National Library of Energy BETA

Sample records for liquid fuel production

  1. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation b13_graham_ensyn.pdf (1.44 MB) More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  2. Biological production of liquid fuels from biomass

    SciTech Connect (OSTI)

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  3. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, Director-Business Development, Energy Technologies, Southern Research Institute gangwal_biomass_2014.pdf (1.36

  4. Techno-Economic Analysis of Liquid Fuel Production from Woody...

    Office of Scientific and Technical Information (OSTI)

    Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via ...

  5. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, ...

  6. Biomass gasification for liquid fuel production

    SciTech Connect (OSTI)

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Václav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  7. Recent developments in the production of liquid fuels via catalytic...

    Office of Scientific and Technical Information (OSTI)

    The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to ...

  8. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  9. Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2

    SciTech Connect (OSTI)

    Klosky, M.K.

    1996-09-01

    EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

  10. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  11. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  12. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  13. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  14. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  15. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  16. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  17. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  18. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    SciTech Connect (OSTI)

    Zhou, S. James

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful

  19. Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw

    SciTech Connect (OSTI)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    Recently there has been much interest in developing processes for producing liquid fuels from renewable resources. The most logical long term approach in terms of economics derives the carbohydrate substrate for fermentation from the hydrolysis of cellulosic crop and forest residues rather than from grains or other high grade food materials (1,2). Since the presence of lignin is the main barrier to the hydrolysis of cellulose from lignocellulosic materials, delignification processes developed by the wood pulping industry have been considered as possible prehydrolysis treatments. The delignification process under study in our laboratory is envisioned as a synthesis of two recently developed pulping processes. In the first step, called autohydrolysis, hot water is used directly to solubilize hemicellulose and to depolymerize lignin (3). Then, in a second step known as organosolv pulping (4), the autohydrolyzed material is extracted with aqueous alcohol. A s shown in Figure 1, this process can separate the original lignocellulosic material into three streams--hemicellulose in water, lignin in aqueous alcohol, and a cellulose pulp. Without further mechanical milling, delignified cellulose can be enzymatically hydrolyzed at 45-50 C to greater than 80% theoretical yield of glucose using fungal cellulases (5, 6). The resulting glucose syrup can then be fermented by yeast to produce ethanol or by selected bacteria to produce acetone and butanol or acetic and propionic acids (7). One objection to such a process, however, is the large energy input that is required. In order to extend our supplies of liquid fuels and chemicals, it is important that the use of fossil fuels in any lignocellulosic conversion process be minimized. The direct use of geothermal hot water in carrying out the autohydrolysis and extraction operations, therefore, seems especially attractive. On the one hand, it facilitates the conversion of non-food biomass to fuels and chemicals without wasting fossil

  20. Structured catalyst bed and method for conversion of feed materials to chemical products and liquid fuels

    DOE Patents [OSTI]

    Wang, Yong , Liu; Wei

    2012-01-24

    The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.

  1. Air Liquide- Biogas & Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  2. Nonconventional Liquid Fuels (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    Higher prices for crude oil and refined petroleum products are opening the door for nonconventional liquids to displace petroleum in the traditional fuel supply mix. Growing world demand for diesel fuel is helping to jump-start the trend toward increasing production of nonconventional liquids, and technological advances are making the nonconventional alternatives more viable commercially. Those trends are reflected in the Annual Energy Outlook 2006 projections.

  3. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

  4. SUBTASK 3.12 – GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL

    SciTech Connect (OSTI)

    Stanislowski, Joshua; Curran, Tyler; Henderson, Ann

    2014-06-30

    The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three scenarios. The first scenario used traditional techniques for cleaning the syngas prior to Fischer–Tropsch (FT) synthesis, including gas sweetening with a physical solvent. In the second scenario, the CO2 was not removed from the gas stream prior to FT synthesis. In the third scenario, only warm-gas cleanup techniques were used, such that the feed gas to the FT unit contained both moisture and CO2. The results of the testing showed that the liquid fuels production from the FT catalyst was significantly hindered by the presence of moisture and CO2 in the syngas. Further testing would be needed to determine if this thermally efficient process is feasible with other FT catalysts. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Illinois Clean Coal Institute.

  5. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  6. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  7. Liquid Transportation Fuels from Coal and Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquid Tr anspor tation Fuels from Coal and Biomass Technological Status, Costs, and ... technologies for converting biomass and coal to liquid fuels that are deployable by ...

  8. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  9. Production of liquid fuels out of plant biomass and refuse: Methods, cost, potential

    SciTech Connect (OSTI)

    Woick, B.; Friedrich, R.

    1981-09-01

    Different ways of producing biomass and its conversion into high grade fuel for vehicles are reviewed with particular reference to physical and geographical factors, pertaining in the Federal Republic of Germany (FRG). Even with the potentially small amount of biomass in the FRG, the fueling of diesel engines with rape oil or modified ethanol, which can be obtained from any cellulosic feedstock, seems to pose the fewest difficulties and promises greatest efficiency. However, the amount of fuel produced from biomass can probably only meet a very small percentage of the total amount required.

  10. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading

    SciTech Connect (OSTI)

    Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

    2014-09-15

    A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

  11. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOE Patents [OSTI]

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  12. Liquid Fuels from Biomass

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  13. Solar thermochemical fuel production. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 14 SOLAR ENERGY; BIOMASS; GASIFICATION; LIQUID FUELS; OXIDES; PRODUCTION; REDOX REACTIONS; SOLAR ...

  14. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  15. Development of geothermally assisted process for production of liquid fuels and chemicals from wheat straw

    SciTech Connect (OSTI)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    The effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw are investigated. Both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose are considered. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge were also investigated. A brief study was made of the effects of two major parameters, substrate concentration and enzyme/substrate ratio, on the sugar yield from enzymatic hydrolysis of optimally pretreated straw. The efficiency with which these sugars could be fermented to ethanol was studied. In most cases experiments were carried out using distilled water; however, the effects of direct use of geothermal water were determined for each of the major steps in the process. An appendix to the body of the report describes the results of a preliminary economic evaluation of a plant designed to produce 25 x 10/sup 6/ gallons of ethanol per year from wheat straw using the best process conditions determined in the above work. Also appended are the results from a preliminary investigation of the applicability of autohydrolysis technology to the production of fermentable sugars from corn stover.

  16. Alternative Liquid Fuels (ALF) | Open Energy Information

    Open Energy Info (EERE)

    Liquid Fuels (ALF) Jump to: navigation, search Name: Alternative Liquid Fuels (ALF) Address: P.O. Box 76 Place: McArthur, Ohio Zip: 45651 Sector: Biofuels, Renewable Energy,...

  17. Liquid Fuels Market Module

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    product import and export curves, biodiesel import supply curves, and advanced ethanol import supply curves from Brazil. The nine LFMM regions and importexport curves are...

  18. Production of High-Quality Syngas via Biomass Gasification for Catalytic Synthesis of Liquid Fuels Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project 2015 Peer Review NC A&T Renewable Energy Center -Production of High-Quality Syngas via Biomass Gasification for Catalytic Synthesis of Liquid Fuels March 26 th 2015 Technology Area Review: Biomass Gasification Ghasem Shahbazi Biological Engineering North Carolina Agricultural and Technical State University Goal Statement The major goal of this project is to study an integrated biomass gasification and hot syngas cleaning process to produce high- quality syngas from woody biomass and

  19. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    Office of Energy Efficiency and Renewable Energy (EERE)

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost.

  20. Liquid Fuels and Natural Gas in the Americas

    Reports and Publications (EIA)

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gasparticularly reserves and resources, production, consumption, trade, and investmentgiven their scale and significance to the region.

  1. Liquid Fuels and Natural Gas in the Americas

    Reports and Publications (EIA)

    2014-01-01

    The Energy Information Administration's (EIA) Liquid Fuels and Natural Gas in the Americas report, published today, is a Congressionally-requested study examining the energy trends and developments in the Americas over the past decade. The report focuses on liquid fuels and natural gas—particularly reserves and resources, production, consumption, trade, and investment—given their scale and significance to the region.

  2. Degradation of lignocellulosic biomass and its subsequent utilization for the production of liquid fuels: Subcontract progress report, 1 March 1983-29 February 1984

    SciTech Connect (OSTI)

    Cooney, C.L.; Demain, A.L.; Sinskey, A.J.; Wang, D.I.C.

    1987-07-01

    This project is a coordinated effort to develop process technology for the degradation of lignocellulosic biomass and its utilization for the production of liquid fuels. Current efforts are based on our prior success in developing a single-step microbiological process for the conversion of lignocellulose to ethanol. This process utilizes a mixed culture of Clostridium thermocellum, a thermophilic cellulolytic anaerobe which degrades cellulose and hemicellulose to fermentable sugars, and Clostridium thermosaccharolyticum, a thermo anaerobe which produces high concentrations of ethanol from both hexoses and pentoses. The proposed studies will focus on the use of C. thermocellum and its cellulases for enhanced saccharification of lignocellulose and on the direct fermentation of lignocellulose to the liquid fuel, butanol. Efforts on saccharification are directed to facilitate the adoption of existing fermentation ethanol plants for cellulosic substrates and to overcome the rate limiting step of saccharification in the mixed culture. The effort on butanol will extend the concept of direct fermentation to the production of this liquid fuel. 14 refs.

  3. Degradation of lignocellulosic biomass and its subsequent utilization for the production of liquid fuels: Subcontract progress report, 1 September 1981-28 February 1982

    SciTech Connect (OSTI)

    Cooney, C.L.; Demain, A.L.; Sinskey, A.J.; Wang, D.I.C.

    1987-07-01

    This project is a coordinated effort to develop process technology for the degradation of lignocellulosic biomass and its utilization for the production of liquid fuels. Current efforts are based on our prior success in developing a single-step microbiological process for the conversion of lignocellulose to ethanol. This process utilizes a mixed culture of Clostridium thermocellum, a thermophilic cellulolytic anaerobe which degrades cellulose and hemicellulose to fermentable sugars, and Clostridium thermosaccharolyticum, a thermophilic anaerobe which produces high concentrations of ethanol from both hexoses and pentoses. The proposed studies will focus on the use of C. thermocellum and its cellulases for enhanced saccharification of lignocellulose and on the direct fermentation of lignocellulose to the liquid fuel, butanol. Efforts on saccharification are directed to facilitate the adoption of existing fermentation ethanol plants for cellulosic substrates and to overcome the rate limiting step of saccharification in the mixed culture. The effort on butanol will extend the concept of direct fermentation to the production of this liquid fuel.

  4. Degradation of lignocellulosic biomass and its subsequent utilization for the production of liquid fuels: Subcontract progress report, 1 March 1982-31 August 1982

    SciTech Connect (OSTI)

    Cooney, C.L.; Demain, A.L.; Sinskey, A.J.; Wang, D.I.C.

    1987-07-01

    This project is a coordinated effort to develop process technology for the degradation of lignocellulosic biomass and its utilization for the production of liquid fuels. Current efforts are based on our prior success in developing a single-step microbiological process for the conversion of lignocellulose to ethanol. This process utilizes a mixed culture of Clostridium thermocellum, a thermophilic cellulolytic anaerobe which degrades cellulose and hemicellulose to fermentable sugars, and Clostridium thermosaccharolyticum, a thermophilic anaerobic which produces high concentrations of ethanol from both hexoses and pentoses. The proposed studies will focus on the use of C. thermocellum and its cellulases for enhanced saccharification of lignocellulose and on the direct fermentation of lignocellulose to the liquid fuel, butanol. Efforts on saccharification are directed to facilitate the adoption of existing fermentation ethanol plants for cellulosic substrates and to overcome the rate limiting step of saccharification in the mixed culture. The effort on butanol will extend the concept of direct fermentation to the production of this liquid fuel.

  5. Degradation of lignocellulosic biomass and its subsequent utilization for the production of liquid fuels: Subcontract progress report, 1 September 1982-28 February 1983

    SciTech Connect (OSTI)

    Cooney, C.L.; Demain, A.L.; Sinskey, A.J.; Wang, D.I.C.

    1987-07-01

    This project is a coordinated effort to develop process technology for the degradation of lignocellulosic biomass and its utilization for the production of liquid fuels. Current efforts are based on our prior success in developing a single-step microbiological process for the conversion of lignocellulose to ethanol. This process utilizes a mixed culture of Clostridium thermocellum, a thermophilic cellulolytic anaerobe which degrades cellulose and hemicellulose to fermentable sugars, and Clostridium thermosaccharolyticum, a thermophilic anaerobe which produces high concentrations of ethanol from both hexoses and pentoses. The proposed studies will focus on the use of C. thermocellum and its cellulases for enhanced saccharification of lignocellulose and on the direct fermentation of lignocellulose to the liquid fuel, butanol. Efforts on saccharification are directed to facilitate the adoption of existing fermentation ethanol plants for cellulosic substrates and to overcome the rate limiting step of saccharification in the mixed culture. The effort on butanol will extend the concept of direct fermentation to the production of this liquid fuel.

  6. Degradation of lignocellulosic biomass and its subsequent utilization for the production of liquid fuels: Subcontract progress report, 1 March 1984-28 February 1985

    SciTech Connect (OSTI)

    Cooney, C.L.; Demain, A.L.; Sinskey, A.J.; Wang, D.I.C.

    1987-07-01

    This project is a coordinated effort to develop process technology for the degradation of lignocellulosic biomass and its utilization for the production of liquid fuels. Current efforts are based on our prior success in developing a single-step microbiological process for the conversion of lignocellulose to ethanol. This process utilizes a mixed culture of Clostridium thermocellum, a thermophilic celluloytic anaerobe which degrades cellulose and hemicellulose to fermentable sugars and Clostridium thermosaccharolyticum, a thermophilic anaerobe which produces high concentrations of ethanol from both hexoses and pentoses. These studies focus on the use of C. thermocellum and its cellulases for enhanced saccharification of lignocellulose and on the direct fermentation of lignocellulose to liquid fuel. Efforts on saccharification are directed to facilitate the adoption of existing fermentation ethanol plants for cellulosic substrates and to overcome the rate limiting step of saccharification in the mixed culture. 9 refs., 9 figs., 9 tabs.

  7. Liquid Fuels and Natural Gas in the Americas

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquid Fuels and Natural Gas in the Americas EIA Conference July 14, 2014 | Washington, DC Liquid fuels production in the Americas surpassed the Middle East in 2013 liquid fuels production by region million barrels per day Source: EIA, International Energy Statistics 2 0 5 10 15 20 25 30 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Americas Middle East Former Soviet Union Africa Asia and Oceania Europe EIA Conference July 14, 2014 The Americas are the second largest region in oil reserves

  8. Degradation of lignocellulosic biomass and its subsequent utilization for the production of liquid fuels: Subcontract progress report, 1 March 1981-31 August 1981

    SciTech Connect (OSTI)

    Cooney, C.L.; Demain, A.L.; Sinskey, A.J.; Wang, D.I.C.

    1987-07-01

    This project is a coordinated effort to develop process technology for the degradation of lignocellulosic biomass and its utilization for the production of liquid fuels. Current efforts are based on our prior success in developing a single-step microbiological process for the conversion of lignocellulose to ethanol. This process utilizes a mixed culture of Clostridium thermocellum, a thermophilic cellulolytic anaerobe which degrades cellulose and hemicellulose to fermentable sugars, and C. thermosaccharolyticum, a thermophilic anaerobe which produces high concentrations of ethanol from both hexoses and pentoses. The proposed studies will focus on the use of C. therocellum and its cellulases for enhanced saccharification of lignocellulose and on the direct fermentation of lignocellulose to the liquid fuel, butanol. Efforts on saccharification are directed to facilitate the adoption of existing fermentation ethanol plants for cellulosic substrates and to overcome the rate limiting step of saccharification in the mixed culture. The effort on butanol will extend the concept of direct fermentation to the production of this fuel. 55 figs., 6 tabs.

  9. Liquid Fuels Market Model (LFMM) Unveiling LFMM

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Implementation of the Renewable Fuel Standard (RFS) in the Liquid Fuels Market Module (LFMM) of NEMS Michael H. Cole, PhD, PE michael.cole@eia.gov August 1, 2012 | Washington, DC ...

  10. Process for vaporizing a liquid hydrocarbon fuel

    DOE Patents [OSTI]

    Szydlowski, Donald F. (East Hartford, CT); Kuzminskas, Vaidotas (Glastonbury, CT); Bittner, Joseph E. (East Hartford, CT)

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  11. Reimagining liquid transportation fuels : sunshine to petrol.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Hogan, Roy E., Jr.; McDaniel, Anthony H.; Siegel, Nathan Phillip; Dedrick, Daniel E.; Stechel, Ellen Beth; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D.; Ambrosini, Andrea; Coker, Eric Nicholas; Staiger, Chad Lynn; Chen, Ken Shuang; Ermanoski, Ivan; Kellog, Gary L.

    2012-01-01

    Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

  12. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  13. Air Liquide - Biogas & Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the environment PT Loma WWTP, Biogas to Fuel Cell Power BioFuels Energy Biogas to BioMethane to 4.5 MW Fuel Cell Power 3 FCE Fuel Cells 2 via directed Biomethane ...

  14. Conversion of olefins to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  15. Low contaminant formic acid fuel for direct liquid fuel cell

    DOE Patents [OSTI]

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  16. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  17. Enhanced conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.; Rabo, Jule A.

    1986-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  18. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.; Rabo, Jule A.

    1985-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  19. Liquid Fuels Market Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  20. Converting coal to liquid fuels. [US DOE

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    Liquid fuels play a vital role in the US economy. Oil represents about 40 percent of the energy consumed each year in this country. In many cases, it fills needs for which other energy forms cannot substitute efficiently or economically - in transportation, for example. Despite a current world-wide surplus of oil, conventional petroleum is a depletable resource. It inevitably will become harder and more expensive to extract. Already in the US, most of the cheap, easily reached oil has been found and extracted. Even under optimistic projections of new discoveries, domestic oil production, particularly in the lower 48 states, will most likely continue to drop. A future alternative to conventional petroleum could be liquid fuels made from coal. The technique is called coal liquefaction. From 1 to 3 barrels of oil can be made from each ton of coal. The basic technology is known; the major obstacles in the US have been the high costs of the synthetic oil and the risks of building large, multi-billion dollar first-of-a-kind plants. Yet, as natural petroleum becomes less plentiful and more expensive, oil made from abundant coal could someday become an increasingly important energy option. To prepare for that day, the US government is working with private industries and universities to establish a sound base of technical knowledge in coal liquefaction.

  1. Process for preparing a liquid fuel composition

    DOE Patents [OSTI]

    Singerman, Gary M.

    1982-03-16

    A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

  2. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect (OSTI)

    Baker, Arnold Barry; Williams, Ryan; Drennen, Thomas E.; Klotz, Richard

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  3. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 30,319 28,678 30,812 28,059 30,228 30,258 1981-2016 East Coast (PADD 1) 641 698 804 725 734

  4. Liquid-hydrogen-fueled passenger aircraft

    SciTech Connect (OSTI)

    Not Available

    1986-03-11

    This Chinese translation discusses the idea that passenger aircraft will eventually use liquid-hydrogen fuel. There is a large reserve of hydrogen and hydrogen poses no danger to the environment. Hydrogen has high calorific value, high specific heat, low density, and low temperature. Aircraft will have to have liquid fuel tanks to carry the hydrogen and will have to be partially redesigned. Lockheed and NASA have considered such designs. A problem remains in the planning--the high cost of large extraction of liquid hydrogen.

  5. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    DOE Patents [OSTI]

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  6. Liquid Fuels from Lignins: Annual Report

    SciTech Connect (OSTI)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  7. Production of chemicals and fuels from biomass

    DOE Patents [OSTI]

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  8. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  9. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  10. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOE Patents [OSTI]

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  11. Webinar: Photosynthesis for Hydrogen and Fuels Production

    Broader source: Energy.gov [DOE]

    Slides presented at the Fuel Cell Technologies Office webinar "Photosynthesis for Hydrogen and Fuels Production" on January 24, 2011.

  12. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  13. Alternative Fuels Data Center: Ethanol Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section...

  14. Alternative Fuels Data Center: Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Natural Gas Production on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Production on AddThis.com... More

  15. Power generation with synthetic liquid fuels

    SciTech Connect (OSTI)

    Lebowitz, H.E.; Rovesti, W.C.; Schreiber, H.

    1984-06-01

    Tests performed burning H-Coal and Exxon Donor Solvent (EDS) coal liquids in a utility combustion turbine, and a test burning EDS in a utility boiler are described. The H-Coal was produced by Ashland Synthetic Fuels, Inc. The EDS was produced in a pilot plant by Exxon Corporation in Baytown, Texas. The test objectives, site preparation, and performance results are discussed for both tests. 8 references, 6 tables.

  16. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    DOE Patents [OSTI]

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  17. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  18. Catalysts for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Rabo, Jule A.; Coughlin, Peter K.

    1987-01-01

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst composition capable of ensuring the production of only relatively minor amounts of heavy products boiling beyond the diesel oil range. The catalyst composition, having desirable stability during continuous production operation, employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component. The latter component is a steam-stabilized zeolite Y catalyst of hydrophobic character, desirably in acid-extracted form.

  19. Wetted foam liquid fuel ICF target experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; Kline, J. L.; Zylstra, A. B.; Peterson, R. R.; Shah, R.; Braun, T.; Biener, J.; Kozioziemski, B. J.; et al

    2016-05-01

    Here, we are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but willmore » become less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  20. Technical and Economic Evaluation of Macroalgae Cultivation for Fuel Production (Draft)

    SciTech Connect (OSTI)

    Feinberg, D. A.; Hock, S. M.

    1985-04-01

    The potential of macroalgae as sources of renewable liquid and gaseous fuels is evaluated. A series of options for production of macroalgae feedstock is considered. Because of their high carbohydrate content, the fuel products for which macroalgae are most suitable are methane and ethanol. Fuel product costs were compared with projected fuel costs in the year 1995.

  1. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  2. Liquid fuel molten salt reactors for thorium utilization (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: Liquid fuel molten salt reactors for thorium utilization Citation Details In-Document Search This content will become publicly available on April 8, 2017 Title: Liquid fuel molten salt reactors for thorium utilization Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and

  3. Second AEO2014 Liquids Fuels Markets Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2013 MEMORANDUM FOR: JOHN CONTI ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS JOHN POWELL TEAM LEADER LIQUID FUELS MARKET TEAM MICHAEL SCHAAL DIRECTOR OFFICE OF ENERGY ANALYSIS FROM: LIQUID FUELS MARKET TEAM SUBJECT: Second AEO2014 Liquid Fuels Markets Working Group Meeting Summary (presented on 09-19-2013) Attendees: (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Beth May, Adrian Geagla, Vishakh Mantri, Tony Radich, Irene Olson, Julie Harris, Arup Mallik, Mike Bredehoeft Seth Meyer (USDA)

  4. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  5. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the ...

  6. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector Robert E. Abbott, Ph.D. ConocoPhillips Paul Worhach, Ph.D. Nexant Corporation Diesel Engines Emission Reduction Conference Loews Coronado Bay Resort Coronado, CA August 29 - September 2, 2004 Study Purpose * Evaluate GTL energy use and emissions in comparison to alternative fuel production processes and end-uses * Education and communication with peers and stakeholders * Assess and

  7. Producing liquid fuels from coal: prospects and policy issues

    SciTech Connect (OSTI)

    James T. Bartis; Frank Camm; David S. Ortiz

    2008-07-01

    The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

  8. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    Broader source: Energy.gov [DOE]

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in different regions of the United States, which represent a range of disruption types and liquid fuels infrastructure systems configurations. The impact estimates have two fundamental steps: defining the stressing event and estimating the event's impact in terms of a performance metric. The metric used to evaluate the level of impact is how well the liquid fuels sector performs its mission of providing fuel to consumers during and after a stressing event. The liquid fuels system responded well to each stressing event, though the size and duration of fuel shortage impacts for specific regions and cities varied widely.

  9. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  10. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  11. Farmstead production of fuel alcohol

    SciTech Connect (OSTI)

    Badger, P.C.; Pile, R.S.; Waddell, E.L. Jr.

    1981-01-01

    The Tennessee Valley Authority Agricultural Energy Applications Section (Muscle Shoals, AL) has designed and constructed a small-scale fuel alcohol production facility which can produce 10 gph of 190-proof alcohol. Information presented includes some factors relative to facility design, layout, and construction, plus operation and performance experiences.

  12. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  13. Liquid fuel molten salt reactors for thorium utilization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gehin, Jess C.; Powers, Jeffrey J.

    2016-04-08

    Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and fuel with fuel dissolved in a carrier salt. For liquid-fuelled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with themore » online removal of parasitic absorbers allow for the ability to design a thermal-spectrum breeder reactor; however, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at ORNL in the 1960s, the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR), with multiple configurations that could breed additional fissile material or maintain self-sustaining operation; and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation-resistance. T MSRs has been selected as one of six most promising Generation IV systems and development activities have been seen in fast-spectrum MSRs, waste-burning MSRs, MSRs fueled with low-enriched uranium (LEU), as well as more traditional thorium fuel cycle-based MSRs. This study provides an historical background of MSR R&D efforts, surveys and summarizes many of the recent development, and provides analysis comparing

  14. Liquid Transportation Fuels from Coal and Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Fuels from Coal and Biomass Liquid Transportation Fuels from Coal and Biomass Presented at the U.S. Department of Energy sponsored a Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. liquid_trans_tech.pdf (584.34 KB) More Documents & Publications February GBTL Webinar GBTL Workshop GHG Emissions HEFA and Fischer-Tropsch Jet Fuel Cost Analyses

  15. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    SciTech Connect (OSTI)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.

    2004-10-06

    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  16. Solar Thermochemical Production of Fuels

    SciTech Connect (OSTI)

    Wegeng, Robert S.; TeGrotenhuis, Ward E.; Mankins, John C.

    2007-06-25

    [Abstract] If cost and efficiency targets can be achieved, Solar Thermochemical Plants – occupying a few square kilometers each – can potentially generate substantial quantities of transportation fuels, therefore enabling reductions in imports of foreign petroleum and emissions of carbon dioxide. This paper describes the results of a comparative evaluation of various solar thermochemical approaches for producing chemical fuels. Common to each approach is the concentration of solar and/or other radiant energy so that high temperature heat is provided for thermochemical processes including chemical reactors, heat exchangers and separators. The study includes the evaluation of various feedstock chemicals as input to the Solar Thermochemical Plant: natural gas, biomass and zero-energy chemicals (water and carbon dioxide); the effect of combusting natural gas or concentrating beamed radiant energy from an orbiting platform (e.g., space solar power) as supplemental energy sources that support high plant capacity factors; and the production of either hydrogen or long-chain hydrocarbons (i.e., Fischer-Tropsch fuels) as the Solar Fuel product of the plant.

  17. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  18. Liquid fuels perspective on ultra low carbon vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy fuels perspective on ultra low carbon vehicles Liquid fuels perspective on ultra low carbon vehicles Fuels challenges in the evolving global energy market deer11_simnick.pdf (572.51 KB) More Documents & Publications Green Racing Initiative: Accelerating the Use of Advanced Technologies & Renewable Fuels Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio

  19. International Energy Outlook 2016-Petroleum and other liquid fuels - Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration 2. Petroleum and other liquid fuels print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, worldwide consumption of petroleum and other liquid fuels increases from 90 million barrels per day (b/d) in 2012 to 100 million b/d in 2020 and 121 million b/d in 2040. Much of the growth in world liquid fuels consumption is projected for the emerging, non-Organization for Economic Cooperation and Development (non-OECD) economies of Asia,

  20. Utah Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Utah Natural Gas Plant Liquids Production (Million ... NGPL Production, Gaseous Equivalent Utah Natural Gas Plant Processing NGPL Production, ...

  1. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent Alabama Natural Gas Plant Processing NGPL Production, ...

  2. Bioconversion of natural gas to liquid fuel: Opportunities and challenges

    SciTech Connect (OSTI)

    Fei, Q; Guarnieri, MT; Tao, L; Laurens, LML; Dowe, N; Pienkos, PT

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.

  3. Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges

    SciTech Connect (OSTI)

    Fei, Qiang; Guarnieri, Michael T.; Tao, Ling; Laurens, Lieve M. L.; Dowe, Nancy; Pienkos, Philip T.

    2014-05-01

    Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.

  4. Alternative Liquid Fuels Simulation Model (AltSim).

    SciTech Connect (OSTI)

    Williams, Ryan; Baker, Arnold Barry; Drennen, Thomas E.

    2009-12-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, greenhouse gas emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks (switchgrass, corn stover, forest residue, and farmed trees), biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion ratio, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the structure and methodology of AltSim, presents results, and provides a detailed sensitivity analysis. The Energy Independence and Security Act (EISA) of 2007 sets a goal for the increased use of biofuels in the U.S., ultimately reaching 36 billion gallons by 2022. AltSim's base case assumes EPA projected feedstock costs in 2022 (EPA, 2009). For the base case assumptions, AltSim estimates per gallon production costs for the five ethanol feedstocks (corn, switchgrass, corn stover, forest residue, and farmed trees) of $1.86, $2.32, $2.45, $1.52, and $1.91, respectively. The projected production cost of biodiesel is $1.81/gallon. The estimates for CTL without biomass range from $1.36 to $2.22. With biomass, the estimated costs increase, ranging from $2.19 per gallon for the CTL option with 8% biomass to $2.79 per gallon for the CTL option with 30% biomass and carbon capture and sequestration. AltSim compares the greenhouse gas emissions (GHG) associated with both the production and consumption of the various fuels. EISA allows fuels emitting 20% less greenhouse gases (GHG) than conventional gasoline and diesels to qualify as renewable fuels. This allows several of the CBTL

  5. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOE Patents [OSTI]

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  6. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic ... Municipal solid waste (MSW) on the other hand is readily available in large quantities in ...

  7. AEO2015 Liquid Fuels Markets Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Assumptions for Annual Energy Outlook 2015: Liquid Fuels Markets Working Group AEO2015 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis July 17, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Discussion topics Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, July 17, 2014 DO NOT QUOTE OR CITE

  8. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability of Feedstock and Technology | Department of Energy 1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous

  9. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity, and Retail Availability for Low-Carbon Scenarios | Department of Energy Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel

  10. Catalytic conversion of solar thermal produced pyrolysis gases to liquid fuels

    SciTech Connect (OSTI)

    Hanley, T.R.; Benham, C.B.

    1981-01-01

    The conversion of a simulated pyrolysis gas and synthesis gas using a Fischer-Tropsch catalyst system in a fluidized-bed reactor is investigated. Liquid fuels were produced between 550 and 660/sup 0/F (288 and 349/sup 0/C) for the simulated pyrolysis gas feed. An analysis of both liquid and gaseous product streams is performed. This investigation indicates a need for more extensive research with respect to hydrogen-to-carbon-monoxide usage ratios and with respect to the role of alkenes in fuel production.

  11. Product Recovery from HTGR Reactor Fuel Processing Salt Official...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of Fuel and Fission Product Recovery from HTGR Reactor Fuel Processing Salt ... HTGR, MST, CST Retention: Permanent Demonstration of Fuel and Fission Product Recovery ...

  12. West Virginia Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) West Virginia Natural Gas Plant Liquids Production ... NGPL Production, Gaseous Equivalent West Virginia Natural Gas Plant Processing NGPL ...

  13. New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) New Mexico Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent New Mexico Natural Gas Plant ...

  14. North Dakota Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production ... Referring Pages: NGPL Production, Gaseous Equivalent North Dakota Natural Gas Plant ...

  15. Bioconversion of animal manure into electricity and a liquid fuel

    SciTech Connect (OSTI)

    Fischer, J.R.; Iannotti, E.L.; Stahl, T.; Garcia, A. III; Harris, F.D.

    1983-01-01

    The integrated farm energy system operating at Columbia, Missouri converted animal manure into thermal and electrical energy and a liquid fuel. An anaerobic digester converted 510 kg of volatile solids into 285 m/sup 3/ of biogas consisting of 55% methane. An internal combustion engine coupled to an electrical generator produced 408 kWh/day of electricity and 3 GJ/day of thermal energy. An ethanol production plant converted thermal and electrical energy into 85 liters of ethanol. Subtracting the thermal and electrical demands of the digester and ethanol plant, the system produced a net energy of 277 kWh of electricity, 750 MJ of thermal energy and 85 liters of ethanol. 9 references, 6 figures, 2 tables.

  16. DOE Technical Targets for Hydrogen Production from Biomass-Derived Liquid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming | Department of Energy Biomass-Derived Liquid Reforming DOE Technical Targets for Hydrogen Production from Biomass-Derived Liquid Reforming These tables list the U.S. Department of Energy (DOE) technical targets and example cost contributions for hydrogen production from biomass-derived liquid reforming. More information about targets can be found in the Hydrogen Production section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan.

  17. Liquid fuel molten salt reactors for thorium utilization (Journal...

    Office of Scientific and Technical Information (OSTI)

    removal of fission products as well as introduction of fissile fuel and fertile materials ... Country of Publication: United States Language: English Subject: 21 SPECIFIC NUCLEAR ...

  18. Fuel Cell Technologies Researcher Lightens Green Fuel Production

    Broader source: Energy.gov [DOE]

    Research funded by EEREs Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green.

  19. AGING EFFECTS ON THE PROPERTIES OF IMIDAZOLIUM, QUATERNARY AMMONIUM, PYRIDINIUM AND PYRROLIDINIUM-BASED IONIC LIQUIDS USED IN FUEL AND ENERGY PRODUCTION

    SciTech Connect (OSTI)

    Fox, E.

    2013-08-13

    Ionic liquids are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long term aging effect of temperature on these materials. Imizadolium, quaternary ammonium, pyridinium, and pyrrolidnium-based ionic liquids with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 hours (15 weeks) at 200�C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time.

  20. Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Utah and Wyoming Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade...

  1. ,"Kansas Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kansas Natural Gas Plant Liquids, Expected Future Production ...

  2. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production ...

  3. ,"Wyoming Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Wyoming Natural Gas Plant Liquids, Expected Future Production ...

  4. ,"West Virginia Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","West Virginia Natural Gas Plant Liquids, Expected Future Production ...

  5. ,"Utah Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Utah Natural Gas Plant Liquids, Expected Future Production ...

  6. ,"North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... for" ,"Data 1","North Dakota Natural Gas Plant Liquids, Expected Future Production ...

  7. ,"Montana Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Montana Natural Gas Plant Liquids, Expected Future Production ...

  8. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production ...

  9. ,"Michigan Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Michigan Natural Gas Plant Liquids, Expected Future Production ...

  10. North Dakota Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  11. CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: PROTOTYPE DEVELOPMENT AND FULL-SCALE TESTING CATALYST-ASSISTED PRODUCTION OF OLEFINS FROM NATURAL GAS LIQUIDS: ...

  12. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    SciTech Connect (OSTI)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.; O'Rourke, Julia M.

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  13. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  14. Alternative Liquid Fuels Simulation Model (AltSim) v. 2.0

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production and end use costs, energy balances, and greenhouse gas emissions for several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol from various feedstocks, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL), coal (coal to liquid, or CTL), and coal with biomass (CBTL). AltSim allows for comprehensive sensitivity analyses onmore » capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO2 taxes, and plant capacity factor. AltSim also includes policy tools to allow for consideration of greenhouse gas offset policies, production tax credits, and land use requirements. The main goal is to allow interested stakeholders to understand the complicated economic and environmental tradeoffs associated with the various options. The software is designed to address policy questions related to the economic competitiveness of technologies under different economic and technical assumptions. This model will be used to inform policy makers and staff about the economic and environmental tradeoffs associated with various fuel alternatives.« less

  15. Drying grain using a hydrothermally treated liquid lignite fuel

    SciTech Connect (OSTI)

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M.; Ljubicic, B.R.

    1995-12-01

    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  16. Assemblies with both target and fuel pins in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  17. Oxidation Protection of Uranium Nitride Fuel using Liquid Phase Sintering

    SciTech Connect (OSTI)

    Dr. Paul A. Lessing

    2012-03-01

    Two methods are proposed to increase the oxidation resistance of uranium nitride (UN) nuclear fuel. These paths are: (1) Addition of USi{sub x} (e.g. U3Si2) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with various compounds (followed by densification via Spark Plasma Sintering or Liquid Phase Sintering) that will greatly increase oxidation resistance. The advantages (high thermal conductivity, very high melting point, and high density) of nitride fuel have long been recognized. The sodium cooled BR-10 reactor in Russia operated for 18 years on uranium nitride fuel (UN was used as the driver fuel for two core loads). However, the potential advantages (large power up-grade, increased cycle lengths, possible high burn-ups) as a Light Water Reactor (LWR) fuel are offset by uranium nitride's extremely low oxidation resistance (UN powders oxidize in air and UN pellets decompose in hot water). Innovative research is proposed to solve this problem and thereby provide an accident tolerant LWR fuel that would resist water leaks and high temperature steam oxidation/spalling during an accident. It is proposed that we investigate two methods to increase the oxidation resistance of UN: (1) Addition of USi{sub x} (e.g. U{sub 3}Si{sub 2}) to UN nitride powder, followed by liquid phase sintering, and (2) 'alloying' UN nitride with compounds (followed by densification via Spark Plasma Sintering) that will greatly increase oxidation resistance.

  18. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  19. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  20. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  1. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Verification of Shell GTL Fuel as CARB Alternative Diesel Assessment of Environmental ...

  2. Los Alamos scientists advance biomass fuel production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from non-food biomass Lab research can yield energy from non-food biomass Contact Editor Linda Anderman Email Community Programs Office

  3. HIGH ENERGY LIQUID FUELS FROM PLANTS

    SciTech Connect (OSTI)

    Nemethy, E. K.; Otvos, J. W.; Calvin, M.

    1980-10-01

    The heptane extract of Euphorbia lathyris has a low oxygen content and a heat valve of 42 MJ/kg which is comparable to that of crude oil (44 MJ/kg). These qualities indicate a potential for use as fuel or chemical feedstock material. Therefore we have investigated the chemical composition of this fraction in some detail. Since the amoun of the methanol fraction is quite substantial we have also identified the major components of this fraction.

  4. Composition and methods for improved fuel production

    DOE Patents [OSTI]

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  5. Fuel Production/Quality Resources

    Broader source: Energy.gov [DOE]

    Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum...

  6. A fresh look at coal-derived liquid fuels

    SciTech Connect (OSTI)

    Paul, A.D.

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  7. Annular core liquid-salt cooled reactor with multiple fuel and...

    Office of Scientific and Technical Information (OSTI)

    Annular core liquid-salt cooled reactor with multiple fuel and blanket zones Citation Details In-Document Search Title: Annular core liquid-salt cooled reactor with multiple fuel ...

  8. Shell Gas to Liquids in the context of a Future Fuel Strategy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing ...

  9. Biomass and Coal into Liquid Fuel with CO2 Capture - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Biomass and Coal into Liquid Fuel with CO2 Capture New Single-step hydrolysis process co-converts coal and any biomass to liquid fuel Savannah ...

  10. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for ...

  11. Implementation of cerium oxide structures in solar fuel production...

    Office of Scientific and Technical Information (OSTI)

    of cerium oxide structures in solar fuel production systems. Citation Details In-Document Search Title: Implementation of cerium oxide structures in solar fuel production systems. ...

  12. Fuel Cell Technologies Office Publication and Product Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies Office Publication & Product Library Fuel Cell Technologies Office Home Publication and Product Library Share this resource Publications Advanced Search ...

  13. Fusion-Fission Hybrid for Fissile Fuel Production without Processing...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fusion-Fission Hybrid for Fissile Fuel Production without Processing Citation Details In-Document Search Title: Fusion-Fission Hybrid for Fissile Fuel Production ...

  14. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Fuels in the Transportation Sector | Department of Energy A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin 2004_deer_abbott.pdf (160.87 KB) More Documents & Publications Shell Gas to Liquids

  15. Economics of ethanol fuel for crop production

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/year greater than that of ethanol and diesel must inflate at least 23 percent/year more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years. (Refs. 13).

  16. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  17. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect (OSTI)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  18. Hydropyrolysis of biomass to produce liquid hydrocarbon fuels. Final report. Biomass Alternative-Fuels Program

    SciTech Connect (OSTI)

    Fujita, R K; Bodle, W W; Yuen, P C

    1982-10-01

    The ojective of the study is to provide a process design and cost estimates for a biomass hydropyrolysis plant and to establish its economic viability for commercial applications. A plant site, size, product slate, and the most probable feedstock or combination of feedstocks were determined. A base case design was made by adapting IGT's HYFLEX process to Hawaiian biomass feedstocks. The HYFLEX process was developed by IGT to produce liquid and/or gaseous fuels from carbonaceous materials. The essence of the process is the simultaneous extraction of valuable oil and gaseous products from cellulosic biomass feedstocks without forming a heavy hard-to-handle tar. By controlling rection time and temperature, the product slate can be varied according to feedstock and market demand. An optimum design and a final assessment of the applicability of the HYFLEX process to the conversion of Hawaiian biomass was made. In order to determine what feedstocks could be available in Hawaii to meet the demands of the proposed hydropyrolysis plant, various biomass sources were studied. These included sugarcane and pineapple wastes, indigenous and cultivated trees and indigenous and cultivated shrubs and grasses.

  19. Doosan Fuel Cell Takes Closed Plant to Full Production | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doosan Fuel Cell Takes Closed Plant to Full Production Doosan Fuel Cell Takes Closed Plant to Full Production December 8, 2015 - 12:06pm Addthis Photo Courtesy | Doosan Fuel Cell ...

  20. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B.; Hegarty, William P.; Studer, David W.; Tirados, Edward J.

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  1. Alternative Fuels Data Center: Conventional Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center: Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Conventional Natural Gas Production on Digg Find More

  2. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places

  3. Alternative Fuels Data Center: Biodiesel Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Distribution on Digg

  4. Alternative Fuels Data Center: Propane Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to

  5. Catalyst for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  6. AEO2014 Liquid Fuels Markets Working Group Meeting 1

    U.S. Energy Information Administration (EIA) Indexed Site

    2 AEO2014 Liquid Fuels Markets Working Group Meeting 1 July 24, 2013 Attendance (In Person) (EIA) John Powell, Mindi Farber-DeAnda, Mike Cole, Beth May, Adrian Geagla, Vish Mantri, Tony Radich, Irene Olson, Julie Harris (non-EIA) Jeff Meyer (HIS CERA, Oil Market Analyst), Adam Christensen (Johns Hopkin) Attendance (WebEx) Dave Schmalzer, Seth Snyder (Argonne National Laboratory), Donald Hanson (Argonne National Laboratory), Wyatt Thompson (FAPRI, University of Missouri), Jarrett Whistance

  7. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  8. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is UOP, a Honeywell company 4 Business Plan Build-own-operate model - with strategic partners ... RFS2 Approved Diesel Power Generation Stand-alone Upgrading - ...

  9. NREL Research on Converting Biomass to Liquid Fuels

    ScienceCinema (OSTI)

    None

    2013-05-29

    Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most common types of biofuels are ethanol and biodiesel. Today, ethanol is made from starches and sugars, but at the National Renewable Energy Laboratory (NREL) scientists are developing technology to allow it to be made from cellulose and hemicellulose, the fibrous material that makes up the bulk of most plant matter. Biodiesel is made by combining alcohol (usually methanol) with vegetable oil, animal fat, or recycled cooking grease. It can be used as an additive (typically 20%) to reduce vehicle emissions or in its pure form as a renewable alternative fuel for diesel engines. For a text version of this video visit http://www.nrel.gov/learning/re_biofuels.html

  10. Enhanced catalyst and process for converting synthesis gas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  11. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  12. Product evaluation of Fischer-Tropsch derived fuels

    SciTech Connect (OSTI)

    Marano, J.J.; Rogers, S.; Choi, G.N.; Kramer, S.J.

    1994-12-31

    The Clean Air Act Amendments (CAAA) of 1990 have placed stringent requirements on the quality of transportation fuels. Most petroleum refiners are scrambling to meet provisions of the Amendments to be implemented between 1995 and 2000. These requirements will also have significant implications for the production of alternative fuels. These have been examined for Fischer-Tropsch (F-T) derived fuels. This analysis was conducted in conjunction with the U.S. Department of Energy (DOE) sponsored project, Baseline Design/Economics for Advanced Fischer-Tropsch Technology, conducted by Bechtel and Amoco. The goal of this study was to develop a baseline design for indirect liquefaction of Illinois No. 6 coal using gasification, syngas conversion in slurry reactors with iron catalysts, and conventional refinery upgrading of the F-T derived hydrocarbon liquids. One alternative case using ZSM-5 upgrading technology was also considered. This study included complete capital and operating cost estimates for the processes. To perform economic analyses for the different design cases, the products from the liquefaction plant had to be valued relative to conventional transportation fuels. This task was accomplished by developing a Linear Programming (LP) model for a typical midwest refinery, and then feeding the F-T liquids to the refinery. In this way, the breakeven value determined for these materials is indicative of the price they could command if available in the marketplace. Inputs to the LP model include: refinery size, configuration, feedstocks, products, specifications, prices, and operating and capital recovery costs. The model was set up to be representative of conditions anticipated for the turn of the century. This required inclusion of fuel specifications from the CAAA of 1990 which have or will come into force by the year 2000.

  13. CO{sub 2} mitigation and fuel production

    SciTech Connect (OSTI)

    Steinberg, M.

    1997-07-07

    Methanol as an alternative transportation fuel appears to be an effective intermediate agent, for reducing CO{sub 2} from the utility power and the transportation sectors. On the utilization side, methanol as a liquid fuel fits in well with the current infrastructure for storage and delivery to the automotive sector with better efficiency. On the production side, CO{sub 2} from fossil fuel plants together with natural gas and biomass can be used as feedstocks for methanol synthesis with reduced CO{sub 2}. Over the past several years, processes have emerged which have varying degrees of CO{sub 2} emission reduction depending on the feedstocks used for methanol synthesis process. This paper reviews the methanol processes from the point of view of production efficiency and CO{sub 2} emissions reduction. The processes include: (1) the Hydrocarb Process which primarily utilizes coal and natural gas and stores carbon, and (2) the Hynol Process which utilizes biomass (including carbonaceous wastes, municipal solid waste (MSW)) or coal and natural gas, and (3) the Carnol Process which utilizes natural gas and CO{sub 2} recovered from fossil fuel fired powered plant stacks, especially coal fired plants. The Carnol System consists of power generation, methanol production and methanol utilization as an automotive fuel. The efficiency and CO{sub 2} emissions for the entire system are compared to the conventional system of petroleum derived automotive fuel (gasoline) and coal fired power generation plants. CO{sub 2} reduction by as much as 56% and 77% can be achieved when methanol is used in internal combustion and fuel cell automotive vehicles, respectively.

  14. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H. C. Maru; M. Farooque

    2003-12-19

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC

  15. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Storage for Fuel Cells: Current Status Hydrogen Production and Storage for Fuel Cells: Current Status Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Hydrogen Production and Storage for Fuel Cells, February 2, 2011. infocallfeb11_lipman.pdf (0 B) More Documents & Publications Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Financing Fuel Cells The Department of Energy Hydrogen and Fuel Cells

  16. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

  17. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis for Hydrogen and Fuels Production Tasios Melis, UC Berkeley 24-Jan-2011 1 UCB-Melis 2 CO 2 H 2 O Photosynthesis Photons H 2 HC O 2 , Biomass Feedstock and products Process offers a renewable fuels supply and mitigation of climate change. UCB-Melis Average US Solar insolation = 5 kWh m -2 d -1 CA household electricity consumption = 15 kWh d -1 Sunlight 3 UCB-Melis Gains upon improving the carbon reactions of photosynthesis: up to 50% 4 "Six potential routes of increasing

  18. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  19. ,"U.S. Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Natural Gas Plant Liquids, Expected Future Production ... to Contents","Data 1: U.S. Natural Gas Plant Liquids, Expected Future Production ...

  20. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  1. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  2. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  3. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation ...

  4. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  5. Comparing liquid fuel costs: grain alcohol versus sunflower oil

    SciTech Connect (OSTI)

    Reining, R.C.; Tyner, W.E.

    1983-08-01

    This paper compares the technical and economic feasibility of small-scale production of fuel grade grain alcohol with sunflower oil. Three scales of ethanol and sunflower oil production are modeled, and sensitivity analysis is conducted for various operating conditions and costs. The general conclusion is that sunflower oil costs less to produce than alcohol. Government subsidies for alcohol, but not sunflower oil, could cause adoption of more expensive alcohol in place of cheaper sunflower oil. However, neither sunflower oil nor alcohol are competitive with diesel fuel. 7 references.

  6. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  7. Superheated fuel injection for combustion of liquid-solid slurries

    DOE Patents [OSTI]

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  8. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOE Patents [OSTI]

    Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh

    2010-08-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  9. Dehydrogenation of liquid fuel in microchannel catalytic reactor

    DOE Patents [OSTI]

    Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh

    2009-02-03

    The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.

  10. MOONSHINER I: personal fuel production. Final report

    SciTech Connect (OSTI)

    Holloman, R.L.

    1981-01-01

    This report describes the research and design of a self-controlling cellulose to liquid fuel conversion reactor. Initial research suggested the possibility of utilization of a bacterium named Clostridium thermocellum as a conversion agent due to its unique metabolism. Further research showed that work at other locations supported that possibility. Work was begun on the apparatus and techniques necessary for completion. Bad technique, design or supplies resulted in many months of ineffectual work while progress was being made on similar research elsewhere. Other projects' data was used to continue the information collection and design stages of this effort.

  11. Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production...

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Kansas Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste

  13. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  14. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  15. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  16. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  17. fuels | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Fuels Gasoline & Diesel Volatile fuel costs and a desire for energy independence have revived interest in another market for coal gasification technology: the production of liquid transportation fuels, chiefly gasoline and diesel fuel. For the United States, routes to synthesis of liquid fuels from coal add substantial diversity in fuel supply capability, a large capacity for fuels production considering the great extent of domestic coal reserves, and increased energy security that

  18. State-of-the-art processes for manufacturing synthetic liquid fuels via the Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    A.Y. Krylova; E.A. Kozyukov

    2007-12-15

    Processes for manufacturing synthetic liquid fuels on the basis of the Fischer-Tropsch synthesis from alternative feedstock (natural gas, coal, biomass of various origins, etc.) are surveyed. State-of-the-art technology, companies that offer such processes, and the quality of products in comparison with their oil analogs, as well as economic features of the processes, are considered.

  19. Synergistic routes to liquid fuel for a petroleum-deprived future

    SciTech Connect (OSTI)

    Agrawal, R.; Singh, N.R.

    2009-07-15

    When compared with biomass gasification/Fischer-Tropsch synthesis, hydropyrolysis/hydrodeoxygenation (HDO)-based processes have a potential to achieve high biomass carbon conversion to liquid fuel with much lower amounts of supplementary H{sub 2}. On the basis of this observation, we suggest a Hydrogen Bio-oil (H{sub 2}Bioil) process using fast hydropyrolysis/HDO that has a potential to produce nearly double the amount of liquid fuel when compared with the existing biofuel processes while requiring only modest quantities of supplementary H{sub 2}. The optimal operating mode for the H{sub 2}Bioil process is suggested to be in an entrained bed mode in presence of H{sub 2} with gas phase HDO of hydropyrolyzed vapors. A remarkable result due to reduced need for the supplementary H{sub 2} is that it provides synergistic integration of the H(2)Bioil process with a coal gasification power plant or a small scale steam natural gas (NG) reformer leading to a dramatic increase in the liquid fuel production from biomass and coal or NG. Here, hot synthesis gas (T>500{sup o}C) from a coal gasifier or methane reformer supplies H{sub 2}/CO for hydropyrolysis and deoxygenation as well as heat for the process. This result is exciting, because it presents us with an option to build integrated H{sub 2}Bioil processes sooner rather than later when the cost effective H{sub 2}, becomes available from a carbon-free energy source such as solar or nuclear. The H{sub 2}Bioil process and its integrated version with a small scale NG reformer have strong potential to be attractive on a small scale while being more efficient than any current biomass to liquid fuel process in operation.

  20. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOE Patents [OSTI]

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  1. Upgrading liquid products: Notes from the workshop at the international conference research in thermochemical biomass conversion

    SciTech Connect (OSTI)

    Elliott, D.C.

    1988-07-01

    A workshop was held at the International Energy Agency conference, Research in Thermochemical Biomass Conversion, on the subject of upgrading liquid products. The workshop discussion focused on the two prominent methods of liquids upgrading, catalytic hydroprocessing and catalytic cracking. Catalytic hydroprocessing as applied to biomass liquids relies heavily on petroleum developed technology; similar catalysts and operating conditions are used, although lower space velocities are typical. The need for stabilization of the pyrolytic products prior to hydroprocessing was also discussed. Catalytic cracking of biomass liquids also relies heavily on petroleum processing technology. Zeolite catalyst development has focused on the ZSM-5 of Mobil and its application to pyrolysis products. Significant olefinic gas yields are obtained in the zeolitic processing of biomass pyrolyzates and the conversion of these to liquid fuels is a primary research goal. Aromatic gasoline is the primary product in both catalytic processes. A general conclusion of the workshop participants was that the cost of liquid fuels for internal combustion engines would be higher in the foreseeable future. Due to the high cost of initial biomass liquefaction plants (including upgrading) a more likely near-term product would be aromatic chemicals produced under constrained economic circumstances. 16 refs.

  2. Microalgae as a source of liquid fuels. Final technical report. [200 references

    SciTech Connect (OSTI)

    Benemann, J.R.; Goebel, R.P.; Weissman, J.C.; Augenstein, D.C.

    1982-05-15

    The economics of liquid-fuels production from microalgae was evaluated. A detailed review of published economic analyses of microalgae biomass production revealed wide variations in the published costs, which ranged from several dollars per pound for existing commercial health-food production in the Far East, to less than .05/lb costs projected for microalgae biomass for fuel conversion. As little design information or specific cost data has been published, a credible cost estimate required the conceptual engineering design and cost estimating of microalgae to liquid-fuels processes. Two systems were analyzed, shallow (2 to 3'') covered ponds and deeper (1 ft) open ponds. Only the latter was selected for an in-depth analysis due to the many technical shortcomings of the former approach. Based on the cost analysis of a very simple and low cost process, the most optimistic costs extrapolated were about $60/barrel. These were based on many optimistic assumptions. Additional, more detailed, engieering and cost analyses would be useful. However, the major emphasis in future work in this area should be on demonstrating the basic premises on which this design was based: high productivity and oil content of microalgae strains that can dominate in open ponds and which can be harvested by a simple bioflocculation process. Several specific basic research needs were identified: (1) Fundamentals of species selection and control in open pond systems. Effects of environmental variables on species dominance is of particular interest. (2) Mechanisms of algae bioflocculation. (3) Photosynthetic pathways and efficiency under conditions of high lipid production. (4) Effects of non-steady state operating conditions, particularly pH (CO/sub 2/ availability), on productivity. 18 figures, 47 tables.

  3. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOE Patents [OSTI]

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  4. Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. -- An Overview | Department of Energy for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview 2002 DEER Conference Presentation: U.S. Department of Energy 2002_deer_shen.pdf (79.74 KB) More Documents & Publications Coal-Derived Liquids to Enable HCCI Technology Advanced Fuels in HDV Applications

  5. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  6. ,"New Mexico Natural Gas Plant Liquids Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  7. ,"Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Liquids Production (Million Cubic Feet)",1,"Annual",2014 ,"Release...

  8. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

  9. ,"Natural Gas Plant Field Production: Natural Gas Liquids "

    U.S. Energy Information Administration (EIA) Indexed Site

    Field Production: Natural Gas Liquids " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data ...

  10. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  11. Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing Aspects | Department of Energy Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects 2003 DEER Conference Presentation: Shell Global Solutions (US) Inc. 2003_deer_clark.pdf (357.73 KB) More Documents & Publications An Evaluation of Shell GTL Diesel Verification of Shell GTL Fuel as CARB Alternative Diesel Assessment of Environmental Impacts of Shell

  12. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  13. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect (OSTI)

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  14. Corrosion-resistant fuel cladding allow for liquid metal fast breeder reactors

    DOE Patents [OSTI]

    Brehm, Jr., William F.; Colburn, Richard P.

    1982-01-01

    An aluminide coating for a fuel cladding tube for LMFBRs (liquid metal fast breeder reactors) such as those using liquid sodium as a heat transfer agent. The coating comprises a mixture of nickel-aluminum intermetallic phases and presents good corrosion resistance to liquid sodium at temperatures up to 700.degree. C. while additionally presenting a barrier to outward diffusion of .sup.54 Mn.

  15. Hydrogen Production: Biomass-Derived Liquid Reforming | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass-Derived Liquid Reforming Hydrogen Production: Biomass-Derived Liquid Reforming Photo of cylindrical reactor vessel and associated piping and equipment in the Thermochemical Process Development Unit at NREL Liquids derived from biomass resources-including ethanol and bio-oils-can be reformed to produce hydrogen in a process similar to natural gas reforming. Biomass-derived liquids can be transported more easily than their biomass feedstocks, allowing for semi-central

  16. Biomass Program Perspectives on Anaerobic Digestion and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... control, tilth * Berms, spill control products * Flowerpots, molded products * Fuel pellets * Organic fertilizer, liquid nutrient solutions, "teas" * Enormous, untapped potential ...

  17. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2003-10-17

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  18. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2014-10-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  19. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    All Petrolem Reports U.S. Fuel Ethanol Plant Production Capacity Release Date: June 29, ... This is the sixth release of the U.S. Energy Information Administration data on fuel ...

  20. The Science | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science The Science The need for a continuous energy supply and energy requirements for transportation necessitates technology for storage of energy from sunlight in fuel, as well as conversion to electricity. Cost-effective technologies for solar fuel production do not exist, prompting the need for new fundamental science. Fuel production requires not only energy, but also a source of electrons and precursor materials suitable for reduction to useful fuels. Given the immense magnitude of the

  1. West Virginia Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) West Virginia Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. New Mexico Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  3. New Mexico Natural Gas Plant Liquids, Reserves Based Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Reserves Based Production (Million Barrels) New Mexico Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  4. Alternative fuel comprised of sewage sludge and a liquid hydrocarbon...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 32 ... Fuels-- Preparation from Wastes or Biomass-- (1976-1989); 320604 -- Energy ...

  5. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County, WY | Department of Energy 2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for Download November 27, 2009 EIS-0432: Notice of Intent to Prepare an Environmental Impact Statement Federal Loan Guarantee to Support the Construction and Startup of the Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, Wyoming December 16, 2009

  6. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Low-Cost Natural Gas | Department of Energy 2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas. DOE Hydrogen and Fuel Cells Program Record # 12024 (448.95 KB) More Documents & Publications Distributed

  7. Stationary Fuel Cell System Composite Data Products: Data through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Fuel Cell System Composite Data Products Data through Quarter 4 of 2014 Genevieve Saur, Jennifer Kurtz, Chris Ainscough, Sam Sprik, Matt Post April 2015 NREL...

  8. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Broader source: Energy.gov (indexed) [DOE]

    the cost of hydrogen production using low-cost natural gas. DOE Hydrogen and Fuel Cells Program Record 12024 (448.95 KB) More Documents & Publications Distributed Hydrogen ...

  9. Production Costs of Alternative Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    ... further results Find Another Tool FIND TRANSPORTATION TOOLS This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil...

  10. Giovanna Ghirlanda | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Associate Professor Giovanna Ghirlanda serves as a Subtask Leader of Subtask 3- Fuel Production and as a member of Subtask 2 - Water Splitting. Major research efforts are centered ...

  11. Patrick Kwan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Kwan Graduate student Subtask 3 project: "Protein Film Electrochemistry for the Investigation of Redox Enzymes" Related links: Patrick Kwan explores solar fuel production

  12. Recent Developments on the Production of Transportation Fuels...

    Office of Scientific and Technical Information (OSTI)

    The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to ...

  13. Molten carbonate fuel cell product design improvement

    SciTech Connect (OSTI)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  14. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect (OSTI)

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  15. Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Darren Naasz

    2009-06-16

    Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

  16. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.; Andriulli, J.B.; Strain, P.D.

    1998-09-08

    A method is described for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector. 1 fig.

  17. Method for removing solid particulate material from within liquid fuel injector assemblies

    DOE Patents [OSTI]

    Simandl, Ronald F. (Knoxville, TN); Brown, John D. (Harriman, TN); Andriulli, John B. (Kingston, TN); Strain, Paul D. (Eads, TN)

    1998-01-01

    A method for removing residual solid particulate material from the interior of liquid fuel injectors and other fluid flow control mechanisms having or being operatively associated with a flow-regulating fixed or variable orifice. The method comprises the sequential and alternate introduction of columns of a non-compressible liquid phase and columns of a compressed gas phase into the body of a fuel injector whereby the expansion of each column of the gas phase across the orifice accelerates the liquid phase in each trailing column of the liquid phase and thereby generates turbulence in each liquid phase for lifting and entraining the solid particulates for the subsequent removal thereof from the body of the fuel injector.

  18. Assumptions for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    4: Liquid Fuels Markets Working Group AEO2014 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis July 24, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Discussion topics Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, July 24, 2013 DO NOT QUOTE OR CITE as results are subject to change 2 *

  19. Process for the production of liquid hydrocarbons

    DOE Patents [OSTI]

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  20. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  1. Liquid Fuels Taxes and Credits (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

  2. Center Objective | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center Objective Solar Fuel Our objective is to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight A multidisciplinary team of the Center for Bio-Inspired Solar Fuel Production (BISfuel) researches artificial photosynthetic antennas and reaction centers that

  3. Alaska--State Offshore Natural Gas Plant Liquids Production,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alaska--State Offshore Natural Gas Plant Liquids Production, Gaseous Equivalent (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  4. Texas Onshore Natural Gas Plant Liquids Production Extracted...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. ARM - Evaluation Product - MWR Retrievals of Cloud Liquid Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file...

  6. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

  7. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  8. Partial oxidation of vanadium-containing heavy liquid hydrocarbonaceous and solid carbonaceous fuels

    SciTech Connect (OSTI)

    Najjar, M.S.; Becker, M.W.; Stevenson, J.S.

    1988-03-22

    In a partial oxidation process for the production of gaseous mixtures comprising H/sub 2/+CO in the reaction zone of a down flowing gas generator, the improvements are described comprising: (1) mixing together the following materials to produce a feed mixture (i) a vanadium-containing fuel whose ash includes a minimum of 2.0 weight % of vanadium selected from the group consisting of liquid hydrocarbonaceous fuel, a slurry of solid carbonaceous fuel, and mixtures thereof; (ii) supplemental copper-containing additive; and (iii) at least a portion of the remainder of the copper-containing slag after separation of the coarse slag fraction in (5); (2) reacting by partial oxidation in a refractory-lined free-flow unpacked reaction zone of the gas generator the vanadium-containing feed mixture from (1) with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO along with vanadium-containing molten slag comprising a liquid phase washing agent that collects and transports vanadium-containing laths and spinels and other ash components and refractory out of the reaction zone; (3) passing the hot raw effluent gas stream down through a coaxial discharge passage in the bottom of the reaction zone of the gas generator; (4) passing through the quench tank at least a portion of the hot effluent gas stream leaving the slag separation chamber to produce the gaseous mixture comprising H/sub 2/+CO, and solidifying molten slag; and (5) passing the water and solids from the bottom of the quench tank into a water-solids separation zone.

  9. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  10. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    SciTech Connect (OSTI)

    Mills, G.

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.