National Library of Energy BETA

Sample records for liquid fuels coal

  1. Converting coal to liquid fuels. [US DOE

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    Liquid fuels play a vital role in the US economy. Oil represents about 40 percent of the energy consumed each year in this country. In many cases, it fills needs for which other energy forms cannot substitute efficiently or economically - in transportation, for example. Despite a current world-wide surplus of oil, conventional petroleum is a depletable resource. It inevitably will become harder and more expensive to extract. Already in the US, most of the cheap, easily reached oil has been found and extracted. Even under optimistic projections of new discoveries, domestic oil production, particularly in the lower 48 states, will most likely continue to drop. A future alternative to conventional petroleum could be liquid fuels made from coal. The technique is called coal liquefaction. From 1 to 3 barrels of oil can be made from each ton of coal. The basic technology is known; the major obstacles in the US have been the high costs of the synthetic oil and the risks of building large, multi-billion dollar first-of-a-kind plants. Yet, as natural petroleum becomes less plentiful and more expensive, oil made from abundant coal could someday become an increasingly important energy option. To prepare for that day, the US government is working with private industries and universities to establish a sound base of technical knowledge in coal liquefaction.

  2. Liquid Transportation Fuels from Coal and Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Fuels from Coal and Biomass Liquid Transportation Fuels from Coal and Biomass Presented at the U.S. Department of Energy sponsored a Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon liquid_trans_tech.pdf More Documents & Publications February GBTL Webinar GBTL Workshop GHG Emissions Department of Energy Quadrennial Technology Review Alternative Fuels Workshop

  3. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect (OSTI)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

  4. A fresh look at coal-derived liquid fuels

    SciTech Connect (OSTI)

    Paul, A.D. [Benham Companies LLC (USA)

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  5. Biomass and Coal into Liquid Fuel with CO2 Capture - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Biomass and Coal into Liquid Fuel with CO2 Capture New Single-step hydrolysis process co-converts coal and any biomass to liquid fuel Savannah ...

  6. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for ...

  7. Producing liquid fuels from coal: prospects and policy issues

    SciTech Connect (OSTI)

    James T. Bartis; Frank Camm; David S. Ortiz

    2008-07-01

    The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

  8. Process for converting coal into liquid fuel and metallurgical coke

    DOE Patents [OSTI]

    Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

    1994-01-01

    A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

  9. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon

    Office of Environmental Management (EM)

    County, WY | Department of Energy 2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for Download November 27, 2009 EIS-0432: Notice of Intent to Prepare an Environmental Impact Statement Federal Loan Guarantee to Support the Construction and Startup of the Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, Wyoming December 16, 2009

  10. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    SciTech Connect (OSTI)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  11. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and Coal-Biomass to Liquids program. The program also aims to reduce the cost of these low-emission fuels, and will take advantage of carbon capture and sequestration technologies to further reduce greenhouse gas emissions. Other Coal and Coal-Biomass to Liquids (C&CBTL) Program Activities: The C&CBTL Program

  12. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  13. Coal and Biomass to Liquids

    Broader source: Energy.gov [DOE]

    Over the last several decades, the Office of Fossil Energy performed RD&D activities that made significant advancements in the areas of coal conversion to liquid fuels and chemicals. Technology...

  14. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

  15. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  16. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  17. Coal and Coal-Biomass to Liquids FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal and Coal-Biomass to Liquids FAQs faq-header-big.jpg BASICS Q: How are gasoline and diesel fuel made from coal? A: Gasoline and diesel fuels can be produced from coal in two distinct processes: Indirect Liquefaction and Direct Liquefaction. In Indirect Liquefaction, coal is first gasified to produce synthesis gas (syngas for short), which is a mixture containing primarily hydrogen (H2) and carbon monoxide (CO) gases. The Fischer-Tropsch (FT) synthesis is a commercial process that can be used

  18. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  19. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    SciTech Connect (OSTI)

    Jain, M.K.

    1991-01-01

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  20. Process for preparing a liquid fuel composition

    DOE Patents [OSTI]

    Singerman, Gary M. (Monroeville, PA)

    1982-03-16

    A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

  1. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  2. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 2 (Jan 2016) Archived Editions: Coal ...

  3. Process for stabilization of coal liquid fractions

    DOE Patents [OSTI]

    Davies, Geoffrey (Boston, MA); El-Toukhy, Ahmed (Alexandria, EG)

    1987-01-01

    Coal liquid fractions to be used as fuels are stabilized against gum formation and viscosity increases during storage, permitting the fuel to be burned as is, without further expensive treatments to remove gums or gum-forming materials. Stabilization is accomplished by addition of cyclohexanol or other simple inexpensive secondary and tertiary alcohols, secondary and tertiary amines, and ketones to such coal liquids at levels of 5-25% by weight with respect to the coal liquid being treated. Cyclohexanol is a particularly effective and cost-efficient stabilizer. Other stabilizers are isopropanol, diphenylmethanol, tertiary butanol, dipropylamine, triethylamine, diphenylamine, ethylmethylketone, cyclohexanone, methylphenylketone, and benzophenone. Experimental data indicate that stabilization is achieved by breaking hydrogen bonds between phenols in the coal liquid, thereby preventing or retarding oxidative coupling. In addition, it has been found that coal liquid fractions stabilized according to the invention can be mixed with petroleum-derived liquid fuels to produce mixtures in which gum deposition is prevented or reduced relative to similar mixtures not containing stabilizer.

  4. Novel Fuel Cells for Coal Based Systems

    SciTech Connect (OSTI)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  5. Coal to Liquids | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal to Liquids Coal to Liquids Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in Charleston, WV, the Yeager facility was constructed and operated with support from the Office of Fossil Energy’s National Energy Technology Laboratory. Major General Allen Tackett of the National Guard's 130th Airlift Wing dispenses the first fill-up of hydrogen fuel from the Yeager facility. Located in

  6. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1992-09-01

    As part of the DOE-sponsored contract for the Synthesis of Dimethyl Ether (DME) and Alternative Fuels in the Liquid Phase from Coal- Derived Syngas, the single-step, slurry phase DME synthesis process was developed. The development involved screening of catalyst systems, process variable studies, and catalyst life studies in two 300 ml stirred autoclaves. As a spin-off of the Liquid Phase Methanol (LPMEOH*) process, the new process significantly improves the syngas conversion efficiency of the LPMEOH process. This improvement can be achieved by replacing a portion of methanol catalyst with a dehydration catalyst in the reactor, resulting in the product methanol being converted to DME, thus avoiding the thermodynamic equilibrium constraint of the methanol reaction. Overall, this increases syngas conversion per-pass. The selectivity and productivity of DME and methanol are affected by the catalyst system employed as well as operating conditions. A preferred catalyst system, consisting of a physical mixture of a methanol catalyst and a gamma alumina, was identified. An improvement of about 50% in methanol equivalent productivity was achieved compared to the LPMEOH process. Results from the process variable study indicate that higher pressure and CO[sub 2] removal benefit the process significantly. Limited life studies performed on the preferred catalyst system suggest somewhat higher than expected deactivation rate for the methanol catalyst. Several DME/methanol mixtures were measured for their key properties as transportation fuels. With small amounts of DME added, significant improvements in both flash points and Reid Vapor Pressure (RVP) were observed over the corresponding values of methanol alone.

  7. Coal-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  8. DOE studies on coal-to-liquids

    SciTech Connect (OSTI)

    2007-07-01

    The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.

  9. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 2 (Jan 2016) Archived Editions: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 1 (Oct 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1, Issue 4 (July 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1, Issue 3 (Apr 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1,

  10. American Clean Coal Fuels | Open Energy Information

    Open Energy Info (EERE)

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  11. Coal-to-Liquids Process Model

    Energy Science and Technology Software Center (OSTI)

    2006-01-01

    A comprehensive Aspen Plus model has been developed to rigorously model coal-to-liquids processes. This portion was developed under Laboratory Directed Research and Development (LDRD) funding. The model is built in a modular fashion to allow rapid reconfiguration for evaluation of process options. Aspen Plus is the framework in which the model is developed. The coal-to-liquids simulation package is an assemble of Aspen Hierarchy Blocks representing subsections of the plant. Each of these Blocks are consideredmore » individual components of the Copyright, which may be extracted and licensed as individual components, but which may be combined with one or more other components, to model general coal-conversion processes, including the following plant operations: (1) coal handling and preparation, (2) coal pyrolysis, combustion, or gasification, (3) syngas conditioning and cleanup, (4) sulfur recovery using Claus-SCOT unit operations, (5) Fischer-Tropsch liquid fuels synthesis, (6) hydrocracking of high molecular weight paraffin, (7) hydrotreating of low molecular weight paraffin and olefins, (8) gas separations, and (9) power generation representing integrated combined cycle technology.« less

  12. SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS...

    Office of Scientific and Technical Information (OSTI)

    AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL ... information resources in energy science and technology. ... funding was provided by the Illinois Clean Coal Institute. ...

  13. Coal-fueled diesel locomotive test

    SciTech Connect (OSTI)

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  14. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Jain, M.K.

    1991-12-31

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  15. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  16. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  17. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  18. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  19. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  20. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  1. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  2. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  3. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  4. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  5. Characterization and supply of coal based fuels

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  6. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived syngas; Quarterly technical progress report No. 3, 1 July--30 September 1990

    SciTech Connect (OSTI)

    1991-01-25

    Contract objectives are: development of a one-step liquid phase dimethyl ether/methanol process; and investigation of the potential of liquid phase synthesis of alternative fuels from coal-derived synthesis gas. Definition of Preferred Catalyst System was completed after several commercial methanol catalysts and dehydration catalysts were tested. BASF S3-86 and Catapal gamma alumina is the preferred catalyst system of choice. Process Variable Scans on the Preferred Catalyst System was started with Shell gas. Data were obtained at various pressures (750 to 1400 psig), temperatures (250 to 280{degrees}C), and space velocities (5000 to 9000 sl/kg-hr). Increase in system pressure seems to have a very significant benefit to both DME and methanol formation. Both Texaco and Shell gases were evaluated. A ``stoichiometric`` feed composition (50% CO, 50% H{sub 2}) that yields maximum DME productivity at equilibrium was evaluated with a fresh batch of the optimum catalyst system. Productivities with the ``stoichiometric`` gas were much higher compared to Shell or Texaco gas. Following that test, Dow gas was evaluated (41% CO, 41% H{sub 2}, 16% CO{sub 2} and 2% N{sub 2}) using the same catalyst to study the effect of CO{sub 2}. Three DME/MEOH (1--4% DME) mixtures were evaluated by SWRI for their fuel properties. Results indicate that, with small amounts of DME added, significant improvements in both flash point and RVP are possible over the properties of LaPorte MEOH. the slurry-phase dehydration of alcohols to ethers was investigated by feeding 10 mol% mixed alcohols in N{sub 2} over an alumina catalyst suspended in mineral oil. Two alcohol mixture compositions were chosen for this study. One mixture contained methanol, ethanol, and 1-propanol in proportions representative of those in IFP Substifuel, while the other mixture contained methanol, ethanol, and isobutanol in proportions representative of those in Lurgi Octamix. 21 figs., 13 tabs.

  7. Coal Gasification and Transportation Fuels Magazine | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 2 (Jan 2016) Archived Editions: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 1 (Oct 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1, Issue 4 (July 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1, Issue 3 (Apr 2015) Coal Gasification and Transportation Fuels Quarterly News, Vol. 1,

  8. Air Liquide- Biogas & Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  9. Evaluation of coal liquids in a single cylinder direct-injection, stratified-charge engine

    SciTech Connect (OSTI)

    Roby, R.J.; Freeman, L.E.; Harrington, J.A.; Chui, G.K.; Tallent, W.D.

    1981-10-01

    Indicated specific energy consumption and exhaust emissions were measured for three coal-derived liquids in a direct injection, stratified-charge (PROCO) engine. The three fuels were obtained from different coal refining processes. One of the fuels met current gasoline specifications while the other two had volatilities somewhat below the specification and were more typical of some current gasoline blending components. 6 refs.

  10. SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS...

    Office of Scientific and Technical Information (OSTI)

    that the liquid fuels production from the FT catalyst was ... and Development for Fossil Energy-Related Resources ... funding was provided by the Illinois Clean Coal Institute. ...

  11. 2015 Gasification Systems and Coal and Coal-Biomass to Liquids...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Gasification Systems and Coal & Coal-Biomass to Liquids Workshop Workshop Summary Additional materials will be added when they are received from the author. Presentations ...

  12. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  13. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, Ramkrishna G. (San Antonio, TX)

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  14. Process to upgrade coal liquids by extraction prior to hydrodenitrogenation

    DOE Patents [OSTI]

    Schneider, Abraham (Overbrook Hills, PA); Hollstein, Elmer J. (Wilmington, DE); Janoski, Edward J. (Havertown, PA); Scheibel, Edward G. (Media, PA)

    1982-01-01

    Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

  15. Performance Characteristics of Coal-to-Liquids (CTL) Diesel in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions ...

  16. HINDERED DIFFUSION OF COAL LIQUIDS

    SciTech Connect (OSTI)

    Theodore T. Tsotsis; Muhammad Sahimi; Ian A. Webster

    1996-01-01

    It was the purpose of the project described here to carry out careful and detailed investigations of petroleum and coal asphaltene transport through model porous systems under a broad range of temperature conditions. The experimental studies were to be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms and a more accurate concept of the asphaltene structure. The following discussion describes some of our accomplishments.

  17. SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION WITH ILLINOIS COAL (Other) | SciTech Connect Other: SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL Citation Details In-Document Search Title: SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three

  18. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    SciTech Connect (OSTI)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this technology could be used to reduce the cost and improve the efficiency of IGCC plants. The study goes beyond the systems-level analyses and initial lab work that formed the bases of previous studies and includes the following tasks: performing laboratory tests to quantify slurry properties; developing an engineering design of a liquid CO{sub 2} slurry preparation and feed system; conducting a full IGCC plant techno-economic analysis for Powder River Basin (PRB) coal and North Dakota lignite in both water and liquid CO{sub 2} slurries; and identifying a technology development plan to continue the due diligence to conduct a comprehensive evaluation of this technology. The initial task included rheology tests and slurry data analyses that would increase the knowledge and understanding of maximum solids loading capability for both PRB and lignite. Higher coal concentrations have been verified in liquid CO{sub 2} over water slurries, and a coal concentration of 75% by weight in liquid CO{sub 2} has been estimated to be achievable in a commercial application. In addition, lower slurry viscosities have been verified in liquid CO{sub 2} at the same solids loading, where the liquid CO{sub 2}/coal slurry viscosity has been measured to be about a factor of 10 lower than the comparable water slurry and estimated to be less than 100 centipoise in a commercial application. In the following task, an engineering design of a liquid CO{sub 2}/coal slurry preparation and mixing system has been developed for both a batch and continuous system. The capital cost of the design has also been estimated so that it could be used in the economic analysis. An industry search and survey has been conducted to determine if essential components required to construct the feed system are available from commercial sources or if targeted R&D efforts are required. The search and survey concluded that commercial sources are available for selected components that comprise both the batch and continuous type systems. During normal operation, the fuel exits the bottom of the coal silo and is fed to a rod mill for grinding to the desired particle size. From the rod mill, the coal is transported in a dense phase pneumatic transport system to the top of a solids heat exchanger, wherein the ground coal is chilled to a low temperature (in the range of -23.3°C (-10°F)) prior to mixing with liquid CO{sub 2}. This temperature was selected based on evaluating trade-offs between refrigeration work and the cost of the system pressure boundary at various combinations of pressure and temperature that correspond to the gas/liquid phase boundary for CO{sub 2}. Electrical loads to drive the equipment comprising the liquid CO{sub 2} feed system are significantly greater than those for a water slurry system, and this effect has been captured in the technical performance analysis. In the next task, a plant-wide techno-economic analysis has been conducted for PRB coal and lignite in both liquid CO{sub 2} and water slurry feed. The IGCC cases using a liquid CO{sub 2} slurry system show reduced plant output and higher heat rate for PRB coal and for ND lignite at 90% CO{sub 2} capture. Some of these performance differences can be attributed to the higher requirement for steam for the liquid CO{sub 2} slurry cases to drive the water-gas shift reaction, thereby reducing steam turbine power generation. Other factors contributing to the calculated performance differences are the increase in parasitic loads attributable to refrigeration to produce liquid CO{sub 2} and chilled coal and the reduction in enthalpy of the inlet streams to the gasifier associated with the low temperature liquid CO{sub 2} slurry feed. The capital costs for the complete plant are slightly higher for the liquid CO{sub 2} slurry cases for PRB coal but somewhat reduced for ND lignite relative to the corresponding water slurry cases. Differences in dollar/kWe costs are higher for both coals due to the reduction in net output. The cost of electricity computed for the liquid CO{sub 2}/coal slurry cases is greater for both PRB and ND Lignite coals. It does not appear that there is any benefit to using liquid CO{sub 2}/coal slurries for feeding low rank coals to the E-Gas™ gasifier. Any incidental benefits in improved cold gas efficiency are more than compensated for in higher overall plant costs, increased complexity, and reduced power output and efficiency. The results of the study are compared with previous published analyses, and the differences in model assumptions, approach and basis are summarized. It has been concluded that the use of liquid CO{sub 2} may still prove to have a significant advantage in a different type of gasifier, i.e., single-stage entrained flow with radiant quench section, but some key questions remain unanswered that can validate the potential improvement of gasifier performance using liquid CO{sub 2} slurries. In order to provide a path to answering these questions, a technology development roadmap has been developed to resolve fundamental issues and to better define the operation aspects of using liquid CO{sub 2}/coal slurries. The fundamental issues could be resolved by conducting additional laboratory analyses consisting of: • A rheological test program to quantitatively evaluate slurry preparation and handling for liquid CO{sub 2} including experiments to evaluate preparation systems. • An experimental program on CO{sub 2}-assisted gasification in order to obtain the most relevant experimental data from drop tube furnace studies to aid in verifying the potential advantages of direct feed of liquid CO{sub 2}/coal as gasifier feedstocks. Quantifying the operational aspects of liquid CO{sub 2} slurries can best be achieved with: • An experimental program using a flow test loop to evaluate equipment performance and handling properties of liquid CO{sub 2}/coal slurries for gasifier feedstocks on a scale sufficient to predict full scale operating parameters. • Spray atomization studies necessary to evaluate the effect of atomization properties of liquid CO{sub 2}/coal slurries that could be significantly different than those of water/coal slurries.

  19. Coal slurry fuel supply and purge system

    DOE Patents [OSTI]

    McDowell, Robert E. (Fairview, PA); Basic, Steven L. (Hornell, NY); Smith, Russel M. (North East, PA)

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  20. Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Compliant Passenger Car | Department of Energy Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car Comparisons between CTL, GTL, no. 2, and European diesel include fuel economy, regulated and unregulated emissions in a 50 State compliant passenger car with DOC, NOx adsorber and particulate trap PDF icon deer10_shaburg.pdf More

  1. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  2. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  3. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect (OSTI)

    Lawrence Van Bibber; Charles Thomas; Robert Chaney

    2007-07-15

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  4. EIS-0357- Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale.

  5. Process for blending coal with water immiscible liquid

    DOE Patents [OSTI]

    Heavin, Leonard J. (Olympia, WA); King, Edward E. (Gig Harbor, WA); Milliron, Dennis L. (Lacey, WA)

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  6. EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities. This project is inactive.

  7. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  8. Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching

    SciTech Connect (OSTI)

    Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo

    1997-12-31

    Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

  9. Refining and End Use Study of Coal Liquids

    SciTech Connect (OSTI)

    1997-10-01

    This report summarizes revisions to the design basis for the linear programing refining model that is being used in the Refining and End Use Study of Coal Liquids. This revision primarily reflects the addition of data for the upgrading of direct coal liquids.

  10. Refining and end use of coal liquids. Quarterly report, January--March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An intregral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop, an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with the Process Industry Modeling System (PICS) software. The objectives of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major efforts conducted during the first quarter of 1994 were in the areas of: subcontract preparation and negotiation; and linear programming modeling.

  11. Alternative Liquid Fuels (ALF) | Open Energy Information

    Open Energy Info (EERE)

    Liquid Fuels (ALF) Jump to: navigation, search Name: Alternative Liquid Fuels (ALF) Address: P.O. Box 76 Place: McArthur, Ohio Zip: 45651 Sector: Biofuels, Renewable Energy,...

  12. Coal Technology '80. Volume 5. Synthetic fuels from coal. Volume 6. Industrial/utility applications for coal

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The 3rd international coal utilization exhibition and conference Coal Technology '80 was held at the Astrohall, Houston, Texas, November 18-20, 1980. Volume 5 deals with coal gasification and coal liquefaction. Volume 6 deals with fluidized-bed combustion of coal, cogeneration and combined-cycle power plants, coal-fuel oil mixtures (COM), chemical feedstocks via coal gasification and Fischer-Tropsch synthesis. Thirty-six papers have been entered individually into EDB and seven also into ERA; three had been entered previously from other sources. (LTN)

  13. DKRW Advanced Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Fuels LLC Place: Houston, Texas Zip: 77056 Product: Focues on projects that utilise coal gasification technology, including coal-to-liquids, methanation, and integrated coal...

  14. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  15. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, Franklin A. (Berkeley, CA)

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  16. Coal-Derived Liquids to Enable HCCI Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal-Derived Liquids to Enable HCCI Technology Coal-Derived Liquids to Enable HCCI Technology Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_shade.pdf More Documents & Publications Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An

  17. Solids precipitation and polymerization of asphaltenes in coal-derived liquids

    DOE Patents [OSTI]

    Kydd, Paul H. (Lawrenceville, NJ)

    1984-01-01

    The precipitation and removal of particulate solids from coal-derived liquids by adding a process-derived anti-solvent liquid fraction and continuing the precipitation process at a temperature above the melting point of the mixed liquids for sufficient time to allow the asphaltenes to polymerize and solids to settle at atmospheric pressure conditions. The resulting clarified light hydrocarbon overflow liquid contains less than about 0.02 W % ash and is suitable as turbine fuel or as boiler fuel for burning without particulate emission control equipment. An underflow liquid fraction containing less than about 0.1 W % solids along with low sulfur and nitrogen concentrations is suitable as a boiler fuel with emission control equipment.

  18. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  19. Gasification Characteristics of Coal/Biomass Mixed Fuels

    SciTech Connect (OSTI)

    Mitchell, Reginald

    2013-09-30

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO{sub 2} was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO{sub 2}. In contrast, mixed char reactivity to H{sub 2}O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H{sub 2}O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times and off-gas compositions in gasification conditions established in a variety of commercial gasifiers. The model has the potential to provide insight on certain implications of co-firing coal and biomass in gasification and combustion application when kinetic parameters for the mixed chars are employed.

  20. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  1. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.

  2. Liquid Fuels Market Model (LFMM) Unveiling LFMM

    Gasoline and Diesel Fuel Update (EIA)

    Implementation of the Renewable Fuel Standard (RFS) in the Liquid Fuels Market Module (LFMM) of NEMS Michael H. Cole, PhD, PE michael.cole@eia.gov August 1, 2012 | Washington, DC LFMM / NEMS overview 2 M. Cole, EIA Advanced Biofuels Workshop August 1, 2012 | Washington, DC * LFMM is a mathematical representation of the U.S. liquid fuels market (motor gasoline, diesel, biofuels, etc.). EIA analysts use LFMM to project motor fuel prices and production approaches through 2040. * LFMM is a

  3. Process for vaporizing a liquid hydrocarbon fuel

    DOE Patents [OSTI]

    Szydlowski, Donald F. (East Hartford, CT); Kuzminskas, Vaidotas (Glastonbury, CT); Bittner, Joseph E. (East Hartford, CT)

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  4. Minimizing corrosion in coal liquid distillation

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  5. Air Liquide - Biogas & Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    and the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed...

  6. Gas turbine fuel from low-rank coal

    SciTech Connect (OSTI)

    Maas, D.J.; Smith, F.J.

    1986-06-01

    Five low-rank coals from the western United States were cleaned in a bench-scale heavy media separation procedures followed by acid leaching and hydrothermal processing. The objective of these cleaning steps was to determine the amenability of preparing gas turbine quality fuel from low-rank coal. The best candidate for scale-up was determined to be a Wyoming subbituminous coal from the eagle Butte mine. Two hundred thirty kilograms of cleaned and micronized coal/water fuel were prepared in pilot-scale equipment to determine process parameters and fuel characteristics. After establishing operating conditions, two thousand kilograms of cleaned and micronized coal/water and powdered coal fuel were produced for testing in a pilot-scale gas turbine combustor. An economic analysis was completed for a commercial-scale plant designed to produce clean gas turbine fuel from low-rank coal using the most promising process steps identified form the bench- and pilot-scale studies. 21 refs., 12 figs., 20 tabs.

  7. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  8. Sustainable Transportation Fuels from Natural Gas (H{sub 2}), Coal and Biomass

    SciTech Connect (OSTI)

    Huffman, Gerald

    2012-12-31

    This research program is focused primarily on the conversion of coal, natural gas (i.e., methane), and biomass to liquid fuels by Fischer-Tropsch synthesis (FTS), with minimum production of carbon dioxide. A complementary topic also under investigation is the development of novel processes for the production of hydrogen with very low to zero production of CO{sub 2}. This is in response to the nation?s urgent need for a secure and environmentally friendly domestic source of liquid fuels. The carbon neutrality of biomass is beneficial in meeting this goal. Several additional novel approaches to limiting carbon dioxide emissions are also being explored.

  9. Integrated two-stage coal liquefaction process

    DOE Patents [OSTI]

    Bronfenbrenner, James C. (Allentown, PA); Skinner, Ronald W. (Allentown, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01

    This invention relates to an improved two-stage process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal.

  10. Low contaminant formic acid fuel for direct liquid fuel cell

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  11. Proceedings, twenty-fourth annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    2007-07-01

    Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

  12. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  13. Coal-fueled diesels for modular power generation

    SciTech Connect (OSTI)

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  14. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today DOE Conference Washington DC, Aug 1, 2013 Our Business 2  We produce a renewable liquid fuel from wood and other non-food biomass  Our key product is Renewable Fuel Oil(tm) (RFO(tm))  RFO is a flexible petroleum-replacement with multiple uses including heating and for production of drop-in transportation fuels Commercial Status  Commercial production for over 20 years  Over 35 million gallons produced to date  Five commercial

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  16. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    SciTech Connect (OSTI)

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  17. fuels | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Fuels Gasoline & Diesel Volatile fuel costs and a desire for energy independence have revived interest in another market for coal gasification technology: the production of liquid transportation fuels, chiefly gasoline and diesel fuel. For the United States, routes to synthesis of liquid fuels from coal add substantial diversity in fuel supply capability, a large capacity for fuels production considering the great extent of domestic coal reserves, and increased energy security that

  18. Liquid Fuels Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  19. Nonconventional Liquid Fuels (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

  20. Liquid-hydrogen-fueled passenger aircraft

    SciTech Connect (OSTI)

    Not Available

    1986-03-11

    This Chinese translation discusses the idea that passenger aircraft will eventually use liquid-hydrogen fuel. There is a large reserve of hydrogen and hydrogen poses no danger to the environment. Hydrogen has high calorific value, high specific heat, low density, and low temperature. Aircraft will have to have liquid fuel tanks to carry the hydrogen and will have to be partially redesigned. Lockheed and NASA have considered such designs. A problem remains in the planning--the high cost of large extraction of liquid hydrogen.

  1. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    SciTech Connect (OSTI)

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-06-15

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  2. Method of producing a colloidal fuel from coal and a heavy petroleum fraction

    DOE Patents [OSTI]

    Longanbach, James R. (Columbus, OH)

    1983-08-09

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  3. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  4. Method for providing improved solid fuels from agglomerated subbituminous coal

    DOE Patents [OSTI]

    Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Pawlak, Wanda (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1989-01-01

    A method is provided for separating agglomerated subbituminous coal and the heavy bridging liquid used to form the agglomerates. The separation is performed by contacting the agglomerates with inert gas or steam at a temperature in the range of 250.degree. to 350.degree. C. at substantially atmospheric pressure.

  5. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect (OSTI)

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  6. Characterization and supply of coal based fuels

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This report discusses a number of special fuel slurries with a short description of the preparation method and numerous data sheets.

  7. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  8. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    SciTech Connect (OSTI)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOEs Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to shift the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66% using electrolysis and nuclear power as the hydrogen source. In addition, nuclear integration decreases CO2 emissions by 84% if sequestration is assumed and 96% without sequestration, when compared to conventional CTL. The preliminary economic assessment indicates that the incorporation of 11 HTGRs and the associated HTSEs impacts the expected return on investment, when compared to conventional CTL with or without sequestration. However, in a carbon constrained scenario, where CO2 emissions are taxed and sequestration is not an option, a reasonable CO2 tax would equate the economics of the nuclear assisted CTL case with the conventional CTL case. The economic results are preliminary, as they do not include economies of scale for multiple HTGRs and are based on an uncertain reactor cost estimate. Refinement of the HTGR cost estimate is currently underway. To reduce well to wheel (WTW) GHG emissions below baseline (U.S. crude mix) or imported crude derived diesel, integration of an HTGR is necessary. WTW GHG emissions decrease 8% below baseline crude with nuclear assisted CTL. Even with CO2 sequestration, conventional CTL WTW GHG emissions are 24% higher than baseline crude emissions. Current efforts are underway to investigate the incorporation of nuclear integrated steam methane reforming for the production of hydrogen, in place of HTSE. This will likely reduce the number of HTGRs required for the process.

  9. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Schwalb, J.A.; Ryan, T.W.

    1991-10-01

    Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

  10. Alternative Liquid Fuels Simulation Model (AltSim) v. 2.0

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, energy balances, and greenhouse gas emissions for several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses onmore » capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO2 taxes, and plant capacity factor. AltSim also includes policy tools to allow for consideration of greenhouse gas offset policies, production tax credits, and land use requirements. The main goal is to allow interested stakeholders to understand the complicated economic and environmental tradeoffs associated with the various options. The software is designed to address policy questions related to the economic competitiveness of technologies under different economic and technical assumptions. This model will be used to inform policy makers and staff about the economic and environmental tradeoffs associated with various fuel alternatives.« less

  11. Achieving a production goal of 1 million B/D of coal liquids by 1990. [Impediments and constraints

    SciTech Connect (OSTI)

    Miller, Charles; LaRosa, Dr., P. J.; Coles, E. T.; Fein, H. L.; Petros, J. J.; Iyer, R. S.; Merritt, R. T.

    1980-03-01

    Under this contract, Bechtel analyzed the resource requirements and reviewed major obstacles to the daily production of several million barrels of synthetic coal liquids. Further, the study sought to identify the industry infrastructure needed to support the commercial readiness of the coal liquefaction process. A selected list of critical resource items and their domestic/international availability was developed and examined, and the impact of their supply on the various synthetic coal liquids programs was evaluated. The study approach was to develop representative, or generic, direct and indirect coal liquefaction conceptual designs from available technology and costs data. The generic processes were to employ technology that would be considered commercial by the mid- or late-1980s. The size of the generic construction mobilization was considered reasonable at the outset of the program. The product slate was directed toward unrefined liquid fuels rather than diesel oil or gasoline. The generic processes were to use a wide range of coals to permit siting in most coal-producing regions across the country. Because of the dearth of conceptual design data in the literature, Bechtel developed generic plant designs by using in-house design expertise. Bechtel assumed that because it is first generation technology, the indirect process will be used at the outset of the liquids program, and the direct process will be introduced two to four years later as a second generation technology. The products of either of these processes will be limited to boiler fuels and/or other liquid products which require further upgrading. Cost estimates were developed from equipment lists, as well as material and labor estimates, which enabled the determination of an order-of-magnitude cost estimate and target plant construction schedule for both processes.

  12. Liquid Fuels from Lignins: Annual Report

    SciTech Connect (OSTI)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  13. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  14. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    SciTech Connect (OSTI)

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  15. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  16. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  17. Coal based synthetic fuel technology assessment guides

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Seventeen synthetic fuel processes are described in detail and compared on a uniform basis. This work was supported by the Energy Information Administration for the purpose of technology assessment of the processes, their efficiency, the capitalized and operating cost of plants of similar size, possible constraints, possible siting problems, regional effects, pollution control, etc. (LTN)

  18. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  19. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  20. Characterization and supply of coal based fuels. Volume 1, Final report and appendix A (Topical report)

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    Studies and data applicable for fuel markets and coal resource assessments were reviewed and evaluated to provide both guidelines and specifications for premium quality coal-based fuels. The fuels supplied under this contract were provided for testing of advanced combustors being developed under Pittsburgh Energy Technology Center (PETC) sponsorship for use in the residential, commercial and light industrial (RCLI) market sectors. The requirements of the combustor development contractors were surveyed and periodically updated to satisfy the evolving needs based on design and test experience. Available coals were screened and candidate coals were selected for further detailed characterization and preparation for delivery. A team of participants was assembled to provide fuels in both coal-water fuel (CWF) and dry ultrafine coal (DUC) forms. Information about major US coal fields was correlated with market needs analysis. Coal fields with major reserves of low sulfur coal that could be potentially amenable to premium coal-based fuels specifications were identified. The fuels requirements were focused in terms of market, equipment and resource constraints. With this basis, the coals selected for developmental testing satisfy the most stringent fuel requirements and utilize available current deep-cleaning capabilities.

  1. Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue

    DOE Patents [OSTI]

    Longanbach, J.R.

    1981-11-13

    A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

  2. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  3. SUBTASK 3.11 – PRODUCTION OF CBTL-BASED JET FUELS FROM BIOMASS-BASED FEEDSTOCKS AND MONTANA COAL

    SciTech Connect (OSTI)

    Sharma, Ramesh

    2014-06-01

    The Energy & Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from Exxon Mobil, undertook Subtask 3.11 to use a recently installed bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. The process involves liquefaction of Rosebud mine coal (Montana coal) coupled with an upgrading scheme to produce a naphthenic fuel. The upgrading comprises catalytic hydrotreating and saturation to produce naphthenic fuel. A synthetic jet fuel was prepared by blending equal volumes of naphthenic fuel with similar aliphatic fuel derived from biomass and 11 volume % of aromatic hydrocarbons. The synthetic fuel was tested using standard ASTM International techniques to determine compliance with JP-8 fuel. The composite fuel thus produced not only meets but exceeds the military aviation fuel-screening criteria. A 500-milliliter synthetic jet fuel sample which met internal screening criteria was submitted to the Air Force Research Laboratory (AFRL) at Wright–Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with U.S. Air Force-prescribed alternative aviation fuel initial screening criteria. The results show that this fuel meets or exceeds the key specification parameters for JP-8, a petroleum-based jet fuel widely used by the U.S. military. JP-8 specifications include parameters such as freeze point, density, flash point, and others; all of which were met by the EERC fuel sample. The fuel also exceeds the thermal stability specification of JP-8 fuel as determined by the quartz crystalline microbalance (QCM) test also performed at an independent laboratory as well as AFRL. This means that the EERC fuel looks and acts identically to petroleum-derived jet fuel and can be used interchangeably without any special requirements and thus provides a pathway to energy security to the U.S. military and the entire nation. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26- 08NT43291. Nonfederal funding was provided by Accelergy Corporation.

  4. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE

    SciTech Connect (OSTI)

    Hamid Farzan

    2001-09-24

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

  5. Biomass and Natural Gas to Liquid Transportation Fuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Natural Gas to Liquid Transportation Fuels Biomass and Natural Gas to Liquid Transportation Fuels Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University PDF icon b13_elia_1-d.pdf More Documents & Publications Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Exploring the Optimum Role of Natural Gas in Biofuels Production GBTL Workshop Attendees

  6. Reimagining liquid transportation fuels : sunshine to petrol.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Hogan, Roy E., Jr.; McDaniel, Anthony H.; Siegel, Nathan Phillip; Dedrick, Daniel E.; Stechel, Ellen Beth; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; Ambrosini, Andrea; Coker, Eric Nicholas; Staiger, Chad Lynn; Chen, Ken Shuang; Ermanoski, Ivan; Kellog, Gary L.

    2012-01-01

    Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

  7. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure |

    Energy Savers [EERE]

    Department of Energy Simulating Impacts of Disruptions to Liquid Fuels Infrastructure Simulating Impacts of Disruptions to Liquid Fuels Infrastructure This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for

  8. Fuel injection of coal slurry using vortex nozzles and valves

    DOE Patents [OSTI]

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  9. Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION...

    Office of Scientific and Technical Information (OSTI)

    carbon capture, utilisation, and storage Carter, L.D. 20 FOSSIL-FUELED POWER PLANTS; COAL GASIFICATION; POWER GENERATION; CARBON DIOXIDE; CAPTURE; STORAGE; USA; ENHANCED...

  10. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  11. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  12. SECA Coal-Based Systems - FuelCell Energy, Inc.

    SciTech Connect (OSTI)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant systemincluding concept identification, system definition, and cost analysiswas conducted. Phase II efforts focused on development of a ?25 kW SOFC stack tower incorporating multiple stack building blocks of scaled-up cells, suitable for integration into a large-scale fuel cell power module. Activities in Phase II also included the development of the baseline system, factory cost estimate for the baseline plants power block, and conceptual design of a natural gas fueled sub-MW system to be used for testing and verification of the fuel cell stacks in a system environment. The specific objective for Phase III was the validation of the performance and robustness of stacks and scaled stack arrays suitable for use in large-scale power generation systems such as an IGFC with reliable, fail-safe operation being of paramount importance. The work culminated in the verification tests of a 60 kW SOFC stack module in a power plant facility. This final technical report summarizes the progress made during the project period. Significant progress was made in the areas of cell and stack technology development, stack module design, sub-scale module tests, Baseline Power Plant system development and Proof-of- Concept Module unit design. The development of this technology will significantly advance the nations energy security and independence interests while simultaneously addressing environmental concerns, including greenhouse gas emissions and water usage.

  13. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation PDF icon b13_graham_ensyn.pdf More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing UOP Pilot-Scale Biorefinery

  14. Coal/D-RDF (densified refuse-derived fuel) co-firing project, Milwaukee County, Wisconsin

    SciTech Connect (OSTI)

    Hecklinger, R.S.; Rehm, F.R.

    1985-11-01

    A Research and Development Project was carried out to mix a densified refuse-derived fuel with coal at the fuel-receiving point and to co-fire the mixture in a spreader-stoker fired boiler. Two basic series of test runs were conducted. For the first series, coal was fired to establish a base line condition. For the second series, a mixture of coal and densified refuse-derived fuel was fired. The report describes the equipment used to densify refuse derived fuel, procedures used to prepare and handle the coal and densified refuse derived fuel mixture and the test results. The results include the effect of the coal and densified refuse derived fuel mixture on plant operations, boiler efficiency, stack emissions and EP toxicity.

  15. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  16. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect (OSTI)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL options to be included under the EISA mandate. The estimated GHG emissions associated with the production of gasoline and diesel are 19.80 and 18.40 kg of CO{sub 2} equivalent per MMBtu (kgCO{sub 2}e/MMBtu), respectively (NETL, 2008). The estimated emissions are significantly higher for several alternatives: ethanol from corn (70.6), GTL (51.9), and CTL without biomass or sequestration (123-161). Projected emissions for several other alternatives are lower; integrating biomass and sequestration in the CTL processes can even result in negative net emissions. For example, CTL with 30% biomass and 91.5% sequestration has estimated production emissions of -38 kgCO{sub 2}e/MMBtu. AltSim also estimates the projected well-to-wheel, or lifecycle, emissions from consuming each of the various fuels. Vehicles fueled with conventional diesel or gasoline and driven 12,500 miles per year emit 5.72-5.93 tons of CO{sub 2} equivalents per year (tCO{sub 2}e/yr). Those emissions are significantly higher for vehicles fueled with 100% ethanol from corn (8.03 tCO{sub 2}e/yr) or diesel from CTL without sequestration (10.86 to 12.85 tCO{sub 2}/yr). Emissions could be significantly lower for vehicles fueled with diesel from CBTL with various shares of biomass. For example, for CTL with 30% biomass and carbon sequestration, emissions would be 2.21 tCO{sub 2}e per year, or just 39% of the emissions for a vehicle fueled with conventional diesel. While the results presented above provide very specific estimates for each option, AltSim's true potential is as a tool for educating policy makers and for exploring 'what if?' type questions. For example, AltSim allows one to consider the affect of various levels of carbon taxes on the production cost estimates, as well as increased costs to the end user on an annual basis. Other sections of AltSim allow the user to understand the implications of various polices in terms of costs to the government or land use requirements. AltSim's structure allows the end user to explore each of these alternatives and understand the sensitivities implications a

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  18. Estimating Externalities of Coal Fuel Cycles, Report 3

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-09-01

    The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

  19. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    SciTech Connect (OSTI)

    Chuang, Steven S. C.

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO2 recycling unit.

  20. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  1. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  2. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, Director-Business Development, Energy Technologies, Southern Research Institute PDF icon gangwal_biomass_2014.pdf

  3. First AEO2015 Liquid Fuels Markets Working Group Meeting

    Gasoline and Diesel Fuel Update (EIA)

    July 21, 2014 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSYS JOHN POWELL TEAM LEADER, LIQUID FUELS MARKET TEAM MICHAEL SCHAAL DIRECTOR, OFFICE OF ENERGY ANALYSIS FROM: LIQUID FUELS MARKET TEAM SUBJECT: First AEO2015 Liquid Fuels Markets Working Group Meeting Summary (presented on 07-17-2014) Attendees: (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Adrian Geagla, Arup Mallik, David Manowitz, Vishakh Mantri, Beth May, Terry Yen, John Conti, Michael Schaal Bryan Just

  4. Techno-Economic Analysis of Liquid Fuel Production from Woody...

    Office of Scientific and Technical Information (OSTI)

    ...Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis ...

  5. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

  6. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  7. Novel injector techniques for coal-fueled diesel engines. Final report

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  8. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Task 2.2: Definition of preferred catalyst system; Task 2.3: Process variable scans on the preferred catalyst system; Task 2.4: Life-test on the preferred catalyst system

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1992-09-01

    As part of the DOE-sponsored contract for the Synthesis of Dimethyl Ether (DME) and Alternative Fuels in the Liquid Phase from Coal- Derived Syngas, the single-step, slurry phase DME synthesis process was developed. The development involved screening of catalyst systems, process variable studies, and catalyst life studies in two 300 ml stirred autoclaves. As a spin-off of the Liquid Phase Methanol (LPMEOH*) process, the new process significantly improves the syngas conversion efficiency of the LPMEOH process. This improvement can be achieved by replacing a portion of methanol catalyst with a dehydration catalyst in the reactor, resulting in the product methanol being converted to DME, thus avoiding the thermodynamic equilibrium constraint of the methanol reaction. Overall, this increases syngas conversion per-pass. The selectivity and productivity of DME and methanol are affected by the catalyst system employed as well as operating conditions. A preferred catalyst system, consisting of a physical mixture of a methanol catalyst and a gamma alumina, was identified. An improvement of about 50% in methanol equivalent productivity was achieved compared to the LPMEOH process. Results from the process variable study indicate that higher pressure and CO{sub 2} removal benefit the process significantly. Limited life studies performed on the preferred catalyst system suggest somewhat higher than expected deactivation rate for the methanol catalyst. Several DME/methanol mixtures were measured for their key properties as transportation fuels. With small amounts of DME added, significant improvements in both flash points and Reid Vapor Pressure (RVP) were observed over the corresponding values of methanol alone.

  9. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOE Patents [OSTI]

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  10. Biomass gasification for liquid fuel production

    SciTech Connect (OSTI)

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Vclav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they do?t compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  11. Conversion of olefins to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  12. Liquid Fuels and Natural Gas in the Americas

    Reports and Publications (EIA)

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  13. Liquid Fuels and Natural Gas in the Americas

    Reports and Publications (EIA)

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gasparticularly reserves and resources, production, consumption, trade, and investmentgiven their scale and significance to the region.

  14. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping Citation Details In-Document Search Title: Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked

  15. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  16. Vibration mills in the manufacturing technology of slurry fuel from unbeneficiated coal sludge

    SciTech Connect (OSTI)

    E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russia)

    2008-08-15

    Coal-water slurry fuel (CWSF) is economically viable provided that its ash content does not exceed 30% and the amount water in the fuel is at most 45%. Two impoundments were revealed that have considerable reserves of waste coal useful for commercial manufacture of CWSF without the beneficiation step. One of the CWSF manufacture steps is the comminution of coal sludge to have a particle size required by the combustion conditions. Vibration mills, which are more compact and energy-intensive that drum mills, can be used in the CWSG manufacture process. The rheological characteristics of CWSF obtained from unbeneficiated waste coal were determined.

  17. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2007-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

  18. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K.C. Kwon

    2009-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

  19. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

  20. Liquid fuels perspective on ultra low carbon vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy fuels perspective on ultra low carbon vehicles Liquid fuels perspective on ultra low carbon vehicles Fuels challenges in the evolving global energy market PDF icon deer11_simnick.pdf More Documents & Publications Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio

  1. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2006-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

  2. Process for the production and recovery of fuel values from coal

    DOE Patents [OSTI]

    Sass, Allan (Los Angeles, CA); McCarthy, Harry E. (Golden, CO); Kaufman, Paul R. (North Canton, OH); Finney, Clement S. (Claremont, CA)

    1982-01-01

    A method of pyrolyzing and desulfurizing coal in a transport reactor to recover volatile fuel values and hydrogen by heating particulate coal entrained in a carrier gas substantially free of oxygen to a pyrolysis temperature in a zone within three seconds.

  3. Liquid Fuels and Natural Gas in the Americas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Fuels and Natural Gas in the Americas EIA Conference July 14, 2014 | Washington, DC Liquid fuels production in the Americas surpassed the Middle East in 2013 liquid fuels production by region million barrels per day Source: EIA, International Energy Statistics 2 0 5 10 15 20 25 30 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Americas Middle East Former Soviet Union Africa Asia and Oceania Europe EIA Conference July 14, 2014 The Americas are the second largest region in oil reserves

  4. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, James B.; Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  5. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  6. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  7. Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994

    SciTech Connect (OSTI)

    1994-01-31

    Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

  8. New clean fuel from coal -- Direct dimethyl ether synthesis from hydrogen and carbon monoxide

    SciTech Connect (OSTI)

    Ogawa, T.; Ono, M.; Mizuguchi, M.; Tomura, K.; Shikada, T.; Ohono, Y.; Fujimoto, K.

    1997-12-31

    Dimethyl ether (DME), which has similar physical properties to propane and is easily liquefied at low pressure, has a significant possibility as a clean and non-toxic fuel from coal or coal bed methane. Equilibrium calculation also shows a big advantage of high carbon monoxide conversion of DME synthesis compared to methanol synthesis. By using a 50 kg/day DME bench scale test plant, direct synthesis of DME from hydrogen and carbon monoxide has been studied with newly developed catalysts which are very fine particles. This test plant features a high pressure three-phase slurry reactor and low temperature DME separator. DME is synthesized at temperatures around 533--553 K and at pressures around 3--5 MPa. According to the reaction stoichiometry, the same amount of hydrogen and carbon monoxide react to DME and carbon dioxide. Carbon conversion to DME is one third and the rest of carbon is converted to carbon dioxide. As a result of the experiments, make-up CO conversion is 35--50% on an once-through basis, which is extremely high compared to that of methanol synthesis from hydrogen and carbon monoxide. DME selectivity is around 60 c-mol %. Most of the by-product is CO{sub 2} with a small amount of methanol and water. No heavy by-products have been recognized. Effluent from the reactor is finally cooled to 233--253 K in a DME separator and liquid DME is recovered as a product.

  9. Process for removal of mineral particulates from coal-derived liquids

    DOE Patents [OSTI]

    McDowell, William J. (Knoxville, TN)

    1980-01-01

    Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

  10. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect (OSTI)

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  11. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H. (Overland Park, KS)

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  12. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  15. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  16. Transportation costs for new fuel forms produced from low rank US coals

    SciTech Connect (OSTI)

    Newcombe, R.J.; McKelvey, D.G. ); Ruether, J.A. )

    1990-09-01

    Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

  17. AEO2015 Liquid Fuels Markets Working Group Presentation

    Gasoline and Diesel Fuel Update (EIA)

    Assumptions for Annual Energy Outlook 2015: Liquid Fuels Markets Working Group AEO2015 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis July 17, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Discussion topics Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, July 17, 2014 DO NOT QUOTE OR CITE

  18. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability of Feedstock and Technology | Department of Energy 1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous

  19. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  20. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  1. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  2. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition - Internal Revenue Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol, and renewable diesel are not considered alternative fuels by the IRS. While the term "hydrocarbons" includes liquids that

  4. Enhanced conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1986-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  5. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  6. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  7. Additive development for ultra-clean coal slurry fuel: Final report

    SciTech Connect (OSTI)

    Berggren, M.H.; Swanson, W.W.

    1988-05-24

    AMAX performed research to develop improved quality, cost-effective dispersing additives for coal-water slurry fuels intended for high-intensity combustion systems. Dispersants were identified on the basis of coal surface characteristics and coal-dispersant interactions. Micronized samples of physically and chemically cleaned coal feedstocks from the Eastern and Midwestern regions of the United States were examined using bulk and surface analysis techniques. Utilization of coal surface and dispersant functionality was optimized through multicomponent application of additives, pH control, and control of surface oxidation. A low-cost, low-alkali, sulfur-free dextrin compound was found to be effective in enhancing dispersion when applied to the coal surfaces as a pretreatment or with conventional dispersants as a co-additive. The cleaning method and ash content had minimal direct impact on coal surface functionality. Parameters such as internal moisture, particle size, surface area, surface oxidation, and soluble ions were the primary considerations which influenced slurry loading and additive consumption. The dispersing additive packages functioned over the range of coal types and cleaning levels investigated. The preferred additives were compatible with each other, allowing for blending to optimize performance, cost, and alkali contamination. Each additive was found to be suitable for use in applications which utilize elevated-temperature fuel delivery systems. 17 refs., 8 figs., 27 tabs.

  8. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  9. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    SciTech Connect (OSTI)

    Celik, Ismail B.

    2014-10-30

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that the extent of steam and current load accelerate the degradation caused by PH3. A unique filtering technique has been proposed to reduce the effect of PH3. In addition, various cell materials have been proposed to reduce the rate of degradation caused by H2S. Furthermore, a three-dimensional, transient multi-physics model has been formulated to describe primary transport processes and electro-chemical reactions occurring within the cell. This model has been validated using data gathered from accelerated tests. The validated model then has been used to study the degradation rates under a range of operating conditions and impurity levels. This has resulted in a procedure that uses both experiments and simulations to predict the life-time of a cell operating with syngas with known concentration of trace impurities. Finally all the experience and knowledge gained has been disseminated via 39 journal papers and 43 presentations/posters/conference papers.

  10. Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2

    SciTech Connect (OSTI)

    Klosky, M.K.

    1996-09-01

    EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

  11. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  12. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    SciTech Connect (OSTI)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.; O'Rourke, Julia M.

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  13. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  14. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  15. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  16. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Coal-Derived Liquids to Enable HCCI Technology Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and Emissions Cetane Performance and Chemistry Comparing Conventional Fuels and Fuels Derived from Heavy Crude Sources

  17. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe-M (M=Ni, Mo, Pd) catalysts exhibit excellent activity for dehydrogenation of gaseous alkanes, yielding pure hydrogen and carbon nanotubes in one reaction. A fluidized-bed/fixed-bed methane reactor was developed for continuous hydrogen and nanotube production. (6) A process for co-production of hydrogen and methyl formate from methanol has been developed. (7) Pt nanoparticles on stacked-cone carbon nanotubes easily strip hydrogen from liquids such as cyclohexane, methylcyclohexane, tetralin and decalin, leaving rechargeable aromatic phases. (8) Hydrogen volume percentages produced during reforming of methanol in supercritical water in the output stream are {approx}98%, while CO and CO2 percentages are <2 %.

  18. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal-Derived Liquids to Enable HCCI Technology Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and Emissions Cetane Performance and Chemistry Comparing ...

  19. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOE Patents [OSTI]

    Wickstrom, Gary H. (Yorba Linda, CA); Knell, Everett W. (Los Alamitos, CA); Shaw, Benjamin W. (Costa Mesa, CA); Wang, Yue G. (West Covina, CA)

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  20. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  1. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L. (Scottsdale, AZ)

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  2. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Verification of Shell GTL Fuel as CARB Alternative Diesel ...

  3. HIGH ENERGY LIQUID FUELS FROM PLANTS

    SciTech Connect (OSTI)

    Nemethy, E. K.; Otvos, J. W.; Calvin, M.

    1980-10-01

    The heptane extract of Euphorbia lathyris has a low oxygen content and a heat valve of 42 MJ/kg which is comparable to that of crude oil (44 MJ/kg). These qualities indicate a potential for use as fuel or chemical feedstock material. Therefore we have investigated the chemical composition of this fraction in some detail. Since the amoun of the methanol fraction is quite substantial we have also identified the major components of this fraction.

  4. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    SciTech Connect (OSTI)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  5. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  6. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOE Patents [OSTI]

    Li, Jian (Alberta, CA); Farooque, Mohammad (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  7. Coal-water slurry fuel internal combustion engine and method for operating same

    DOE Patents [OSTI]

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  8. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect (OSTI)

    Paul A. Erickson

    2006-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  9. Shell Gas to Liquids in the context of a Future Fuel Strategy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing ...

  10. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect (OSTI)

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  11. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  12. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  13. COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING

    SciTech Connect (OSTI)

    J. M. Calo

    2000-12-01

    The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

  14. Methyl aryl ethers from coal liquids as gasoline extenders and octane improvers

    SciTech Connect (OSTI)

    Singerman, G.M.

    1980-11-01

    A mixture of methyl aryl ethers derived from the phenols present in direct liquefaction coal liquids shows considerable promise as a gasoline blending agent and octane improver. The mixture of methyl aryl ethers was blended at five volume percent with a commercial, unleaded gasoline. The properties and performance of the blend in a variety of laboratory and automotive tests is reported. The tests show that the mixture of methyl aryl ethers improves gasoline octane without degrading other gasoline properties.

  15. Chemical class fractionation and thermophysical property measurements of solvent refined coal liquids

    SciTech Connect (OSTI)

    Hewitt, J.D.; Rodgers, B.R.

    1980-01-01

    Coal liquids are a potpourri of organic molecules and inorganic particles; they cannot be considered as a single entity because of variations in coals and processing conditions during conversion to liquids. A method of solubility class fractionation originally developed for petroleum asphalts was adapted to coal liquids. The component classes - asphaltols, asphaltenes, resins, and oils - were separated according to their solubilities in benzene, pentane, and propane. Important physical and thermodynamic properties (viscosity, density, dielectric constant, and conductivity) of these fractions were determined as a function of temperature. In many cases these are the only values currently available to other investigators and are much in demand. We observed that density was most affected by the solids, as expected; however, the dielectric constant was most affected by the asphaltols, the viscosity by the resins (closely followed by the asphaltenes), and the conductivity by the resins. This led to the conclusion that the asphaltols contain the most polarizable material and the resins the most ionizable material. The conductivity remaining after all these materials were removed (10/sup -9/ mho/cm) and the dielectric constant (4.5) are still significantly higher than the corresponding values for most pure hydrocarbons and are important characteristics of these materials.

  16. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Fuels in the Transportation Sector | Department of Energy A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin PDF icon 2004_deer_abbott.pdf More Documents & Publications Shell Gas to Liquids in

  17. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure hydrogen and carbon nanotubes using binary Fe-based catalysts containing Mo, Ni, or Pd in a single step non-oxidative reaction. (7) Partial dehydrogenation of liquid hydrocarbons (cyclohexane and methyl cyclohexane) has been performed using catalysts consisting of Pt and other metals on stacked-cone carbon nanotubes. (8) An understanding of the catalytic reaction mechanisms of the catalysts developed in the CFFS C1 program is being achieved by structural characterization using multiple techniques, including XAFS and Moessbauer spectroscopy, XRD, TEM, NMR, ESR, and magnetometry.

  18. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    SciTech Connect (OSTI)

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  19. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  20. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect (OSTI)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  1. A review of trace element emissions from the combustion of refuse-derived fuel with coal

    SciTech Connect (OSTI)

    Norton, G.A. )

    1992-05-01

    The effects of cocombusting refuse-derived fuel (RDF) with coal on stack emissions of trace elements in the ash stream were reviewed. The large number of variables and uncertainties involved precluded drawing definitive conclusions regarding many of the trace elements. However, it is evident that cocombustion resulted in increased emissions of Cd, Cu, Hg, Pb, and Zn. Emissions of As and Ni tended to decrease when RDF was fired with coal. Modeling studies indicated that ambient levels of trace elements during cocombustion should be within acceptable limits. However, periodic monitoring of Cd, Hg, and Pb may be warranted in some instances.

  2. Predicting the performance of system for the co-production of Fischer-Tropsch synthetic liquid and power from coal

    SciTech Connect (OSTI)

    Wang, X.; Xiao, Y.; Xu, S.; Guo, Z.

    2008-01-15

    A co-production system based on Fischer-Tropsch (FT) synthesis reactor and gas turbine was simulated and analyzed. Syngas from entrained bed coal gasification was used as feedstock of the low-temperature slurry phase Fischer-Tropsch reactor. Raw synthetic liquid produced was fractioned and upgraded to diesel, gasoline, and liquid petrol gas (LPG). Tail gas composed of unconverted syngas and FT light components was fed to the gas turbine. Supplemental fuel (NG, or refinery mine gas) might be necessary, which was dependent on gas turbine capacity expander through flow capacity, etc. FT yield information was important to the simulation of this co-production system. A correlation model based on Mobil's two step pilot plant was applied. User models that can predict product yields and cooperate with other units were embedded into Aspen plus simulation. Performance prediction of syngas fired gas turbine was the other key of this system. The increase in mass flow through the turbine affects the match between compressor and turbine operating conditions. The calculation was carried out by GS software developed by Politecnico Di Milano and Princeton University. Various cases were investigated to match the FT synthesis island, power island, and gasification island in co-production systems. Effects of CO{sub 2} removal/LPG recovery, co-firing, and CH{sub 4} content variation were studied. Simulation results indicated that more than 50% of input energy was converted to electricity and FT products. Total yield of gasoline, diesel, and LPG was 136-155 g/N m{sup 3} (CO+H{sub 2}). At coal feed of 21.9 kg/s, net electricity exported to the grid was higher than 100 MW. Total production of diesel and gasoline (and LPG) was 118,000 t (134,000 t)/year. Under the economic analysis conditions assumed in this paper the co-production system was economically feasible.

  3. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  4. AEO2014 Liquid Fuels Markets Working Group Meeting 1

    Gasoline and Diesel Fuel Update (EIA)

    AEO2014 Liquid Fuels Markets Working Group Meeting 1 July 24, 2013 Attendance (In Person) (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Beth May, Adrian Geagla, Vish Mantri, Tony Radich, Irene Olson, Julie Harris (non-EIA) Jeff Meyer (HIS CERA, Oil Market Analyst), Adam Christensen (Johns Hopkin) Attendance (WebEx) Dave Schmalzer, Seth Snyder (Argonne National Laboratory), Donald Hanson (Argonne National Laboratory), Wyatt Thompson (FAPRI, University of Missouri), Jarrett Whistance (FAPRI,

  5. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compensation Committee Report Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal Biomass 2014: Growing the Future Bioeconomy Agenda Washington, DC July 29-30, 2014 * Established in 1941 as an independent, not-for-profit (501-c-3) center for scientific research and development * Headquartered in Birmingham, Alabama; 8 locations in Southeastern US; 500 employees * Serves both Government and private industry clients * Revenue ~$80 million from contract

  6. Catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  7. Which route to coal liquefaction

    SciTech Connect (OSTI)

    Nene, R.G.

    1981-11-01

    Two main methods for producing liquid fuels from coal are currently undergoing intensive evaluation. One, direct liquefaction (e.g., SRC-II, Exxon Donor Solvent (EDS), and H-Coal) produces liquid fuels directly from coal; the other, indirect liquefaction (e.g., Lurgi gasifier followed by Fischer-Tropsch, and Shell-Koppers gasifier followed by methanol synthesis and Mobil's MTG process) first gasifies coal and then converts the gaseous material into liquid products. This paper compares both routes basing its assessment on yields, thermal efficiencies, elemental balances, investment, complexity, and state of development. It is shown that direct liquefaction is more efficient and produces more product per investment dollar. Higher efficiency for direct liquefaction is verified bY stoichiometric and thermodynamic analysis. All approaches require about the same capital investment per unit of feed. Indirect liquefaction can be either more or less complex than direct liquefaction, depending upon the process. Direct liquefaction is least developed. 8 refs.

  8. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  9. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    SciTech Connect (OSTI)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  10. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect (OSTI)

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. Lutz; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. Laughlin; S. Sridhar

    2012-05-20

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions.

  11. NREL Research on Converting Biomass to Liquid Fuels

    ScienceCinema (OSTI)

    None

    2013-05-29

    Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

  12. Fireside Corrosion in Oxy-Fuel Combustion of Coal

    SciTech Connect (OSTI)

    Holcomb, Gordon R.; Tylczak, Joseph; Meier, G.H.; Jung. K.; Mu, N.; Yanar, N.M.; Pettit, F.S.

    2012-08-01

    Oxy-fuel combustion is based on burning fossil fuels in a mixture of recirculated flue gas and oxygen, rather than in air. An optimized oxy-combustion power plant will have ultra-low emissions since the flue gas that results from oxy-fuel combustion consists almost entirely of CO2 and water vapor. Once the water vapor is condensed, it is relatively easy to sequester the CO2 so that it does not escape into the atmosphere. A variety of laboratory tests comparing air-firing to oxy-firing conditions, and tests examining specific simpler combinations of oxidants, were conducted at 650-700 C. Alloys studied included model Fe-Cr and Ni-Cr alloys, commercial ferritic steels, austenitic steels, and nickel base superalloys. The observed corrosion behavior shows accelerated corrosion even with sulfate additions that remain solid at the tested temperatures, encapsulation of ash components in outer iron oxide scales, and a differentiation between oxy-fuel combustion flue gas recirculation choices.

  13. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    SciTech Connect (OSTI)

    Placido, Andrew; Liu, Kunlei; Challman, Don; Andrews, Rodney; Jacques, David

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in some detail in this report, along with lessons learned.

  14. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    SciTech Connect (OSTI)

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D.

    1993-12-31

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% (by man) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  15. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  16. Coal-water fuel supply and boiler-conversion study. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report presents the results of a study on the feasibility of converting an oil-fired boiler at Occidental Chemical Company's Niagara Falls, New York facility to coal/water slurry (CWS) fuel. The study evaluates technical and economic issues concerning a decision to convert the boiler. Conversion costs are weighted against CWS fuel-cost savings compared to oil and an acceptable market price for the CWS fuel is developed that provides a specified rate of return for the conversion. The report uses the target CWS fuel price in developing a design for a CWS fuel-production plant that could manufacture CWS at that price. In order to achieve the target price the CWS fuel-product plant must be sized to achieve economies of scale and plant output would be far in excess of the converted-boiler's demand. As a result of CWS fuel marketing study was undertaken to define additional boiler-conversion candidates in the western New York area. Without this additional CWS fuel demand, CWS cannot be produced at the target fuel price.

  17. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

  18. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

  19. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    SciTech Connect (OSTI)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal and biomass. The primary feature of such a plant, in the current situation in which no commercial FT plants are operating in the US, is that it requires a relatively modest capital investment, meaning that such a plant could actually be built, operated, and replicated in the near term. This is in contrast to the several-billion dollar investment, and accompanying risk, that would be required for a plant of more than an order of magnitude greater capacity, which has been referred to in the technical literature on fuel production as the capacity required to be considered "commercial-scale." The effects of more than ten different potential poisons for cobalt FT catalyst have been studied extensively and in detail using laboratory continuous-stirred tank reactors (CSTRs) and bottled laboratory syngas "spiked" with precisely controlled amounts of the poisons, typically at the levels of 10s or 100s of parts per billion. This data set has been generated and interpreted by world-renowned experts on FT catalysis at the University of Kentucky Center for Applied Energy Research (UK-CAER), and has enabled unprecedented insight regarding the many molecular-scale mechanisms that can play a role in the "poisoning" of cobalt FT catalyst.

  20. Systems simulation of cotton gin waste as a supplemental fuel in a coal powered generating plant

    SciTech Connect (OSTI)

    Parnell, C.B.; Grubaugh, E.K.; Johnston, M.T.; Ladd, K.L.

    1981-01-01

    A systems simulation model of gin trash use at a Lamb County, Texas, power plant was developed. The model is being used to study gin trash supply, both quantity and transportation, fixed and variable cost, and economic benefit/costs of gin trash utilization. Preliminary results indicate the positive feasibility of using gin trash as a supplemental fuel in a coal fired power plant. (MHR)

  1. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect (OSTI)

    Holcomb, Gordon R; Tylczak, Joseph; Meier, Gerald H; Lutz, Bradley; Jung, Keeyoung; Mu, Nan; Yanar, Nazik M; Pettit, Frederick S; Zhu, Jingxi; Wise, Adam; Laughlin, David E.; Sridhar, Seetharaman

    2013-11-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N2 with CO2 and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model FeCr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Evidence was found for a hreshold for severe attack between 10-4 and 10-3 atm of SO3 at 700C.

  2. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-12-08

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

  3. Process for the production of fuel gas from coal

    DOE Patents [OSTI]

    Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  4. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  5. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  6. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    SciTech Connect (OSTI)

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal performance between the various coproduct cases is further complicated by the fact that the carbon footprint is not the same when carbon leaving with the coproduct are accounted for. The economic analysis and demand for a particular coproduct in the market place is a more meaningful comparison of the various coproduction scenarios. The first year cost of electricity calculated for the bituminous coal is $102.9/MWh while that for the lignite is $108.1/MWh. The calculated cost of hydrogen ranged from $1.42/kg to $2.77/kg depending on the feedstock, which is lower than the DOE announced hydrogen cost goal of $3.00/kg in July 14, 2005. Methanol cost ranged from $345/MT to $617/MT, while the market price is around $450/MT. For Fischer-Tropsch liquids, the calculated cost ranged from $65/bbl to $112/bbl, which is comparable to the current market price of crude oil at around $100/bbl. It should be noted, however, that F-T liquids contain no sulfur and nitrogen compounds. The calculated cost of alcohol ranged from $4.37/gal to $5.43/gal, while it ranged from $2.20/gal to $3.70/gal in a DOE funded study conducted by Louisiana State University. The Louisiana State University study consisted of a significantly larger plant than our study and benefited from economies of scale. When the plant size in our study is scaled up to similar size as in the Louisiana State University study, cost of alcohol is then reduced to a range of $3.24/gal to $4.28/gal, which is comparable. Urea cost ranged from $307/MT to $428/MT, while the market price is around $480/MT.

  7. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  8. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in

  9. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly

  10. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  11. Catalysts for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A. (Armonk, NY); Coughlin, Peter K. (Yorktown Heights, NY)

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  12. Chemicals, fuels and electricity from coal. A proposed tri-generation concept for utilization of CO{sub 2} from power plants

    SciTech Connect (OSTI)

    Song, C.

    1999-07-01

    A tri-generation concept is proposed for the 21st century for making liquid fuels and chemicals along with electricity using CO{sub 2} from flue gases of coal-based electric power plants. The CO{sub 2} from flue gas in the power plant can be converted with CH{sub 4} (natural gas) to form synthesis gas (CO and H{sub 2} mixture) using the waste heat in the power plant. The H{sub 2}O and O{sub 2} in the flue gas will be used as co-reactants and need not be separated from the flue gas. The hot synthesis gas can be used as feedstock for fuel cells for electricity generation (such as MCFC and SOFC). The hot synthesis gas can also be used for gas turbines to generate electricity. The synthesis gas at moderate temperature can be converted into chemicals and fuels, e.g., methanol and mixed alcohols for chemical and fuel uses, dimethylether (DME) and mixed ethers for diesel fuel, dimethyl carbonate and acetic acid for chemicals. The fuels thus produced may be used either for conventional IC engines or in fuel cell-driven vehicles. This concept could also be applied, in principle, for natural gas-based power plants and IGCC power plants.

  13. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    SciTech Connect (OSTI)

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  14. Second AEO2-015 Liquid Fuels Markets Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    September 24, 2014 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSYS MICHAEL SCHAAL DIRECTOR, OFFICE OF ENERGY ANALYSIS JOHN POWELL TEAM LEADER, LIQUID FUELS MARKET TEAM FROM: LIQUID FUELS MARKET TEAM SUBJECT: Second AEO2015 Liquid Fuels Markets Working Group Meeting Summary (presented on 09-24-2014) Attendees: (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Adrian Geagla, David Manowitz, Beth May Seth Meyer (USDA) Austin Brown (NREL) Robert Smith (US DOE) Ben Salisbury

  15. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect (OSTI)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

  16. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  17. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect (OSTI)

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  18. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  19. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  20. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  1. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    SciTech Connect (OSTI)

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  2. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_mckee.pdf More Documents & Publications Testing Synthetic Fuels for Use in U.S. Army Ground Vehicles Coal-Derived Liquids to Enable HCCI Technology Thermochemical Conversion Proceeses to Aviation Fuels

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,1.73,1.48,1.41,2.03," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.07,2.08,1.98,1.8,1.81,1.74,1.59,1.44,1.41,1.3,1.27,1.26,1.25,1.24,1.33,1.33,1.42,1.44,1.39,1.37,1.35,1.37,1.41,1.43 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.39,3.35,3.14,3.05,2.87,2.83,2.58,2.02,2,1.88,1.73,1.8," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.91,1.84,1.74,1.59,1.6,1.47,1.26,1.28,1.06,0.97,0.97,0.95,0.92,0.93,0.98,0.99,1.01,1.03,1.05,1.06,1.09,1.09,1.09,1.06 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.2,3.94,4.04,3.55,3.34,3.52,2.86,3.08,2.81,2.2,1.9,1.78,2.17,1.52,1.59,1.56,1.57,1.59,1.62,1.62,1.69,1.73,1.78,1.81 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," ",1.44," "," "," "," ","

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.47,3.55,3.59,3.47,3.39,2.97,2.56,2.56,2.31,1.92,1.76,1.76,1.72,1.57,1.59,1.65,1.73,1.74,1.79,1.78,1.77,1.82,1.86,1.85 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.2,3.49,3.76,3.9,3.62,3.07,2.61,2.4,2.18,1.8,1.72,1.68,1.66,1.54,1.55,1.55,1.59,1.58,1.67,1.69,1.78,1.8,1.8,1.79 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.91,3.78,3.37,2.79,2.97,3.58,3.09,2.81,1.75,1.88,2.96,3.03," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,2.71,2.95,2.55,2.51," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.9,1.94,1.76,1.7,1.65,1.58,1.34,1.26,1.19,1.15,1.16,1.19,1.19,1.15,1.44,1.56,1.55,1.63,1.63,1.61,1.7,1.74,1.71,1.75 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.5,2.56,2.46,2.14,2.02,1.93,1.61,1.52,1.4,1.21,1.2,1.17,1.14,1.08,1.11,1.12,1.16,1.19,1.25,1.27,1.27,1.31,1.34,1.36 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.77,1.54,1.52,1.42,1.34,1.27,1.08,1.05,0.98,0.93,0.89,0.89,0.81,0.82,0.82,0.88,0.94,0.94,0.99,0.99,1.01,1.1,1.1,1.12 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.77,1.83,1.75,1.51,1.43,1.41,1.23,1.19,1.12,1.03,1.01,0.98,1.05,0.98,0.95,0.98,1.02,0.99,1.02,1.02,1.02,1.18,1.23,1.24 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.36,2.42,2.34,2.26,2.17,2.14,1.75,1.7,1.52,1.37,1.23,1.19,1.1,1.02,1.06,1.06,1.05,1.06,1.11,1.16,1.17,1.16,1.18,1.19 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.56,2.49,2.39,2.16,2.04,2.1,1.85,1.66,1.51,1.38,1.34,1.27,1.31,1.32,1.4,1.43,1.48,1.51,1.55,1.54,1.58,1.53,1.65,1.7 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",5.09,7,6.09,6.19,5.06,3.67,3.19,3.27,2.66,2.62,2.37,2.41," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.68,2.79,2.68,2.12,2.07,1.97,1.72,1.68,1.58,1.39,1.34,1.32,1.27,1.3,1.31,1.33,1.37,1.4,1.45,1.51,1.53,1.56,1.59,1.6 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.03,1.99,1.93,1.74,1.64,1.69,1.5,1.22,1.13,1.07,1.08,1.06,1.02,1.11,1.1,1.07,1.09,1.07,1.14,1.14,1.13,1.19,1.26,1.25 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.24,3.52,3.45,2.89,3.01,3.01,2.71,2.31,2.1,1.69,1.54,1.59,1.63,1.52,1.55,1.54,1.55,1.51,1.53,1.57,1.64,1.6,1.67,1.65 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.9,1.85,1.73,1.59,1.53,1.51,1.33,1.11,1.01,0.93,0.92,0.9,0.96,0.92,0.93,0.92,0.93,0.95,0.98,1.1,1.24,1.34,1.34,1.35 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.57,1.38,1.33,1.11,1.07,1.02,0.93,0.85,0.71,0.64,0.62,0.61,0.95,0.92,0.73,0.67,0.68,0.71,0.67,0.69,0.69,0.71,0.67,0.67 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.42,1.55,1.51,1.42,1.33,0.9,0.88,0.8,0.71,0.66,0.6,0.58,0.57,0.56,0.55,0.59,0.59,0.72,0.75,0.77,0.75,0.75,0.75,0.75 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.64,2.57,2.58,2.44,2.22,2.2,1.88,1.73,1.54,1.36,1.42,1.34,1.26,1.26,1.29,1.3,1.39,1.37,1.31,1.43,1.47,1.46,1.41,1.49 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",4.21,4.07,3.55,3.8,3.66,3.53,2.9,2.56,2.44,2.02,1.7,1.8,1.67,1.48,1.52,1.61,1.63,1.61,1.59,1.52,1.61,1.69,1.74,1.78 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.87,4.05,4.18,4.16,4.01,3.33,2.89,2.73,2.18,2.05,1.8,1.87,2.27,1.39,1.45,1.59,1.76,1.75,1.78,1.82,1.77,1.73,1.78,1.8 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.31,2.18,2.05,2.06,1.9,1.99,1.79,1.56,1.51,1.48,1.43,1.53,1.47,1.38,1.33,1.31,1.34,1.43,1.42,1.41,1.37,1.32,1.38,1.32 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.13,3.26,3.32,3.05,2.73,2.57,2.41,2.4,2.13,1.76,1.59,1.55,1.42,1.49,1.45,1.43,1.42,1.43,1.41,1.45,1.5,1.49,1.59,1.61 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.8,3.77,3.63,3.52,3.59,3.26,2.74,2.69,2.4,2,1.78,1.76,1.59,1.43,1.44,1.44,1.43,1.48,1.63,1.68,1.7,1.73,1.78,1.78 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.55,1.49,1.34,1.26,1.14,1.1,0.98,0.88,0.82,0.77,0.74,0.74,0.74,0.72,0.73,0.76,0.78,0.74,0.73,0.7,0.71,0.72,0.71,0.69 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.28,2.48,2.48,2.24,2.39,2.05,1.71,1.7,1.54,1.33,1.21,1.23,1.31,1.46,1.36,1.36,1.32,1.34,1.42,1.44,1.41,1.44,1.48,1.52 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.03,2,1.82,1.72,1.65,1.35,1.19,1.12,1.04,1.04,0.99,0.96,0.91,0.94,0.91,0.91,0.92,0.98,0.99,1.02,1.24,1.23,1.32,1.4 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.96,1.89,1.79,1.67,1.76,1.45,1.38,1.3,1.28,1.18,1.25,1.33,1.11,1.07,1.08,1.09,1.14,1.07,1.06,1.07,1.12,1.1,1.08,1.08 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.48,2.43,2.56,2.41,2.3,2.1,1.75,1.72,1.59,1.37,1.22,1.25,1.21,1.15,1.3,1.35,1.36,1.38,1.36,1.43,1.44,1.48,1.55,1.52 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.76,3.98,3.85,3.71,3.66,2.89,2.34,2.33,2.17,1.91,1.62,1.59,1.57,1.39,1.42,1.45,1.45,1.47,1.51,1.56,1.57,1.53,1.63,1.72 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2,2.19,2.09,1.95,1.76,1.74,1.56,1.51,1.42,1.39,1.34,1.3,1.03,0.99,0.94,0.93,0.92,0.94,1.03,1.08,1.1,1.13,1.13,1.15 "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,2.72,2.88,2.69,2.57,2.28,1.94,1.73,1.57,1.36,1.26,1.22,1.22,1.11,1.13,1.12,1.12,1.15,1.15,1.26,1.26,1.27,1.25,1.34 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.97,1.88,1.87,1.84,1.68,1.62,1.49,1.39,1.29,1.31,1.25,1.26,1.33,1.23,1.2,1.24,1.26,1.29,1.34,1.35,1.44,1.49,1.5,1.45 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.05,1.94,1.78,1.7,1.55,1.39,1.36,1.25,1.14,1.13,1.04,0.98,1.12,1.01,1.03,1.15,1.11,1.07,1.09,1.14,1.19,1.21,1.19,1.17 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.35,3.67,3.52,3.28,3.08,2.77,2.49,2.45,2.33,1.95,1.67,1.69,1.59,1.33,1.34,1.38,1.39,1.42,1.45,1.45,1.47,1.47,1.52,1.55 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,2.55,2.47,2.39,2.54,2.22,1.73,1.67,1.53,1.35,1.25,1.21,1.25,1.2,1.18,1.22,1.24,1.25,1.27,1.39,1.42,1.47,1.52,1.47 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.42,2.56,2.18,2.06,1.98,1.7,1.5,1.29,1.18,1.12,1.12,1.05,1.02,1.02,1.07,1.09,1.06,1.14,1.21,1.21,1.33,1.36,1.36 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.51,1.43,1.54,1.32,1.2,1.17,1.05,1,0.95,0.87,0.82,0.79,0.77,0.78,0.76,0.79,0.81,0.82,0.82,0.8,0.8,0.76,0.83,0.84 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.34,2.38,2.39,2.27,2.21,2.07,1.77,1.69,1.54,1.36,1.28,1.25,1.23,1.2,1.22,1.25,1.27,1.29,1.32,1.36,1.39,1.41,1.45,1.45 "Average heat value (Btu per

  9. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  10. Combustion characterization of coal/refuse derived fuels using thermogravimetric-fourier transform infrared-mass spectrometry

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Lu, Huagang; Hyatt, J.

    1995-12-31

    The fundamental thermal behavior of five materials (Illinois coal No. 6, Kentucky coal No. 9, polyvinyl chloride, cellulose, newspaper) has been investigated using the TGA/FTIR/MS system under the condition of combustion. The system was used to identify molecular chlorine, along with HCI, CO, CO{sub 2}, H{sub 2}O and various hydrocarbons in the gaseous products of the combustion of PVC resin in air. This is a significant finding that will lead us to examine this combustion step further to look for the formation of chlorinated organic compounds during co-firing of coal with refuse derived fuels.

  11. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  12. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  13. Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993

    SciTech Connect (OSTI)

    Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

    1993-09-01

    The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

  14. Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel

    SciTech Connect (OSTI)

    Beverly L. Smith; Thomas J. Bruno

    2007-09-15

    We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

  15. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  16. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from ...

  17. Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process

    SciTech Connect (OSTI)

    Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

    2012-09-15

    Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

  18. Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Aspects | Department of Energy Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects 2003 DEER Conference Presentation: Shell Global Solutions (US) Inc. PDF icon 2003_deer_clark.pdf More Documents & Publications An Evaluation of Shell GTL Diesel Verification of Shell GTL Fuel as CARB Alternative Diesel Assessment of Environmental Impacts of Shell GTL

  19. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOE Patents [OSTI]

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  20. Interest in coal chemistry intensifies

    SciTech Connect (OSTI)

    Haggin, J.

    1982-08-09

    Research on coal structure has increased greatly in recent years as the future role of coal as a source of gaseous and liquid fuels, as well as chemicals, becomes more apparent. This paper reviews in some detail work being carried out in the US, particularly in the laboratories of Mobil and Exxon, and in the universities. New ideas on the chemical and physical structure of coal are put forward, and a proposal for a new classification system based on the fundamental properties of the vitrinite macerals is introduced.

  1. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  2. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Siefert, Nicholas; Litster, Shawn

    2012-01-01

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ?4%/yr and ?2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the carbon dioxide is used for enhanced oil recovery rather than for saline aquifer storage, then the IRR values improve to 16%/yr, 10%/yr, and 8%/yr, respectively. For comparison, the IRR of a new conventional IGCC or PCC power plant without CO{sub 2} capture are estimated to be 11%/yr and 15.0%/yr, respectively. Second, we conducted an exergy analysis of two different configurations in which syngas from a catalytic gasifier fuels a SOFC. In the first case, the CO{sub 2} is captured before the SOFC, and the anode tail gas is sent back to the catalytic gasifier. In the second case, the anode tail gas is oxy-combusted using oxygen ion ceramic membranes and then CO{sub 2} is captured for sequestration. In both cases, we find that the system efficiency is greater than 60%. These values compare well with previous system analysis. In future work, we plan to calculate the IRR of these two cases and compare with previous economic analyses conducted at NETL.

  3. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  4. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996

    SciTech Connect (OSTI)

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1996-02-29

    The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

  5. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  6. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  7. Utilization of fuel cells to beneficially use coal mine methane. Final report

    SciTech Connect (OSTI)

    Brown, J.T.; O`Brien, D.G.; Miller, A.R.; Atkins, R.; Sanders, M.

    1996-03-01

    DOE has been given the responsibility to encourage industry to recover and use methane that is currently being released to the atmosphere. At this time the only method being employed at the Left Fork Mine to remove methane is the mine ventilation system. The methane content was measured at one one-hundredth of a percent. To prevent this methane from being vented to the atmosphere, degasification wells are proposed. To use the coal mine methane, it is proposed to use phosphoric-acid fuel cells to convert methane to electric power. These fuel cells contain (1) a steam reformer to convert the methane to hydrogen (and carbon dioxide), (2) the fuel cell stack, and (3) a power conditioner that provides 200 kW of 60 Hz alternating current output. The environmental impacts and benefits of using this technology ware summarized in the report. The study indicates the methane emission reduction that could be achieved on a national and Global level. The important point being that this technology is economically viable as is demonstrated in the report.

  8. Chlorinated organic compounds evolved during the combustion of blends of refuse-derived fuels and coals

    SciTech Connect (OSTI)

    Xiaodong Yang; Napier, J.; Sisk, B.; Wei-Ping Pan; Riley, J.T.; Lloyd, W.G.

    1996-12-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR and MS systems. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GUMS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic; compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  9. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.77,4.35,3.7,3.75,3.58,3.15,2.95,2.67,2.46,2.38,2.41,2.45," "," ",1.69,1.81,1.9,1.91,1.88,1.77,1.7,1.95,2.17,2.13 "Average heat value (Btu per pound)",9205,9205,9373,10706,11038,10215,10286,10056,10139,10423,10565,11439,"

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.39,3.57,3.65,3.41,3.01,3.66,2.12,2.27,1.92,1.74,1.63,1.63," ",1.33,1.38,1.46,1.5,1.49,1.5,1.55,1.6,1.59,1.63,1.65 "Average heat value (Btu per pound)",12336,12359,12245,12288,12510,12361,12501,12504,12638,12653,12708,12799,"

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.4,3.12,3.68,3.18,3.38,2.94,2.78,2.78,2.94,1.97,1.75,1.92," ",1.75,1.73,1.68,1.7,1.69,1.68,1.68,1.68,1.69,1.72,1.73 "Average heat value (Btu per pound)",11746,12130,11794,11985,11735,11517,11595,11546,11728,11793,12200,12482,"

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.15,2.29,2.25,2.27,2.16,2.17,1.73,1.54,1.33,1.43,1.4,1.46," ",1.69,1.56,1.49,1.63,1.57,1.44,1.36,1.36,1.37,1.55,1.58 "Average heat value (Btu per pound)",8517,8477,8413,8391,8403,8366,9211,8532,8131,8151,8052,8014,"

  14. Literature survey of properties of synfuels derived from coal

    SciTech Connect (OSTI)

    Flores, F.

    1982-08-01

    This report contains the results of a literature survey conducted by NASA Lewis Research Center. The survey objective was to systematically assemble existing data on the physical, chemical, and elemental composition and structural characteristics of synthetic fuels (liquids and gases) derived from coal. The report contains the survey results compiled to October 1980. The report includes the following: (1) a general description of fuel properties, with emphasis on those properties required for synfuels to be used in gas-turbine systems for industry and utilities; (2) description of the four major concepts for converting coal into liquid fuels (pyrolysis, solvent extraction, catalytic liquefaction and indirect liquefaction); (3) data obtained from the literature on full range syncrudes and certain distillate cuts for fuels derived by various processes; (4) description of upgrading processes for coal liquids and characterization data for upgraded fuels; (5) data plots illustrating trends in the properties of fuels derived by several processes; (6) description of the most important concepts in coal gasification (fixed bed, fluidized bed, entrained flow and underground gasification) and characterization data for coal-derived gases; (7) a source list and bibliography on syncrude production and upgrading programs; and (8) a listing of some Federal energy contracts for coal-derived synthetic fuels production.

  15. Fuel supply system and method for coal-fired prime mover

    DOE Patents [OSTI]

    Smith, William C. (Morgantown, WV); Paulson, Leland E. (Morgantown, WV)

    1995-01-01

    A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

  16. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  17. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    SciTech Connect (OSTI)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. )

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  18. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  19. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOE Patents [OSTI]

    Simandl, Ronald F. (Knoxville, TN); Brown, John D. (Harriman, TN); Andriulli, John B. (Kingston, TN); Strain, Paul D. (Eads, TN)

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  20. Production of a pellet fuel from Illinois coal mines. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.; Berger, R.; Ho, Ken

    1995-12-31

    The goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach.

  1. Assumptions for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    4: Liquid Fuels Markets Working Group AEO2014 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis July 24, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Discussion topics Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, July 24, 2013 DO NOT QUOTE OR CITE as results are subject to change 2 *

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis expected process scale required for favorable economics the availability of MSW in quantities sufficient to meet process scale requirements the state-of-the-art of MSW gasification technology.

  3. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via

    Office of Scientific and Technical Information (OSTI)

    Hydrothermal Liquefaction (HTL) and Upgrading (Journal Article) | SciTech Connect Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Authors: Zhu, Y. ; Biddy, M. J. ; Jones, S. B. ; Elliott, D. C. ; Schmidt, A. J. Publication Date: 2014-09-15 OSTI Identifier:

  4. Biogas to Liquid Fuels and Chemicals Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas to Liquid Fuels and Chemicals Using a Methanotrophic Microorganism WBS 2.3.2.102 2015 DOE BioEnergy Technologies Office (BETO) Project Peer Review March 24, 2015 Technology Area: Biochemical Conversion Principal Investigator: Michael T. Guarnieri Organization: National Renewable Energy Laboratory 2 Goal Statement Goals 1. Demonstrate proof of concept for a biogas-to-liquid fuels and chemicals process. 2. Enhance carbon conversion efficiency from methane to biomass and products. Outcome:

  5. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-economic Evaluation of the Production of Mixed Alcohols | Department of Energy 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S.

  6. Liquid Fuels Taxes and Credits (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

  7. advanced-fuels-synthesis-index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels and valuable by-products from coal/coal-biomass mixtures. The current focus is on making significant improvements in fuels synthesis product distribution, i.e., by developing catalysts that are not bound by the Anderson-Shultz-Flory distributions characteristic of conventional silica-, alumina- or zeolite-supported iron or cobalt

  8. Vacuum pyrolyzed tire oil as a coal solvent

    SciTech Connect (OSTI)

    Orr, E.C.; Shi, Yanlong; Ji, Qin; Anderson, L.L.; Eyring, E.M.

    1995-12-31

    Recent interest in coprocessing coal with hydrogen rich waste materials in order to produce liquid transportation fuels has given rise to interesting twists on standard coal liquefaction. In general, coprocessing coal with a waste material has been approached with the idea that the waste material would be mixed with the coal under liquefaction conditions with little or no preliminary processing of the waste material other than shredding into smaller size particles. Mixing the waste material with the coal would occur in the primary stage of liquefaction. The primary stage would accomplish the dissolution of the coal and breakdown of the waste material. The products would then be introduced into the secondary stage where upgrading of product would occur. This paper describes the usefulness of oil derived from pyrolysis of waste rubber tires as a reactant in coal coprocessing or coal liquefaction.

  9. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  10. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  11. Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.; Coyle, Christopher A.; Yoon, Kyung J.

    2010-10-15

    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650 to 850oC. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to ~100 ppm, above which losses were insensitive to HCl concentration. Cell voltage had no effect on poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation of new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas. Further, the presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption States are allowed to exempt certified alternative fuel vehicles (AFVs) and plug-in electric vehicles (PEVs) from HOV lane requirements within the state. Eligible AFVs are defined as vehicles operating solely on methanol, denatured ethanol, or other alcohols; a mixture containing at least 85% methanol, denatured ethanol, or other alcohols; natural gas, propane, hydrogen, or coal derived liquid fuels; or fuels derived from biological materials. PEVs are

  13. Production of a pellet fuel from Illinois coal fines. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Rapp, D.; Lytle, J.

    1995-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. For this effort, we will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. Previously it has been decided that corn starch would be used as binder and a roller-and-die mill would be used for pellet manufacture. A quality starch binder has been identified and tested. To potentially lower binder costs, a starch that costs about 50% of the high quality starch was tested. Results indicate that the lower cost starch will not lower binder cost because more is required to produce a comparable quality pellet. Also, a petroleum in water emulsion was evaluated as a potential binder. The compound seemed to have adhesive properties but was found to be a poor binder. Arrangements have been made to collect a waste slurry from the mine previously described.

  14. Terrestrial fate of coal-liquid constituents: behavior of alkyl anilines in soil

    SciTech Connect (OSTI)

    Felice, L.J.; Zachara, J.M.; Rogers, J.E.

    1982-07-01

    The low molecular weight aromatic amines (anilines) are important water soluble constituents of coal liquids. The impact of anilines released to the terrestrial environment will largely depend on their mobility and persistence. Studies were conducted to investigate those processes governing the mobility and persistence of the alkylanilines, namely, soil sorption and chemical/microbial degradation. Soil sorption measurements were conducted on aniline and several methyl substituted anilines on A and B horizons of a soil profile collected from Davies County, Kentucky. The magnitude of sorption was large in all horizons. Sorption in the B horizons was larger than in the A horizon for many of the anilines studied, indicating the importance of both the mineral matrix and organic carbon content of the soil in determining the magnitude of sorption. Results of these measurements indicate that movement of the anilines through the soil would be significantly attenuated by sorption reactions. Aniline sorption measurement in the A horizon after removal of the organic matter and in the B/sub 22/ horizon after removal of amorphous iron oxides and crystalline iron oxides indicate that organic matter largely controls aniline sorption in the A horizon, while crystalline iron oxides and phyllosilicates are important in the B horizons. The effects of pH on aniline sorption was also examined and shown to have significant effects on the magnitude of sorption in both A and B horizons. Soil degradation studies using /sup 14/C-3-methylaniline as a model for alkyl aniline degradation show that 3-methylaniline is readily metabolized by soil microorganisms during the 32-day period examined.

  15. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    SciTech Connect (OSTI)

    Constance Senior

    2004-12-31

    The objectives of this program were to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel and to develop a greater understanding of mercury oxidation across SCR catalysts in the form of a simple model. The Electric Power Research Institute (EPRI) and Argillon GmbH provided co-funding for this program. REI used a multicatalyst slipstream reactor to determine oxidation of mercury across five commercial SCR catalysts at a power plant that burned a blend of 87% subbituminous coal and 13% bituminous coal. The chlorine content of the blend was 100 to 240 {micro}g/g on a dry basis. Mercury measurements were carried out when the catalysts were relatively new, corresponding to about 300 hours of operation and again after 2,200 hours of operation. NO{sub x}, O{sub 2} and gaseous mercury speciation at the inlet and at the outlet of each catalyst chamber were measured. In general, the catalysts all appeared capable of achieving about 90% NO{sub x} reduction at a space velocity of 3,000 hr{sup -1} when new, which is typical of full-scale installations; after 2,200 hours exposure to flue gas, some of the catalysts appeared to lose NO{sub x} activity. For the fresh commercial catalysts, oxidation of mercury was in the range of 25% to 65% at typical full-scale space velocities. A blank monolith showed no oxidation of mercury under any conditions. All catalysts showed higher mercury oxidation without ammonia, consistent with full-scale measurements. After exposure to flue gas for 2,200 hours, some of the catalysts showed reduced levels of mercury oxidation relative to the initial levels of oxidation. A model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

  16. Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility

    SciTech Connect (OSTI)

    Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

    2011-10-25

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  17. Liquid Fuels Market Model of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    correlations), AIChE papers, Petroleum Review. * An extensive review of foreign journals obtained with the aid of ORNL for the high-density jet fuel study. * Contractor...

  18. Liquid Fuels Market Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    correlations), AIChE papers, Petroleum Review. * An extensive review of foreign journals obtained with the aid of ORNL for the high-density jet fuel study. * Contractor...

  19. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  20. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    SciTech Connect (OSTI)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  1. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOE Patents [OSTI]

    Toseland, Bernard Allen (Allentown, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

    2009-02-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  2. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOE Patents [OSTI]

    Toseland, Bernard Allen (Coopersburg, PA); Pez, Guido Peter (Allentown, PA); Puri, Pushpinder Singh (Emmaus, PA)

    2010-08-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  3. Corrosion inhibition when distilling coal liquids by adding cresols or phenols

    DOE Patents [OSTI]

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    Fractionation apparatus material corrosion in a coal liquefaction system is reduced by addition of compounds having a pK.sub.b <6 to tower feed streams or to the tower itself.

  4. Coal Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Research FAQs faq-header-big.jpg COAL RESEARCH Q: Why is coal research needed? A: The energy resources that currently fuel the Nation's economy are approximately 82 percent fossil-based, with coal playing a significant role. All segments of U.S. society rely on America's existing multibillion-dollar investment in its highly reliable and affordable coal-based energy infrastructure. In the power-generation industry, coal is affordably producing approximately 40 percent of U.S. electricity.

  5. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Sethi, Vijay (Laramie, WY); Brecher, Lee E. (Laramie, WY)

    1994-01-01

    A process for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage.

  6. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  7. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    DOE Patents [OSTI]

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  8. Catalytic conversion of solar thermal produced pyrolysis gases to liquid fuels

    SciTech Connect (OSTI)

    Hanley, T.R.; Benham, C.B.

    1981-01-01

    The conversion of a simulated pyrolysis gas and synthesis gas using a Fischer-Tropsch catalyst system in a fluidized-bed reactor is investigated. Liquid fuels were produced between 550 and 660/sup 0/F (288 and 349/sup 0/C) for the simulated pyrolysis gas feed. An analysis of both liquid and gaseous product streams is performed. This investigation indicates a need for more extensive research with respect to hydrogen-to-carbon-monoxide usage ratios and with respect to the role of alkenes in fuel production.

  9. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  10. Liquid Fuels via Upgrading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11.2.13 Liquid Fuels via Upgrading of Syngas Intermediates March 26 th , 2015 Indirect Liquefaction Technology Area Review Robert A. Dagle, Karthi Ramasamy, Michel J. Gray Pacific Northwest National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement  Problem: Conventional synthetic fuel synthesis processes (e.g., FT, MTG, MTOGD) have drawbacks, specifically for the scale of biomass.  FT provides diesel blend but

  11. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Rashid Khan, M.

    1988-05-05

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

  12. Decaking of coal or oil shale during pyrolysis in the presence of iron oxides

    DOE Patents [OSTI]

    Khan, M. Rashid (Morgantown, WV)

    1989-01-01

    A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

  13. AO13. High energy, low methane syngas from low-rank coals for coal-to-liquids production

    SciTech Connect (OSTI)

    Lucero, Andrew; Goyal, Amit; McCabe, Kevin; Gangwal, Santosh

    2015-06-30

    An experimental program was undertaken to develop and demonstrate novel steam reforming catalysts for converting tars, C2+ hydrocarbons, and methane under high temperature and sulfur environments at lab scale. Several catalysts were developed and synthesized along with some catalysts based on recipes found in the literature. Of these, two had good resistance at 90 ppm H2S with one almost not affected at all. Higher concentrations of H2S did affect methane conversion across the catalyst, but performance was fairly stable for up to 200 hours. Based on the results of the experimental program, a techno-economic analysis was developed for IGCC and CTL applications and compared to DOE reference cases to examine the effects of the new technology. In the IGCC cases, the reformer/POX system produces nearly the same amount of electricity for nearly the same cost, however, the reformers/POX case sequesters a higher percentage of the carbon when compared to IGCC alone. For the CTL case the economics of the new process were nearly identical to the CTL case, but due to improved yields, the greenhouse gas emissions for a given production of fuels was approximately 50% less than the baseline case.

  14. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Hurt; Joseph Calo; Thomas Fletcher; Alan Sayre

    2003-01-01

    The goal of this project is to carry out the necessary experiments and analyses to extend leading submodels of coal transformations to the new conditions anticipated in next-generation energy technologies. During the first project quarter, a technical kick-off meeting was held on the Brown campus involving PIs from Brown (Hurt, Calo), BYU (Fletcher), and B&W (Sayre, Burge). Following this first meeting the current version of CBK (Version 8) was transferred to B&W McDermott and the HP-CBK code developed by BYU was transferred to Brown to help guide the code development in this project. Also during the first project year, progress was reviewed at an all-hands meeting was held at Brigham Young University in August, 2001. The meeting was attended by PIs Fletcher, Hurt, Calo, and Sayre, and also by affiliated investigators Steven Burge from McDermott and Prof. William Hecker from BYU. During the first project year, significant progress was made on several fronts, as described in detail in the previous annual report. In the current second annual report, we report on progress made on two important project tasks. At Brown University: (1) Char combustion reactivities at 500 C in air were determined for a diverse set of solid fuels and organic model compound chars. These varied over 4 orders of magnitude for the chars prepared at 700 C, and over 3 orders of magnitude for the chars prepared at 1000 C. The resultant reactivities correlate poorly with organic elemental composition and with char surface area. (2) Specially-acquired model materials with minute amounts of inorganic matter exhibit low reactivities that fall in a narrow band as a function of wt-% carbon. Reactivities in this sample subset correlate reasonably well with total char surface area. (3) A hybrid chemical/statistical model was developed which explains most of the observed reactivity variation based on four variables: the amounts of nano-dispersed K, nanodispersed (Ca+Mg), elemental carbon (wt-% daf), and nano-dispersed vanadium, listed in decreasing order of importance. Catalytic effects play a very significant role in the oxidation of most practical solid fuel chars. Some degree of reactivity estimation is possible using only elemental analyses of parent fuels, but only if correlative techniques make use of the existing body of knowledge on the origin, form and dispersion of inorganic matter in various fuel classes. During the past year at BYU, work focused primarily on renovation of the BYU high pressure drop tube reactor (HPDT). This work has included design and testing of a flat-flame burner that can be operated at high pressure. A high-temperature, high-pressure gas profile has been achieved within this high-pressure flat-flame burner (HP-FFB). Detailed descriptions of the design and testing of the HP-FFB are given in this report. In addition, continued char reactivity experiments in the high pressure thermogravimetric analyzer (HP-TGA) have been performed on chars produced at different pressures in the HPDT. Results of the HP-TGA reactivity studies on a high-volatile A bituminous (Pittsburgh No.8) char are that intrinsic char activation energy increases with pyrolysis pressure, and that the oxygen order is roughly 0.9. These results are different than previous research on chars produced at atmospheric pressure. These new data show that the rate constant decreases with increasing pyrolysis pressure. However, the hydrogen content of the new chars produced at elevated pressures was fairly high ({approx}2 wt. %, daf), and char samples produced at higher temperatures are desired. During the next project year, experimental work on oxygen reactivity at high pressure will continue at BYU, and on CO{sub 2} reactivity at high pressure at Brown University. Selected chars produced at BYU under high pressure conditions will also be used at Brown for reactivity studies.

  15. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  16. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  17. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  18. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    SciTech Connect (OSTI)

    Linville, B.

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  19. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect (OSTI)

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  20. Process for clean-burning fuel from low-rank coal

    DOE Patents [OSTI]

    Merriam, N.W.; Sethi, V.; Brecher, L.E.

    1994-06-21

    A process is described for upgrading and stabilizing low-rank coal involving the sequential processing of the coal through three fluidized beds; first a dryer, then a pyrolyzer, and finally a cooler. The fluidizing gas for the cooler is the exit gas from the pyrolyzer with the addition of water for cooling. Overhead gas from pyrolyzing is likely burned to furnish the energy for the process. The product coal exits with a tar-like pitch sealant to enhance its safety during storage. 1 fig.

  1. DOE/EIA-M060(2007) Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  2. Coal Market Module of the Energy Modeling System Model Documentation...

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  3. Coal Market Module of the National Energy Modeling System Model...

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  4. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas Fueled Power Plants: August 2012 - December 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants August 2012 - December 2013 S. Venkataraman, G. Jordan, and M. O'Connor GE Energy Schenectady, New York N. Kumar and S. Lefton Intertek AIM Sunnyvale, California D. Lew, G. Brinkman, D. Palchak, and J. Cochran National Renewable Energy Laboratory (NREL) Golden, Colorado NREL Technical Monitors: Debra Lew and Kara Clark Subcontract Report NREL/SR-6A20-60862 December 2013 NREL is a national laboratory of the U.S.

  5. Liquid Fuel From Microbial Communities: Electroalcoholgenesis: Bioelectrochemical Reduction of CO2 to Butanol

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: MUSC is developing an engineered system to create liquid fuels from communities of interdependent microorganisms. MUSC is first pumping carbon dioxide (CO2) and renewable sources of electricity into a battery-like cell. A community of microorganisms uses the electricity to convert the CO2 into hydrogen. That hydrogen is then consumed by another community of microorganisms living in the same system. These new microorganisms convert the hydrogen into acetate, which in turn feed yet another community of microorganisms. This last community of microorganisms uses the acetate to produce a liquid biofuel called butanol. Similar interdependent microbial communities can be found in some natural environments, but theyve never been coupled together in an engineered cell to produce liquid fuels. MUSC is working to triple the amount of butanol that can be produced in its system and to reduce the overall cost of the process.

  6. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Gustafson, K.

    1993-07-20

    A no loss liquid natural gas (LNG) delivery system is described comprising: (a) means for storing LNG and natural gas at low pressure; (b) means for delivering LNG from the means for storing to a use device including means for sub-cooling the LNG; (c) means for pre-cooling the means for sub-cooling before the LNG is delivered to the use device to substantially reduce vaporization of the initial LNG delivered to the use device; and (d) means for delivering a selectable quantity of the natural gas in said storing means to said use device with the LNG.

  7. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support to moderate demand and improve energy efficiency.

  8. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect (OSTI)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  9. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  10. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established reburning chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  11. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  12. Study of organic compounds evolved during the co-firing of coal and refuse derived fuel using TG/MS

    SciTech Connect (OSTI)

    Puroshothama, Shobha; Lu, R.; Yang, Xiaodong

    1996-10-01

    The evolution of organic compounds during the combustion of carbonaceous fuel coupled with solid waste disposal and limited landfill space has been a cause for concern. Co-firing high sulfur coal with refuse derived fuel seems an attractive alternative technique to tackle the dual problem of controlling SO{sub x} emissions as well as those of the chlorinated organic toxins. The TG serves to emulate the conditions of the fluidized bed combustor and the MS serves as the detector for evolved gases. This versatile combination is used to study the decomposition pathway as well as predict the conditions at which various compounds are formed and may serve as a means of reducing the formation of these chlorinated organic compounds.

  13. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  14. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  15. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  16. Plant for producing an oxygen-containing additive as an ecologically beneficial component for liquid motor fuels

    DOE Patents [OSTI]

    Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery

    2013-04-30

    A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.

  17. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    SciTech Connect (OSTI)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  18. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect (OSTI)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  19. Liquid Fuels via Uprading of Syngas Intermediates Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Project Peer Review March 26, 2015 Liquid Fuels via Upgrading of Syngas Intermediates 2.3.1.305/2.3.1.306 Jesse Hensley - NREL Ted Krause - ANL This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office 2.3.1.305/2.3.1.306 Goal Statement Project Goal - To develop and demonstrate catalyst technologies that convert biomass-derived synthesis gas to drop-in hydrocarbon fuels and to reduce total cost from the FY14 SOT

  20. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  1. Enhanced catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY)

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  2. Catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.

    1987-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  3. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect (OSTI)

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  4. Local government energy management: liquid petroleum gas (LPG) as a motor vehicle fuel

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.

    1983-10-01

    The retrofit or conversion of automotive engines to operate on liquid petroleum gas (LPG) or propane fuel is one of many potentially cost-effective strategies for reducing a local government's annual fleet operating and maintenance costs. The cost effectiveness of an LPG conversion decision is highly dependent on the initial conversion cost, vehicle type, current and projected fuel costs, vehicle fuel economy (miles per gallon), and yearly average mileage. A series of plots have been developed which indicate simple paybacks for the conversion of several vehicle types (passenger car, small and standard pickups, and two and three ton trucks) over a wide range of fuel economies and annual usage patterns. A simple payback of less than three years can be achieved for vehicles with poor fuel economy and high annual use. The figures provided in this report may be used by fleet management personnel as a screening tool to identify those passenger cars, small or standard pickups, or light duty trucks which are candidates for LPG conversion. In addition to examining the benefits of an LPG conversion, local governments should also consider the competing energy management strategies of downsizing, and the acquisition of fuel efficient, diesel powered vehicles.

  5. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  6. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  7. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    El-Bassioni, A.A.

    1980-08-01

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  8. Characterization and supply of coal based fuels. Volume 2, Appendicies B through M, Final report

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    This report discusses a number of special fuel slurries with a short description of the preparation method and numerous data sheets.

  9. Site Specific Coal Conversion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Specific Coal Conversion The Site Specific Coal Conversion Key Technology will include less mature R&D and case-specific engineering and construction and balance of plant R&D to most effectively deploy advanced C&CBTL systems in a certain location, with a certain feed, infrastructure, and environment for fuels production. Essentially, work in this area will be a bridge between a systems or process design for a particular application of coal-biomass to liquids, and a specific

  10. The effect of oxygen-to-fuel stoichiometry on coal ash fine-fragmentation mode formation mechanisms.

    SciTech Connect (OSTI)

    Fix, G.; Seames, W. S.; Mann, M. D.; Benson, S. A.; Miller, D. J.

    2011-04-01

    Ash particles smaller than 2.5 {micro}m in diameter generated during pulverized coal combustion are difficult to capture and may pose greater harm to the environment and human health than the discharge of larger particles. Recent research efforts on coal ash formation have revealed a middle fine-fragment mode centered around 2 {micro}m. Formation of this middle or fine-fragment mode (FFM) is less well understood compared to larger coarse and smaller ultrafine ash. This study is part of an overall effort aimed at determining the key factors that impact the formation of FFM. This work examined the effects of oxygen-to-fuel stoichiometry (OFS). Pulverized Illinois No.6 bituminous coal was combusted and the ash generated was size segregated in a Dekati low pressure inertial impactor. The mass of each fraction was measured and the ash was analyzed using scanning electron microscopy (SEM) and X-ray microanalysis. The FFM ash types were classified based on the SEM images to evaluate the significant fine-fragment ash formation mechanisms and determine any possible link between stoichiometry and formation mechanism. From the particle size distributions (PSDs), the coarse mode appears unaffected by the change in OFS, however, the OFS 1.05 lowered the fraction of ultrafine ash in relation to the higher OFS settings, and appears to increase the portion of the FFM. An intermediate minimum was found in the FFM at 1.3 {micro}m for the 1.20 and 1.35 OFS tests but was not observed in the 1.05 OFS. SEM analysis also suggests that OFS may contribute to changing formation mechanisms.

  11. Electrochemical, Structural and Surface Characterization of Nickel/Zirconia Solid Oxide Fuel Cell Anodes in Coal Gas Containing Antimony

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Nachimuthu, Ponnusamy; Edwards, Danny J.

    2011-02-27

    The interaction of antimony with the nickel-zirconia solid oxide fuel cell (SOFC) anode has been investigated. Tests with both anode-supported and electrolyte-supported button cells were performed at 700 and 800oC in synthetic coal gas containing 10 ppb to 9 ppm antimony. Minor performance loss was observed immediately after Sb introduction to coal gas resulting in ca. 5 % power output drop. While no further degradation was observed during the following several hundred hours of testing, cells abruptly and irreversibly failed after 800-1500 hours depending on Sb concentration and test temperature. Antimony was found to interact strongly with nickel and result in extensive alteration phase formation, consistent with expectations based on thermodynamic properties. Nickel antimonide phases, NiSb and Ni5Sb2, were partially coalesced into large grains and eventually affected electronic percolation through the anode support. Initial degradation was attributed to diffusion of antimony to the active anode/electrolyte interface to form an adsorption layer.

  12. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1996-08-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  13. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  14. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  15. Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report

    SciTech Connect (OSTI)

    1980-01-01

    A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

  16. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  17. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    SciTech Connect (OSTI)

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent low water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.

  18. Interactions between liquid-water and gas-diffusion layers in polymer-electrolyte fuel cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Prodip K.; Santamaria, Anthony D.; Weber, Adam Z.

    2015-06-11

    Over the past few decades, a significant amount of research on polymer-electrolyte fuel cells (PEFCs) has been conducted to improve performance and durability while reducing the cost of fuel cell systems. However, the cost associated with the platinum (Pt) catalyst remains a barrier to their commercialization and PEFC durability standards have yet to be established. An effective path toward reducing PEFC cost is making the catalyst layers (CLs) thinner thus reducing expensive Pt content. The limit of thin CLs is high gas-transport resistance and the performance of these CLs is sensitive to the operating temperature due to their inherent lowmore » water uptake capacity, which results in higher sensitivity to liquid-water flooding and reduced durability. Therefore, reducing PEFC's cost by decreasing Pt content and improving PEFC's performance and durability by managing liquid-water are still challenging and open topics of research. An overlooked aspect nowadays of PEFC water management is the gas-diffusion layer (GDL). While it is known that GDL's properties can impact performance, typically it is not seen as a critical component. In this work, we present data showing the importance of GDLs in terms of water removal and management while also exploring the interactions between liquid-water and GDL surfaces. The critical interface of GDL and gas-flow-channel in the presence of liquid-water was examined through systematic studies of adhesion forces as a function of water-injection rate for various GDLs of varying thickness. GDL properties (breakthrough pressure and adhesion force) were measured experimentally under a host of test conditions. Specifically, the effects of GDL hydrophobic (PTFE) content, thickness, and water-injection rate were examined to identify trends that may be beneficial to the design of liquid-water management strategies and next-generation GDL materials for PEFCs.« less

  19. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  20. Coal liquefaction technology. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-09-01

    The bibliography contains citations concerning the technologies and processes for converting coal to liquid chemicals and fuels. Topics include materials characterization of liquefaction processes, catalysis, pyrolysis, depolymerization, coprocessing, and integrated liquefaction. Also discussed are liquid fuel use in automobiles and power generation, low-temperature carbonization technology, multi-stage liquefaction, cost benefit analysis, and commercialization of liquefaction technology. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  2. Effects of the furnace temperature on the CO, CO{sub 2}, NO{sub x} and unburned hydrocarbon emissions from the combustion of coal and alternative fuels

    SciTech Connect (OSTI)

    Levendis, Y.A.; Atal, A.; Courtemanche, B.

    1999-07-01

    Results are presented on the emissions of carbon monoxide (CO), carbon dioxide (CO{sub 2}), unburned aromatic hydrocarbons, as well as oxides of nitrogen (NO{sub x}) from the combustion of pulverized bituminous coal, tire-derived fuel and, for a limited number of runs, waste plastics-derived fuel. The particle size cuts of pulverized coal, tire and plastics were 63--75 {micro}m and 180--300 {micro}m, respectively. Combustion experiments were conducted in a laboratory-scale drop-tube furnace at gas temperatures, in the range of 1,300--1,600 K, and several fuel mass loadings in the furnace, expressed in terms of global equivalence ratios in the range of 0.4--2.4. The CO, CO{sub 2} and NO{sub x} emissions were monitored continuously with infrared absorption and chemiluminescent instruments. Up to sixty 2-7 ring polynuclear aromatic hydrocarbons (PAH) were detected by capillary gas chromatography - mass spectrometry (GC-MS) techniques. Results showed that the PAH emission yields (mg/g fuel introduced) increased drastically with increasing bulk equivalence ratio (in the aforementioned range), at fixed furnace temperatures. This was also true for the CO yields, while the CO{sub 2} yields increased with increasing {o}, reached a maximum around stoichiometry and then decreased mildly. NO{sub x} yields decreased precipitously with increasing equivalence ratio. The CO and, especially, the PAH yields from tire-derived and plastics-derived fuels were much higher than those from coal, but the relative amounts of individual PAH components were remarkably similar in the combustion effluent of all fuels. The CO{sub 2} emissions and, especially, the NO{sub x} emissions from tire crumb were lower than those from coal. The CO{sub 2} emissions from plastics were comparable to those from coal, but their NO {sub x} emissions were much lower than those from tire. At fixed bulk equivalence ratios, however, as the furnace gas temperature increased the PAH yields from coal, tire crumb, and plastics decreased drastically, while the CO emission yields increased. At the highest temperature tested herein, 1,600 K ({approx}1,300 C), the effluent of the combustion of the fuels appeared to be devoid of PAHs. No{sub x} yields increased mildly with temperature. The influence of temperature, in this range, on the CO{sub 2} emissions was not significant. 65 refs., 2 figs., 1 tab.

  3. Initial operating results of coal-fired steam generators converted to 100% refuse-derived fuel

    SciTech Connect (OSTI)

    Barsin, J.A. ); Graika, P.K. ); Gonyeau, J.A. ); Bloomer, T.M. )

    1988-01-01

    The conversion of Northern States Power Company's (NSP) Red Wing and Wilmarth steam generators to fire refuse-derived fuel (RDF) is discussed. The use of the existing plant with the necessary modifications to the boilers has allowed NSP to effectively incinerate the fuel as required by Washington and Ramsey Counties. This paper covers the six-month start-up of Red Wing No. 1, commencing in May 1987, and the operating results since the plant went commercial in July 1987.

  4. Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect (OSTI)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  5. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-11-30

    Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

  6. Integrated low emission cleanup system for direct coal-fueled turbines (electrostatic agglomeration)

    SciTech Connect (OSTI)

    Quimby, J.M.

    1992-02-01

    The objective of this contract is to investigate the removal of So{sub x} and particulate matter from direct coal-fired combustion gas streams at high temperature and high pressure conditions. This investigation will be accomplished through a bench-scale testing and evaluation program employing sorbent mixed with a coal-water slurry for So{sub x} removal, and an innovative particulate control concept. The particulate control device utilizes electrostatic agglomeration followed by a high efficiency mechanical collector (cyclone). The process goal is to achieve particulate collection efficiency better than that required by the 1979 new source performance standards. An additional goal is to demonstrate 70% So{sub x} removal efficiency. This research project is now in the second of a 3 phase (Phase II) project. Phase II is to fabricate the combustor and particulate control devices and install the system at a test facility located at Research-Cottrell's, KVB Western Laboratory, Santa Ana, CA. There are three functional categories, or tasks which are to be completed in sequence. These tasks are itemized as follows: Design, procurement, and installation; Shakedown and startup; Reporting. Attempts to validate the concept of electrostatic agglomeration were not possible in the shakedown program before budget constraints halted the program. What was learned was that electrostatic precipitation is feasible in the temperature range of 1600--1800{degrees}F and at pressures above 10 atmospheres.

  7. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOE Patents [OSTI]

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  8. Preliminary assessment of coal-based industrial energy systems

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a study, performed by Mittelhauser Corp. and Resource Engineering, Inc. to identify the potential economic, environmental, and energy impacts of possible New Source Performance Standards for industrial steam generators on the use of coal and coal-derived fuels. A systems-level approach was used to take mine-mouth coal and produce a given quantity of heat input to a new boiler at an existing Chicago industrial-plant site. The technologies studied included post-combustion clean-up, atmospheric fluidized-bed combustion, solvent-refined coal liquids, substitute natural gas, and low-Btu gas. Capital and operating costs were prepared on a mid-1985 basis from a consistent set of economic guidelines. The cases studied were evaluated using three levels of air emission controls, two coals, two boiler sizes, and two operating factors. Only those combinations considered likely to make a significant impact on the 1985 boiler population were considered. The conclusions drawn in the report are that the most attractive applications of coal technology are atmospheric fluidized-bed combustion and post-combustion clean-up. Solvent-refined coal and probably substitute natural gas become competitive for the smaller boiler applications. Coal-derived low-Btu gas was found not to be a competitive boiler fuel at the sizes studied. It is recommended that more cases be studied to broaden the applicability of these results.

  9. Development of high energy density fuels from mild gasification of coal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

  10. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    SciTech Connect (OSTI)

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  11. Novel Intergrated Process to Process to Produce Fuels from Coal and Other Carbonaceous Feedstocks

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-03-25

    BioConversion Technology, LLC has developed a novel gasifier design that produces a clean, medium to high BTU synthesis gas that can be utilized for a variety of applications. The staged, indirectly heated design produces high quality synthesis gas without the need for costly pure oxygen. This design also allows for extreme flexibility with respect to feedstocks (including those with high moisture contents) in addition to high throughputs in a small gasifier footprint. A pilot scale testing project was proposed to assist BCT with commercializing the process. A prototype gasifier constructed by BCT was transported to WRI for installation and testing. After troubleshooting, the gasifier was successfully operated with both coal and biomass feedstocks. Instrument upgrades are recommended for further testing.

  12. Microalgae as a source of liquid fuels. Final technical report. [200 references

    SciTech Connect (OSTI)

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.

    1982-05-15

    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  13. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

  14. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  15. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  16. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  17. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  18. H. R. 2762: a Bill to amend the Internal Revenue Code of 1954 to increase the energy investment tax credit for conversions to coal-fueled facilities, and for other purposes. Introduced in the House of Representatives, Ninety-Ninth Congress, First Session, June 13, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    H.R.2762 amends the Internal Revenue Code of 1954 by inserting incentives for investing in coal conversions and the purchase of coal mining equipment. The Bill proposes a 10% investment tax credit for the former and a 5% tax credit for the latter, with an expiration date for both of December 31, 1993. The Text of the Bill defines conversions to coal fuel and coal mining equipment, specifies the procedures for amortizing equipment, offers tax incentives to conduct coal research activities, and specifies the requirements for conversion to coal under the Powerplant and Industrial Fuel Use Act.

  19. Subtask 3.9 - Direct Coal Liquefaction Process Development

    SciTech Connect (OSTI)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha�middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright� Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  20. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect (OSTI)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  1. Effect of cavitation on the properties of coal-tar pitch as studied by gas-liquid chromatography

    SciTech Connect (OSTI)

    M.I. Baikenov; T.B. Omarbekov; S.K. Amerkhanova

    2008-02-15

    The applicability of the cavitation-wave effect to coal-tar pitch processing is considered. The results of the GLC analysis of the test material before and after rotor-pulsation cavitation treatment are given. The organic matter of coal-tar pitch was found to degrade upon cavitation; as a result of this, the yields of light and medium fractions considerably increased. 5 refs., 2 figs., 4 tabs.

  2. A Characterization and Evaluation of Coal Liquefaction Process Streams

    SciTech Connect (OSTI)

    G. A. Robbins; R. A. Winschel; S. D. Brandes

    1998-06-09

    CONSOL characterized 38 process strea m samples from HTI Run PB- 04, in which Black Thunder Mine Coal, Hondo vacuum resid, autom obile shredder residue (ASR), and virgin plastics were used as liquefaction feedstocks with dispersed catalyst. A paper on kinetic modeling of resid reactivity was presented at the DOE Coal Lique -faction and Solid Fuels Contractors Review Conference, September 3- 4, 1997, i n Pittsburgh, PA. The paper, "The Reactivity of Direct Coal Liquefaction Resids", i s appended (Appendix 1). Three papers on characterization of samples from coal/ resid/ waste p lastics co- liquefaction were presented or submitted for presen tation at conferences. Because of their similarity, only one of the papers is appended to this report. The paper, "Characterization o f Process Samples From Co- Liquefaction of Coal and Waste Polymers", (Appendix 2) was presented at the DOE Coal Liquefaction and Solid Fuels C ontractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper, "Characterization of Process Stream Samples From Bench- Scale Co -Liquefaction Runs That Utilized Waste Polymers as Feedstocks" was presented at the 214th National Meeting of the Ameri can Chemical Society, September 7- 11, 1997, in Las Vegas, NV. The paper, "Characterization of Process Oils from Coal/ Waste Co- Liquefaction" wa s submitted for presentation at the 14th Japan/ U. S. Joint Technical Meeting on Coa l Liquefaction and Materials for Coal Liquefaction on October 28, 1997, in Tokyo, Japan. A joint Burns and Roe Services Corp. and CONSOL pap er on crude oil assays of product oils from HTI Run PB- 03 was presented at the DOE Coal Liquefaction and Solid Fuel s Contractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper , "Characterization of Liquid Products from All- Slurry Mode Liquefaction", is appende d (Appendix 3).

  3. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu

  4. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  5. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect (OSTI)

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of alkali chlorides and sulfates gives increased sintering. At the same time, increased amounts calcium salts in the ash appear to reduce sintering tendency. Thus, the results suggest that a calcium based sorbent for SO{sub 2} and HCl capture might reduce problems related to ash sintering. An extensive literature exists, however, that states otherwise.

  6. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect (OSTI)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

  7. Application of Synthetic Diesel Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Diesel Fuels Application of Synthetic Diesel Fuels 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_schaberg.pdf More Documents & Publications Effect of GTL Diesel Fuels on Emissions and Engine Performance The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car

  8. Coal in a changing climate

    SciTech Connect (OSTI)

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  9. Sixth clean coal technology conference: Proceedings. Volume 2: Technical papers

    SciTech Connect (OSTI)

    1998-12-01

    The Sixth Clean Coal Technology Conference focused on the ability of clean coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Volume 2 contains 28 papers related to fluidized-bed combustion, coal gasification for combined cycle power plants, the Liquid Phase Methanol Process, use of coal in iron making, air pollution control of nitrogen oxides, coke making, and hot gas cleanup.

  10. Capacity Enhancement of Aqueous Borohydride Fuels for hydrogen storage in liquids

    SciTech Connect (OSTI)

    Schubert, David M.; Neiner, Doinita; Bowden, Mark E.; Whittemore, Sean M.; Holladay, Jamelyn D.; Huang, Zhenguo; Autrey, Thomas

    2015-10-05

    In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH)3) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mole ratio of NaOH to B(OH)3, M/B = 1, the ratio of the hydrolysis product formed from NaBH4 hydrolysis, the sole borate species formed and observed by 11B NMR is sodium metaborate, NaB(OH)4. When the ratio is 1:3 NaOH to B(OH)3, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the 11B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB3H8, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt% NaB3H8 solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 molar ratio of NaOH and B(OH)3 and releases >8 eq of H2. By optimizing the M/B ratio a complex mixture of soluble products, including B3O3(OH)52-, B4O5(OH)42-, B3O3(OH)4-, B5O6(OH)4- and B(OH)3, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB3H8 can provide a 40% increase in H2 storage density compared to the hydrolysis of NaBH4 given the decreased solubility of sodium metaborate. The authors would like to thank Jim Sisco and Paul Osenar of Protonex Inc. for useful discussion regarding liquid hydrogen storage materials for portable power applications and the U.S. DoE Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office for their continued interest in liquid hydrogen storage carriers. Pacific Northwest National Laboratory is a multi-program national laboratory operated for DOE by Battelle. The authors dedicate the work to the memory of Professor Sheldon Shore. His contributions to boron hydride chemistry set the foundation for many who have followed.

  11. Coal liquefaction by base-catalyzed hydrolysis with CO.sub.2 capture

    DOE Patents [OSTI]

    Xiao, Xin

    2014-03-18

    The one-step hydrolysis of diverse biomaterials including coal, cellulose materials such as lumber and forestry waste, non-food crop waste, lignin, vegetable oils, animal fats and other source materials used for biofuels under mild processing conditions which results in the formation of a liquid fuel product along with the recovery of a high purity CO.sub.2 product is provided.

  12. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  13. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Smol, Robert (East Patchogue, NY); Farber, Gerald (Elmont, NY); Naphtali, Leonard M. (Washington, DC)

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  14. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOE Patents [OSTI]

    Angell, C. Austen; Xu, Wu; Belieres, Jean-Philippe; Yoshizawa, Masahiro

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  15. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  16. Coal markets squeeze producers

    SciTech Connect (OSTI)

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  17. Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw

    SciTech Connect (OSTI)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    Recently there has been much interest in developing processes for producing liquid fuels from renewable resources. The most logical long term approach in terms of economics derives the carbohydrate substrate for fermentation from the hydrolysis of cellulosic crop and forest residues rather than from grains or other high grade food materials (1,2). Since the presence of lignin is the main barrier to the hydrolysis of cellulose from lignocellulosic materials, delignification processes developed by the wood pulping industry have been considered as possible prehydrolysis treatments. The delignification process under study in our laboratory is envisioned as a synthesis of two recently developed pulping processes. In the first step, called autohydrolysis, hot water is used directly to solubilize hemicellulose and to depolymerize lignin (3). Then, in a second step known as organosolv pulping (4), the autohydrolyzed material is extracted with aqueous alcohol. A s shown in Figure 1, this process can separate the original lignocellulosic material into three streams--hemicellulose in water, lignin in aqueous alcohol, and a cellulose pulp. Without further mechanical milling, delignified cellulose can be enzymatically hydrolyzed at 45-50 C to greater than 80% theoretical yield of glucose using fungal cellulases (5, 6). The resulting glucose syrup can then be fermented by yeast to produce ethanol or by selected bacteria to produce acetone and butanol or acetic and propionic acids (7). One objection to such a process, however, is the large energy input that is required. In order to extend our supplies of liquid fuels and chemicals, it is important that the use of fossil fuels in any lignocellulosic conversion process be minimized. The direct use of geothermal hot water in carrying out the autohydrolysis and extraction operations, therefore, seems especially attractive. On the one hand, it facilitates the conversion of non-food biomass to fuels and chemicals without wasting fossil fuel; and on the other hand, it provides a means for ''exporting'' geothermal energy from the well site. The primary goal of the work discussed in this report was to investigate the effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw. In assessing the relative merits of various sets of conditions, we considered both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, we also investigated the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge. Phenol was selected for study because it was reported (8) to be effective in suppressing repolymerization of reactive lignin fragments. Aluminum sulfate, on the other hand, was chosen as a representative of the Lewis acids which, we hoped, would catalyze the delignification reactions.

  18. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  19. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    SciTech Connect (OSTI)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-06-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO{sub x}, CO{sub 2}, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  20. BIMETALLIC NANOCATALYSTS IN MESOPOROUS SILICA FOR HYDROGEN PRODUCTION FROM COAL-DERIVED FUELS

    SciTech Connect (OSTI)

    Kuila, Debasish; Ilias, Shamsuddin

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H{sub 2}, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N{sub 2} adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m{sup 2}/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production in Production and Purification of Ultraclean Transportation Fuels; Hu, Y., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2011.)

  1. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  2. Preface for small-molecule activation: Carbon-containing fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. Thus, this transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather bymore » the tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.« less

  3. Preface for small-molecule activation: Carbon-containing fuels

    SciTech Connect (OSTI)

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. Thus, this transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather by the tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.

  4. Driving it home: choosing the right path for fueling North America's transportation future

    SciTech Connect (OSTI)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  5. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1

    SciTech Connect (OSTI)

    Giles, H.N.

    1998-12-01

    Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

  6. DOE - Fossil Energy: Introduction to Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introduction An Energy Lesson Cleaning Up Coal COAL is our most abundant fossil fuel. The United States has more coal than the rest of the world has oil. There is still enough coal underground in this country to provide energy for the next 200 to 300 years. But coal is not a perfect fuel. Trapped inside coal are traces of impurities like sulfur and nitrogen. When coal burns, these impurities are released into the air. While floating in the air, these substances can combine with water vapor (for

  7. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  8. Solid fuel applications to transportation engines

    SciTech Connect (OSTI)

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  9. Lignin-assisted coal depolymerization

    SciTech Connect (OSTI)

    Lalvani, S.B.

    1991-01-01

    Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

  10. Engineering development of advanced physical fine coal cleaning for premium fuel applications: Subtask 3.3 - dewatering studies

    SciTech Connect (OSTI)

    Yoon, R. H.; Phillips, D. I.; Sohn, S. M.; Luttrell, G. H.

    1996-10-01

    If successful, the novel Hydrophobic Dewatering (HD) process being developed in this project will be capable of efficiently removing moisture from fine coal without the expense and other related drawbacks associated with mechanical dewatering or thermal drying. In the HD process, a hydrophobic substance is added to a coal-water slurry to displace water from the surface of coal, while the spent hydrophobic substance is recovered for recycling. For this process to have commercialization potential, the amount of butane lost during the process must be small. Earlier testing revealed the ability of the hydrophobic dewatering process to reduce the moisture content of fine coal to a very low amount as well as the determination of potential butane losses by the adsorption of butane onto the coal surface. Work performed in this quarter showed that the state of oxidation affects the amount of butane adsorbed onto the surface of the coal and also affects the final moisture content. the remaining work will involve a preliminary flowsheet of a continuous bench-scale unit and a review of the economics of the system. 1 tab.

  11. Prospects for coal briquettes as a substitute fuel for wood and charcoal in US Agency for International Development Assisted countries

    SciTech Connect (OSTI)

    Perlack, R.D.; Stevenson, G.G.; Shelton, R.B.

    1986-02-01

    Fuelwood shortages and potential shortages are widespread throughout the developing world, and are becoming increasingly more prevalent because of the clearing of land for subsistence and plantation agriculture, excessive and inefficient commercial timber harvesting for domestic and export construction, and charcoal production to meet rising urban demands. Further, the environmental and socioeconomic consequences of the resulting deforestation are both pervasive and complex. This report focuses on the substitution of coal briquettes for fuelwood. Although substantial adverse health effects could be expected from burning non-anthracite coal or coal briquettes, a well-developed technique, carbonization, exists to convert coal to a safer form for combustion. The costs associated with briquetting and carbonizing coal indicate that ''smokeless'' coal briquettes can be produced at costs competitive with fuelwood and charcoal. The US Agency for International Development (USAID) is working on implementing this energy option in Haiti and Pakistan by (1) evaluating resources, (2) assessing markets, (3) analyzing technologies, (4) studying government policy and planning, and (5) packaging the idea for the private sector to implement. 26 refs., 2 figs., 12 tabs.

  12. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    SciTech Connect (OSTI)

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  13. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  14. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  15. Chemical leaching of coal to remove ash, alkali and vanadium

    SciTech Connect (OSTI)

    Smit, F.J.; Huggins, D.K.; Berggren, M.; Anast, K.R.

    1986-04-15

    A process is described for upgrading powdered coal to improve the usefulness thereof as a fuel for internal combustion engines which consists of: (a) pressure-leaching powdered coal having a particle size ranging from about 28 mesh to about 200 mesh in an aqueous caustic solution at a temperature ranging from about 175/sup 0/C, to about 350/sup 0/C., the amount of caustic in the solution ranging from about 5% to about 30% by weight, the amount of coal being sufficient to form a slurry comprising about 10% to 30% by weight of solids, (b) hydrochloric acid leaching the caustic leached coal to dissolve acid-soluble constituents resulting from the caustic leach, (c) pressure leaching the acid-leached coal with a liquid from the group consisting of water and dilute aqueous ammonia to remove sodium and chlorine, and thereafter (d) filtering and washing the pressure leached coal, whereby the coal is characterized by up to about 0.85% by weight of ash, up to about 150 ppm of alkali metals and up to about 4 ppm vanadium.

  16. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  17. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect (OSTI)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  18. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  19. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  20. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  1. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C. (Perkiomenville, PA)

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  2. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect (OSTI)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  3. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes*

    SciTech Connect (OSTI)

    Hsieh, Peter

    2015-07-02

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  4. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    Broader source: Energy.gov [DOE]

    Factsheet summarizing Univ. of Alabama project to save energy and reduce emissions with fuel-flexible burners

  5. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  6. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2

    SciTech Connect (OSTI)

    Giles, H.N.

    1998-12-01

    Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

  7. Methanol-fueled transit bus demonstration

    SciTech Connect (OSTI)

    Jackson, M.D.; Fong, D.W.; Powars, C.A.; Smith, K.D.

    1983-01-01

    This paper summarizes the results of a California study to investigate the technical, environmental, and economic viability of using coal-derived fuels for transportation. Since nearly all of California's major urban areas have pollution problems, emphasis is placed on those options which are capable of achieving low exhaust emissions. A broad range of fuels are considered, including solids, gases, and liquids. Methanol, used in heavy-duty engines designed for this fuel, meets California's environmental, economic, and technical requirements for clean coal fuels. The combination has lower exhaust emissions than conventional Diesels -- smoke is eliminated and NO/SUB x/ and CO emissions are reduced. Further, thermal efficiencies comparable or exceeding conventional Diesels are possible. A demonstration of this new technology is now underway. Transit buses will be purchased with the objective of demonstrating alternative methanol engine designs. Economic viability in transit operations will be established.

  8. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M. (Monongahela, PA)

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  9. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  10. One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels

    DOE Patents [OSTI]

    Sen, Ayusman; Yang, Weiran

    2014-03-18

    The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.

  11. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  12. Underground coal gasification: a brief review of current status

    SciTech Connect (OSTI)

    Shafirovich, E.; Varma, A.

    2009-09-15

    Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

  13. Parametric and kinetic studies on deactivation and regeneration of hydrotreating catalysts in solvent refined coal upgrading process and an evaluation of the liquid vaporization effects on hydrotreater performance

    SciTech Connect (OSTI)

    Nalitham, R.V.

    1983-01-01

    Catalysts used in hydrotreating the solvent refined coal were rapidly deactivated during the initial stages of processing. The major cause of deactivation appears to be the deposition of carbonaceous material on the catalyst. A simulated aging technique involving a series of reactions on the same batch of catalyst and a model compound activity test were developed and used to study the effects of process conditions, feedstock characteristics, catalyst properties, and catalyst pretreatment on initial catalyst deactivation. The variables shown to increase the rate of deactivation are: increased catalyst loading, high reaction temperature, low hydrogen pressure, unsulfiding the catalyst, and high concentrations of preasphaltenes and insoluble organic matter in the feedstock. The loss in catalyst surface area during the aging process was substantial, being as high as 95%. A simple kinetic model, including a first-order catalyst deactivation rate, was applied to upgrading of two-coal derived feedstocks. A catalyst deactivation mechanism was proposed which involves the adsorption and surface reaction of coke precursors on catalytic active sites. Catalyst regeneration of aged catalysts from the LC-Finer and the ITSL process has been accomplished through oxidative treatment followed by presulfiding. A parametric study has been performed to identify the optimum regeneration conditions. The degree of regeneration appears to be dependent on the feed material and reaction history of the catalyst. Liquid vaporization affects the hydrotreater performance significantly. The hydrotreater is simulated to study the effects of the solvent volatility, hydrogen flow rate, feed concentration, temperature, and pressure. A gradientless reactor system was designed, built, and used to verify the key result ofthe simulation study.

  14. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  15. Micronized coal-fired retrofit system for SO{sub x} reduction - Krakow Clean Fossil Fuels and Energy Efficiency Program.

    SciTech Connect (OSTI)

    1996-09-30

    the project proposes to install a new TCS micronized coal-fired heating plant for the Produkcja I Hodowla Roslin Ogrodniczych (PHRO) Greenhouse Complex, Krzeszowice, Poland (about 20 miles west of Krakow). PHRO currently utilizes 14 heavy oil-fired boilers to produce heat for its greenhouse facilities and also home heating to several adjacent apartment housing complexes. The boilers currently burn a high-sulfur content heavy crude oil, called Mazute. The micronized coal fired boiler would (1) provide a significant portion of the heat for PHRO and a portion of the adjacent apartment housing complexes, (2) dramatically reduce sulfur dioxide air pollution emission, while satisfying new Polish air regulations, and (3) provide attractive savings to PHRO, based on the quantity of displaced oil.

  16. Preface: Forum on small molecules related to carbon-containing fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. This transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis but rather by themoretremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.less

  17. Literature search for the non-aqueous separation of zinc from fuel rod cladding. [After dissolution in liquid metal

    SciTech Connect (OSTI)

    Sandvig, R. L.; Dyer, S. J.; Lambert, G. A.; Baldwin, C. E.

    1980-06-21

    This report reviews the literature of processes for the nonaqueous separation of zinc from dissolved fuel assembly cladding. The processes considered were distillation, pyrochemical processing, and electrorefining. The last two techniques were only qualitatively surveyed while the first, distillation, was surveyed in detail. A survey of available literature from 1908 through 1978 on the distillation of zinc was performed. The literature search indicated that a zinc recovery rate in excess of 95% is possible; however, technical problems exist because of the high temperatures required and the corrosive nature of liquid zinc. The report includes a bibliography of the surveyed literature and a computer simulation of vapor pressures in binary systems. 129 references.

  18. Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 31 for fourth quarter FY 1991

    SciTech Connect (OSTI)

    Foral, M.J.

    1991-12-31

    The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

  19. Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 19 for first quarter FY 1991

    SciTech Connect (OSTI)

    Foral, M.J.

    1991-12-31

    The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

  20. Direct conversion of light hydrocarbon gases to liquid fuel. Quarterly technical status report No. 23 for second quarter FY 1991

    SciTech Connect (OSTI)

    Foral, M.J.

    1991-12-31

    The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.