Bell, C.R.

1985-01-01T23:59:59.000Z

331

Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report  

SciTech Connect (OSTI)

A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

None

1980-01-01T23:59:59.000Z

332

E-Print Network 3.0 - alternative fuel light Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CELL TECHNOLOGIES MARKET REPORT Summary: , soldier power and light electric vehicles. SFC markets its fuel cells for the leisure markets under... 2008 FUEL CELL TECHNOLOGIES MARKET...

333

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 Clean Cities90Date:

334

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

335

Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck  

SciTech Connect (OSTI)

A 2002 Cummins ISM engine was modified to be optimized for operation on gas-to-liquid (GTL) fuel and advanced emission control devices. The engine modifications included increased exhaust gas recirculation (EGR), decreased compression ratio, and reshaped piston and bowl configuration.

Alleman, T. L.; Tennant, C. J.; Hayes, R. R.; Miyasato, M.; Oshinuga, A.; Barton, G.; Rumminger, M.; Duggal, V.; Nelson, C.; Ray, M.; Cherrillo, R. A.

2005-11-01T23:59:59.000Z

336

Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model  

E-Print Network [OSTI]

Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

Supple, Derek R. (Derek Richard)

2007-01-01T23:59:59.000Z

337

Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum  

SciTech Connect (OSTI)

The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

Jain, M.K.

1991-01-01T23:59:59.000Z

338

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

SciTech Connect (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

339

"An Economic Process for Coal Liquefaction to Liquid Fuels" SBIR Phase II -- Final Scientific/Technical Report  

SciTech Connect (OSTI)

The current commercial processes for direct coal liquefaction utilize expensive backmix-flow reactor system and conventional catalysts resulting in incomplete and retrogressive reactions that produce low distillate liquid yield and high gas yield, with high hydrogen consumption. The new process we have developed, which uses a less expensive reactor system and highly active special catalysts, resulted in high distillate liquid yield, low gas yield and low hydrogen consumption. The new reactor system using the special catalyst can be operated smoothly for direct catalytic coal liquefaction. Due to high hydrogenation and hydrocracking activities of the special catalysts, moderate temperatures and high residence time in each stage of the reactor system resulted in high distillate yield in the C{sub 4}-650{degrees}F range with no 650{degrees}F{sup +} product formed except for the remaining unconverted coal residue. The C{sub 4}-650{degrees}F distillate is more valuable than the light petroleum crude. Since there is no 650{degrees}F{sup +} liquid product, simple reforming and hydrotreating of the C{sub 4}-650{degrees}F product will produce the commercial grade light liquid fuels. There is no need for further refinement using catalytic cracking process that is currently used in petroleum refining. The special catalysts prepared and used in the experimental runs had surface area between 40-155 m{sup 2}/gm. The liquid distillate yield in the new process is >20 w% higher than that in the current commercial process. Coal conversion in the experimental runs was moderate, in the range of 88 - 94 w% maf-coal. Though coal conversion can be increased by adjustment in operating conditions, the purpose of limiting coal conversion to moderate amounts in the process was to use the remaining unconverted coal for hydrogen production by steam reforming. Hydrogen consumption was in the range of 4.0 - 6.0 w% maf-coal. A preliminary economic analysis of the new coal liquefaction process was carried out by comparing the design and costs of the current commercial plant of the Shenhua Corporation in Erdos, Inner Mongolia. The cost of producing synthetic crude oil from coal in the current commercial process was estimated to be $50.5 per barrel compared to the estimated cost of $41.7 per barrel in the new process. As mentioned earlier, the light distillate product in the new process is of higher quality and value than the C{sub 4}-975{degrees}F product in the current commercial process adopted by the Shenhua Corporation. In sum, the new coal liquefaction process is superior and less capital intensive to current commercial process, and has a high potential for commercialization.

Ganguli, Partha Sarathi

2009-02-19T23:59:59.000Z

340

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

SciTech Connect (OSTI)

The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

2009-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England  

E-Print Network [OSTI]

Management Isenberg School of Management University of Massachusetts Amherst, Massachusetts 01003 August 2007, with a total of 573 generating units, and 10 demand market regions. The empirical case study demonstrates variations. The empirical examples illustrate that both the generating unit responsiveness and the electric

Nagurney, Anna

342

Vehicle Technologies Office Merit Review 2014: Removing Barriers, Implementing Policies and Advancing Alternative Fuels Markets in New England  

Broader source: Energy.gov [DOE]

Presentation given by Greater Portland Council of Governments at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

343

Tiger Teams Provide Coalitions Technical and Market Assistance. Clean Cities Alternative Fuel Information Series, Tiger Teams Technical Assistance Fact Sheet.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1A:decisional. 1 B O N N E V I L L E P O W

344

Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar AprDecadeYearMarketed

345

Alaska--onshore Natural Gas Marketed Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb Mar AprCubicGrossMarketed

346

Calif--onshore Natural Gas Marketed Production (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesm 3 (D CD ^Marketed Production

347

Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration  

E-Print Network [OSTI]

Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air PEM fuel cell systems fuelled by steam reformed methanol. Various fuel cell system solutions exist, they mainly differ depending on the desired fuel used. High temperature PEM (HTPEM) fuel cells offer

Berning, Torsten

348

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

349

Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading  

SciTech Connect (OSTI)

A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

2014-09-15T23:59:59.000Z

350

Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications  

SciTech Connect (OSTI)

PNNLs objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNLs Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

Ronnebro, Ewa

2012-06-16T23:59:59.000Z

351

E-Print Network 3.0 - aftermarket fuel delivery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lands (CEMML) Collection: Environmental Management and Restoration Technologies 6 CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT Summary: CALIFORNIA ALTERNATIVE FUELS MARKET...

352

Winter fuels report, week ending February 12, 1993. [Contains Glossary and feature article on Midwest Propane Markets  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD'S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1993-02-18T23:59:59.000Z

353

Pulsed DD Neutron Generator Measurements for HEU Oxide Fuel Pins Using Liquid Scintillators with Pulse Shape Discrimination  

E-Print Network [OSTI]

measurements have been performed on high-enriched uranium (HEU) oxide fuel pins and depleted uranium metal

Pennycook, Steve

354

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

SciTech Connect (OSTI)

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

355

Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells  

E-Print Network [OSTI]

22 November 2013 Accepted 24 December 2013 Keywords: Fuel cells PEM Diffusion Saturation Neutron than 0.15 gPt kW?1 will not be cost competitive. As a result, fuel cell researchers are exploring fuel cells Jon P. Owejan a,b, , Thomas A. Trabold c , Matthew M. Mench b a SUNY Alfred State College

Mench, Matthew M.

356

Fraud-on-the-Market Actions Against Foreign Issuers  

E-Print Network [OSTI]

42 4. Corporate Governance and Liquidity Arguments forImprove Corporate Governance and Liquidity . . . . . . . .market suits are a corporate governance device. This Article

Fox, Merritt B.

2009-01-01T23:59:59.000Z

357

California (with State Offshore) Natural Gas Liquids Lease Condensate,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesm 3 (D CD ^MarketedProved Reserves

358

California (with State Offshore) Natural Gas Liquids Lease Condensate,  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesm 3 (D CD ^MarketedProved

359

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

360

Rapid prediction of various physical properties for middle distillate fuel utilizing directly coupled liquid chromatography//sup 1/H nuclear magnetic resonance  

SciTech Connect (OSTI)

A group property approach has been developed to predict 17 physical properties of middle distillate (e.g., jet and diesel) fuels from experimentally derived liquid chromatography//sup 1/H nuclear magnetic resonance (LC//sup 1/H NMR) data. In the LC//sup 1/H NMR technique, the fuel is separated according to chemical class and the average molecular structure for each chemical class is then calculated. These average molecular structures form a basis set to predict the physical properties of the fuel. The physical properties that can be obtained in this manner are cetane number, cetane index, density, specific gravity, pour point, flash point, viscosity, filterability, heat of combustion, cloud point, volume percent aromatics, residual carbon content, and the initial, 10%, 50%, 90%, and end boiling points. Fourteen of the correlation coefficients for the predictions are better than 0.90 with 11 of the predictions falling either within or approximately equal to the ASTM method reproducibility for the measurement of the fuel property. The present method also provides chemical insight concerning the influence of chemical structural changes on the physical properties of the fuel as well as requiring much less analysis time and sample volume than corresponding ASTM methods.

Caswell, K.A.; Glass, T.E.; Swann, M.; Dorn, H.C.

1989-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2007-01-01T23:59:59.000Z

362

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2010-01-01T23:59:59.000Z

363

Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities  

DOE Patents [OSTI]

Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

Dumesic, James A. (Verona, WI); Ruiz, Juan Carlos Serrano (Madison, WI); West, Ryan M. (Madison, WI)

2012-04-03T23:59:59.000Z

364

Effect of in-cylinder liquid fuel films on engine-out unburned hydrocarbon emissions for SI engines  

E-Print Network [OSTI]

Nearly all of the hydrocarbon emissions from a modern gasoline-fueled vehicle occur when the engine is first started. One important contributing factor to this is the fact that, during this time, temperatures throughout ...

Costanzo, Vincent S. (Vincent Stanley), 1979-

2011-01-01T23:59:59.000Z

365

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel-cell vehicles: Mobile Electricity" technologies andFuel-Cell Vehicles: Mobile Electricity Technologies, EarlyFuel-Cell Vehicles: Mobile Electricity Technologies, Early

Williams, Brett D

2010-01-01T23:59:59.000Z

366

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

Williams, Brett D

2010-01-01T23:59:59.000Z

367

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D

2007-01-01T23:59:59.000Z

368

Coal markets squeeze producers  

SciTech Connect (OSTI)

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

369

Niche Marketing  

E-Print Network [OSTI]

Niche markets are small, specialized markets for goods or services. Agricultural producers have many opportunities for niche marketing, and this strategy can contribute to the profitability of a firm. Examples of niche markets are included...

McCorkle, Dean; Anderson, David P.

2009-05-01T23:59:59.000Z

370

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect (OSTI)

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

371

Dynamic analysis of policy drivers for bioenergy commodity markets  

SciTech Connect (OSTI)

Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from exporter dominance.

Robert F. Jeffers; Jacob J. Jacobson; Erin M. Searcy

2001-01-01T23:59:59.000Z

372

IMIDAZOLE-BASED IONIC LIQUIDS FOR USE IN POLYMER ELECTROLYTE MEMBRANE FUEL CELLS: EFFECT OF ELECTRON-WITHDRAWING AND ELECTRON-DONATING SUBSTITUENTS  

SciTech Connect (OSTI)

Current polymer electrolyte membrane fuel cells (PEMFCs) require humidifi cation for acceptable proton conductivity. Development of a novel polymer that is conductive without a water-based proton carrier is desirable for use in automobiles. Imidazole (Im) is a possible replacement for water as a proton solvent; Im can be tethered to the polymer structure by means of covalent bonds, thereby providing a solid state proton conducting membrane where the solvating groups do not leach out of the fuel cell. These covalent bonds can alter the electron availability of the Im molecule. This study investigates the effects of electron-withdrawing and electron-donating substituents on the conductivity of Im complexed with methanesulfonic acid (MSA) in the form of ionic liquids. Due to the changes in the electronegativity of nitrogen, it is expected that 2-phenylimidazole (2-PhIm, electron-withdrawing) will exhibit increased conductivity compared to Im, while 2-methylimidazole (2-MeIm, electron-donating) will exhibit decreased conductivity. Three sets of ionic liquids were prepared at defi ned molar ratios: Im-MSA, 2-PhIm-MSA, and 2-MeIm- MSA. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 1H-NMR were used to characterize each complex. Impedance analysis was used to determine the conductivity of each complex. Both the 2-PhIm-MSA and 2-MeIm-MSA ionic liquids were found to be less conductive than the Im-MSA complex at base-rich compositions, but more conductive at acid-rich compositions. 1H-NMR data shows a downfi eld shift of the proton on nitrogen in 2-PhIm compared to Im, suggesting that other factors may diminish the electronic effects of the electron withdrawing group at base-rich compositions. Further studies examining these effects may well result in increased conductivity for Im-based complexes. Understanding the conductive properties of Im-derivatives due to electronic effects will help facilitate the development of a new electrolyte appropriate for automotive fuel cell use.

Chang, E.; Fu, Y.; Kerr, J.

2009-01-01T23:59:59.000Z

373

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2007-01-01T23:59:59.000Z

374

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2010-01-01T23:59:59.000Z

375

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2010-01-01T23:59:59.000Z

376

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2007-01-01T23:59:59.000Z

377

Evaluation of Ultra Clean Fuels from Natural Gas  

SciTech Connect (OSTI)

ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.

Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

2006-02-28T23:59:59.000Z

378

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel- cell vehicles: Mobile Electricity" technologies andFuel-Cell Vehicles: Mobile Electricity Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D

2007-01-01T23:59:59.000Z

379

Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls  

SciTech Connect (OSTI)

In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

Rinard, P.M.; Menlove, H.O.

1996-03-01T23:59:59.000Z

380

Liquid Sunshine to Fuel Your Car (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

SciTech Connect (OSTI)

'Liquid Sunshine to Fuel Your Car' was submitted by the Center for Lignocellulose Structure and Formation (CLSF) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CLSF is directed by Daniel Cosgrove at Pennsylvania State University and is a partnership of scientists from three institutions: Penn State (lead), North Caroline State University, and Virginia Tech University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Lignocellulose Structure and Formation is 'to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.' Research topics are: biofuels (biomass), membrane, interfacial characterization, matter by design, and self-assembly.

Cosgrove, Daniel (Director, Center for Lignocellulose Structure and Formation) [Director, Center for Lignocellulose Structure and Formation; CLSF Staff

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Liquid Sunshine to Fuel Your Car (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

ScienceCinema (OSTI)

'Liquid Sunshine to Fuel Your Car' was submitted by the Center for Lignocellulose Structure and Formation (CLSF) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CLSF is directed by Daniel Cosgrove at Pennsylvania State University and is a partnership of scientists from three institutions: Penn State (lead), North Caroline State University, and Virginia Tech University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Lignocellulose Structure and Formation is 'to dramatically increase our fundamental knowledge of the formation and physical interactions of bio-polymer networks in plant cell walls to provide a basis for improved methods for converting biomass into fuels.' Research topics are: biofuels (biomass), membrane, interfacial characterization, matter by design, and self-assembly.

Cosgrove, Daniel (Director, Center for Lignocellulose Structure and Formation); CLSF Staff

2011-11-02T23:59:59.000Z

382

Low-Emissions Burner Technology using Biomass-Derived Liquid...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that developed...

383

Influence of wettability on liquid water transport in gas diffusion layer of proton exchange membrane fuel cells (PEMFC)  

E-Print Network [OSTI]

Water management is a key factor that limits PEFC's performance. We show how insights into this problem can be gained from pore-scale simulations of water invasion in a model fibrous medium. We explore the influence of contact angle on the water invasion pattern and water saturation at breakthrough and show that a dramatic change in the invasion pattern, from fractal to compact, occurs as the system changes from hydrophobic to hydrophilic. Then, we explore the case of a system of mixed wettability, i.e. containing both hydrophilic and hydrophobic pores. The saturation at breakthrough is studied as a function of the fraction of hydrophilic pores. The results are discussed in relation with the water management problem, the optimal design of a GDL and the fuel cell performance degradation mechanisms. We outline how the study could be extended to 3D systems, notably from binarised images of GDLs obtained by X ray microtomography.

Hamza Chraibi; L. Ceballos; M. Prat; Michel Quintard; Alexandre Vabre

2009-09-16T23:59:59.000Z

384

,"Colorado Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbed MethaneLiquids Lease

385

,"Colorado Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural GasMarketedCoalbed MethaneLiquids

386

Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991  

SciTech Connect (OSTI)

The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

Jain, M.K.

1991-12-31T23:59:59.000Z

387

Navigant Market Report 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy -Energy2014 Annual Market

388

Natural Gas Marketed Production  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 WeekMarket Centers

389

Articles about Market Transformation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034C.Marketing LLC:Area1 Articles about

390

Market Transformation Fact Sheet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA: CommentsEnergy 13,Combined Heat &Market

391

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

of ASTM specification D6751. Renewable diesel is defined as liquid fuel derived from biomass that meets EPA's fuel registration requirements and ASTM specifications D975 or D396;...

392

Essays on the dynamics of alternative fuel vehicle adoption : insights from the market for hybrid-electric vehicles in the United States  

E-Print Network [OSTI]

Despite growing energy security and environmental concerns about dependence on oil as a transportation fuel, gasoline remains the overwhelmingly dominant fuel used by the US automotive fleet. Numerous previous efforts to ...

Keith, David Ross

2012-01-01T23:59:59.000Z

393

Towards In situ extraction of fine chemicals and biorenewable fuels from fermentation broths using Ionic liquids and the Intensification of contacting by the application of Electric Fields  

E-Print Network [OSTI]

and design new ionic liquids for task specific needs. Solvent selection for in situ fermentation is depended on high solute partitioning and their biocompatibility with the microorganisms. Such information for these new set of solvents, ionic liquids...

Gangu, Satya Aravind

2013-05-31T23:59:59.000Z

394

Market Transformation | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-CostManufacturingMarginalMarket Transformation Market

395

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

Williams, Brett D

2010-01-01T23:59:59.000Z

396

Manufacturing Readiness Assessment for Fuel Cell Stacks and Systems for the Back-up Power and Material Handling Equipment Emerging Markets (Revised)  

SciTech Connect (OSTI)

This report details NREL's activity to address the need to understand the current status and associated risk levels of the polymer electrolyte membrane (PEM) fuel cell industry.

Wheeler, D.; Ulsh, M.

2010-02-01T23:59:59.000Z

397

2025 Power Marketing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025 Power Marketing Initiative The

398

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

The Alternative Fuels Trade Model, ORNL-6771, SeptemberAssessing the Market Benefits of Alternative Motor Fuels Comparison of Cars with Alternative Fuels/Engines, Energy

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

399

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

storage, and initial cost barriersenable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

400

E-Print Network 3.0 - alternative fuels experience Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TECHNOLOGIES MARKET REPORT Summary: -hours (kWh) of experience. The company's presently markets phosphoric acid fuel cell (PAFC) and PEM units... 2008 FUEL CELL TECHNOLOGIES...

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbed Methane ProvedMarketedLiquids

402

,"Federal Offshore--California Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbed Methane ProvedMarketedLiquidsPlant

403

,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbed MethaneMarketed ProductionLiquids

404

,"Federal Offshore--Texas Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry NaturalCoalbed MethaneMarketedCoalbedLiquids

405

Development of a Conceptual Process for Selective CO{sub 2} Capture from Fuel Gas Streams Using [hmim][Tf2N] Ionic Liquid as a Physical Solvent  

SciTech Connect (OSTI)

The Ionic Liquid (IL) [hmim][Tf2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO{sub 2} capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO{sub 2}, H{sub 2}, H{sub 2}S, CO, and CH{sub 4} in this IL were compiled and their binary interaction parameters ({delta}{sub ij} and l{sub ij}) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO{sub 2} solubilities in [hmim][Tf2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO{sub 2} capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO{sub 2} up to 153 bar to the sequestration sites. The compositions of all process streams, CO{sub 2} capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO{sub 2} was captured and sent to sequestration sites; 99.5 mol% of H{sub 2} was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf2N] IL could be used as a physical solvent for CO{sub 2} capture from warm shifted fuel gas streams with high efficiency.

Basha, Omar M.; Keller, Murphy J.; Luebke, David R.; Resnik, Kevin; P Morsi, Badie I.

2013-07-01T23:59:59.000Z

406

Market Transformation  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

Not Available

2008-09-01T23:59:59.000Z

407

Petroleum marketing annual 1994  

SciTech Connect (OSTI)

The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.

NONE

1995-08-24T23:59:59.000Z

408

EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY  

Broader source: Energy.gov [DOE]

This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOEs proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

409

Fuel Cell Technologies Office Launches National Laboratory Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 -...

410

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

411

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Marketing Annual 1995 337 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

412

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

413

Fuel Prices and New Vehicle Fuel Economy in Europe  

E-Print Network [OSTI]

This paper evaluates the effect of fuel prices on new vehicle fuel economy in the eight largest European markets. The analysis spans the years 20022007 and uses detailed vehicle registration and specification data to ...

Klier, Thomas

414

Production of High-Quality Syngas via Biomass Gasification for Catalytic Synthesis of Liquid Fuels Presentation for BETO 2015 Project Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department of

415

Liquid-Liquid Extraction Processes  

E-Print Network [OSTI]

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

416

Essays on equity prices and market structures  

E-Print Network [OSTI]

to contemporaneous returns, and cross-sectional evidence suggests this relationship is likely to be the result of firm-specific information institutions have. Individuals, specialists, and other market makers appear to provide liquidity to these actively trading...

Wu, Juan

2009-05-15T23:59:59.000Z

417

What's happening in Midwest ISO market?  

E-Print Network [OSTI]

attributable to significantly decreased natural gas, oil and coal prices. (fuel costs represent the vast of Presentation Introduction Energy prices in 2006 Day-Ahead Market Performance Real-Time Market Performance;Introduction 2006 is the first full year of market operations in Midwest ISO. Electricity prices in MISO

Tesfatsion, Leigh

418

2012 Vehicle Technologies Market Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2013-03-01T23:59:59.000Z

419

Petroleum Market Model of the National Energy Modeling System. Part 1  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

NONE

1997-12-18T23:59:59.000Z

420

Petroleum marketing monthly  

SciTech Connect (OSTI)

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data.

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Underground Storage Tanks: New Fuels and Compatibility  

Broader source: Energy.gov [DOE]

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

422

A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT  

E-Print Network [OSTI]

Estimating the Market for Home Heating and Cooling EquipmentFuel and Technology Choice in Home Heating and Cooling," LBLTHE MARKET FOR HOME HEATING AND COOLING EQUIPMENT* David

Wood, D.J.

2010-01-01T23:59:59.000Z

423

Marketing and Market Transformation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Market Transformation Marketing and Market Transformation Presents how going green will grow your business, as well as how programs can overcome appraisal challenges....

424

Petroleum marketing monthly  

SciTech Connect (OSTI)

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

NONE

1996-02-01T23:59:59.000Z

425

Petroleum marketing monthly  

SciTech Connect (OSTI)

Petroleum Marketing Monthly (PPM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o. b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

NONE

1996-07-01T23:59:59.000Z

426

Petroleum marketing monthly  

SciTech Connect (OSTI)

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

NONE

1995-08-01T23:59:59.000Z

427

Liquid and solid phase compositions in a partially frozen JP-5 fuel low in n-alkanes. Memorandum report April 1983-January 1984  

SciTech Connect (OSTI)

A JP-5 low in n-alkanes was partially frozen at several temperatures 9 to 15 C below its normal freezing point of -53 C. In spite of their low concentrations in the starting fuel, the n-alkanes were the predominant components in the solid phase crystallizing from the fuel. In this respect, this JP-5 behaves in a fashion similar to other jet fuels which contain 3 to 5 times the amounts of n-alkanes.

Van Winkle, T.L.; Hazlett, R.N.; Beal, E.J.; Mushrush, G.W.

1984-06-27T23:59:59.000Z

428

Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980  

SciTech Connect (OSTI)

The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

1980-01-01T23:59:59.000Z

429

Market Power in Pollution Permit Markets  

E-Print Network [OSTI]

As with other commodity markets, markets for trading pollution permits have not been immune to market power concerns. In this paper, I survey the existing literature on market power in permit trading but also contribute ...

Montero, Juan Pablo

430

Ionic Liquid Pretreatment Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch,IntroducingIonic Liquid Pretreatment EERE

431

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

432

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

433

Prediction of middle-distillate fuel properties using liquid chromatography-proton nuclear magnetic resonance spectroscopy data. Final report, 1987-1988  

SciTech Connect (OSTI)

This research was initiated to support the Army's capability to identify the components of fuels that contribute to low-temperature performance of fuels. It was discovered that various physical properties of middle-distillate fuels can be predicted. The LC-{sup 1}HNMR technique was developed to predict physical properties based on chemical structures present in the fuels. The prediction of properties is approached from a 'group property' point of view. In the group property approach, the structure of the molecule is examined for structural features that dictate the physical properties of the compounds. In other words, the physical properties of a molecule or compound are determined by the number of types of chemical groups, i.e., methyl, methylene, methine, etc., present. These LC-{sup 1}H NMR predicted property measurements were compared to measurements obtained by the ASTM fuel tests. Most measurements were found to be within experimental error. The research has demonstrated that the LC-{sup 1}H NMR approach for measuring various middle-distillate fuel properties can be used as an alternative to the ASTM methods of fuel property measurement.

Swann, M.

1989-06-01T23:59:59.000Z

434

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

435

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Fuel Cell Technologies Office Multi-Year Research,...

436

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

437

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

438

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

439

Petroleum marketing monthly, May 1994  

SciTech Connect (OSTI)

The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

Not Available

1994-05-26T23:59:59.000Z

440

AGING EFFECTS ON THE PROPERTIES OF IMIDAZOLIUM, QUATERNARY AMMONIUM, PYRIDINIUM AND PYRROLIDINIUM-BASED IONIC LIQUIDS USED IN FUEL AND ENERGY PRODUCTION  

SciTech Connect (OSTI)

Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials. Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200?C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.

Fox, E.

2013-08-13T23:59:59.000Z

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Economics and regulation of petroleum futures markets  

SciTech Connect (OSTI)

Because the futures market in petroleum products is a relatively recent phenomenon, the implications of public policies formulated for that market have not yet been fully explored. To provide the Office of Competition of the Department of Energy (DOE) with sufficient information to assess policy alternatives, Resource Planning Associates, Inc. (RPA) was asked to analyze the development of the futures market in No. 2 oil, assess the potential for futures markets in other petroleum products, and identify policy alternatives available to DOE. To perform this analysis, the criteria for a viable futures market was established first. Then, the experience to date with the 18-month-old futures market in No. 2 oil was examined, and the potential for viable futures markets in No. 6 oil, gasoline, jet fuel, and crude oil was assessed. Finally, how existing DOE regulations and prospective actions might affect petroleum futures market development was investigated.

Not Available

1980-08-01T23:59:59.000Z

442

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

443

Prospects for increased low-grade bio-fuels use in home and commercial heating applications  

E-Print Network [OSTI]

Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

Pendray, John Robert

2007-01-01T23:59:59.000Z

444

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S. Energy5.

445

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S. Energy5.+1

446

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.

447

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed Deliveries in

448

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed Deliveries

449

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed Deliveries17.

450

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed

451

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed6a. Uranium

452

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed6a.

453

2013 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed6a.4. Uranium

454

2013 Uranium Marketing Annual Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases2 U.S.Feed6a.4.7.

455

Articles about Market Transformation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034C.Marketing LLC:Area1 Articles aboutMarket

456

MARKETING APPLICATIONS: Tourism Marketing, Pan-European Marketing and Brand Management  

E-Print Network [OSTI]

Syllabus MARKETING APPLICATIONS: Tourism Marketing, Pan-European Marketing and Brand Management Summer 2011 Alicante, Spain Course MARKETING APPLICATIONS: Tourism Marketing, Pan-European Marketing Objectives This course examines three relevant applications of Marketing principles. Tourism Marketing

Escolano, Francisco

457

MARKET BASED APPROACHES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion DemonstratorEastLynn Dahlberg,MARKET

458

Enertech Marketing Services | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy SectorEnertech Marketing Services

459

Durable Fuel Cell Membrane Electrode Assembly (MEA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

potential benefits and have prevented fuel cells from entering the mainstream automobile, portable electronics, and power generation markets in which customers are price...

460

MARKETING APPLICATIONS: International Marketing, Marketing in the EU and Tourism Marketing  

E-Print Network [OSTI]

MARKETING APPLICATIONS: International Marketing, Marketing in the EU and Tourism Marketing Summer Union and Tourism Marketing Professors Juan L. Nicolau. University of Alicante. JL.Nicolau@ua.es María principles: 1) Tourism Marketing, which focuses on the tourism marketing and its singular traits, explores

Escolano, Francisco

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Conversion of hydrocarbons for fuel-cell applications. Part I. Autothermal reforming of sulfur-free and sulfur-containing hydrocarbon liquids. Part II. Steam reforming of n-hexane on pellet and monolithic catalyst beds. Final report  

SciTech Connect (OSTI)

Experimental autothermal reforming (ATR) results obtained in the previous phase of this work with sulfur-free pure hydrocarbon liquids are summarized. Catalyst types and configuration used were the same as in earlier tests with No. 2 fuel oil to facilitate comparisons. Fuel oil has been found to form carbon in ATR at conditions much milder than those predicted by equilibrium. Reactive differences between paraffins and aromatics in ATR, and thus the formation of different carbon precursors, have been shown to be responsible for the observed carbon formation characteristics (fuel-specific). From tests with both light and heavy paraffins and aromatics, it is concluded that high boiling point hydrocarbons and polynuclear aromatics enhance the propensity for carbon formation in ATR. Effects of olefin (propylene) addition on the ATR performance of benzene are described. In ATR tests with mixtures of paraffins and aromatics (n-tetradecane and benzene) synergistic effects on conversion characteristics were identified. Comparisons of the No. 2 fuel oil data with the experimental results from this work with pure (and mixed) sulfur-free hydrocarbons indicate that the sulfur content of the fuel may be the limiting factor for efficient ATR operation. Steam reforming of hydrocarbons in conventional reformers is heat transfer limited. Steam reforming tasks performed have included performance comparisons between conventional pellet beds and honeycomb monolith catalysts. Metal-supported monoliths offer higher structural stability than ceramic supports, and have a higher thermal conductivity. Data from two metal monoliths of different catalyst (nickel) loading were compared to pellets under the same operating conditions.

Flytzani-Stephanopoulos, M.; Voecks, G.E.

1981-10-01T23:59:59.000Z

462

NREL: Energy Analysis - Market Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarket Analysis

463

Sandia National Laboratories: Market Transformation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos AlamosExperimentthe ChelyabinskMarket

464

Petroleum Market Model of the National Energy Modeling System  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

NONE

1997-01-01T23:59:59.000Z

465

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

466

Introduction to Futures Markets  

E-Print Network [OSTI]

An introduction to futures markets, this publication describes the history of the markets, defines terminology and offers advice on how to use futures effectively in farm marketing programs....

Mintert, James R.; Welch, Mark

2009-01-07T23:59:59.000Z

467

Petroleum marketing annual 1993  

SciTech Connect (OSTI)

The Petroleum Marketing Annual (PMA) contains statistical data on a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the free-on-board (f.o.b.) and landed cost of imported crude oil, and the refiners acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented. For this publication, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication dates.

Not Available

1995-01-01T23:59:59.000Z

468

Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities  

DOE Patents [OSTI]

Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

2014-01-07T23:59:59.000Z

469

Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey  

SciTech Connect (OSTI)

This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

O'Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

1981-04-01T23:59:59.000Z

470

Marketing Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selected asMarat Valiev30R Fahey

471

Power Marketing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities Are you YourRates

472

Power Marketing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities Are you YourRatesUGPS'

473

Fuel Cell Forklift Project Final Report  

SciTech Connect (OSTI)

This project addresses the DOEs priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freights Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freights previous field trial experience with a handful of Plug Powers GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

474

Predicting market power in wholesale electricity markets  

E-Print Network [OSTI]

Predicting market power in wholesale electricity markets#3; David M Newbery Faculty of Economics, University of Cambridge August 26, 2008 Abstract The traditional measure of market power is the HHI, which gives implausible results given the low... elasticity of demand in electricity spot markets, unless it is adapted to take account of contracting. In its place the Residual Supply Index has been proposed as a more suitable index to measure potential market power in electricity markets, notably...

Newbery, David

475

Diesel fuel containing a tetrazole or triazole cetane improver  

SciTech Connect (OSTI)

This patent describes a liquid fuel adapted for use in a diesel engine containing a cetane number increasing amount of at least one fuel soluble additive compound.

Martella, D.J.

1986-12-30T23:59:59.000Z

476

ClearFuels-Rentech Pilot-Scale Biorefinery  

Broader source: Energy.gov [DOE]

The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

477

The Asian Wood Pellet Markets  

E-Print Network [OSTI]

The Asian Wood Pellet Markets Joseph A. Roos and Allen M. Brackley United States Department Wood Pellet plant in North Pole, Alaska. Clockwise from upper left: pelleting machine; pellets bagged for home use; a Superior Pellet Fuels bag; inventory of product ready for shipment to retailers. Upper

478

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

479

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

Adam R. 2008. Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

480

Southeast Regional Alternative Fuels Market Initiatives Program  

Broader source: Energy.gov (indexed) [DOE]

31, 2015 - 30% Complete * BUDGET - Total Project Funding: 580,900 * DOE: 500,000 * Cost Share: 80,900 - FY13 Funding 290,000 - FY14 Funding 210,000 - 104,139 spent (18%...

Note: This page contains sample records for the topic "liquid fuels markets" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Petroleum marketing monthly  

SciTech Connect (OSTI)

The Petroleum Marketing Monthly (PMM) is designed to give information and statistical data about a variety of crude oils and refined petroleum products. The publication provides statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Sales data for motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane are presented.

Not Available

1992-03-01T23:59:59.000Z

482

EIA model documentation: Petroleum Market Model of the National Energy Modeling System  

SciTech Connect (OSTI)

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption.

NONE

1994-12-30T23:59:59.000Z

483

Market Organization and Efficiency in Electricity Markets  

E-Print Network [OSTI]

Market Organization and Efficiency in Electricity Markets Erin T. Mansur and Matthew W. White October 2007 ­ Draft Abstract Electricity markets exhibit two different forms of organization costs. Our analysis points to the merits of organized market institutions for electricity, a central

Sadoulet, Elisabeth

484

Technology Validation Hydrogen and fuel cells are a critical  

E-Print Network [OSTI]

fuel cell electric vehicles (FCEV). Technology validation does not certify marketability, but rather Electric Vehicle Learning Demonstration The Energy Department's National Fuel Cell Electric Vehicle cell technologies against targets such as fuel cell durability and efficiency, vehicle range

485

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

486

Addendum to industrial market assessment of the products of mild gasification  

SciTech Connect (OSTI)

The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

Not Available

1992-05-01T23:59:59.000Z

487

Addendum to industrial market assessment of the products of mild gasification  

SciTech Connect (OSTI)

The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

Not Available

1992-05-01T23:59:59.000Z

488

Diagnosing Market Power in California's Deregulated Wholesale Electricity Market  

E-Print Network [OSTI]

in dereg- ulated wholesale electricity markets," RANDin California's Deregulated Wholesale Electricity MarketEffective competition in wholesale electricity markets is

Borenstein, Severin; Bushnell, James; Wolak, Frank

1999-01-01T23:59:59.000Z

489

Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems  

SciTech Connect (OSTI)

Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

Mahadevan, Kathyayani

2011-10-04T23:59:59.000Z

490

Fossil fuels -- future fuels  

SciTech Connect (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

491

Articles about Market Transformation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015Services »of(BENEFIT) -ArchivedGrid IntegrationMarket

492

Ambient pressure fuel cell system  

DOE Patents [OSTI]

An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

Wilson, Mahlon S. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

493

Interdependencies of Electricity Markets with Gas Markets A Case Study of Transmission System Operators  

E-Print Network [OSTI]

and the Natural Gas markets and the conditions and influences on both markets. Load-growth influences the need) and supply (availability of resources). In the case of natural gas the fuel may be indigenous to an area American countries is to ensure sufficient capacity and investment to reliably serve their growing

Dixon, Juan

494

Fuel Cell Seminar, 1992: Program and abstracts  

SciTech Connect (OSTI)

This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

Not Available

1992-12-31T23:59:59.000Z

495

Liquid Propane Injection Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid FuelsLiquid propane