Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants  

DOE Patents [OSTI]

A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

Slayzak, Steven J. (Denver, CO); Anderson, Ren S. (Broomfield, CO); Judkoff, Ronald D. (Golden, CO); Blake, Daniel M. (Golden, CO); Vinzant, Todd B. (Golden, CO); Ryan, Joseph P. (Golden, CO)

2007-12-11T23:59:59.000Z

2

A Preliminary Evaluation of Alternative Liquid Desiccants for a Hybrid Desiccant Air Conditioner  

E-Print Network [OSTI]

and the condenser of a vapor-compression air conditioner. The liquid desiccants studied were lithium chloride, lithium bromide, calcium chloride, and triethylene glycol. Each candidate desiccant was subjected to a screening process which weighed the merits...

Studak, J. W.; Peterson, J. L.

1988-01-01T23:59:59.000Z

3

Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint  

SciTech Connect (OSTI)

A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

Lowenstein, A.; Slayzak, S.; Kozubal, E.

2006-07-01T23:59:59.000Z

4

Desiccant bed on hydrocarbon charged to and removed from underground (salt) cavern  

SciTech Connect (OSTI)

A hydrocarbon fluid storage system is described which consists of in operable conjunction: a cavern formed within an underground salt strata below a ground surface, the cavern comprises a lower liquid volume of saturated sodium chloride storage brine and an upper fluid volume of wet hydrocarbon storage fluid, surface fluid handling means; conduit connecting the lower storage brine and upper storage hydrocarbon fluid with the surface fluid handling means, of fluid transfer means enabling transfer of brine and hydrocarbon fluid from the surface to the cavern and from the cavern to the surface, such that brine can be added to or withdrawn from the lower brine volume and hydrocarbon fluids can be added to or withdrawn from the upper hydrocarbon fluid volume, and at least one desiccant drier means positioned at the surface in operable association with the surface fluid handling means whereby the wet hydrocarbon fluid upon withdrawal from the cavern passes through the desiccant drier means and thereby becomes dry, and dry hydrocarbon fluid intended for storage passes through the desiccant drier prior to entering the storage cavern and thereby becomes wet.

Washer, S.P.

1986-06-03T23:59:59.000Z

5

Energy-efficient regenerative liquid desiccant drying process  

DOE Patents [OSTI]

This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

Ko, Suk M. (Huntsville, AL); Grodzka, Philomena G. (Huntsville, AL); McCormick, Paul O. (Athens, AL)

1980-01-01T23:59:59.000Z

6

Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications  

SciTech Connect (OSTI)

Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

2014-09-01T23:59:59.000Z

7

Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations  

SciTech Connect (OSTI)

Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

2014-09-01T23:59:59.000Z

8

Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification  

DOE Patents [OSTI]

An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.

Kozubal, Eric Joseph; Slayzak, Steven Joseph

2014-07-08T23:59:59.000Z

9

New lithium-based ionic liquid electrolytes that resist salt...  

Energy Savers [EERE]

lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

10

Simulation and study of thermal performance of liquid desiccant cooling cycle configurations  

E-Print Network [OSTI]

fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: $ g(Beg~ 'i:1. ;, "?i C. F. K ttleborough (Chair of Committee) W. He n t (Member), H. Juvka -Wold (Member) G. P. Peterson (Head of Department... 1. 1 are predicted for this cycle. eyP 4 I Indirect Direct, Evaponuive 4 Cooler Heat Exchallgef Exhaust t Ambient Figure 2. Direct-indirect Evaporative Cooling Cycle (reproduced from Ref. 6) Liquid desiccant systems have not been used...

Dhir, Rajesh

2012-06-07T23:59:59.000Z

11

Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report  

SciTech Connect (OSTI)

The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

2012-11-01T23:59:59.000Z

12

Examination of Liquid Fluoride Salt Heat Transfer  

SciTech Connect (OSTI)

The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

13

Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)  

SciTech Connect (OSTI)

This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

Kozubal, E.

2013-02-01T23:59:59.000Z

14

Fundamental Desiccants  

E-Print Network [OSTI]

in order to meet IAQ requirements. However, the associated costs and temporary disruption in the workplace may be more than compensated by increased worker productivity brought about by a healthier environ- ment. ACVA Atlantic, Inc., a Fairfax, VA... remove unwanted gases and other impurities as well. Liquid desiccants can control many types of bacteria and viruses and help filter air through an "air-washing" effect. With the growing concern for indoor air quality (IAQ) and the "sick building...

Krebs, M. E.

1990-01-01T23:59:59.000Z

15

Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint  

SciTech Connect (OSTI)

The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

2012-08-01T23:59:59.000Z

16

High performance liquid desiccant cooling system simulation at standard ARI conditions  

E-Print Network [OSTI]

of the standard vapor compression system are cryogenic cooling, non fluorocarbon refrigerants and desiccant cooling. Navy scientists have been investigating the use of sound waves for cryogenic cooling. The "cryo-cooler" uses water as the working fluid... and thus eliminates the possibility of fluorocarbon emissions. However, initial research shows that the system requires about the same amount of electricity as contemporary refrigeration models [2]. Non fluorocarbon refrigerants are used as a...

McDonald, Brian Francis

1991-01-01T23:59:59.000Z

17

Thermally Activated Desiccant Technology for Heat Recovery and Comfort  

SciTech Connect (OSTI)

Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

Jalalzadeh, A. A.

2005-11-01T23:59:59.000Z

18

Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films  

E-Print Network [OSTI]

5.8 Average liquid properties heat capacity, thermal5.9 Average liquid properties heat capacity, thermalFigure 5.8: Average liquid properties heat capacity, thermal

Pineda Vargas, Sergio Manuel

2013-01-01T23:59:59.000Z

19

Liquid Salt Heat Exchanger Technology for VHTR Based Applications  

SciTech Connect (OSTI)

The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a small scale prototype system. This includes investigations of plugging issues, heat transfer, pressure drop, and the corrosion and erosion of materials in the flowing system.

Mark Anderson; Kumar Sridhara; Todd Allen; Per Peterson

2012-10-11T23:59:59.000Z

20

Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993  

SciTech Connect (OSTI)

This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

Nimmo, B.G.; Thornbloom, M.D.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Refueling Liquid-Salt-Cooled Very High-Temperature Reactors  

SciTech Connect (OSTI)

The liquid-salt-cooled very high-temperature reactor (LS-VHTR), also called the Advanced High-Temperature Reactor (AHTR), is a new reactor concept that combines in a novel way four established technologies: (1) coated-particle graphite-matrix nuclear fuels, (2) Brayton power cycles, (3) passive safety systems and plant designs previously developed for liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants. Depending upon goals, the peak coolant operating temperatures are between 700 and 1000 deg. C, with reactor outputs between 2400 and 4000 MW(t). Several fluoride salt coolants that are being evaluated have melting points between 350 and 500 deg. C, values that imply minimum refueling temperatures between 400 and 550 deg. C. At operating conditions, the liquid salts are transparent and have physical properties similar to those of water. A series of refueling studies have been initiated to (1) confirm the viability of refueling, (2) define methods for safe rapid refueling, and (3) aid the selection of the preferred AHTR design. Three reactor cores with different fuel element designs (prismatic, pebble bed, and pin-type fuel assembly) are being evaluated. Each is a liquid-salt-cooled variant of a graphite-moderated high-temperature reactor. The refueling studies examined applicable refueling experience from high-temperature reactors (similar fuel element designs) and sodium-cooled fast reactors (similar plant design with liquid coolant, high temperatures, and low pressures). The findings indicate that refueling is viable, and several approaches have been identified. The study results are described in this paper. (authors)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008 Oak Ridge, TN 37831 (United States); Peterson, Per F. [Nuclear Engineering Department, University of California at Berkeley, 6124a Etcheverry Hall, Berkeley, CA 94720 (United States); Cahalan, James E. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Enneking, Jeffrey A. [Areva NP (United States); Phil MacDonald [Consultant, Cedar Hill, TX (United States)

2006-07-01T23:59:59.000Z

22

Testing of novel desiccant materials and dehumidifier matrices for desiccant cooling applications  

SciTech Connect (OSTI)

This paper presents the results of testing of desiccant materials and dehumidifier matrices for desiccant cooling and dehumidification applications. In testing desiccant materials, we used a gravimetric technique to measure the moisture capacity of four desiccant materials. These materials were microporous silica gel powder, macroporous silica gel powder, polystyrene sulfonic acid sodium salt, and a silica-gel/epoxy composite. The microporous silica gel powder had the most desirable moisture capacity properties of the four materials tested for desiccant cooling applications. The polystyrene sulfonic acid sodium salt showed some promise. Our testing of dehumidifier matrices included measuring the pressure drop and heat- and mass-transfer rate characteristics of a silica-gel/corrugated dehumidifier matrix under conditions typical of desiccant cooling systems. The matrix is a section of a commercial dehumidifier. The transient dehumidification capacity of the matrix was calculated from the tests and compared with previously tested matrices. 9 refs., 10 figs., 2 tabs.

Pesaran, A.A.; Bingham, C.E.

1989-03-01T23:59:59.000Z

23

Membrane Treatment of Liquid Salt Bearing Radioactive Wastes  

SciTech Connect (OSTI)

The main fields of introduction and application of membrane methods for preliminary treatment and processing salt liquid radioactive waste (SLRW) can be nuclear power stations (NPP) and enterprises on atomic submarines (AS) utilization. Unlike the earlier developed technology for the liquid salt bearing radioactive waste decontamination and concentrating this report presents the new enhanced membrane technology for the liquid salt bearing radioactive waste processing based on the state-of-the-art membrane unit design, namely, the filtering units equipped with the metal-ceramic membranes of ''TruMem'' brand, as well as the electrodialysis and electroosmosis concentrators. Application of the above mentioned units in conjunction with the pulse pole changer will allow the marked increase of the radioactive waste concentrating factor and the significant reduction of the waste volume intended for conversion into monolith and disposal. Besides, the application of the electrodialysis units loaded with an ion exchange material at the end polishing stage of the radioactive waste decontamination process will allow the reagent-free radioactive waste treatment that meets the standards set for the release of the decontaminated liquid radioactive waste effluents into the natural reservoirs of fish-farming value.

Dmitriev, S. A.; Adamovich, D. V.; Demkin, V. I.; Timofeev, E. M.

2003-02-25T23:59:59.000Z

24

Desiccant dehumidification analysis  

E-Print Network [OSTI]

Desiccant dehumidification has been given increasing interest in the air conditioning industry. Compared with conventional vapor compression air conditioning systems, desiccant dehumidification saves energy by separating ...

Xing, Hai-Yun Helen, 1976-

2000-01-01T23:59:59.000Z

25

Selective Solid-Liquid Extraction of Lithium Halide Salts Using a Ditopic Macrobicyclic Receptor  

E-Print Network [OSTI]

pairs. The receptor can transport these salts from an aqueous phase through a liquid organic membrane and membrane transport, almost all reported efforts have focused on the transfer of lithium salts from this by binding the salts as contact ion pairs. Receptor 1 can also transport alkali metal halide salts out

Smith, Bradley D.

26

Transport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt-Binding Receptor  

E-Print Network [OSTI]

in the solid state as contact ion pairs. Transport experiments, using a supported liquid membrane and high saltTransport of Alkali Halides through a Liquid Organic Membrane Containing a Ditopic Salt and anion receptors. All transport systems exhibit the same qualitative order of ion selectivity; that is

Smith, Bradley D.

27

Design of a 2400MW liquid-salt cooled flexible conversion ratio reactor  

E-Print Network [OSTI]

A 2400MWth liquid-salt cooled flexible conversion ratio reactor was designed, utilizing the ternary chloride salt NaCl-KCl-MgCI2 (30%-20%-50%) as coolant. The reference design uses a wire-wrapped, hex lattice core, and is ...

Petroski, Robert C

2008-01-01T23:59:59.000Z

28

Salt effect on the isobaric vapor-liquid equilibrium of the methyl acetate + methanol system  

SciTech Connect (OSTI)

The effect of sodium thiocyanate at constant salt mole fraction from 0.01 to 0.05 and at saturation on the vapor-liquid equilibrium (VLE) of methyl acetate + methanol has been studied at 101.32 kPa using a modified Othmer equilibrium still. The salt exhibited both salting-in and salting-out effects on the methyl acetate, the azeotrope being eliminated at saturation. The results were correlated using the extended UNIQUAC model of Sander et al. and the electrolytic NRTL model of Mock et al.

Iliuta, M.C.; Thyrion, F.C. [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.] [Louvain Univ., Louvain-la-Neuve (Belgium). Chemical Engineering Inst.; Landauer, O.M. [Univ. Politehnica Bucharest (Romania)] [Univ. Politehnica Bucharest (Romania)

1996-07-01T23:59:59.000Z

29

Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors  

E-Print Network [OSTI]

liquid flibe, a high Prandtl number coolant with high volumetric heat capacity,liquid flibe, a high Prandtl number coolant with high volumetric heat capacityliquid fluoride salts, which are high Pradtl number fluids with high volumetric heat capacity,

Scarlat, Raluca Olga

2012-01-01T23:59:59.000Z

30

Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties  

SciTech Connect (OSTI)

The purpose of this report is to provide a review of thermodynamic and thermophysical properties of candidate molten salt coolants, which may be used as a primary coolant within a nuclear reactor or heat transport medium from the Next Generation Nuclear Plant (NGNP) to a processing plant, for example, a hydrogen-production plant. Thermodynamic properties of four types of molten salts, including LiF-BeF2 (67 and 33 mol%, respectively; also known as FLiBe), LiF-NaF-KF (46.5, 11.5, and 52 mol%, also known as FLiNaK), and KCl-MgCl2 (67 and 33 mol%), and sodium nitrate-sodium nitrite-potassium nitrate (NaNO3–NaNO2–KNO3, (7-49-44 or 7-40-53 mol%) have been investigated. Limitations of existing correlations to predict density, viscosity, specific heat capacity, surface tension, and thermal conductivity, were identified. The impact of thermodynamic properties on the heat transfer, especially Nusselt number was also discussed. Stability of the molten salts with structural alloys and their compatibility with the structural alloys was studied. Nickel and alloys with dense Ni coatings are effectively inert to corrosion in fluorides but not so in chlorides. Of the chromium containing alloys, Hastelloy N appears to have the best corrosion resistance in fluorides, while Haynes 230 was most resistant in chloride. In general, alloys with increasing carbon and chromium content are increasingly subject to corrosion by the fluoride salts FLiBe and FLiNaK, due to attack and dissolution of the intergranular chromium carbide. Future research to obtain needed information was identified.

Manohar S. Sohal; Matthias A. Ebner; Piyush Sabharwall; Phil Sharpe

2010-03-01T23:59:59.000Z

31

Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

far will integrate SWPF with current liquid waste facilities, such as the DWPF and the tanks farms." EM is pleased with the spirit of integration. "A key objective for us over the...

32

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{  

E-Print Network [OSTI]

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

Angell, C. Austen

33

Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College ProvidesSteamLightingSalts and

34

Sandia National Laboratories: New Liquid Salt Electrolytes Could Lead to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt Storage SystemAir ForceBoard of

35

Distributed Energy Technology Characterization (Desiccant Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

36

Desiccant Cooling Systems - A Review  

E-Print Network [OSTI]

Desiccant cooling systems have been investigated extensively during the past decade as alternatives to electrically driven vapor compression systems because regeneration temperatures of the desiccant - about 160°F, can be achieved using natural gas...

Kettleborough, C. F.; Ullah, M. R.; Waugaman, D. G.

1986-01-01T23:59:59.000Z

37

Three-dimensional imaging and precision metrology for liquid-salt-cooled reactors  

SciTech Connect (OSTI)

The liquid-salt-cooled very high temperature reactor, also called the Advanced High-Temperature Reactor (AHTR), is a new large high-temperature reactor concept that combines in a novel way four established technologies: (1) coated-particle graphite-matrix nuclear fuels, (2) Brayton power cycles, (3) passive safety systems and plant designs previously developed for liquid-metal-cooled fast reactors, and (4) low-pressure liquid-salt coolants. The AHTR will require refueling, in-service inspection, and maintenance (RIM) with supporting instrumentation systems. The fluoride salts that are being evaluated as potential reactor coolants have melting points between 350 and 500 deg. C, values that imply minimum RIM temperatures between 400 and 550 deg. C. These salts are transparent over a wider range of the light spectrum than is water. The high temperatures, the optical characteristics of the coolant, and advances in metrology may enable the use of lasers to create three-dimensional images of the reactor interior to assist refueling, monitor vibrations in components, map fluid flow, and enable inspections of internal reactor components. A description of the reactor and an initial evaluation of the use of optical techniques for AHTR instrumentation are provided. (authors)

Forsberg, C. W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States); Varma, V. K.; Burgess, T. W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6304 (United States)

2006-07-01T23:59:59.000Z

38

Composite desiccant structure  

DOE Patents [OSTI]

A composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

Fraioli, Anthony V. (Hawthorn Woods, IL); Schertz, William W. (Batavia, IL)

1987-01-01T23:59:59.000Z

39

Composite desiccant structure  

DOE Patents [OSTI]

This patent discloses a composite formed of small desiccant particles retained in a dark matrix composed of a porous binder containing a transition metal oxide with pores to provide moisture transport with respect to the particles, and metallic fibers to remove the heat of condensation during dehumidification and provide heat for the removal of moisture during regeneration. The moisture absorbing properties of the composite may be regenerated by exposure of the dark matrix to solar radiation with dehumidification occurring at night.

Fraioli, A.V.; Schertz, W.W.

1984-06-06T23:59:59.000Z

40

Treatment of Liquid Radioactive Waste with High Salt Content by Colloidal Adsorbents - 13274  

SciTech Connect (OSTI)

Treatment processes have been fully developed for most of the liquid radioactive wastes generated during the operation of nuclear power plants. However, a process for radioactive liquid waste with high salt content, such as waste seawater generated from the unexpected accident at nuclear power station, has not been studied extensively. In this study, the adsorption efficiencies of cesium (Cs) and strontium (Sr) in radioactive liquid waste with high salt content were investigated using several types of zeolite with different particle sizes. Synthesized and commercial zeolites were used for the treatment of simulated seawater containing Cs and Sr, and the reaction kinetics and adsorption capacities of colloidal zeolites were compared with those of bulk zeolites. The experimental results demonstrated that the colloidal adsorbents showed fast adsorption kinetic and high binding capacity for Cs and Sr. Also, the colloidal zeolites could be successfully applied to the static adsorption condition, therefore, an economical benefit might be expected in an actual processes where stirring is not achievable. (authors)

Lee, Keun-Young; Chung, Dong-Yong; Kim, Kwang-Wook; Lee, Eil-Hee; Moon, Jei-Kwon [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)] [Korea Atomic Energy Research Institute - KAERI, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method and apparatus for extracting water from air using a desiccant  

DOE Patents [OSTI]

The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate. Each chamber can be configured to be isolated or in communication with the desiccant. The first chamber can be configured to be isolated or in communication with a course of moist air. Various arrangements of valves, pistons, and chambers are described.

Spletzer, Barry L. (Albuquerque, NM); Callow, Diane Schafer (Albuquerque, NM)

2003-01-01T23:59:59.000Z

42

Review of Desiccant Dehumidification Technology  

SciTech Connect (OSTI)

This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the I990s.

Pesaran, A. A.

1994-10-01T23:59:59.000Z

43

Advanced Open-Cycle Desiccant Cooling System  

E-Print Network [OSTI]

The concept of staged regeneration as means of improving the desiccant cooling system performance is the subject of investigation in this study. In the staged regeneration, the regeneration section of desiccant dehumidifier is divided into two parts...

Ko, Y. J.; Charoensupaya, D.; Lavan, Z.

1989-01-01T23:59:59.000Z

44

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect (OSTI)

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

45

Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning  

SciTech Connect (OSTI)

NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

2011-01-01T23:59:59.000Z

46

STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST  

SciTech Connect (OSTI)

This air emissions document supports implementation of the Treatability Test Plan for Soil Desiccation as outlined in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau (DOE/RL-2007-56). Treatability testing supports evaluation of remedial technologies for technetium-99 (Tc-99) contamination in the vadose zone at sites such as the BC Cribs and Trenches. Soil desiccation has been selected as the first technology for testing because it has been recommended as a promising technology in previous Hanford Site technology evaluations and because testing of soil desiccation will provide useful information to enhance evaluation of other technologies, in particular gas-phase remediation technologies. A soil desiccation pilot test (SDPT) will evaluate the desiccation process (e.g., how the targeted interval is dried) and the long-term performance for mitigation of contaminant transport. The SDPT will dry out a moist zone contaminated by Tc-99 and nitrate that has been detected at Well 299-E13-62 (Borehole C5923). This air emissions document applies to the activities to be completed to conduct the SDPT in the 200-BC-1 operable unit located in the 200 East Area of the Hanford Site. Well 299-E13-62 is planned to be used as an injection well. This well is located between and approximately equidistant from cribs 216-B-16, 216-B-17, 216-B-18. and 216-B-19. Nitrogen gas will be pumped at approximately 300 ft{sup 3}/min into the 299-EI3-62 injection well, located approximately 12 m (39 ft) away from extraction well 299-EI3-65. The soil gas extraction rate will be approximately 150 ft{sup 3}/min. The SDPT will be conducted continuously over a period of approximately six months. The purpose of the test is to evaluate soil desiccation as a potential remedy for protecting groundwater. A conceptual depiction is provided in Figure 1. The soil desiccation process will physically dry, or evaporate, some of the water from the moist zone of interest. As such, it is expected that Tc-99 and nitrate will remain with the water residual that is not removed, or remain as a salt bound to the soil particles. In addition, the SDPT will be conducted at lower extraction velocities to preclude pore water entrainment and thus, the extracted air effluent should be free of the contaminant residual present in the targeted moist zone. However, to conservatively bound the planned activity for potential radionuclide air emissions, it is assumed, hypothetically, that the Tc-99 does not remain in the zone of interest, but that it instead travels with the evaporated moisture to the extraction well and to the test equipment at the land surface. Thus, a release potential would exist from the planned point source (powered exhaust) for Tc-99 in the extracted moist air. In this hypothetical bounding case there would also be a potential for very minor fugitive emissions to occur due to nitrogen injection into the soil. The maximum value for Tc-99, measured in the contaminated moist zone, is used in calculating the release potential described in Section 2.3. The desiccation mechanism will be evaporation. Nitrate is neither a criteria pollutant nor a toxic air pollutant. It would remain nitrate as a salt adhered to sand and silt grains or as nitrate dissolved in the pore water. Nitrogen, an inert gas, will be injected into the ground during the test. Tracer gasses will also be injected near the beginning, middle, and the end of the test. The tracer gasses are sulfur hexafluoride, trichlorofluoromethane, and difluoromethane.

BENECKE MW

2010-09-08T23:59:59.000Z

47

Solar desiccant cooling: an evolving technology  

SciTech Connect (OSTI)

The potential for improved solar cooling economics has not been realized. The absorption cycle, and heat activated Rankine engine suffer from low efficiency. Desiccant cooling is simple and can acheive a Coefficient of Performance (COP) double that of the other systems. The basic desiccant system technology is described. This has been integrated with solar collecter regeneration to demonstrate feasibility. A performance analysis shows that desiccant cooling can be competitive, but that the capital cost penalty of solar-desiccant systems was the most serious detriment to economic competitiveness. Tax incentives are recommended.

Haas, S.A.

1982-06-01T23:59:59.000Z

48

Preliminary neutronic studies for the liquid-salt-cooled very hightemperature reactor (LS-VHTR).  

SciTech Connect (OSTI)

Preliminary neutronic studies have been performed in order to provide guidelines to the design of a liquid-salt cooled Very High Temperature Reactor (LS-VHTR) using Li{sub 2}BeF{sub 4} (FLiBe) as coolant and a solid cylindrical core. The studies were done using the lattice codes (WIMS8 and DRAGON) and the linear reactivity model to estimate the core reactivity balance, fuel composition, discharge burnup, and reactivity coefficients. An evaluation of the lattice codes revealed that they give very similar accuracy as the Monte Carlo MCNP4C code for the prediction of the fuel element multiplication factor (kinf) and the double heterogeneity effect of the coated fuel particles in the graphite matrix. The loss of coolant from the LS-VHTR core following coolant voiding was found to result in a positive reactivity addition, due primarily to the removal of the strong neutron absorber Li-6. To mitigate this positive reactivity addition and its impact on reactor design (positive void reactivity coefficient), the lithium in the coolant must be enriched to greater than 99.995% in its Li-7 content. For the reference LS-VHTR considered in this work, it was found that the magnitude of the coolant void reactivity coefficient (CVRC) is quite small (less than $1 for 100% voiding). The coefficient was found to become more negative or less positive with increase in the lithium enrichment (Li-7 content). It was also observed that the coefficient is positive at the beginning of cycle and becomes more negative with increasing burnup, indicating that by using more than one fuel batch, the coefficient could be made negative at the beginning of cycle. It might, however, still be necessary at the beginning of life to design for a negative CVRC value. The study shows that this can be done by using burnable poisons (erbium is a leading candidate) or by changing the reference assembly design (channel dimensions) in order to modify the neutron spectrum. Parametric studies have been performed to attain targeted cycle length of 18 months and discharge burnup greater than 100 GWd/t with a constraint on the uranium enrichment (less than 20% to support non-proliferation goals). The results show that the required uranium enrichment and discharge burnup increase with the number of batches. The three-batch scheme is, however, impractical because the required uranium enrichment is greater than 20%. The required enrichment is smallest for the one-batch case, but its discharge burnup is smaller than the target value. Therefore, the two-batch scheme is desirable to satisfy simultaneously the target cycle length and discharge burnup. It was additionally shown that to increase the core power density to 150% of the reference core value, the required uranium enrichment is less than 20% in the single-batch scheme. This higher power density might not be achievable in the two- or three-batch schemes because the fuel enrichment would exceed 20%.

Kim, T. K.; Taiwo, T. A.; Yang, W. S.

2005-10-05T23:59:59.000Z

49

Status of Physics and Safety Analyses for the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR)  

SciTech Connect (OSTI)

A study has been completed to develop a new baseline core design for the liquid-salt-cooled very high-temperature reactor (LS-VHTR) that is better optimized for liquid coolant and that satisfies the top-level operational and safety targets, including strong passive safety performance, acceptable fuel cycle parameters, and favorable core reactivity response to coolant voiding. Three organizations participated in the study: Oak Ridge National Laboratory (ORNL), Idaho National Laboratory (INL), and Argonne National Laboratory (ANL). Although the intent was to generate a new reference LS-VHTR core design, the emphasis was on performing parametric studies of the many variables that constitute a design. The results of the parametric studies not only provide the basis for choosing the optimum balance of design options, they also provide a valuable understanding of the fundamental behavior of the core, which will be the basis of future design trade-off studies. A new 2400-MW(t) baseline design was established that consists of a cylindrical, nonannular core cooled by liquid {sup 7}Li{sub 2}BeF{sub 4} (Flibe) salt. The inlet and outlet coolant temperatures were decreased by 50 C, and the coolant channel diameter was increased to help lower the maximum fuel and vessel temperatures. An 18-month fuel cycle length with 156 GWD/t burnup was achieved with a two-batch shuffling scheme, while maintaining a core power density of 10 MW/m{sup 3} using graphite-coated uranium oxicarbide particle fuel enriched to 15% {sup 235}U and assuming a 25 vol-% packing of the coated particles in the fuel compacts. The revised design appears to have excellent steady-state and transient performance. The previous concern regarding the core's response to coolant voiding has been resolved for the case of Flibe coolant by increasing the coolant channel diameter and the fuel loading. Also, the LSVHTR has a strong decay heat removal performance and appears capable of surviving a loss of forced circulation (LOFC) even with failure to scram. Significant natural convection of the coolant salt occurs, resulting in fuel temperatures below steady-state values and nearly uniform temperature distributions during the transient.

Ingersoll, DT

2005-12-15T23:59:59.000Z

50

Experiments on sorption hysteresis of desiccant materials  

SciTech Connect (OSTI)

Solid desiccant cooling systems take advantage of solar energy for air conditioning. The process involves passing air through a desiccant bed for drying and subsequent evaporative cooling to provide the air conditioning. The desiccant is then regenerated with hot air provided by a gas burner or solar collectors. This performance is limited by the capacity of the desiccant, its sorption properties, and the long-term stability of the desiccant material under cyclic operation conditions. Therefore, we have developed a versatile test facility to measure the sorption properties of candidate solid desiccant materials under dynamic conditions, under different geometrical configurations, and under a broad range of process air stream conditions, characteristic of desiccant dehumidifer operation. We identified a dependence of the sorption processes on air velocity and the test cell aspect ratio and the dynamic hysteresis between adsorption and desorption processes. These experiments were geared to provide data on the dynamic performance of silica gel in a parallel-passage configuration to prepare for tests with a rotary dehumidifier that will be conducted at SERI in late FY 1984. We also recommend improving the accuracy of the isotopic perturbation technique.

Pesaran, A.; Zangrando, F.

1984-08-01T23:59:59.000Z

51

Integral and Separate Effects Tests for Thermal Hydraulics Code Validation for Liquid-Salt Cooled Nuclear Reactors  

SciTech Connect (OSTI)

The objective of the 3-year project was to collect integral effects test (IET) data to validate the RELAP5-3D code and other thermal hydraulics codes for use in predicting the transient thermal hydraulics response of liquid salt cooled reactor systems, including integral transient response for forced and natural circulation operation. The reference system for the project is a modular, 900-MWth Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a specific type of Fluoride salt-cooled High temperature Reactor (FHR). Two experimental facilities were developed for thermal-hydraulic integral effects tests (IETs) and separate effects tests (SETs). The facilities use simulant fluids for the liquid fluoride salts, with very little distortion to the heat transfer and fluid dynamics behavior. The CIET Test Bay facility was designed, built, and operated. IET data for steady state and transient natural circulation was collected. SET data for convective heat transfer in pebble beds and straight channel geometries was collected. The facility continues to be operational and will be used for future experiments, and for component development. The CIET 2 facility is larger in scope, and its construction and operation has a longer timeline than the duration of this grant. The design for the CIET 2 facility has drawn heavily on the experience and data collected on the CIET Test Bay, and it was completed in parallel with operation of the CIET Test Bay. CIET 2 will demonstrate start-up and shut-down transients and control logic, in addition to LOFC and LOHS transients, and buoyant shut down rod operation during transients. Design of the CIET 2 Facility is complete, and engineering drawings have been submitted to an external vendor for outsourced quality controlled construction. CIET 2 construction and operation continue under another NEUP grant. IET data from both CIET facilities is to be used for validation of system codes used for FHR modeling, such as RELAP5-3D. A set of numerical models were developed in parallel to the experimental work. RELAP5-3D models were developed for the salt-cooled PB-AHTR, and for the simulat fluid CIET natural circulation experimental loop. These models are to be validated by the data collected from CIET. COMSOL finite element models were used to predict the temperature and fluid flow distribution in the annular pebble bed core; they were instrumental for design of SETs, and they can be used for code-to-code comparisons with RELAP5-3D. A number of other small SETs, and numerical models were constructed, as needed, in support of this work. The experiments were designed, constructed and performed to meet CAES quality assurance requirements for test planning, implementation, and documentation; equipment calibration and documentation, procurement document control; training and personnel qualification; analysis/modeling software verification and validation; data acquisition/collection and analysis; and peer review.

Peterson, Per

2012-10-30T23:59:59.000Z

52

Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes...

53

Desiccants: Benefits for the Second Century of Air-Conditioning  

E-Print Network [OSTI]

Desiccant technology now stands where mechanical cooling stood in the 1930's. Desiccant systems have been used by industrial engineers to achieve productivity and energy benefits which far outweigh their installed cost. Now, with lower cost...

McGahey, K.; Harriman, L.

1996-01-01T23:59:59.000Z

54

Experiments on sorption characteristics of solid desiccant materials for solar desiccant cooling systems  

SciTech Connect (OSTI)

A test facility for measuring the sorption properties of candidate solid desiccant materials under dynamic conditions as well as equilibrium conditions, those experienced during desiccant dehumidifier operation, was constructed and tested. The theory of perturbation chromatography was initially used to measure the equilibrium properties of a desiccant/water-vapor system for the first time. Silica gel, molecular sieve, and gamma-manganese dioxide were tested. The equilibrium capacity estimated by the perturbation chromatography was lower than those available in literature, which suggests that perturbation chromatography may not be applicable to desiccant/water-vapor systems. The perturbation chromatography was replaced with a gravimetric technique, and satisfactory results were obtained for a water-vapor/molecular-sieve system.

Pesaran, A.A.

1984-11-01T23:59:59.000Z

55

Desiccant cooling using unglazed transpired solar collectors  

SciTech Connect (OSTI)

The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

Pesaran, A.A. (National Renewable Energy Lab., Golden, CO (United States)); Wipke, K. (Stanford Univ., CA (United States))

1992-05-01T23:59:59.000Z

56

Desiccant cooling: State-of-the-art assessment  

SciTech Connect (OSTI)

The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

1992-10-01T23:59:59.000Z

57

Desiccant cooling: State-of-the-art assessment  

SciTech Connect (OSTI)

The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

1992-10-01T23:59:59.000Z

58

Application of Desiccant Drying in Plastic Molding  

E-Print Network [OSTI]

APPLICATION OF DESICCANT DRYING IN PLASTIC MOLDING Michael Brown, P.E. Greg Connors, P.E. Douglas Moore, P.E. Senior Research Engr. Industrial Engr. Senior Research Engr. Ga. Tech Research Inst. Atlanta Gas Light Co. Ga. Tech Research Inst... will condense on refrigerated display doors. In ice rinks, condensation will occur on the ice surface causing it to soften if the humidity too high. In plastic molding, chilled water is provi ed to rapidly cool the finished parts. Cooling incr...

Brown, M.; Connors, G.; Moore, D.

59

A review of desiccant dehumidification technology  

SciTech Connect (OSTI)

This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the 1990s. After briefly reviewing the principle of operation, the authors present three case studies-for supermarkets, a hotel, and an office building. The authors also discuss recent advances and ongoing research and development activities.

Pesaran, A.A.

1994-10-01T23:59:59.000Z

60

Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating  

SciTech Connect (OSTI)

The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850��������C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys���¢�������� weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation on Cr-carbide on the graphite surface. Ni-electroplating dramatically reduced corrosion of alloys, although some diffusion of Fe and Cr were observed occur through the Ni plating. A pyrolytic carbon and SiC (PyC/SiC) CVD coating was also investigated and found to be effective in mitigating corrosion. The KCl-MgCl2 molten salt was less corrosive than FLiNaK fluoride salts for corrosion tests performed at 850oC. Cr dissolution in the molten chloride salt was still observed and consequently Ni-201 and Hastelloy N exhibited the least depth of attack. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (as measured by weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. Because Cr dissolution is an important mechanism of corrosion, molten salt electrochemistry experiments were initiated. These experiments were performed using anodic stripping voltammetry (ASV). Using this technique, the reduction potential of Cr was determined against a Pt quasi-reference electrode as well as against a Ni(II)-Ni reference electrode in molten FLiNaK at 650 oC. The integrated current increased linearly with Cr-content in the salt, providing for a direct assessment of the Cr concentration in a given salt of unknown Cr concentration. To study heat transfer mechanisms in these molten salts over the forced and mixed convection regimes, a forced convective loop was constructed to measure heat transfer coefficients, friction factors and corrosion rates in different diameter tubes in a vertical up flow configuration in the laminar flow regime. Equipment and instrumentation for the forced convective loop was designed, constructed, and tested. These include a high temperature centrifugal pump, mass flow meter, and differential pressure sensing capabilities to an uncertainty of < 2 Pa. The heat transfer coefficient for the KCl-MgCl2 salt was measured in t

Kumar Sridharan; Mark Anderson; Todd Allen; Michael Corradini

2012-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - adsorptive desiccant cooling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FIELD DEMONSTRATION OF ACTIVE DESICCANT MODULES Summary: "downstream" of the cooling coil to provide saturated air to the desiccant wheel, thereby maximizing its... from...

62

Condensation of Self-assembled Lyotropic Chromonic Liquid Crystal Sunset Yellow in Aqueous Solutions Crowded with Polyethylene glycol and Doped with Salt  

E-Print Network [OSTI]

We use optical and fluorescence microscopy, densitometry, cryo-transmission electron microscopy (cryo-TEM), spectroscopy, and synchrotron X-ray scattering, to study the phase behavior of the reversible self-assembled chromonic aggregates of an anionic dye Sunset Yellow (SSY) in aqueous solutions crowded with an electrically neutral polymer polyethylene glycol (PEG) and doped with the salt NaCl. PEG causes the isotropic SSY solutions to condense into a liquid-crystalline region with a high concentration of SSY aggregates, coexisting with a PEG-rich isotropic (I) region. PEG added to the homogeneous nematic (N) phase causes separation into the coexisting N and I domains; the SSY concentration in the N domains is higher than the original concentration of PEG-free N phase. Finally, addition of PEG to the highly concentrated homogeneous N phase causes separation into the coexisting columnar hexagonal (C) phase and I phase. This behavior can be qualitatively explained by the depletion (excluded volume) effects that act at two different levels: at the level of aggregate assembly from monomers and short aggregates and at the level of inter-aggregate packing. We also show a strong effect of a monovalent salt NaCl on phase diagrams that is different for high and low concentrations of SSY. Upon the addition of salt, dilute I solutions of SSY show appearance of the condensed N domains, but the highly concentrated C phase transforms into a coexisting I and N domains. We suggest that the salt-induced screening of electric charges at the surface of chromonic aggregates leads to two different effects: (a) increase of the scission energy and the contour length of aggregates, and (b) decrease of the persistence length of SSY aggregates.

Heung-Shik Park; Shin-Woong Kang; Luana Tortora; Satyendra Kumar; Oleg D. Lavrentovich

2011-04-06T23:59:59.000Z

63

An assessment of desiccant cooling and dehumidification technology  

SciTech Connect (OSTI)

Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States)); Lavan, Z. (Illinois Inst. of Tech., Chicago, IL (United States)); Collier, R.K. Jr. (Collier Engineering Services, Merritt Island, FL (United States)); Meckler, G. (Gershon Meckler Associates, P.C., Herndon, VA (United States))

1992-07-01T23:59:59.000Z

64

Dessicant materials screening for backfill in a salt repository  

SciTech Connect (OSTI)

Maintaining an anhydrous environment around nuclear waste stored in a salt repository is a concern which can be alleviated by using a desiccant material for backfilling. Such a desiccant should desiccate a brine yet be non deliquescent, the hydrated product should have moderate thermal stability, and the desiccant should have a high capacity and be readily available. From a literature search MgO and CaO were identified for detailed study. These oxides, and an intimate mixture of the two obtained by calcining dolomite, were used in experiments to further determine their suitability. They proved to be excellent desiccants with a high water capacity. The hydrates of both have moderate thermal stability and a high water content. Both MgO and CaO react in an alkaline chloride brine forming oxychloride compounds with different waters of crystallization. Some of these compounds are the Sorel Cements. CaO hydrates to Ca(OH)/sub 2/ which carbonates with CO/sub 2/ in air to form CaCO/sub 3/ and release the hydrated water. Thus the intimate mixture of CaO and MgO from calcined dolomite may serve as a desiccant and remove CO/sub 2/ from the repository atmosphere.

Simpson, D.R.

1980-10-01T23:59:59.000Z

65

International Congress Refrigeration 2003, Washington, DC ACTIVE DESICCANT INTEGRATION WITH  

E-Print Network [OSTI]

standard. Integration of a rooftop, unitary air conditioner with an active-desiccant module (ADM) allows the use of a standard rooftop air conditioner with a thermally regenerated active desiccant component requirements for fresh air ventilation standards with continuous supply and increased amounts of building

Oak Ridge National Laboratory

66

Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014  

SciTech Connect (OSTI)

Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km2 (75 mi2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agencies (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.; Johnson, Timothy C.; Clayton, Ray E.; Chronister, Glen B.

2014-09-01T23:59:59.000Z

67

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

68

Energymaster Desiccant System Application to Light Commercial Buildings  

E-Print Network [OSTI]

Desiccant cooling systems offer unique advantages over conventional equipment in certain applications. AskCorp's Energymaster unit has been applied in several commercial situations where these advantages are most significant. The magnitude...

Blanpied, M. C.; Coellner, J. A.; Macintosh, D. S.

1987-01-01T23:59:59.000Z

69

Weed control and desiccation strategies in chickpea Executive Summary  

E-Print Network [OSTI]

-harvest desiccation. Studies were conducted at Minot and Williston, ND and Bozeman, MT from 2002-2004. Sulfentrazone to excellent control of kochia, redroot pigweed, and wild buckwheat. At Williston, sulfentrazone alone, tank

Lawrence, Rick L.

70

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

71

Active Humidity Control Through Gas-Fired Desiccant Humidity Pump  

E-Print Network [OSTI]

to regenerate the desiccant. Field experiments of two humidity pumps on existing commercial buildings have been initiated. Each system dehumidifies 5000 scfm of make-up air to meet all the latent loads, which is then fed to conventional, electric-driven HVAC...

Novosel, D.; Griffiths, W. C.

1988-01-01T23:59:59.000Z

72

Desiccant Moisture Exchange for Dehumidification Enhancement of Air Conditioners  

E-Print Network [OSTI]

* -led use of this inprarrPd air mtianer cycle with dssicrants will met likely occur in the cammrcial sector bbm desiccants are acmnonly IaKWn end the potential for savimy is greatar. Cne patential amnercial a~plication where the humidity pmblm...

Cromer, C. J.

1988-01-01T23:59:59.000Z

73

Original article Effect of desiccation during cold storage on planting  

E-Print Network [OSTI]

Original article Effect of desiccation during cold storage on planting stock quality and field, 1.4°C, 87% RH). An additional treatment consisted in a cold storage for 4 weeks in sealed polythene exhibited lower survival and RGP (except in pine) than those lifted in January and March. Cold storage

Paris-Sud XI, Université de

74

Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results  

SciTech Connect (OSTI)

A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Johnson, Christian D.; Clayton, Ray E.; Chronister, Glen B.

2013-09-01T23:59:59.000Z

75

Analysis of a Fabric/Desiccant Window Cavity Dehumidifier  

E-Print Network [OSTI]

design of such a system was developed and modeled to determine its performance under typical load and weather conditions. The design includes a moving fabric/desiccant belt installed in a window cavity, cwpled with a regenerative heat exchanger, which... energy, but could be supplied by an auxiliary source. A regenerative heat exchanger exmts heat from the hot exhaust of the dehumidification channel and preheats the incoming regeneration air slream. This system can be conf~gured to process two...

Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

1994-01-01T23:59:59.000Z

76

Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype  

SciTech Connect (OSTI)

This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

Kozubal, E.; Woods, J.; Judkoff, R.

2012-04-01T23:59:59.000Z

77

DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1  

E-Print Network [OSTI]

DESICCATION PROTECTION AND DISRUPTION: A TRADE-OFF FOR AN INTERTIDAL MARINE ALGA1 Luke J. H. Hunt2, California 93950, USA For marine algae, the benefits of drying out are often overshadowed by the stresses of desiccation in the intertidal turf alga Endocladia muricata (Endlichter) J. Agardh. Laboratory experiments

Denny, Mark

78

Study of parameters affecting the performance of solar desiccant cooling systems  

SciTech Connect (OSTI)

The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65[degree]C to 160[degree]C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

Pesaran, A.A.; Hoo, E.A.

1993-01-01T23:59:59.000Z

79

Study of parameters affecting the performance of solar desiccant cooling systems  

SciTech Connect (OSTI)

The performance of a solar desiccant cooling system depends on the performance of its components, particularly the desiccant dehumidifier and solar collectors. The desiccant dehumidifier performance is affected by the properties of the desiccant, particularly the shape of the isotherm and the regeneration temperature. The performance of a solar collector, as one would expect, depends on its operating temperature, which is very close to the desiccant regeneration temperature. The purpose of this study was to identify the desiccant isotherm shape (characterized by separation factor) that would result in the optimum performance - based on thermal coefficient of performance and cooling capacity - of a desiccant cooling cycle operating in ventilation mode. Different regeneration temperatures ranging from 65{degree}C to 160{degree}C were investigated to identify the corresponding optimum isotherm shape at each. Thermal COP dictates the required area of the solar collectors, and the cooling capacity is an indication of the size and cost of the cooling equipment. Staged and no-staged regeneration methods were studied.

Pesaran, A.A.; Hoo, E.A.

1993-01-01T23:59:59.000Z

80

Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site  

SciTech Connect (OSTI)

The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

2011-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The precipitation response to the desiccation of Lake Chad  

SciTech Connect (OSTI)

Located in the semi-arid African Sahel, Lake Chad has shrunk from a surface area of 25000 km2 in 1960 to about 1350 km2 due to a series of droughts and anthropogenic influences. The disappearance of such a large open-water body can be expected to have a noticeable effect on the meteorology in the surroundings of the lake. The impact could extend even further to the west as westward propagating convective systems pass Lake Chad in the rainfall season. This study examines the sensitivity of the regional hydrology and convective processes to the desiccation of the lake using a regional atmospheric model. Three Lake Chad scenarios are applied reflecting the situation in 1960, the current situation and a potential future scenario in which the lake and the surrounding wetlands have disappeared. The model simulations span the months July-September in 2006, which includes the rainfall season in the Lake Chad area. Total precipitation amounts and the components of the hydrological cycle are found to be hardly affected by the existence of the lake. A filled Lake Chad does, however, increase the precipitation at the east side of the lake. The model results indicate that the boundary layer moisture and temperature are significantly altered downwind of the lake. By investigating a mesoscale convective system (MCS) case, this is found to affect the development and progress of the system. At first, the MCS is intensified by the more unstable boundary layer air but the persistence of the system is altered as the cold pool propagation becomes less effective. The proposed mechanism is able to explain the differences in the rainfall patterns nearby Lake Chad between the scenarios. This highlights the local sensitivity to the desiccation of Lake Chad whereas the large-scale atmospheric processes are not affected.

Lauwaet D.; VanWeverberg K.; vanLipzig, N. P. M., Weverberg, K. V., Ridderb, K. D., and Goyens, C.

2012-04-01T23:59:59.000Z

82

Improving Gas-Fired Heat Pump Capacity and Performance by Adding a Desiccant Dehumidification Subsystem  

E-Print Network [OSTI]

This paper examines the merits of coupling a desiccant dehumidification subsystem to a gas-engine- driven vapor compression air conditioner. A system is identified that uses a rotary, silica gel, parallel-plate dehumidifier. Dehumidifier data...

Parsons, B. K.; Pesaran, A. A.; Bharathan, D.; Shelpuk, B. C.

1990-01-01T23:59:59.000Z

83

Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Soil Desiccation Pilot Test Results  

SciTech Connect (OSTI)

This report describes results of a pilot test of soil desiccation conducted as part of the Deep Vadose Zone Treatability Test program. The report is written in CERCLA treatabilty test report format.

Truex, Michael J.; Oostrom, Martinus; Strickland, Christopher E.; Johnson, Timothy C.; Freedman, Vicky L.; Johnson, Christian D.; Greenwood, William J.; Ward, Anderson L.; Clayton, Ray E.; Lindberg, Michael J.; Peterson, John E.; Hubbard, Susan; Chronister, Glen B.; Benecke, Mark W.

2012-05-01T23:59:59.000Z

84

Effects of chemical desiccation and early harvesting on Sorghum [Sorghum bicolor (L.) Moench] seed germination  

E-Print Network [OSTI]

Field and laboratory experiments were conducted at two locations over two years in Texas. Objectives of these experiments were to study effects of chemical desiccation and seed maturity at harvest on sorghum seed germination. Sorghum plants were...

Gouveia, Sergio

1994-01-01T23:59:59.000Z

85

Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007  

SciTech Connect (OSTI)

Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

2008-02-04T23:59:59.000Z

86

Demonstration and testing of an all-electric desiccant dehumidifying system at a New Jersey supermarket  

SciTech Connect (OSTI)

A novel all-electric desiccant dehumidifying system was demonstrated and evaluated at a supermarket field test site in New Jersey during 1995. Unlike traditional desiccant systems, this system uses waste heat from vapor-compression refrigerating condensers to regenerate a recently developed desiccant material. The 7,000-cfm (3,300-L/s) unit has a latent capacity of approximately 7 tons (25 kW), with fan energy as the only purchased energy source. This paper discusses the performance of the desiccant system under field conditions and its interactions with the refrigerating and conventional heating, ventilating, and air-conditioning (HVAC) systems. Results indicate that the system is three to four times more efficient for moisture removal than a conventional HVAC system with no deleterious effects on refrigerating system operations.

Brandemuehl, M.J. [Univ. of Colorado, Boulder, CO (United States). Joint Center for Energy Management; Khattar, M.K. [Electric Power Research Inst., Palo Alto, CA (United States)

1997-12-31T23:59:59.000Z

87

Indoor Humidity Analysis of an Integrated Radiant Cooling and Desiccant Ventilation System  

E-Print Network [OSTI]

, the diameter and depth of the wheel, face flow velocity, rotational speed and other operating conditions. Bulk et al. [11] proposed NTU correlations for design calculation of latent and total effectiveness of enthalpy wheels coated with silica gel..., Wr Te1,We1 Space Fig.2. Passive desiccant system Enthalpy wheels normally use an aluminum substrate coated with a molecular sieve material or silica gel. The effectiveness of an enthalpy wheel depends on the load of desiccant materials...

Gong, X.; Claridge, D. E.

2006-01-01T23:59:59.000Z

88

What`s new in building energy research - desiccant cooling program  

SciTech Connect (OSTI)

Desiccant cooling systems are energy efficient, cost effective, and environmentally safe. They are used as stand-alone systems or with conventional air-conditioning to improve the indoor air quality of all types of buildings. In these systems, a desiccant removes moisture from the air, which releases heat and increases the air temperature. The dry air is cooled using either evaporative cooling or the cooling coils of a conventional air conditioner. The absorbed moisture in the desiccant is then removed (the desiccant is regenerated, or brought back to its original dry state) using thermal energy supplied by natural gas, electricity, waste heat, or the sun. Commercially available desiccants include silica gel, activated alumina, natural and synthetic zeolites, lithium chloride, and synthetic polymers. Currently, desiccant cooling and dehumidification are being used successfully in industrial and some commercial applications. The Office of Building Technologies in the U.S. Department of Energy (DOE) is working with industry to broaden the market for desiccant cooling so its full energy savings and indoor air quality improvement potential can be realized. The main goals of the Desiccant Cooling Program are to (1) Reduce carbon dioxide emissions by 5 million tons (4.5 million metric tons) annually by 2005 and 18 million tons (16.3 million metric tons) annually by 2010. (2) Reduce energy consumption by 0.1 quad (105.5 petajoules) annually by 2005 and 0.3 quad (316.5 petajoules) annually by 2010. (3) Capture 5% of the air-conditioning market by 2005 and 15% by 2010.

NONE

1996-02-01T23:59:59.000Z

89

Synthesis of ionic liquids  

DOE Patents [OSTI]

Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

2008-09-09T23:59:59.000Z

90

Salt Waste Processing Initiatives  

Office of Environmental Management (EM)

1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

91

Tank 41-H salt level fill history 1985 to 1987  

SciTech Connect (OSTI)

The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

Ross, R.H.

1996-05-16T23:59:59.000Z

92

Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward  

SciTech Connect (OSTI)

Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

2010-03-01T23:59:59.000Z

93

SOIL DESICCATION TECHNIQUES STRATEGIES FOR IMMOBILIZATION OF DEEP VADOSE CONTAMINANTS AT THE HANFORD CENTRAL PLATEAU  

SciTech Connect (OSTI)

Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

BENECKE MW; CHRONISTER GB; TRUEX MJ

2012-01-30T23:59:59.000Z

94

Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine  

SciTech Connect (OSTI)

Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

2005-04-01T23:59:59.000Z

95

Apparatus and method for making metal chloride salt product  

DOE Patents [OSTI]

A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Homer Glen, IL); Richmann, Michael K. (Carlsbad, NM)

2007-05-15T23:59:59.000Z

96

Segregation in desiccated sessile drops of biological fluids  

E-Print Network [OSTI]

It is shown here that concurrence between advection and diffusion in a drying sessile drop of a biological fluid can produce spatial redistribution of albumen and salt. The result gives an explanation for the patterns observed in the dried drops of the biological fluids.

Yuri Yu. Tarasevich; Dina M. Pravoslavnova

2006-09-22T23:59:59.000Z

97

Liquid electrode  

DOE Patents [OSTI]

A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

Ekechukwu, A.A.

1994-07-05T23:59:59.000Z

98

Electrolyte materials containing highly dissociated metal ion salts  

DOE Patents [OSTI]

The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

Lee, Hung-Sui (East Setauket, NY); Geng, Lin (Coram, NY); Skotheim, Terje A. (Shoreham, NY)

1996-07-23T23:59:59.000Z

99

Electrolyte materials containing highly dissociated metal ion salts  

DOE Patents [OSTI]

The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

Lee, H.S.; Geng, L.; Skotheim, T.A.

1996-07-23T23:59:59.000Z

100

Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)  

SciTech Connect (OSTI)

The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D. [Dept. of Engineering Physics, Univ.of Wisconsin - Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films  

E-Print Network [OSTI]

1973. [30] EIA. World energy outlook 2006. Technical report,2002. [10] IEA. World energy outlook 2006. Technical report,

Pineda Vargas, Sergio Manuel

2013-01-01T23:59:59.000Z

102

Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films  

E-Print Network [OSTI]

in the formation of the ice on the cooling coil due to thedelay the formation of ice on the cooling coil. An internalthe formation of ice on the cooling coil, thus reducing the

Pineda Vargas, Sergio Manuel

2013-01-01T23:59:59.000Z

103

Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films  

E-Print Network [OSTI]

projection of the world’s market energy consumption predictsof the world’s market energy consumption published by theof the energy consumption around the world predict an

Pineda Vargas, Sergio Manuel

2013-01-01T23:59:59.000Z

104

Experimental Investigation on the Operation Performance of a Liquid Desiccant Air-conditioning System  

E-Print Network [OSTI]

A large share of energy consumption is taken by an air-conditioning system. It worsens the electricity load of the power network. Therefore, more and more scholars are paying attention to research on new types of air-conditioning systems...

Liu, J.; Wang, J.; Wu, Z.; Gu, W.; Zhang, G.

2006-01-01T23:59:59.000Z

105

Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films  

E-Print Network [OSTI]

cold storage. . . . . . . . . . . . . . . . . . . . . . . .cold storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .is located inside the cold storage, and where sensible and

Pineda Vargas, Sergio Manuel

2013-01-01T23:59:59.000Z

106

ORNL/SUB/94-SV044/3Report FIELD DEMONSTRATION OF ACTIVE DESICCANT-BASED  

E-Print Network [OSTI]

PRECONDITIONING SYSTEMS Final Report: Phase 3 J. Fischer SEMCO, Inc. J. Sand Oak Ridge National Laboratory July#12;ORNL/SUB/94-SV044/3Report FIELD DEMONSTRATION OF ACTIVE DESICCANT-BASED OUTDOOR AIR by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 #12;iii CONTENTS

Oak Ridge National Laboratory

107

Method for using salt deposits for storage  

SciTech Connect (OSTI)

A method for developing, evacuating, using, sealing, and re-entering multiple stacked cavities which are created from a single well in salt deposits. The cavities are created in a salt deposit by circulating raw water through concentric casing strings in the well. Each of the cavities is evacuated of liquids prior to use. After storage material is injected into a cavity, the cavity is sealed by setting a plug in the well bore above the top of the cavity. The cavities may be re-entered by drilling out the plug or by drilling a directional well directly into the cavity.

Hooper, M. W.; Voorhees, E. J.

1984-12-18T23:59:59.000Z

108

Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion  

E-Print Network [OSTI]

Ionic Liquid Ion Sources (ILIS) are a subset of electrospray capable of producing bipolar beams of pure ions from ionic liquids. Ionic liquids are room temperature molten salts, characterized by negligible vapor pressures, ...

Courtney, Daniel George

2011-01-01T23:59:59.000Z

109

The use of ionic liquid ion sources (ILIS) in FIB applications  

E-Print Network [OSTI]

A new monoenergetic, high-brightness ion source can be constructed using an arrangement similar to liquid metal ion sources (LMIS) by substituting the liquid metal with an ionic liquid, or room temperature molten salt. Ion ...

Zorzos, Anthony Nicholas

2009-01-01T23:59:59.000Z

110

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer  

E-Print Network [OSTI]

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

Miyashita, Yasushi

111

Frost Growth CFD Model of an Integrated Active Desiccant Rooftop Unit  

SciTech Connect (OSTI)

A frost growth model is incorporated into a Computational Fluid Dynamics (CFD) simulation of a heat pump by means of a user-defined function in FLUENT, a commercial CFD code. The transient model is applied to the outdoor section of an Integrated Active Desiccant Rooftop (IADR) unit in heating mode. IADR is a hybrid vapor compression and active desiccant unit capable of handling 100% outdoor air (dedicated outdoor air system) or as a total conditioning system, handling both outdoor air and space cooling or heating loads. The predicted increase in flow resistance and loss in heat transfer capacity due to frost build-up are compared to experimental pressure drop readings and thermal imaging. The purpose of this work is to develop a CFD model that is capable of predicting frost growth, an invaluable tool in evaluating the effectiveness of defrost-on-demand cycles.

Geoghegan, Patrick J [ORNL; Petrov, Andrei Y [ORNL; Vineyard, Edward Allan [ORNL; Zaltash, Abdolreza [ORNL; Linkous, Randall Lee [ORNL

2008-01-01T23:59:59.000Z

112

Molten salt electrolyte separator  

DOE Patents [OSTI]

The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

Kaun, T.D.

1996-07-09T23:59:59.000Z

113

Comparison of linear and nonlinear acoustic probing of rock salt  

E-Print Network [OSTI]

equation (2) (3) where A = oo ~ = '0'0 0 (4) with c being the sound speed for 1nfin1tesimal-amplitude wave propa- 0 gation. The rat1o 8/A is the nonlinear ity parameter of liquids. It can be written as: where T 1s the absolute temperature c... equipment, Butler (1977) encountered difficulty in obtaining a narrow beam in salt. The sound speed i n salt is higher than the sound speed in the coupling fluid (castor oil or glycerin). Therefore, coupling sound energy into salt, with a coupling fluid...

Wang, Albert Min-Hao

1980-01-01T23:59:59.000Z

114

Amine salts of nitroazoles  

DOE Patents [OSTI]

Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

Kienyin Lee; Stinecipher, M.M.

1993-10-26T23:59:59.000Z

115

Liquid-Liquid Extraction Processes  

E-Print Network [OSTI]

Liquid-liquid extraction is the separation of one or more components of a liquid solution by contact with a second immiscible liquid called the solvent. If the components in the original liquid solution distribute themselves differently between...

Fair, J. R.; Humphrey, J. L.

1983-01-01T23:59:59.000Z

116

Thermal hydraulic design of a salt-cooled highly efficient environmentally friendly reactor  

E-Print Network [OSTI]

A 1 OOOMWth liquid-salt cooled thermal spectrum reactor was designed with a long fuel cycle, and high core exit temperature. These features are desirable in a reactor designed to provide process heat applications such as ...

Whitman, Joshua (Joshua J.)

2009-01-01T23:59:59.000Z

117

Field development of a desiccant-based space-conditioning system for supermarket applications. Final report, February 1982-June 1984  

SciTech Connect (OSTI)

The benefits associated with the use of gas-regenerated desiccant dehumidifiers in conjunction with electric-vapor-compression sensible cooling to provide space conditioning in supermarkets were evaluated. Data collected at two field installations were used for the assessment, in addition to the results of a computer program developed by Thermo Electron to simulate the loads and equipment performance in a supermarket. Both conventional humidity-level operation (47% relative humidity at 75F) and reduced store humidity level operation were evaluated for the desiccant-based system. Reductions in food refrigeration-system electric consumption with reduced store humidities were experimentally verified at both field sites. The use of desiccant dehumidifier hybrid space-conditioning systems produced operating cost savings over all electric vapor-compression systems in climates of moderate and high humidities.

Cohen, B.M.; Manley, D.L.; Arora, R.; Levine, A.H.

1984-06-01T23:59:59.000Z

118

Fundamental Properties of Salts  

SciTech Connect (OSTI)

Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

Toni Y Gutknecht; Guy L Fredrickson

2012-11-01T23:59:59.000Z

119

Gas releases from salt  

SciTech Connect (OSTI)

The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

Ehgartner, B.; Neal, J.; Hinkebein, T.

1998-06-01T23:59:59.000Z

120

Actinide removal from spent salts  

DOE Patents [OSTI]

A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

Hsu, Peter C. (Pleasanton, CA); von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

TETRAALKYLPHOSPHONIUM POLYOXOMETALATES AS NOVEL IONIC LIQUIDS.  

SciTech Connect (OSTI)

The pairing of a Lindqvist or Keggin polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation, [R{sub 3}R{prime}P]{sup +}, has been shown to yield an original family of ionic liquids (POM-ILs), among them salts liquid at or near ambient temperature. The physicochemical properties of several such 'inorganic liquids', in particular their thermal properties, suggests the possible application of these compounds as robust, thermally-stable solvents for liquid-liquid extraction. A preliminary evaluation of the potential of POM-ILs in this application is presented.

DIETZ,M.L.; RICKERT, P.G.; ANTONIO, M.R.; FIRESTONE, M.A.; WISHART, J.F.; SZREDER, T.

2007-11-30T23:59:59.000Z

122

CAVERN ROOF STABILITY FOR NATURAL GAS STORAGE IN BEDDED SALT  

SciTech Connect (OSTI)

This report documents research performed to develop a new stress-based criterion for predicting the onset of damage in salt formations surrounding natural gas storage caverns. Laboratory tests were conducted to investigate the effects of shear stress, mean stress, pore pressure, temperature, and Lode angle on the strength and creep characteristics of salt. The laboratory test data were used in the development of the new criterion. The laboratory results indicate that the strength of salt strongly depends on the mean stress and Lode angle. The strength of the salt does not appear to be sensitive to temperature. Pore pressure effects were not readily apparent until a significant level of damage was induced and the permeability was increased to allow penetration of the liquid permeant. Utilizing the new criterion, numerical simulations were used to estimate the minimum allowable gas pressure for hypothetical storage caverns located in a bedded salt formation. The simulations performed illustrate the influence that cavern roof span, depth, roof salt thickness, shale thickness, and shale stiffness have on the allowable operating pressure range. Interestingly, comparison of predictions using the new criterion with that of a commonly used criterion indicate that lower minimum gas pressures may be allowed for caverns at shallow depths. However, as cavern depth is increased, less conservative estimates for minimum gas pressure were determined by the new criterion.

Kerry L. DeVries; Kirby D. Mellegard; Gary D. Callahan; William M. Goodman

2005-06-01T23:59:59.000Z

123

acid liquid membrane: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bulk solutions of polyelectrolyte bounded by semipermeable membranes and separated by a thin film of salt-free liquid. Although the membranes are neutral, the counter-ions of the...

124

Savannah River Site's Liquid Waste Operations Adds Multi-Functional...  

Office of Environmental Management (EM)

now been filled. The SDUs play an essential role in the closure of the 45 liquid waste tanks on the site. About 90 percent of the waste in these tanks is salt waste that must be...

125

Electrolyte salts for nonaqueous electrolytes  

DOE Patents [OSTI]

Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

2012-10-09T23:59:59.000Z

126

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

127

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1983-01-01T23:59:59.000Z

128

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

129

Salt Waste Processing Initiatives  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 DepartmentSalt Waste1

130

Salt Selected (FINAL)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02and Technical Information SaltWHY

131

Ancient Salt Beds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site| DepartmentInformation Ancient Salt

132

Electrochromic Salts, Solutions, and Devices  

DOE Patents [OSTI]

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-10-14T23:59:59.000Z

133

Electrochromic Salts, Solutions, and Devices  

DOE Patents [OSTI]

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky, T. Mark (Los Alamos, NM)

2008-11-11T23:59:59.000Z

134

Electrochromic salts, solutions, and devices  

DOE Patents [OSTI]

Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

Burrell, Anthony K. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM); McClesky,7,064,212 T. Mark (Los Alamos, NM)

2006-06-20T23:59:59.000Z

135

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

136

Retrofitting of Conditioning Systems for Existing Small Commercial Buildings - Analysis and Design of Liquid Desiccant - Vapor Compression Hybrid  

E-Print Network [OSTI]

and limitations of retrofit technology for these characteristic structures have been the focus of the experience gained through the design and installation of a system adapted to a building constructed in the early 1960's. The existing split package air...

Arnas, O. A.; McQueen, T. M.

1984-01-01T23:59:59.000Z

137

Optimization Control Strategy for an Air Handling Unit with Dedicated Rotary Desiccant Dehumidification Wheel in Hot and Humid Climate  

E-Print Network [OSTI]

?use?of?two?effectiveness?values???? and???? [Schultz,?K.J.,?1983]? ??? ? ?1? ? ?1? ?1? ? ?1? ??? ? ?2? ? ?2? ?2? ? ?2? Desiccant?Sorption?Process Model?calibration HCU1 HCU2 DB(?F) WB(?F) DB(?F) WB(?F) Inlet 52 52 50 50 Design?outlet 70 54.9 69 53.2 Model?outlet 70.7 55.1 69...

Watt, J.

2013-01-01T23:59:59.000Z

138

Plant salt-tolerance mechanisms  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

2014-06-01T23:59:59.000Z

139

Method for making a uranium chloride salt product  

DOE Patents [OSTI]

The subject apparatus provides a means to produce UCl.sub.3 in large quantities without incurring corrosion of the containment vessel or associated apparatus. Gaseous Cl is injected into a lower layer of Cd where CdCl.sub.2 is formed. Due to is lower density, the CdCl.sub.2 rises through the Cd layer into a layer of molten LiCl--KCL salt where a rotatable basket containing uranium ingots is suspended. The CdCl.sub.2 reacts with the uranium to form UCl.sub.3 and Cd. Due to density differences, the Cd sinks down to the liquid Cd layer and is reused. The UCl.sub.3 combines with the molten salt. During production the temperature is maintained at about 600.degree. C. while after the uranium has been depleted the salt temperature is lowered, the molten salt is pressure siphoned from the vessel, and the salt product LiCl--KCl-30 mol % UCl.sub.3 is solidified.

Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

2004-10-05T23:59:59.000Z

140

Independent Oversight Assessment, Salt Waste Processing Facility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technical review of Molten Salt Oxidation  

SciTech Connect (OSTI)

The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

Not Available

1993-12-01T23:59:59.000Z

142

Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.  

SciTech Connect (OSTI)

High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600%C2%B0C. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

Kruizenga, Alan Michael; Crocker, Robert W.

2012-09-01T23:59:59.000Z

143

A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG  

SciTech Connect (OSTI)

This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importa

Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

2005-05-31T23:59:59.000Z

144

Field Evaluation of Desiccant-Integrated HVAC Systems: A Review of Case Studies in Multiple Commercial/Institutional Building Types  

E-Print Network [OSTI]

serves the guestroom corridors, was retrofitted with a 6000 scfm desiccant air handler that pre-treated outside air. The property's South Wing, which is nearly identical to the North Wing, was used as the comparison. While the WAC system in the South... over the course of the year than the North Wing. This equates to emptying two one-gallon buckets of water into each of the South Wing's 75 guestrooms each and every day of the Year. A second field-monitoring test was conducted from June 1992...

Yborra, S. C.

1998-01-01T23:59:59.000Z

145

Use of ionic liquids as coordination ligands for organometallic catalysts  

DOE Patents [OSTI]

Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

Li, Zaiwei (Moreno Valley, CA); Tang, Yongchun (Walnut, CA); Cheng; Jihong (Arcadia, CA)

2009-11-10T23:59:59.000Z

146

Fracture and Healing of Rock Salt Related to Salt Caverns  

SciTech Connect (OSTI)

In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in cavern sealing and operation. The MDCF model is used in three simulations of field experiments in which indirect measures were obtained of the generation of damage. The results of the simulations help to verify the model and suggest that the model captures the correct fracture behavior of rock salt. The model is used in this work to estimate the generation and location of damage around a cylindrical storage cavern. The results are interesting because stress conditions around the cylindrical cavern do not lead to large amounts of damage. Moreover, the damage is such that general failure can not readily occur, nor does the extent of the damage suggest possible increased permeation when the surrounding salt is impermeable.

Chan, K.S.; Fossum, A.F.; Munson, D.E.

1999-03-01T23:59:59.000Z

147

Cooling molten salt reactors using “gas-lift”  

SciTech Connect (OSTI)

This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a “Two-phase flow demonstrator” (TFD) used for experimental study of the “gas-lift” system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for “gas-lift” (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

Zitek, Pavel, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz; Valenta, Vaclav, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz; Klimko, Marek, E-mail: zitek@kke.zcu.cz, E-mail: klimko@kke.zcu.cz [University of West Bohemia in Pilsen, Univerzitní 8, 306 14 Pilsen (Czech Republic)

2014-08-06T23:59:59.000Z

148

Field Demonstration of Active Desiccant Modules Designed to Integrate with Standard Unitary Rooftop Package Equipment - Final Report: Phase 3  

SciTech Connect (OSTI)

This report summarizes the investigation of two active desiccant module (ADM) pilot site installations initiated in 2001. Both pilot installations were retrofits at existing facilities served by conventional heating, ventilating, and air-conditioning (HVAC) systems that had encountered frequent humidity control, indoor air quality (IAQ), and other operational problems. Each installation involved combining a SEMCO, Inc., ADM (as described in Fischer and Sand 2002) with a standard packaged rooftop unit built by the Trane Company. A direct digital control (DDC) system integral to the ADM performed the dual function of controlling the ADM/rooftop combination and facilitating data collection, trending, and remote performance monitoring. The first installation involved providing preconditioned outdoor air to replace air exhausted from the large kitchen hood and bathrooms of a Hooters restaurant located in Rome, Georgia. This facility had previously added an additional rooftop unit in an attempt to achieve occupant comfort without success. The second involved conditioning the outdoor air delivered to each room of a wing of the Mountain Creek Inn at the Callaway Gardens resort. This hotel, designed in the ''motor lodge'' format with each room opening to the outdoors, is located in southwest Georgia. Controlling the space humidity always presented a serious challenge. Uncomfortable conditions and musty odors had caused many guests to request to move to other areas within the resort. This is the first field demonstration performed by Oak Ridge National Laboratory where significant energy savings, operating cost savings, and dramatically improved indoor environmental conditions can all be claimed as the results of a retrofit desiccant equipment field installation. The ADM/rooftop combination installed at the restaurant resulted in a reduction of about 34% in the electricity used by the building's air-conditioning system. This represents a reduction of approximately 15% in overall electrical energy consumption and a 12.5-kW reduction in peak demand. The cost of gas used for regeneration of the desiccant wheel over this period of time is estimated to be only $740, using a gas cost of $0.50 per therm--the summer rate in 2001. The estimated net savings is $5400 annually, resulting in a 1-2 year payback. It is likely that similar energy/cost savings were realized at the Callaway Gardens hotel. In this installation, however, a central plant supplied the chilled water serving fan coil units in the hotel wing retrofitted with the ADM, so it was not metered separately. Consequently, the owner could not provide actual energy consumption data specific to the facility. The energy and operating cost savings at both sites are directly attributable to higher cooling-season thermostat settings and decreased conventional system run times. These field installations were selected as an immediate and appropriate response to correct indoor humidity and fresh air ventilation problems being experienced by building occupants and owners, so no rigorous baseline-building vs. test-building energy use/operating cost savings results can be presented. The report presents several simulated comparisons between the ADM/roof HVAC approach and other equipment combinations, where both desiccant and conventional systems are modeled to provide comparable fresh air ventilation rates and indoor humidity levels. The results obtained from these simulations demonstrate convincingly the energy and operating cost savings obtainable with this hybrid desiccant/vapor-compression technology, verifying those actually seen at the pilot installations. The ADM approach is less expensive than conventional alternatives providing similar performance and indoor air quality and provides a very favorable payback (1 year or so) compared with oversized rooftop units that cannot be operated effectively with the necessary high outdoor air percentages.

Fischer, J

2004-03-15T23:59:59.000Z

149

Salt site performance assessment activities  

SciTech Connect (OSTI)

During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

Kircher, J.F.; Gupta, S.K.

1983-01-01T23:59:59.000Z

150

Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions  

SciTech Connect (OSTI)

Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multi-megawatt nuclear reactors that are lightweight, operationally robust, and sealable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multi-megawatt gas-cooled and liquid metal concepts. (authors)

Patton, Bruce; Sorensen, Kirk [Propulsion Research Center, Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2002-07-01T23:59:59.000Z

151

Dynamics of Confined Water Molecules in Aqueous Salt Hydrates  

SciTech Connect (OSTI)

The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.

Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.

2011-04-01T23:59:59.000Z

152

Study of thermal-gradient-induced migration of brine inclusions in salt. Final report  

SciTech Connect (OSTI)

Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

Olander, D.R.

1984-08-01T23:59:59.000Z

153

Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)  

SciTech Connect (OSTI)

The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to exhibit better heat transfer and nuclear performance metrics. Lighter salts also tend to have more favorable (larger) moderating ratios, and thus should have a more favorable coolant-voiding behavior in-core. Heavy (high-Z) salts tend to have lower heat capacities and thermal conductivities and more significant activation and transmutation products. However, all of the salts are relatively good heat-transfer agents. A detailed discussion of each property and the combination of properties that served as a heat-transfer metric is presented in the body of this report. In addition to neutronic metrics, such as moderating ratio and neutron absorption, the activation properties of the salts were investigated (Table C). Again, lighter salts tend to have more favorable activation properties compared to salts with high atomic-number constituents. A simple model for estimating the reactivity coefficients associated with a reduction of salt content in the core (voiding or thermal expansion) was also developed, and the primary parameters were investigated. It appears that reasonable design flexibility exists to select a safe combination of fuel-element design and salt coolant for most of the candidate salts. Materials compatibility is an overriding consideration for high-temperature reactors; therefore the question was posed whether any one of the candidate salts was inherently, or significantly, more corrosive than another. This is a very complex subject, and it was not possible to exclude any fluoride salts based on the corrosion database. The corrosion database clearly indicates superior container alloys, but the effect of salt identity is masked by many factors which are likely more important (impurities, redox condition) in the testing evidence than salt identity. Despite this uncertainty, some reasonable preferences can be recommended, and these are indicated in the conclusions. The reasoning to support these conclusions is established in the body of this report.

Williams, D.F.

2006-03-24T23:59:59.000Z

154

E-Print Network 3.0 - autonomous liquid metal-cooled Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 12 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS Summary: , Heavy metal-cooled, Gas-cooled, Molten salt-cooled, Liquid- core and Gas-core l Assessed...

155

Salt dome discoveries mounting in Mississippi  

SciTech Connect (OSTI)

Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

Ericksen, R.L. [Mississippi Office of Geology, Jackson, MS (United States)

1996-06-17T23:59:59.000Z

156

Radar investigation of the Hockley salt dome  

E-Print Network [OSTI]

: Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James.... THE PROBLEM. Page A. Probing into Unknown Areas in Salt. . B. Equipment Used. II. BACKGROUND MATERIAL. A. Geology of the Hockley Area. . . B. Economic History of the Hockley Dome Area. . 6 1. Oil 2. Gypsum. 3. Salt C. Geophysical Surveys Over...

Hluchanek, James Andrew

1973-01-01T23:59:59.000Z

157

Field development of a desiccant-based space-conditioning system for supermarket applications. Annual report, February 1982-January 1983  

SciTech Connect (OSTI)

The use of gas-regenerated desiccant dehumidification systems to provide space-conditioning for supermarkets was investigated. A silica gel-based dehumidification system and related components were installed in a Jewel supermarket as an adjunct to the conventional vapor-compression air-conditioning system. Instrumentation was installed to monitor this hybrid system and to allow performance comparisons with the conventional vapor-compression system operating alone. Data collected were used to develop load models for the building and to correlate indoor and ambient conditions to the energy consumption by the air-conditioning and refrigeration systems. The expected reduction in refrigeration energy consumption with decreasing store humidities was verified. The load models were used in conjunction with system characteristics to obtain cooling season cost projections for both systems operating under different conditions. Initial estimates indicate that payback periods of the hybrid system could be under 1 year.

Cohen, B.M.; Levine, A.H.; Arora, R.

1983-02-01T23:59:59.000Z

158

Measurement of the melting point temperature of several lithium-sodium-beryllium fluoride salt (FLINABE) mixtures.  

SciTech Connect (OSTI)

The molten salt Flibe, a combination of lithium and beryllium flourides, was studied for molten salt fission reactors and has been proposed as a breeder and coolant for the fusion applications. 2LiF-BeF{sub 2} melts at 460 C. LiF-BeF{sub 2} melts at a lower temperature, 363 C, but is rather viscous and has less lithium breeder. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing ternary molten salt for the first wall surface and blanket were investigated. The molten salt (FLiNaBe, a ternary mixture of LiF, BeF2 and NaF) salt was selected because a melting temperature below 350 C that would provide an attractive operating temperature window for a reactor application appeared possible. This information came from a Russian binary phase diagram and a US ternary phase diagram in the 1960's that were not wholly consistent. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and, BeF{sub 2}, were melted in a small stainless steel crucible under vacuum. The proportions of the three salts were selected to yield conglomerate salts with as low a melting temperature as possible. The temperature of the salts and the crucible were recorded during the melting and subsequent re-solidification using a thermocouple directly in the salt pool and two thermocouples embedded in the crucible. One mixture had an apparent melting temperature of 305 C. Particular attention was paid to the cooling curve of the salt temperature to observe evidence of any mixed intermediate phases between the fully liquid and fully solid states. The clarity, texture, and thickness were observed and noted as well. The test system, preparation of the mixtures, and the melting procedure are described. The temperature curves for the melting and cooling of each of the mixtures are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible was also done and is reported in a separate paper.

Boyle, Timothy J.; Troncosa, Kenneth P.; Nygren, Richard Einar; Lutz, Thomas Joseph; McDonald, Jimmie M.; Tanaka, Tina Joan; Ulrickson, Michael Andrew

2004-09-01T23:59:59.000Z

159

Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction  

DOE Patents [OSTI]

The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2012-11-06T23:59:59.000Z

160

Measurement of the Melting Point Temperature of Several Lithium-Sodium-Beryllium Fluoride Salt (Flinabe) Mixtures  

SciTech Connect (OSTI)

The molten salt Flibe, a combination of lithium and beryllium fluorides studied for molten salt fission reactors, has been proposed as a breeder and coolant for fusion applications. The melting points of 2LiF-BeF{sub 2} and LiF-BeF{sub 2} are 460 deg. C and 363 deg. C, but LiF-BeF{sub 2} is rather viscous and has less lithium for breeding. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing liquid for the first wall and blanket were investigated. Flinabe (a mixture of LiF, BeF{sub 2} and NaF) was selected for a molten salt design because a melting temperature below 350 deg. C appeared possible and this provided an attractive operating temperature window for a reactor. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and BeF{sub 2}, were melted in a stainless steel crucible under vacuum. One had an apparent melting temperature of 305 deg. C. The test system, preparation of the mixtures, melting procedures and temperature curves for the melting and cooling are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible is reported in an accompanying paper.

McDonald, J.M; Nygren, R.E.; Lutz, T.J.; Tanaka, T.J; Ulrickson, M.A.; Boyle, T.J.; Troncosa, K.P. [Sandia National Laboratories (United States)

2005-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor  

SciTech Connect (OSTI)

The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

162

Interior cavern conditions and salt fall potential  

SciTech Connect (OSTI)

A relatively large number of salt caverns are used for fluid hydrocarbon storage, including an extensive set of facilities in the Gulf Coast salt domes for the Strategic Petroleum Reserve (SPR) Program. Attention is focused on the SPR caverns because of available histories that detail events involving loss and damage of the hanging string casing. The total number of events is limited, making the database statistically sparse. The occurrence of the events is not evenly distributed, with some facilities, and some caverns, more susceptible than others. While not all of these events could be attributed to impacts from salt falls, many did show the evidence of such impacts. As a result, a study has been completed to analyze the potential for salt falls in the SPR storage caverns. In this process, it was also possible to deduce some of the cavern interior conditions. Storage caverns are very large systems in which many factors could possibly play a part in casing damage. In this study, all of the potentially important factors such as salt dome geology, operational details, and material characteristics were considered, with all being logically evaluated and most being determined as secondary in nature. As a result of the study, it appears that a principal factor in determining a propensity for casing damage from salt falls is the creep and fracture characteristics of salt in individual caverns. In addition the fracture depends strongly upon the concentration of impurity particles in the salt. Although direct observation of cavern conditions is not possible, the average impurity concentration and the accumulation of salt fall material can be determined. When this is done, there is a reasonable correlation between the propensity for a cavern to show casing damage events and accumulation of salt fall material. The accumulation volumes of salt fall material can be extremely large, indicating that only a few of the salt falls are large enough to cause impact damage.

Munson, D.E.; Molecke, M.A. [Sandia National Labs., Albuquerque, NM (United States); Myers, R.E. [Strategic Petroleum Reserve, New Orleans, LA (United States)

1998-03-01T23:59:59.000Z

163

Electrolytic orthoborate salts for lithium batteries  

DOE Patents [OSTI]

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

2009-05-05T23:59:59.000Z

164

Electrolytic orthoborate salts for lithium batteries  

DOE Patents [OSTI]

Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

2008-01-01T23:59:59.000Z

165

Solubility of hydrocarbons in salt water  

SciTech Connect (OSTI)

In the design and operation of industrial processes, physical and thermodynamic property data are required. Increasingly stringent regulations are making water solubility of substances even more critical. Water solubility data of naphthenes, or cycloalkanes, is applicable for the complete range of salt concentrations, including water without salt to water saturated with salt. The results are intended for use in initial engineering and environmental applications. Solubility values from the correlation are useful in determining the distribution of a hydrocarbon spill on its contact with sea water. Solubility values at other salt concentrations also may be computed. Results are presented for water solubility of hydrocarbons (naphthenes) as a function of salt concentration (log(S) = A + BX + CX[sup 2]). The correlation constants, A, B and C, are displayed in an easy-to-use tabular format that is applicable for rapid engineering use with the personal computer or hand-held calculator. The results for solubility in salt water are applicable for the complete range of salt concentrations. This range covers water without salt, X = 0, to water saturated with salt, X = 358,700 ppM(wt). Correlation and experimental results are in favorable agreement.

Yaws, C.L.; Lin, X. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering)

1994-01-01T23:59:59.000Z

166

Granular Salt Summary: Reconsolidation Principles and Applications  

SciTech Connect (OSTI)

The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

Frank Hansen; Till Popp; Klaus Wieczorek; Dieter Stührenberg

2014-07-01T23:59:59.000Z

167

Multiphase Flow and Cavern Abandonment in Salt  

SciTech Connect (OSTI)

This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

Ehgartner, Brian; Tidwell, Vince

2001-02-13T23:59:59.000Z

168

Reversible electro-optic device employing aprotic molten salts and method  

DOE Patents [OSTI]

A single-compartment reversible mirror device having a solution of aprotic molten salt, at least one soluble metal-containing species comprising metal capable of being electrodeposited, and at least one anodic compound capable of being oxidized was prepared. The aprotic molten salt is liquid at room temperature and includes lithium and/or quaternary ammonium cations, and anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). A method for preparing substantially pure molten salts is also described.

Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM); Hall, Simon B. (Palmerston North, NZ)

2008-01-08T23:59:59.000Z

169

Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A  

SciTech Connect (OSTI)

This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system being investigated was actually less expensive to install than other less-efficient options, most of which were unable to deliver the required ventilation while maintaining the desired space humidity levels.

Fischer, J

2005-12-21T23:59:59.000Z

170

Images reveal that atmospheric particles can undergo liquid-liquid phase separations  

SciTech Connect (OSTI)

A large fraction of submicron atmospheric particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles will be affected, with important implications for climate predictions. The actual occurrence of these types of phase transitions within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we observe the coexistence of two non-crystalline phases in particles generated from real-world samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. Using a box model, we show that liquid-liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 in the Atlanta region, due to decreased particle uptake of N2O5.

You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

2012-07-30T23:59:59.000Z

171

Metal salt catalysts for enhancing hydrogen spillover  

DOE Patents [OSTI]

A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

Yang, Ralph T; Wang, Yuhe

2013-04-23T23:59:59.000Z

172

Solar Policy Environment: Salt Lake  

Broader source: Energy.gov [DOE]

The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

173

Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002  

SciTech Connect (OSTI)

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R. [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)] [Savannah River National Laboratory, Aiken. S.C., 29808 (United States)

2013-07-01T23:59:59.000Z

174

Blending Of Radioactive Salt Solutions In Million Gallon Tanks  

SciTech Connect (OSTI)

Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

2012-12-10T23:59:59.000Z

175

Correlation of Creep Behavior of Domal Salts  

SciTech Connect (OSTI)

The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

Munson, D.E.

1999-02-16T23:59:59.000Z

176

Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel  

SciTech Connect (OSTI)

This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

2012-04-01T23:59:59.000Z

177

Development Wells At Salt Wells Area (Nevada Bureau of Mines...  

Open Energy Info (EERE)

Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Salt Wells Area...

178

Effects of Carbonate Solvents and Lithium Salts on Morphology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode. Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic...

179

Development of Molten-Salt Heat Trasfer Fluid Technology for...  

Broader source: Energy.gov (indexed) [DOE]

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

180

acid salt solutions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

alkaline salt solution: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

182

alkaline salt solutions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

183

alkyl ammonium salts: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

184

aqueous salt systems: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

185

aromatic diazonium salts: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

186

alkyl ester salts: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

187

allylic silanolate salts: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

188

EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc....

189

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids Tropospheric Chemistry of Internally Mixed Sea Salt...

190

Project Profile: Deep Eutectic Salt Formulations Suitable as...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics...

191

Accident Investigation of the February 5, 2014, Underground Salt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire...

192

Voluntary Protection Program Onsite Review, Salt Waste Processing...  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Construction Project - February 2013 Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project - February 2013...

193

Voluntary Protection Program Onsite Review, Parsons Corp., Salt...  

Office of Environmental Management (EM)

Parsons Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction...

194

Salt Tolerance of Desorption Electrospray Ionization (DESI)  

SciTech Connect (OSTI)

Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL

2007-01-01T23:59:59.000Z

195

Implementation of Molten Salt Properties into RELAP5-3D/ATHENA  

SciTech Connect (OSTI)

Molten salts are being considered as coolants for the Next Generation Nuclear Plant (NGNP) in both the reactor and the heat transport loop between the reactor and the hydrogen production plant because of their superior thermophysical properties compared to helium. Because specific molten salts have not been selected for either application, four separate molten salts were implemented into the RELAP5-3D/ATHENA computer program as working fluids. The implemented salts were LiF-BeF2 in a molar mixture that is 66% LiF and 34% BeF2, respectively, NaBF4-NaF (92% and 8%), LiF-NaF-KF (11.5%, 46.5%, and 42%), and NaF-ZrF4 (50% and 50%). LiF-BeF2 is currently the first choice for the primary coolant for the Advanced High- Temperature Reactor, while NaF-ZrF4 is being considered as an alternate. NaBF4-NaF and LiFNaF- KF are being considered as possible coolants for the heat transport loop. The molten salts were implemented into ATHENA using a simplified equation of state based on data and correlations obtained from Oak Ridge National Laboratory. The simplified equation of state assumes that the liquid density is a function of temperature and pressure and that the liquid heat capacity is constant. The vapor is assumed to have the same composition as the liquid and is assumed to be a perfect gas. The implementation of the thermodynamic properties into ATHENA for LiF-BeF2 was verified by comparisons with results from a detailed equation of state that utilized a soft-sphere model. The comparisons between the simplified and soft-sphere models were in reasonable agreement for liquid. The agreement for vapor properties was not nearly as good as that obtained for liquid. Large uncertainties are possible in the vapor properties because of a lack of experimental data. The simplified model used here is not expected to be accurate for boiling or single-phase vapor conditions. Because neither condition is expected during NGNP applications, the simplified equation of state is considered acceptably accurate for analysis of the NGNP.

Cliff Davis

2005-01-01T23:59:59.000Z

196

Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel  

E-Print Network [OSTI]

or membraneless fuel cells;10 and the creation of axisymmetric microscale polymeric struc- tures.11 of mammalian and microbial cells;5 liquid­ liquid extractions;6 crystallization of proteins7 or inorganic salts in membrane- less fuel cells.9,10 Understanding the interplay of forces that dictates the reorientation

Kenis, Paul J. A.

197

Novel coordination geometries in fluoroaluminate salts  

SciTech Connect (OSTI)

Two tetramethylammonium salts of new fluoroaluminate species have been crystallographically characterized and reveal structural motifs previously unknown for such species. The elusive tetrahedral [AlF[sub 4][sup [minus

Herron, N.; Harlow, R.L.; Thorn, D.L. (E.I. du Pont de Nemours and Comp., Wilmington, DE (United States))

1993-07-07T23:59:59.000Z

198

Molten salt destruction of energetic waste materials  

DOE Patents [OSTI]

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01T23:59:59.000Z

199

Molten salt destruction of energetic waste materials  

DOE Patents [OSTI]

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

1995-07-18T23:59:59.000Z

200

Salt Lake City- High Performance Buildings Requirement  

Broader source: Energy.gov [DOE]

Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid foams of graphene  

E-Print Network [OSTI]

Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

Alcazar Jorba, Daniel

2012-01-01T23:59:59.000Z

202

Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change  

SciTech Connect (OSTI)

IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

None

2010-07-01T23:59:59.000Z

203

Thermal storage for solar cooling using paired ammoniated salt reactors. Final report  

SciTech Connect (OSTI)

The objectives of the program were to investigate the feasibility of using various solid and liquid ammoniates in heat pump/thermal storage systems for space heating and cooling. The study included corrosion testing of selected metallic and non-metallic specimens in the ammoniates, subscale testing of the candidate ammoniates singly and in pairs, trade studies and conceptual design of a residential system, prototype testing, and ammoniation/deammoniation cyclic testing of manganese chloride. Results of the corrosion testing showed that problems exist with manganese and magnesium chloride ammoniates, except with the teflon which displayed excellent resistance in all environments. Also, all liquid ammoniates are unsuitable for use with uncoated carbon steel. Cycling of the manganese chloride between the high and low ammoniates does not affect its properties. However, the density change between the high and low ammoniates could cause packing problems in a reactor which constrains the salt volume. Subscale tests with solid ammoniates indicated that the heat transfer coefficient in a fixed bed reactor is low (approx. 1 Btu/h-ft/sup 2/-/sup 0/F). Therefore solid ammoniates are not practical because of the high heat exchanger cost requirement. Forced ammonia recirculation was tested as a means of increasing heat transfer rate in the fixed bed reactor with solid salts, but was not successful. Conversely, the subscale testing with liquid ammoniates produced heat transfer coefficients of 40 to 45 Btu/h-ft/sup 2/-/sup 0/F. Thus, the residential design was based on a liquid ammoniate/ammonia system using ammonium nitrate as the salt.

Not Available

1981-09-01T23:59:59.000Z

204

Durable electrooptic devices comprising ionic liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

2005-11-01T23:59:59.000Z

205

Low temperature oxidation using support molten salt catalysts  

DOE Patents [OSTI]

Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

2003-05-20T23:59:59.000Z

206

Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)  

SciTech Connect (OSTI)

Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0.6 atoms per 14.1 MeV neutron.

Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

2008-10-24T23:59:59.000Z

207

Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications  

SciTech Connect (OSTI)

Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

2011-01-01T23:59:59.000Z

208

R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems  

SciTech Connect (OSTI)

The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina [Nuclear Research Institute Rez plc CZ-250 68 Husinec - Rez 130 (Serbia and Montenegro)

2006-07-01T23:59:59.000Z

209

Safetygram #9- Liquid Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen is colorless as a liquid. Its vapors are colorless, odorless, tasteless, and highly flammable.

210

Chemistry and mechanism of molten-salt catalysts in coal-gasification processes. Final report, January 1984-January 1985  

SciTech Connect (OSTI)

Alkali metal salts have been recognized as effective catalysts in coal gasification. However, the presence of reducing gases, in particular carbon monoxide, has recently been shown to have serious inhibitory effects on the catalyst performance. This program has addressed the question of the chemical interactions between carbon monoxide gas containing mixtures and the salt catalysts in liquid form by probing the solution chemistry by dynamic electrochemical techniques. The results of this study show that oxalate ions are formed by the reaction between carbonate ions and carbon monoxide gas. At temperatures above 700/sup 0/C, sulfate ions are directly attacked by carbon monoxide. The oxalate ions are electroactive and their electrochemistry has been studied and found to involve adsorption of oxalate and formation of reactive intermediates. The pathway likely involves an ECE sequence. The formation of active adsorbed species such as oxalate or sulfides at high temperature may be the means by which catalytic function of the salts is inhibited.

White, S.H.; Twardoch, U.M.

1985-02-01T23:59:59.000Z

211

EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals, utilizing salt caverns for storage and the existing comprehensive pipeline system has profound implications for the next generation of LNG terminals. LNG imports are expected to become an increasingly more important part of the U.S. energy supply and the capacities to receive LNG securely, safely, and economically must be expanded. Salt cavern LNG receiving terminals both in onshore and offshore locations can be quickly built and provide additional import capacity into the U.S. exceeding 6-10 Bcf/day in the aggregate.

Michael M. McCall; William M. Bishop; D. Braxton Scherz

2003-04-24T23:59:59.000Z

212

Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions  

SciTech Connect (OSTI)

A lithium reduction technique to condition spent fuel for disposal has been developed at the Argonne National Laboratory. There is a need to ensure adequate vessel longevity through corrosion testing and, if necessary, materials development. Several ferrous alloys and tantalum specimens were submitted to a corrosion test at 725&hthinsp;{degree}C for thirty days in an argon atmosphere, using a lithium-chloride salt saturated with lithium metal and containing small amounts of lithium oxide and lithium nitride. The samples did not show dimensional or weight change, nor could corrosion attack be detected metallographically. The lithium-saturated salt system did not show any behavior similar to that of liquid lithium corrosion. From testing in other gas compositions, it appears that the presence of oxygen in the system is necessary to produce severe corrosion. {copyright} {ital 1999 Materials Research Society.}

Indacochea, J.E.; Smith, J.L.; Litko, K.R.; Karell, E.J. [Argonne National Laboratory, Chemical Technology Division, Building 205, 9700 South Cass Avenue, Argonne, Illinois 60439-4837 (United States)

1999-05-01T23:59:59.000Z

213

Geology of Damon Mound Salt Dome, Texas  

SciTech Connect (OSTI)

Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

Collins, E.W.

1989-01-01T23:59:59.000Z

214

Brine flow in heated geologic salt.  

SciTech Connect (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

215

Control of Soluble Salts in Farming and Gardening.  

E-Print Network [OSTI]

waters pass through beds of salt, dissolving appreciable quantities before they emerge and enter the rivers. Ocean waters, much too salty for irrigation, contain about 3 percent salt, or about 40 tons of salt per acre-foot of water... ater are applied each year are shown in Table 2. Salts I (.in ilrcnmulate very rapidly. The water containing 1 ton of jdt per acre-foot is generally considered to be good ,I~,~lit\\* water, yet in 2 years enough salt could accumu- I,ltr to harm salt...

Longenecker, D. E.; Lyerly, P. J.

1974-01-01T23:59:59.000Z

216

The Salt Industry at Sterling, Kansas  

E-Print Network [OSTI]

. Exhaust stean of the engine plant is ad- mitted to the first evaporator and warms the "brine, then passes to the second and warns it lesD and condenses, causing a partial vacuum in the first where the brine then boils violent- ly. The vapor thus... and is condensed by a jet condenser, whereupon the third boils. Each evaporator has its own electric prop- eller stirrers and its own electric elevator to remove the salt. Nearly all the handling is done by electric conveyors until the salt is discharged...

Horner, Robert Messenger

1914-01-01T23:59:59.000Z

217

In-Drift Precipitates/Salts Model  

SciTech Connect (OSTI)

This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, OH{sup -}, H{sup +}, HSO{sub 4}{sup -}, Ca{sup 2+}, Mg{sup 2+}, CaHCO{sub 3}{sup +}, MgHCO{sub 3}{sup +}, HSiO{sub 3}{sup -}, and MgOH{sup +}); (2) To estimate, within an appropriate level of confidence, mineral precipitation resulting from the evaporation of water occurring within the repository during the postclosure period (specifically, minerals of the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O); (3) To provide a means for abstracting these effects into a set of lookup tables that provide input to downstream models used for performance assessment. The presence and composition of liquid water in the drift depend upon relative humidity, temperature, incoming water composition, in-drift gas composition, and relative rates of evaporation and seepage. In downstream applications of this model, intended input values for these parameters are abstracted results from thermal-hydrological-chemical models, water sample measurements, dust leachate samples, and values used in sensitivity and uncertainty analyses that encompass the expected ranges of these parameters.

P. Mariner

2004-11-09T23:59:59.000Z

218

A study of the rate of dissolution of rock salt in drilling mud flowing under down hole conditions  

E-Print Network [OSTI]

Profiles", Caned. J. Chem. Eng. , (1983) 61, 791-800 14. Reid, Robert C. , Prausnitz, John M. , and Sherwood, Thomas K. , The Properties Of Gases And Liquids, pp. 590-593, McGraw- Hill, Inc. , New York City (1977) 590-593, 43 APPENDIX A VISCOSITY... Pfeifle of RE/SPEC Inc. , Rapid City, SD, for preparation and donation of the salt specimens used in this study. Vi TABLE OF CONTENTS INTRODUCTION AND BACKGROUND. Page . 1 OBJECTIVES. EXPERIMENTAL APPARATUS. MATERIALS. OPERATING PROCEDURES...

Forsyth, Jackie Lee

1990-01-01T23:59:59.000Z

219

Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors  

SciTech Connect (OSTI)

The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

Katoh, Yutai [ORNL; Wilson, Dane F [ORNL; Forsberg, Charles W [ORNL

2007-09-01T23:59:59.000Z

220

ANALYSIS OF THE SALT FEED TANK CORE SAMPLE  

SciTech Connect (OSTI)

The Saltstone Production Facility (SPF) immobilizes and disposes of low-level radioactive and hazardous liquid waste (salt solution) remaining from the processing of radioactive material at the Savannah River Site (SRS). Low-level waste (LLW) streams from processes at SRS are stored in Tank 50 until the LLW can be transferred to the SPF for treatment and disposal. The Salt Feed Tank (SFT) at the Saltstone Production Facility (SPF) holds approximately 6500 gallons of low level waste from Tank 50 as well as drain water returned from the Saltstone Disposal Facility (SDF) vaults. Over the past several years, Saltstone Engineering has noted the accumulation of solids in the SFT. The solids are causing issues with pump performance, agitator performance, density/level monitoring, as well as taking up volume in the tank. The tank has been sounded at the same location multiple times to determine the level of the solids. The readings have been 12, 25 and 15 inches. The SFT is 8.5 feet high and 12 feet in diameter, therefore the solids account for approximately 10 % of the tank volume. Saltstone Engineering has unsuccessfully attempted to obtain scrape samples of the solids for analysis. As a result, Savannah River National Laboratory (SRNL) was tasked with developing a soft core sampler to obtain a sample of the solids and to analyze the core sample to aid in determining a path forward for removing the solids from the SFT. The source of the material in the SFT is the drain water return system where excess liquid from the Saltstone disposal vaults is pumped back to the SFT for reprocessing. It has been shown that fresh grout from the vault enter the drain water system piping. Once these grout solids return to the SFT, they settle in the tank, set up, and can't be reprocessed, causing buildup in the tank over time. The composition of the material indicates that it is potentially toxic for chromium and mercury and the primary radionuclide is cesium-137. Qualitative measurements show that the material is not cohesive and will break apart with some force.

Reigel, M.; Cheng, W.

2012-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, Albert P. (Vernon, CT)

1986-01-01T23:59:59.000Z

222

Liquid level detector  

DOE Patents [OSTI]

A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

Grasso, A.P.

1984-02-21T23:59:59.000Z

223

Hybrid Molten Salt Reactor (HMSR) System Study  

SciTech Connect (OSTI)

Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

2014-04-01T23:59:59.000Z

224

Salt caverns for oil field waste disposal.  

SciTech Connect (OSTI)

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

225

Salt repository project closeout status report  

SciTech Connect (OSTI)

This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

NONE

1988-06-01T23:59:59.000Z

226

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect (OSTI)

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.) [Muons, Inc.

2011-08-03T23:59:59.000Z

227

Crushed-salt constitutive model update  

SciTech Connect (OSTI)

Modifications to the constitutive model used to describe the deformation of crushed salt are presented in this report. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--defined previously but used separately are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. New creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from the shear consolidation tests and a combination of the shear and hydrostatic consolidation tests produced two sets of material parameter values for the model. The change in material parameter values from test group to test group indicates the empirical nature of the model but demonstrates improvement over earlier work with the previous models. Key improvements are the ability to capture lateral strain reversal and better resolve parameter values. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the model to predict the test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.

Callahan, G.D.; Loken, M.C.; Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States)

1998-01-01T23:59:59.000Z

228

Constitutive behavior of reconsolidating crushed salt  

SciTech Connect (OSTI)

The constitutive model used to describe deformation of crushed salt is presented in this paper. Two mechanisms--dislocation creep and grain boundary diffusional pressure solutioning--are combined to form the basis for the constitutive model governing deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Recently completed creep consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant (WIPP) and southeastern New Mexico salt to determine material parameters for the constitutive model. Nonlinear least-squares model fitting to data from shear consolidation tests and a combination of shear and hydrostatic tests produces two sets of material parameter values for the model. Changes in material parameter values from test group to test group indicate the empirical nature of the model but show significant improvement over earlier work. To demonstrate the predictive capability of the model, each parameter value set was used to predict each of the tests in the database. Based on fitting statistics and ability of the model to predict test data, the model appears to capture the creep consolidation behavior of crushed salt quite well.

Callahan, G.D.; Mellegard, K.D. [RE/SPEC, Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Carlsbad, NM (United States)

1998-02-01T23:59:59.000Z

229

Liquid Hydrogen Absorber for MICE  

E-Print Network [OSTI]

REFERENCES Figure 5: Liquid hydrogen absorber and test6: Cooling time of liquid hydrogen absorber. Eight CernoxLIQUID HYDROGEN ABSORBER FOR MICE S. Ishimoto, S. Suzuki, M.

Ishimoto, S.

2010-01-01T23:59:59.000Z

230

Corrosion Studies in High-Temperature Molten Salt Systems for...  

Broader source: Energy.gov (indexed) [DOE]

Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1 Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1...

231

Ketone Production from the Thermal Decomposition of Carboxylate Salts  

E-Print Network [OSTI]

The MixAlco process uses an anaerobic, mixed-culture fermentation to convert lignocellulosic biomass to carboxylate salts. The fermentation broth must be clarified so that only carboxylate salts, water, and minimal impurities remain. Carboxylate...

Landoll, Michael 1984-

2012-08-15T23:59:59.000Z

232

Thorium Molten Salt Reactor : from high breeding to simplified reprocessing  

E-Print Network [OSTI]

Thorium Molten Salt Reactor : from high breeding to simplified reprocessing L. Mathieu, D. Heuer, A- ceptable. The Thorium Molten Salt Reactor (TMSR) may contribute to solve these problems. The thorium cycle

Paris-Sud XI, Université de

233

Colloidal stability of magnetic nanoparticles in molten salts  

E-Print Network [OSTI]

Molten salts are important heat transfer fluids used in nuclear, solar and other high temperature engineering systems. Dispersing nanoparticles in molten salts can enhance the heat transfer capabilities of the fluid. High ...

Somani, Vaibhav (Vaibhav Basantkumar)

2010-01-01T23:59:59.000Z

234

Recipient: Lay of Salt Lake ENERGY EFFICIENCY AND CONSERVATION...  

Broader source: Energy.gov (indexed) [DOE]

with this CX. Salt Lake City Traffic Signal Management B5.1 None. Salt Lake City Bicycle Transit Center Task as submitted is not within scope of FOA and not eligible for...

235

SERI Desiccant Cooling Test Facility. Status report. Preliminary data on the performance of a rotary parallel-passage silica-gel dehumidifier  

SciTech Connect (OSTI)

This report describes the SERI Desiccant Cooling Test Facility. The facility can test bench-scale rotary dehumidifiers over a wide range of controlled conditions. We constructed and installed in the test loop a prototype parallel-passage rotary dehumidifier that has spirally wound polyester tape coated with silica gel. The initial tests gave satisfactory results indicating that approximately 90% of the silica gel was active and the overall Lewis number of the wheel was near unity. The facility has several minor difficulties including an inability to control humidity satisfactorily and nonuniform and highly turbulent inlet velocities. To completely validate the facility requires a range of dehumidifier designs. Several choices are available including constructing a second parallel-passage dehumidifier with the passage spacing more uniform.

Schultz, K.J.

1986-04-01T23:59:59.000Z

236

Method for preparing salt solutions having desired properties  

DOE Patents [OSTI]

The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

Ally, Moonis R. (Oak Ridge, TN); Braunstein, Jerry (Clinton, TN)

1994-01-01T23:59:59.000Z

237

Energy Efficient Buildings, Salt Lake County, Utah  

SciTech Connect (OSTI)

Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars, site tours, presentations, and written correspondence.

Barnett, Kimberly

2012-04-30T23:59:59.000Z

238

Guidance Document Cryogenic Liquids  

E-Print Network [OSTI]

with air. Liquid carbon monoxide is extremely toxic and extremely flammable. #12;Cryogenic liquids connecting cylinder to lower pressure piping or systems. 6. Use a check valve or trap in the discharge line

239

SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT  

SciTech Connect (OSTI)

Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

Griswold, G. B.

1981-02-01T23:59:59.000Z

240

Production of carboxylic acid and salt co-products  

DOE Patents [OSTI]

This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

2014-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Structural restoration of Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico  

E-Print Network [OSTI]

The continental margin of the northeastern Gulf of Mexico is suited for seismic stratigraphic analysis and salt tectonism analysis. Jurassic strata include the Louann Salt on the continental shelf and upper slope of the Destin Dome OCS area...

Guo, Mengdong

1997-01-01T23:59:59.000Z

242

Seismic stratigraphy and salt tectonics of the Alaminos Canyon area, Gulf of Mexico.  

E-Print Network [OSTI]

morphology, salt structure, and suprasalt sediments indicate the majority of the slope is covered by a shallow salt canopy. The salt structure map indicates that the Alaminos Canyon study area represents a transition from a semi-continuous salt sheet...

Mechler, Suzanne Marie

1994-01-01T23:59:59.000Z

243

Equation for liquid density  

SciTech Connect (OSTI)

Saturated liquid densities for organic chemicals are given as functions of temperature using a modified Rackett equation.

Yaws, C.L.; Yang, H.C.; Hopper, J.R.; Cawley, W.A. (Lamar Univ., Beaumont, TX (US))

1991-01-01T23:59:59.000Z

244

Physicochemical properties of 1,2,3-triazolium ionic liquids{ Shilpi Sanghi,a  

E-Print Network [OSTI]

Versek,b Mark Tuominenb and E. Bryan Coughlin*a Received 8th June 2011, Accepted 26th October 2011 DOI liquids including ion cluster behavior, thermal properties, electrochemical stability and ionic hydroxide ion at 80 uC was studied. Key features of 1,2,3-triazolium salts are their high electrochemical

245

Protic Ionic Liquids: Preparation, Characterization, and Proton Free Energy Level Representation  

E-Print Network [OSTI]

interesting properties, including the ability to serve as electrolytes in solvent-free fuel cell systems. We in a fuel cell.2,7,8 This is an application which requires the presence of a special type of ionic liquids continue to be found. They are the low-melting relatives of molten salts whose place in the history

Angell, C. Austen

246

Liquid detection circuit  

DOE Patents [OSTI]

Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

Regan, Thomas O. (North Aurora, IL)

1987-01-01T23:59:59.000Z

247

Effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water  

SciTech Connect (OSTI)

The effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water was studied using a Swietoslawski ebulliometer. The measurements were performed for two constant salt molalities (1 and 2 mol[center dot]kg[sup [minus]1]) under isobaric conditions at 50.66 kPa. Strong salting-out of the alcohol was observed in all cases, leading to a complete elimination of the azeotropic point at relatively low salt concentrations. The results were correlated using an extension of the NRTL equation for mixed solvent electrolyte systems proposed by Mock, Evans, and Chen.

Polka, H.M.; Gmehling, J. (Univ. of Oldenburg (Germany). Chair of Industrial Chemistry)

1994-07-01T23:59:59.000Z

248

Radar investigation of the Cote Blanche salt dome  

E-Print Network [OSTI]

THE COTE BLANCHE SALT DOME. Geology of the Cote Blanche Salt-Dome Azea. . Economic History of the Cote BLanche Salt-Dome Azea, Salt. . Oil and gas. III. ELECTROMAGNETIC WAVE PROPAGATION. . . Radar Speed in Air and in Salt. . . Velocity...' zznd i'r. mzznz 1959) . The east, south, end west flanks are nearly vertical. However, the north side oi the dome is characterised by a massive overhang. A well drilled by Shell Oil Company, Caffrey No. 1, confirmed the presence of a minimum of 3300...

Stewart, Robert Donald

1974-01-01T23:59:59.000Z

249

Liquid Wall Chambers  

SciTech Connect (OSTI)

The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

Meier, W R

2011-02-24T23:59:59.000Z

250

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clar...

Sheng, Lei; Liu, Jing

2014-01-01T23:59:59.000Z

251

Salt Wash Field, Grand Country, Utah  

SciTech Connect (OSTI)

The Salt Wash field is located 15 miles southeast of Green River, Utah, in the Paradox fold and fault belt. The field was discovered in 1961 and has produced over 1.3 million bbl of oil and 11.6 billion ft[sup 3] of gas from the Mississippian Leadville LImestone. The average surface elevation is 4389 ft above sea level, and the depth to the top of the oil production is form 8500 to 8914 ft. Salt Wash field is an anticline with over 200 ft of closure on top of the Leadville. The producing zone is in the lower Leadville with intercrystalline and vuggy porosity developed in limestone and crystalline dolomitic limestone. The produced oil is a 50 to 53 API gravity crude with a 40[degrees]F pour point. The gas, a mixture of two sources, is predominately nitrogen (>70[sup [approximately

Morgan, C.D. (Utah Geological Survey, Salt Lake City, UT (United States))

1993-08-01T23:59:59.000Z

252

Predicting viscosities of aqueous salt mixtures  

SciTech Connect (OSTI)

Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO[sub 3]/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

Zaltash, A.; Ally, M.R.

1992-01-01T23:59:59.000Z

253

Predicting viscosities of aqueous salt mixtures  

SciTech Connect (OSTI)

Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO{sub 3}/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

Zaltash, A.; Ally, M.R.

1992-12-01T23:59:59.000Z

254

Polymeric salt bridges for conducting electric current in microfluidic devices  

DOE Patents [OSTI]

A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

Shepodd, Timothy J. (Livermore, CA); Tichenor, Mark S. (San Diego, CA); Artau, Alexander (Humacao, PR)

2009-11-17T23:59:59.000Z

255

Cementitious Stabilization of Mixed Wastes with High Salt Loadings  

SciTech Connect (OSTI)

Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

1999-04-01T23:59:59.000Z

256

Salt Tolerance of Guayule (Parthenium argentatum).  

E-Print Network [OSTI]

TDOC Z TA245 .7 8873 NO.1651 ---- Salt Tolerance of yUayu{e ~" y r , B -1651 The Texas Agricultural Experiment Station? Charles J. Arntzen, Director? The Texas A&M University System? College Station, Texas (Blank Pille In Origblll.... ?JI. Z 0 t= -t Z :i a: w " 100~----------------------------~ 80 60 40 20 I SEmaln I SElub SELECTION o+-----~----~----~----_,----_, o 5 10 15 20 25 EC OF SOLUTION, dSm-' Figure 1. Seed germination of guayule selections as related...

Miyamoto, S.; Davis, J.; Madrid, L.

1990-01-01T23:59:59.000Z

257

Stationary phase deposition based on onium salts  

DOE Patents [OSTI]

Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

Wheeler, David R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Dirk, Shawn M. (Albuquerque, NM); Trudell, Daniel E. (Albuquerque, NM)

2008-01-01T23:59:59.000Z

258

Molten Salt Heat Transfer Fluid (HTF)  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point than any molten salt mixture available commercially. This allows the HTF to be used in applications in which the expensive parasitic energy costs necessary for freeze protection can be significantly reduced. The higher operating temperature limit significantly increases power cycle efficiency and overall power plan sun-to-net electric efficiency....

2013-03-12T23:59:59.000Z

259

Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors  

SciTech Connect (OSTI)

Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental results show similar trends as the computational fluid dynamics (CFD) results presented in this report; however, some differences exist that will need to be assessed in future studies. The results of this testing will be used to improve the diode design to be tested in the liquid salt loop system.

Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

2012-02-01T23:59:59.000Z

260

New public information resources on salt caverns.  

SciTech Connect (OSTI)

For the past decade, interest has been growing in using underground salt caverns for disposing of wastes. The Railroad Commission of Texas has permitted a few caverns for disposal of nonhazardous oil field waste (NOW) and one cavern for disposal of naturally occurring radioactive materials (NORM) from oil field activities. Several salt caverns in Canada have also been permitted for disposal of NOW. In addition, oil and gas agencies in Louisiana and New Mexico are developing cavern disposal regulations. The US Department of Energy (DOE) has funded several studies to evaluate the technical feasibility, legality, economic viability, and risk of disposing of NOW and NORM in caverns. The results of these studies have been disseminated to the scientific and regulatory communities. However, as use of caverns for waste disposal increases, more government and industry representatives and members of the public will become aware of this practice and will need adequate information about how disposal caverns operate and the risks they pose. In anticipation of this need, DOE has funded Argonne National Laboratory to develop a salt cavern public outreach program. Key components of this program are an informational brochure designed for nontechnical persons and a website that provides greater detail on cavern operations and allows downloadable access to the reports on the topic funded by DOE. This paper provides an overview of the public outreach program.

Tomasko, D.; Veil, J. A.

1999-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

New public information resources on salt caverns.  

SciTech Connect (OSTI)

For the past decade, interest has been growing in using underground salt caverns for disposing of wastes. The Railroad Commission of Texas has permitted a few caverns for disposal of nonhazardous oil field waste (NOW) and one cavern for disposal of naturally occurring radioactive materials (NORM) from oil field activities. Several salt caverns in Canada have also been permitted for disposal of NOW. In addition, oil and gas agencies in Louisiana and New Mexico are developing cavern disposal regulations. The US Department of Energy (DOE) has funded several studies to evaluate the technical feasibility, legality, economic viability, and risk of disposing of NOW and NORM in caverns. The results of these studies have been disseminated to the scientific and regulatory communities. However, as use of caverns for waste disposal increases, more government and industry representatives and members of the public will become aware of this practice and will need adequate information about how disposal caverns operate and the risks they pose. In anticipation of this need, DOE has fi.mded Argonne National Laboratory to develop a salt cavern public outreach program. Key components of this program are an informational brochure designed for nontechnical persons and a website that provides greater detail on cavern operations and allows downloadable access to the reports on the topic funded by DOE. This paper provides an overview of the public outreach program.

Tomasko, D.; Veil, J. A.

1999-08-25T23:59:59.000Z

262

Reference repository design concept for bedded salt  

SciTech Connect (OSTI)

A reference design concept is presented for the subsurface portions of a nuclear waste repository in bedded salt. General geologic, geotechnical, hydrologic and geochemical data as well as descriptions of the physical systems are provided for use on generic analyses of the pre- and post-sealing performance of repositories in this geologic medium. The geology of bedded salt deposits and the regional and repository horizon stratigraphy are discussed. Structural features of salt beds including discontinuities and dissolution features are presented and their effect on repository performance is discussed. Seismic hazards and the potential effects of earthquakes on underground repositories are presented. The effect on structural stability and worker safety during construction from hydrocarbon and inorganic gases is described. Geohydrologic considerations including regional hydrology, repository scale hydrology and several hydrological failure modes are presented in detail as well as the hydrological considerations that effect repository design. Operational phase performance is discussed with respect to operations, ventilation system, shaft conveyances, waste handling and retrieval systems and receival rates of nuclear waste. Performance analysis of the post sealing period of a nuclear repository is discussed, and parameters to be used in such an analysis are presented along with regulatory constraints. Some judgements are made regarding hydrologic failure scenarios. Finally, the design and licensing process, consistent with the current licensing procedure is described in a format that can be easily understood.

Carpenter, D.W.; Martin, R.W.

1980-10-08T23:59:59.000Z

263

Importance of glassy fragility for energy applications of ionic liquids  

E-Print Network [OSTI]

Ionic liquids (ILs) are salts that are liquid close to room temperature. Their possible applications are numerous, e.g., as solvents for green chemistry in various electrochemical devices, and even for such "exotic" purposes as spinning-liquid mirrors for lunar telescopes. Here we concentrate on their use for new advancements in energy-storage and -conversion devices: Batteries, supercapacitors or fuel cells using ILs as electrolytes could be important building blocks for the sustainable energy supply of tomorrow. Interestingly, ILs show glassy freezing and the universal, but until now only poorly understood dynamic properties of glassy matter, dominate many of their physical properties. We show that the conductivity of ILs, an essential figure of merit for any electrochemical application, depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility.

P. Sippel; P. Lunkenheimer; S. Krohns; E. Thoms; A. Loidl

2015-02-24T23:59:59.000Z

264

Liquid Vortex Shielding for Fusion Energy Applications  

SciTech Connect (OSTI)

Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

2005-05-15T23:59:59.000Z

265

Destruction of XM-46 (aka LGP-1846) using the Molten Salt Destruction Process  

SciTech Connect (OSTI)

The experimental work done on the destruction of the liquid gun propellant XM-46 (or LGP-1846) using the Molten Salt Destruction (MSD) Process at the Lawrence Livermore National Laboratory (LLNL) for the US Army is described in this report. The current methods of disposal of large quantities of high explosives (HE), propellants and wastes containing energetic materials by open burning or open detonation (OB/OD), or by incineration, are becoming undesirable. LLNL is developing MSD as an alternative to OB/OD and incineration of energetic materials. A series of 18 continuous experimental runs were made wherein a solution of XM-46 and water was injected into a bed of molten salt comprising the carbonates of sodium, potassium and lithium, along with air. The results from these experiments, described in detail in the main body of this report, show that: XM-46 can be safely and completely destroyed in a bed of molten salt at temperatures well below those needed for incineration. Under optimum operating conditions, less than 1% of the chemically bound nitrogen in the XM-46 is converted to NO{sub x}, and less than 1% carbon is converted to CO. There exist, however, a number of technical uncertainties: We need to understand better why nitrates build up in the salt bath, and what we can do to reduce this amount. We need to understand the mechanism of XM-46 oxidation and ways to minimize the formation of CO and NO{sub x}. In addition, we would like to find out ways by which a more concentrated solution of XM-46 can be introduced into the reactor, so as to increase the throughputs.

Upadhye, R.S.; Watkins, B.E.

1994-03-01T23:59:59.000Z

266

Salt disposal of heat-generating nuclear waste.  

SciTech Connect (OSTI)

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

267

Ultrasonic liquid level detector  

DOE Patents [OSTI]

An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

Kotz, Dennis M. (North Augusta, SC); Hinz, William R. (Augusta, GA)

2010-09-28T23:59:59.000Z

268

Liquid Metal Transformers  

E-Print Network [OSTI]

The room temperature liquid metal is quickly emerging as an important functional material in a variety of areas like chip cooling, 3D printing or printed electronics etc. With diverse capabilities in electrical, thermal and flowing behaviors, such fluid owns many intriguing properties that had never been anticipated before. Here, we show a group of unconventional phenomena occurring on the liquid metal objects. Through applying electrical field on the liquid metals immersed in water, a series of complex transformation behaviors such as self-assembling of a sheet of liquid metal film into a single sphere, quick mergences of separate metal droplets, controlled self-rotation and planar locomotion of liquid metal objects can be realized. Meanwhile, it was also found that two accompanying water vortexes were induced and reliably swirled near the rotating liquid metal sphere. Further, effects of the shape, size, voltage, orientation and geometries of the electrodes to control the liquid metal transformers were clarified. Such events are hard to achieve otherwise on rigid metal or conventional liquid spheres. This finding has both fundamental and practical significances which suggest a generalized way of making smart soft machine, collecting discrete metal fluids, as well as flexibly manipulating liquid metal objects including accompanying devices.

Lei Sheng; Jie Zhang; Jing Liu

2014-01-30T23:59:59.000Z

269

Liquid Crystal Optofluidics  

SciTech Connect (OSTI)

By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

2012-10-11T23:59:59.000Z

270

(Ionization in liquids)  

SciTech Connect (OSTI)

This document describes charge transport following ionization of model liquids and how this process may be important in carcinogenesis. 15 refs., 2 figs., 4 tabs. (MHB)

Not Available

1991-01-01T23:59:59.000Z

271

Engineering-Scale Liquid Cadmium Cathode Experiments  

SciTech Connect (OSTI)

Recovery of transuranic actinides (TRU) using electrorefining is a process being investigated as part of the Department of Energy (DOE) Advanced Fuel Cycle Initiative (AFCI). TRU recovery via electrorefining onto a solid cathode is very difficult as the thermodynamic properties of transuranics are not favourable for them to remain in the metal phase while significant quantities of uranium trichloride exist in the electrolyte. Theoretically, the concentration of transuranics in the electrolyte must be approximately 106 greater than the uranium concentration in the electrolyte to produce a transuranic deposit on a solid cathode. Using liquid cadmium as a cathode contained within a LiCl-KCl eutectic salt, the co-deposition of uranium and transuranics is feasible because the activity of the transuranics in liquid cadmium is very small. Depositing transuranics and uranium in a liquid cadmium cathode (LCC) theoretically requires the concentration of transuranics to be two to three times the uranium concentration in the electrolyte. Three LCC experiments were performed in an Engineering scale elecdtrorefiner, which is located in the argon hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex on the Idaho National Laboratory. Figure 1 contains photographs of the LCC assembly in the hot cell prior to the experiment and a cadmium ingot produced after the first LCC test. Figure 1. Liquid Cadmium Cathode (left) and Cadmium Ingot (right) The primary goal of the engineering-scale liquid cadmium cathode experiments was to electrochemically collect kilogram quantities of uranium and plutonium via a LCC. The secondary goal was to examine fission product contaminations in the materials collected by the LCC. Each LCC experiment used chopped spent nuclear fuel from the blanket region of the Experimental Breeder Reactor II loaded into steel baskets as the anode with the LCC containing 26 kg of cadmium metal. In each experiment, between one and two kilograms of heavy metal was collected in the LCC after passing an integrated current over 500 amp hours. Analysis of samples from the liquid cadmium cathode ingots showed detectable amounts of transuranics and rare-earth elements. Acknowledgements K. B. Davies and D. M. Pace for the mechanical and electrical engineering needed to prepare the equipment for the engineering-scale liquid cadmium cathode experiments.

D Vaden; B. R. Westphal; S. X. Li; T. A. Johnson; K. B. Davies; D. M. Pace

2006-08-01T23:59:59.000Z

272

Durable Electrooptic Devices Comprising Ionic Liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin, John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2008-11-11T23:59:59.000Z

273

Durable electrooptic devices comprising ionic liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM); Burrell, Anthony K. (Los Alamos, NM)

2006-10-10T23:59:59.000Z

274

Durable electrooptic devices comprising ionic liquids  

DOE Patents [OSTI]

Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

Burrell, Anthony K. (Los Alamos, NM); Agrawal, Anoop (Tucson, AZ); Cronin; John P. (Tucson, AZ); Tonazzi, Juan C. L. (Tucson, AZ); Warner, Benjamin P. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2009-12-15T23:59:59.000Z

275

Consolidation and permeability of salt in brine  

SciTech Connect (OSTI)

The consolidation and loss of permeability of salt crystal aggregates, important in assessing the effects of water in salt repositories, has been studied as a function of several variables. The kinetic behavior was similar to that often observed in sintering and suggested the following expression for the time dependence of the void fraction: phi(t) = phi(0) - (A/B)ln(1 + Bt/z(0)/sup 3/), where A and B are rate constants and z(0) is initial average particle size. With brine present, A and phi(0) varied linearly with stress. The initial void fraction was also dependent to some extent on the particle size distribution. The rate of consolidation was most rapid in brine and least rapid in the presence of only air as the fluid. A brine containing 5 m MgCl/sub 2/ showed an intermediate rate, presumably because of the greatly reduced solubility of NaCl. A substantial wall effect was indicated by an observed increase in the void fraction of consolidated columns with distance from the top where the stress was applied and by a dependence of consolidation rate on the column height and radius. The distance through which the stress fell by a factor of phi was estimated to change inversely as the fourth power of the column diameter. With increasing temperature (to 85/sup 0/C), consolidation proceeded somewhat more rapidly and the wall effect was reduced. The permeability of the columns dropped rapidly with consolidation, decreasing with about the sixth power of the void fraction. In general, extrapolation of the results to repository conditions confirms the self-sealing properties of bedded salt as a storage medium for radioactive waste.

Shor, A.J.; Baes, C.F. Jr.; Canonico, C.M.

1981-07-01T23:59:59.000Z

276

Experimental studies of actinides in molten salts  

SciTech Connect (OSTI)

This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

Reavis, J.G.

1985-06-01T23:59:59.000Z

277

The Effect of Salt Water on Rice.  

E-Print Network [OSTI]

mq A QTF *'. ' . - - . 1 bC1 r*. .. r * - .=.-ksl-, G v $. THE EFFECT OF SALT WATER ON RICE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President \\ STATION ,,,bfINISTRATION: *B. YOUNGBLOOD, M. S., Ph. D.,, Director A B CONNER... Station, near R. k. HALL, b. S., ~u~eriniendent College Station. Brazos County: No. 2 Troup Smith County: R. M. SHERWOOD, M. S., Animal Husbanri- W.'S. EIOT&HKISS. Superintendent man In Charge of Farm No. 3, Angleton, Brazoria County: L. J. MCCALL...

Fraps, G. S. (George Stronach)

1927-01-01T23:59:59.000Z

278

Acoustic probing of salt using sonar  

E-Print Network [OSTI]

, glycerine, and s1li cone oil provi ded satisfactory performance. In spite of these results, Gupta did not develop a workable means of us1ng 11quid coupl1ng media under mine condit1ons. In his field tests, Gupta used dental impression plaster (a coupling... acoustic pulses which are coupled 1nto the salt via a castor oil coupling medium. The acoustic source signa'i is a square-enveloped pulse of compress1onal waves; a pulse duration of e1ther 0. 3 ms or 1. 1 ms is used. The ranges to discontinuities...

Butler, Kenneth Bryan

1977-01-01T23:59:59.000Z

279

Salt dome gas storage solves curtailment threat  

SciTech Connect (OSTI)

In November 1981, Valero Transmission Co. (San Antonio, TX) opened two salt-dome storage caverns with a combined capacity of 5 billion CF (1.5 billion of cushion gas, 3.5 of working gas). The facility's maximum deliverability is 400 million CF/day for 9 days; when two more caverns are finished in late 1982, the $55 million complex will be able to sustain that level for 18 days, making Valero less dependent on linepacking and spot sales to avoid curtailing deliveries to its customers.

Watts, J.

1982-04-01T23:59:59.000Z

280

Salt River Project electric vehicle program  

SciTech Connect (OSTI)

Electric vehicles (EV) promise to be a driving force in the future of America. The quest for cleaner air and efforts to trim the nation's appetite for foreign oil are among the reasons why. America's EV future is rapidly approaching, with major automakers targeting EV mass production and sales before the end of the decade. This article describes the Salt River Project (SRP), a leader among electric utilities involved in EV research and development (R and D). R and D efforts are underway to plan and prepare for a significant number of EVs in SRP's service territory and to understand the associated recharging requirements for EVs.

Morrow, K.P.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm(CTIhinderProject SmartSalt Wells

282

Sandia National Laboratories: Molten Salt Test Loop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLosSandiaManagementMolecularFacilityMolten Salt

283

The Salt Defense Disposal Investigations (SDDI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe Life of EnricoFlickrPhysics LabSalt

284

Delivery system for molten salt oxidation of solid waste  

DOE Patents [OSTI]

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

285

The Salt or Sodium Chloride Content of Feeds  

E-Print Network [OSTI]

of Sodium Chloride.--In order to test the recovery of added salt, several molasses feeds were selected, weighed out, and varying amounts of salt added, in the form of a N/10 solution of sodium chloride. The salt was added hy a different person from... ............................... . . Preliminary ~vork on laboratory methocls ........ . . ............................... Laboratory method adopted.. ............................. Tests of the laboratory niethod. ................... Application of the methold to feed mixtures...

Fraps, G. S. (George Stronach); Lomanitz, S. (Sebastian)

1920-01-01T23:59:59.000Z

286

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

SciTech Connect (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

287

Molten salt bath circulation design for an electrolytic cell  

DOE Patents [OSTI]

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

1999-08-17T23:59:59.000Z

288

A trophic cascade regulates salt marsh primary production  

E-Print Network [OSTI]

) Nutrient supply is widely thought to regulate primary production of many ecosystems including salt marshes, predator regulation of marine macrophyte production via trophic cascades (kelps, seagrasses, intertidal

Bertness, Mark D.

289

Molten salt bath circulation design for an electrolytic cell  

DOE Patents [OSTI]

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

1999-01-01T23:59:59.000Z

290

Fundamental Corrosion Studies in High-Temperature Molten Salt...  

Broader source: Energy.gov (indexed) [DOE]

Molten Salt Systems for CSP Applications - FY13 Q1 Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems...

291

Surface Indicators of Geothermal Activity at Salt Wells, Nevada...  

Open Energy Info (EERE)

structural controls, and potential subsurface reservoir temperatures of geothermal fluids. An example is provided by the Salt Wells geothermal system in Churchill County,...

292

Method for the production of uranium chloride salt  

DOE Patents [OSTI]

A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

Westphal, Brian R.; Mariani, Robert D.

2013-07-02T23:59:59.000Z

293

Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...  

Open Energy Info (EERE)

Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Columbus Salt Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful...

294

Salt Lake City, Utah: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

a lack of understanding about solar contributed to preventing the widespread adoption of solar energy in all markets. Salt Lake City's prior solar successes with support from...

295

Salt River Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

296

Project Profile: Modular and Scalable Baseload Molten Salt Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

including all molten salt components (receiver, field piping, thermal storage, and steam generator) and their integration with eSolar's heliostat technology and a conventional...

297

Absorption of sound in liquids and liquid mixtures  

E-Print Network [OSTI]

ABSORPTION OF SOUND IN LIQUIDS AND LIQUID MIXTURES A Thesis Raiq S. causa Approved as to style and content by: (Chairman of Committee) January 1955 L1BRARY A 4 M COLLEOE OF IEXAS ADSORPTION OF SOfP@ LIQUIDS AND LIQUID NIXTURES A Thesis... Introduction to the Problem Experimental Methods and Procedures Results Discussion of Results Acknowledgements Bib 1 io graphy 22 4I 42 Introduction to the Problem The study of sound absorption in liquids and liquid mixtures is of considerable...

Musa, Raiq S

2012-06-07T23:59:59.000Z

298

Carbon monoxide absorbing liquid  

SciTech Connect (OSTI)

The present disclosure is directed to a carbon monoxide absorbing liquid containing a cuprous ion, hydrochloric acid and titanum trichloride. Titanium trichloride is effective in increasing the carbon monoxide absorption quantity. Furthermore, titanium trichloride remarkably increases the oxygen resistance. Therefore, this absorbing liquid can be used continuously and for a long time.

Arikawa, Y.; Horigome, S.; Kanehori, K.; Katsumoto, M.

1981-07-07T23:59:59.000Z

299

INEEL Liquid Effluent Inventory  

SciTech Connect (OSTI)

The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

Major, C.A.

1997-06-01T23:59:59.000Z

300

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas release during salt-well pumping: Model predictions and laboratory validation studies for soluble and insoluble gases  

SciTech Connect (OSTI)

The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid from the tanks into the surrounding soil. Salt-well pumping, or interim stabilization, is a well-established operation for removing drainable interstitial liquid from SSTs. The overall objective of this ongoing study is to develop a quantitative understanding of the release rates and cumulative releases of flammable gases from SSTs as a result of salt-well pumping. The current study is an extension of the previous work reported by Peurrung et al. (1996). The first objective of this current study was to conduct laboratory experiments to quantify the release of soluble and insoluble gases. The second was to determine experimentally the role of characteristic waste heterogeneities on the gas release rates. The third objective was to evaluate and validate the computer model STOMP (Subsurface Transport over Multiple Phases) used by Peurrung et al. (1996) to predict the release of both soluble (typically ammonia) and insoluble gases (typically hydrogen) during and after salt-well pumping. The fourth and final objective of the current study was to predict the gas release behavior for a range of typical tank conditions and actual tank geometry. In these models, the authors seek to include all the pertinent salt-well pumping operational parameters and a realistic range of physical properties of the SST wastes. For predicting actual tank behavior, two-dimensional (2-D) simulations were performed with a representative 2-D tank geometry.

Peurrung, L.M.; Caley, S.M.; Gauglitz, P.A.

1997-08-01T23:59:59.000Z

302

Laboratory investigation of crushed salt consolidation and fracture healing  

SciTech Connect (OSTI)

A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

Not Available

1987-01-01T23:59:59.000Z

303

Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems  

SciTech Connect (OSTI)

Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

Mun, S.Y.; Lee, H.

1999-12-01T23:59:59.000Z

304

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

305

Liquid sampling system  

DOE Patents [OSTI]

A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

Larson, L.L.

1984-09-17T23:59:59.000Z

306

MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE  

SciTech Connect (OSTI)

The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

2010-01-27T23:59:59.000Z

307

The role of syn-kinematic sedimentation on early salt tectonic processes in the Post-Permian Salt Basin, Southern North Sea  

E-Print Network [OSTI]

The role of syn-kinematic sedimentation on early salt tectonic processes in the Post-Permian Salt- Permian salt basin of the southernmost North Sea using 3D seismic interpretation, structural modelling mechanical concepts for the dynamics of salt structures and related depositional systems as well

Royal Holloway, University of London

308

Laboratory Measurements of Sea Salt Aerosol Refractive Index  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Complex Refractive Index . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.5 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Sea Salt AerosolsLaboratory Measurements of Sea Salt Aerosol Refractive Index Thesis submitted for the degree

Oxford, University of

309

ORIGINAL PAPER Geochemical Evolution of Great Salt Lake, Utah, USA  

E-Print Network [OSTI]

Discipline, US Geological Survey, 2329 Orton Circle, Salt Lake City, UT 84119, USA R. J. Spencer GeoscienceORIGINAL PAPER Geochemical Evolution of Great Salt Lake, Utah, USA Blair F. Jones Ă? David L. Naftz Ă? Ronald J. Spencer Ă? Charles G. Oviatt Received: 13 June 2008 / Accepted: 10 November 2008

310

SALT DAMAGE CRITERION PROOF-OF-CONCEPT RESEARCH  

SciTech Connect (OSTI)

The purpose of this study was to conduct a field-scale application demonstrating the use of continuum damage mechanics to determine the minimum allowable operating pressure of compressed natural gas storage caverns in salt formations. A geomechanical study was performed of two natural gas storage caverns (one existing and one planned) utilizing state-of-the-art salt mechanics to assess the potential for cavern instability and collapse. The geomechanical study consisted primarily of laboratory testing, theoretical development, and analytical/numerical tasks. A total of 50 laboratory tests was performed on salt specimens to aid in the development and definition of the material model used to predict the behavior of rock salt. Material model refinement was performed that improved the predictive capability of modeling salt during damage healing, recovery of work-hardened salt, and the behavior of salt at stress states other than triaxial compression. Results of this study showed that the working gas capacity of the existing cavern could be increased by 18 percent and the planned cavern could be increased by 8 percent using the proposed method compared to a conventional stress-based method. Further refinement of the continuum damage model is recommended to account for known behavior of salt at stress conditions other than triaxial compression that is not characterized accurately by the existing model.

Kerry L. DeVries; Kirby D. Mellegard; Gary D. Callahan

2002-11-01T23:59:59.000Z

311

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

312

Liquid metal electric pump  

DOE Patents [OSTI]

An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

1992-01-14T23:59:59.000Z

313

Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,TopDepartment ofTransactionalFacility |

314

Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.  

SciTech Connect (OSTI)

It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

Ehst, D.; Nuclear Engineering Division

2010-08-04T23:59:59.000Z

315

New lithium-based ionic liquid electrolytes that resist salt concentration  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells |of Energypolarization | Department of

316

Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

317

Constitutive representation of damage development and healing in WIPP salt  

SciTech Connect (OSTI)

There has been considerable interest in characterizing and modeling the constitutive behavior of rock salt with particular reference to long-term creep and creep failure. The interest is motivated by the projected use of excavated rooms in salt rock formations as repositories for nuclear waste. It is presumed that closure of those rooms by creep ultimately would encapsulate the waste material, resulting in its effective isolation. A continuum mechanics approach for treating damage healing is formulated as part of a constitutive model for describing coupled creep, fracture, and healing in rock salt. Formulation of the healing term is, described and the constitutive model is evaluated against experimental data of rock salt from the Waste Isolation Pilot Plant (WIPP) site. The results indicate that healing anistropy in WIPP salt can be modeled with an appropriate power-conjugate equivalent stress, kinetic equation, and evolution equation for damage healing.

Chan, K.S.; Bodner, S.R. [Southwest Research Inst., San Antonio, TX (United States); Fossum, A.F [RE/SPEC, Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-12-31T23:59:59.000Z

318

Molten-Salt Depleted-Uranium Reactor  

E-Print Network [OSTI]

The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

Dong, Bao-Guo; Gu, Ji-Yuan

2015-01-01T23:59:59.000Z

319

Natural gas storage in bedded salt formations  

SciTech Connect (OSTI)

In 1990 Western Resources Inc. (WRI) identified the need for additional natural gas storage capacity for its intrastate natural gas system operated in the state of Kansas. Western Resources primary need was identified as peak day deliverability with annual storage balancing a secondary objective. Consequently, an underground bedded salt storage facility, Yaggy Storage Field, was developed and placed in operation in November 1993. The current working capacity of the new field is 2.1 BCF. Seventy individual caverns are in service on the 300 acre site. The caverns vary in size from 310,000 CF to 2,600,000 CF. Additional capacity can be added on the existing acreage by increasing the size of some of the smaller existing caverns by further solution mining and by development of an additional 30 potential well sites on the property.

Macha, G.

1996-09-01T23:59:59.000Z

320

Disposal of NORM waste in salt caverns  

SciTech Connect (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same  

DOE Patents [OSTI]

Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

2011-01-11T23:59:59.000Z

322

Metals concentration in salt marshes plants and kelp around San Diego: A window to environment quality  

E-Print Network [OSTI]

in salt marshes plants and kelp around San Diego: A windowassessing levels of metals in kelp and salt marsh plants inmetals levels found in kelp and salt marsh plants reflect

Deheyn, Dimitri

2009-01-01T23:59:59.000Z

323

E-Print Network 3.0 - alternative salt transfer Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

salt damage to trees | November 2011 Pathology Advisory Note (No. 11) De-icing salt... damage to trees De-icing Salt Damage to Trees Joan F Webber, David R Rose, Martin C ......

324

Analysis of Multistage and Other Creep Data for Domal Salts  

SciTech Connect (OSTI)

There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

Munson, D.E.

1998-10-01T23:59:59.000Z

325

Liquidity facilities and signaling  

E-Print Network [OSTI]

This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

Arregui, Nicolás

2010-01-01T23:59:59.000Z

326

Liquid crystalline composites containing phyllosilicates  

DOE Patents [OSTI]

The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

Chaiko, David J.

2004-07-13T23:59:59.000Z

327

Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid  

E-Print Network [OSTI]

Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.

Verner K. Thorsmřlle; Guido Rothenberger; Daniel Topgaard; Jan C. Brauer; Dai-Bin Kuang; Shaik M. Zakeeruddin; Björn Lindman; Michael Grätzel; Jacques-E. Moser

2010-11-09T23:59:59.000Z

328

E-Print Network 3.0 - alternative salt processing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assurance Salt Lake City UT Pricewaterhouse... salary) 11 Employment Information Armstrong, Johnson & Seatsen Accountant Salt Lake City UT Baird... Longyear Accounting...

329

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...  

Open Energy Info (EERE)

Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

330

E-Print Network 3.0 - avoid salt induced Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Salt Ions: An Electrostatic Theory for the Hofmeister Effect Summary: , an image charge is induced and a repulsive interaction between the salt ion and its image...

331

anion heavy-atom salt: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution,effects of nutrients and heavy metals in experimental salt marsh ecosystems....

332

Invasive Spartina densiflora Brongn. Reduces Primary Productivity in a Northern California Salt Marsh  

E-Print Network [OSTI]

alterniflora and benthic microalgae in salt marsh food webs:dynamics of benthic microalgae in salt marshes. Pages 81-106primary productivity of microalgae and cyanobacteria (Geider

Lagarde, Luc A.

2012-01-01T23:59:59.000Z

333

Levels of metals from salt marsh plants from Southern California, USA  

E-Print Network [OSTI]

alterniflora and benthic microalgae in salt marsh foodalterniflora and benthic microalgae in salt marsh foodSpartina, but feed on microalgae (Currin,1990). Isotope

Hoyt, Kimberly Ann

2009-01-01T23:59:59.000Z

334

Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts  

DOE Patents [OSTI]

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Smart, Neil G. (Moscow, ID); Lin, Yuehe (Moscow, ID)

1998-01-01T23:59:59.000Z

335

Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts  

DOE Patents [OSTI]

A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

Wai, C.M.; Smart, N.G.; Lin, Y.

1998-06-23T23:59:59.000Z

336

Development of pyro-processing technology for thorium-fuelled molten salt reactor  

SciTech Connect (OSTI)

The Molten Salt Reactor (MSR) is classified as the non-classical nuclear reactor type based on the specific features coming out from the use of liquid fuel circulating in the MSR primary circuit. Other uniqueness of the reactor type is based on the fact that the primary circuit of the reactor is directly connected with the on-line reprocessing technology, necessary for keeping the reactor in operation for a long run. MSR is the only reactor system, which can be effectively operated within the {sup 232}Th- {sup 233}U fuel cycle as thorium breeder with the breeding factor significantly higher than one. The fuel cycle technologies proposed as ford the fresh thorium fuel processing as for the primary circuit fuel reprocessing are pyrochemical and mainly fluoride. Although these pyrochemical processes were never previously fully verified, the present-day development anticipates an assumption for the successful future deployment of the thorium-fuelled MSR technology. (authors)

Uhlir, J.; Straka, M.; Szatmary, L. [Nuclear Research Inst. ReZ Plc, ReZ 130, Husinec - CZ-250 68 (Czech Republic)

2012-07-01T23:59:59.000Z

337

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

In this project, now completing its third year of its second renewal period, a collaborative project involving Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and the University of North Texas has been addressing outstanding questions regarding the separation of the bulk sodium constituents of alkaline tank waste. The principal potential benefit of this research is a major reduction in the volume of radioactive tank waste, obviating the building of expensive new tanks and reducing the costs of vitrification. As a general approach, principles of ion recognition are being explored toward discovery and basic understanding of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium salts from waste-like matrices. Questions being addressed pertain to applicable extraction equilibria and how extraction properties relate to extractant structure. Progress has included the elucidation of the promising concept of pseudo hydroxide extraction (PHE), demonstration of crown-ether synergized PHE, demonstration of combined sodium hydroxide/sodium nitrate separation, and synthesis of novel ditopic receptors for ditopic PHE. In future efforts (pending renewal), a thermochemical study of PHE relating extractant acidity to extraction strength is proposed, and this study will be extended to systems containing crown ethers, including proton-ionizable ones. A series of crown ethers will be synthesized for this purpose and to investigate the extraction of bulk sodium salts (e.g., nitrate, nitrite, and sulfate), possibly in combination with sodium hydroxide. Simple proof-of-principle tests with real tank waste at PNNL will provide feedback toward solvent designs that have desirable properties. In view of the upcoming milestone of completion of the second renewal period, this report will, in addition to providing a summary of the past year's progress, summarize all of the work completed since the start of this project.

Moyer, Bruce A.; Marchand, Alan P.; Lumetta, Gregg J.

2004-06-30T23:59:59.000Z

338

Controlled black liquor viscosity reduction through salting-in  

SciTech Connect (OSTI)

Black liquor viscosity increases exponentially with solids content and therefore causes processing problems for the paper industry by being a limiting factor in the Kraft pulp process. This study investigates a new approach for achieving viscosity reduction by salting-in black liquor through the addition of thiocyanate salts. These salts generally increase the solubility of the polymer constituents in black liquor, leading to a decrease in its viscosity. Several thiocyanate salts capable of reducing liquor viscosity by more than two orders of magnitude have been identified, with viscosity reduction greatest at high solids content. Salting-in of black liquor depends on the cation paired with the thiocyanate anion, as well as on solution pH and temperature. Comparative studies reveal the most effective viscosity-reducing agent of the series examined and that lignin plays an important role in the viscosity behavior of both unmodified and salted-in black liquor at high solids concentrations. These experimental findings are interpreted in terms of the underlying principles that describe salting-in and how it affects aqueous solution structure.

Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

1996-08-01T23:59:59.000Z

339

Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report  

SciTech Connect (OSTI)

A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given.

Miller, C.M.; Loomis, G.G.; Prewett, S.W.

1997-11-01T23:59:59.000Z

340

Permeability of WIPP Salt During Damage Evolution and Healing  

SciTech Connect (OSTI)

The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering.

BODNER,SOL R.; CHAN,KWAI S.; MUNSON,DARRELL E.

1999-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Capture and release of mixed acid gasses with binding organic liquids  

DOE Patents [OSTI]

Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

Heldebrant, David J. (Richland, WA); Yonker, Clement R. (Kennewick, WA)

2010-09-21T23:59:59.000Z

342

Assessment of First Wall and Blanket Options with the Use of Liquid Breeder  

SciTech Connect (OSTI)

As candidate blanket concepts for a U.S. advanced reactor power plant design, with consideration of the time frame for ITER development, we assessed first wall and blanket design concepts based on the use of reduced activation ferritic steel as structural material and liquid breeder as the coolant and tritium breeder. The liquid breeder choice includes the conventional molten salt Li{sub 2}BeF{sub 4} and the low melting point molten salts such as LiBeF{sub 3} and LiNaBeF{sub 4} (FLiNaBe). Both self-cooled and dual coolant molten salt options were evaluated. We have also included the dual coolant leadeutectic Pb-17Li design in our assessment. We take advantage of the molten salt low electrical and thermal conductivity to minimize impacts from the MHD effect and the heat losses from the breeder to the actively cooled steel structure. For the Pb-17Li breeder we employ flow channel inserts of SiC{sub f}/SiC composite with low electrical and thermal conductivity to perform respective insulation functions. We performed preliminary assessments of these design options in the areas of neutronics, thermal-hydraulics, safety, and power conversion system. Status of the R and D items of selected high performance blanket concepts is reported. Results from this study will form the technical basis for the formulation of the U.S. ITER test module program and corresponding test plan.

Wong, C.P.C.; Malang, S.; Sawan, M. (and others)

2005-04-15T23:59:59.000Z

343

The Thorium Molten Salt Reactor : Moving on from the MSBR  

E-Print Network [OSTI]

A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

L. Mathieu; D. Heuer; R. Brissot; C. Le Brun; E. Liatard; J. M. Loiseaux; O. Méplan; E. Merle-Lucotte; A. Nuttin; J. Wilson; C. Garzenne; D. Lecarpentier; E. Walle; the GEDEPEON Collaboration

2005-06-02T23:59:59.000Z

344

Experimental Investigation of Two-Phase Flow in Rock Salt  

SciTech Connect (OSTI)

This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

Malama, Bwalya; Howard, Clifford L.

2014-07-01T23:59:59.000Z

345

Studies of ionic liquids in lithium-ion battery test systems  

SciTech Connect (OSTI)

In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-06-01T23:59:59.000Z

346

Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

2009-09-30T23:59:59.000Z

347

Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...  

Open Energy Info (EERE)

Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

348

Regional Gravity Survey of the Northern Great Salt Lake Desert...  

Open Energy Info (EERE)

navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional Gravity Survey of the Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and...

349

Molten Salt Breeder Reactors Academia Sinica, ITRI, NTHU  

E-Print Network [OSTI]

Molten Salt Breeder Reactors HX Team* Academia Sinica, ITRI, NTHU 6 April 2012 *F. H. Shu, M. J MSRs Can Rid LWR Waste & Safely Breed for U-233 ­LWR spent fuel Th-232 Blanket ­U-238, U-235 in form

Wang, Ming-Jye

350

Expected brine movement at potential nuclear waste repository salt sites  

SciTech Connect (OSTI)

The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

McCauley, V.S.; Raines, G.E.

1987-08-01T23:59:59.000Z

351

Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...  

Open Energy Info (EERE)

To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

352

Independent Oversight Review, Savannah River Site Salt Waste...  

Office of Environmental Management (EM)

2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of...

353

Energy Department Completes Salt Coolant Material Transfer to...  

Broader source: Energy.gov (indexed) [DOE]

from the salt coolant material testing by e and in other technical areas of mutual interest. "The United States is committed to working closely with the Czech Republic to...

354

Continuous Commissioning of Salt Lake Community College South City Campus  

E-Print Network [OSTI]

The State of Utah's Department of Natural Resources funded two projects in Salt Lake City to demonstrate the feasibility of the Continuous Commissioning® (CC®)1 process. The two sites selected were a modern state building, the Matheson Courthouse [1...

Deng, S.; Turner, W. D.; Hood, J.

2004-01-01T23:59:59.000Z

355

Combined Utilization of Cation Exchanger and Neutral Receptor to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

In this report, novel approaches to the selective liquid-liquid extraction separation of sodium hydroxide and sodium nitrate from high-level alkaline tank waste will be discussed. Sodium hydroxide can be successfully separated from alkaline tank-waste supernatants by weakly acidic lipophilic hydroxy compounds via a cation-exchange mechanism referred to as pseudo hydroxide extraction. In a multi-cycle process, as sodium hydroxide in the aqueous phase becomes depleted, it is helpful to have a neutral sodium receptor in the extraction system to exploit the high nitrate concentration in the waste solution to promote sodium removal by an ion-pair extraction process. Simultaneous utilization of an ionizable organic hydroxy compound and a neutral extractant (crown ether) in an organic phase results in the synergistic enhancement of ion exchange and improved separation selectivity due to the receptor's strong and selective sodium binding. Moreover, combination of the hydroxy compound and the crown ether provides for mutually increased solubility, even in a non-polar organic solvent. Accordingly, application of Isopar{reg_sign} L, a kerosene-like alkane solvent, becomes feasible. This investigation involves examination of such dual-mechanism extraction phases for sodium extraction from simulated and actual salt cake waste solutions. Sodium salts can be regenerated upon the contact of the loaded extraction phases with water. Finally, conditions of potential extraction/strip cycling will be discussed.

Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.

2004-03-29T23:59:59.000Z

356

Study of maximizing acoustic energy coupling to salt  

E-Print Network [OSTI]

CHAPTER I INTRODUCTION Statement of the Problem The knowledge of the geologic discontinuities in the salt which lie in front of a mining face is a great value for both economic and safety reasons. This knowledge can be obtained by core drilling... at the transducer/ coupling media and coupling media/salt boundaries can be considered as being separate and mutually independent. The coupling problem would then be treated by evaluating the normal incidence reflection coefficients at the transducer/ coupling...

Hwang, Yng-Jou

1979-01-01T23:59:59.000Z

357

Le Thorium Molten Salt Reactor : Au del du MSBR  

E-Print Network [OSTI]

Le Thorium Molten Salt Reactor : Au delà du MSBR L. Mathieu, D. Heuer, A. Billebaud, R. Brissot, C réflexion est menée afin de trou- ver des solutions et ainsi d'aboutir au concept du Thorium Mol- ten Salt optimale du minerai d'uranium ou de thorium, une conception résistante à la prolifération, une meilleur

Paris-Sud XI, Université de

358

Vertebrate survey of a dredge spoil salt marsh  

E-Print Network [OSTI]

]ect: Wildlife and Fisheries Science VERTEBRATE SURVEY OF A DREDGE SPOIL SALT MARSH A Thesis by BETTY JO LEE Approved as to style and content by: (Chairman of Committee) (Head of Department) (Member) (Member) December 1976 ABSTRACT Vertebrate Survey... of this ecotone are salinity, amount of fresh water, agitation by tides and currents, temperatut'e, wind, and industrial pollutants (Odum 1971). Clark (1974) points out the environmental importance of salt marshes to the waters of estuaries and bays by acting...

Lee, Betty Jo

1976-01-01T23:59:59.000Z

359

A new equation of state of salt-free flexible-chain polyelectrolyte solution: phase equilibria and osmotic pressure  

E-Print Network [OSTI]

We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by strong correlation attraction. As a reference system we choose a set of two independent ideal subsystems -- charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and couterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of Modified Random Phase Approximation, whereas a contribution of charge densities fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte-Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

Yu. A. Budkov; A. L. Kolesnikov; N. Georgi; E. A. Nogovitsyn; M. G. Kiselev

2015-01-06T23:59:59.000Z

360

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

2005-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIS-0099: Remedial Actions at the Former Vitro Chemical Company Site, South Salt Lake, Salt Lake County, Utah  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of various scenarios associated with the cleanup of those residues remaining at the abandoned uranium mill tailings site located in South Salt Lake, Utah.

362

Properties of Liquid Plutonium  

SciTech Connect (OSTI)

Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

363

Imaging Liquids Using Microfluidic Cells  

SciTech Connect (OSTI)

Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

2013-05-10T23:59:59.000Z

364

LIFE Materails: Molten-Salt Fuels Volume 8  

SciTech Connect (OSTI)

The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

2008-12-11T23:59:59.000Z

365

Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor  

SciTech Connect (OSTI)

This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

Scheele, Randall D.; Casella, Andrew M.

2010-09-28T23:59:59.000Z

366

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

367

Liquid crystalline composites containing phyllosilicates  

DOE Patents [OSTI]

The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

Chaiko; David J. (Naperville, IL)

2007-05-08T23:59:59.000Z

368

High temperature liquid level sensor  

DOE Patents [OSTI]

A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

Tokarz, Richard D. (West Richland, WA)

1983-01-01T23:59:59.000Z

369

In-Drift Precipitates/Salts Model  

SciTech Connect (OSTI)

As directed by ''Technical Work Plan For: Engineered Barrier System Department Modeling and Testing FY03 Work Activities'' (BSC 2003 [165601]), the In-Drift Precipitates/Salts (IDPS) model is developed and refined to predict the aqueous geochemical effects of evaporation in the proposed repository. The purpose of this work is to provide a model for describing and predicting the postclosure effects of evaporation and deliquescence on the chemical composition of water within the proposed Engineered Barrier System (EBS). Application of this model is to be documented elsewhere for the Total System Performance Assessment License Application (TSPA-LA). The principal application of this model is to be documented in REV 02 of ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2003 [165601]). The scope of this document is to develop, describe, and validate the IDPS model. This model is a quasi-equilibrium model. All reactions proceed to equilibrium except for several suppressed minerals in the thermodynamic database not expected to form under the proposed repository conditions within the modeling timeframe. In this revision, upgrades to the EQ3/6 code (Version 8.0) and Pitzer thermodynamic database improve the applicable range of the model. These new additions allow equilibrium and reaction-path modeling of evaporation to highly concentrated brines for potential water compositions of the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O at temperatures in the range of 0 C to 125 C, pressures in the atmospheric range, and relative humidity in the range of 0 to 100 percent. This system applies to oxidizing conditions only, and therefore limits the model to applications involving oxidizing conditions. A number of thermodynamic parameters in the Pitzer database have values that have not been determined or verified for the entire temperature range. In these cases, the known values are used to approximate the values for the rest of the temperature range. Although such treatment contributes to uncertainty in model outputs, the model validation test cases indicate that the model, with its associated uncertainty, is valid for its intended use. The intended use of this model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period.

P. Mariner

2003-10-21T23:59:59.000Z

370

Analysis & Simulation of Dynamics in Supercooled Liquids  

E-Print Network [OSTI]

Moreover, the heat capacity of that liquid is also higherthe intensive heat capacities of the liquid and the crystal,

Elmatad, Yael Sarah

2011-01-01T23:59:59.000Z

371

Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching  

SciTech Connect (OSTI)

Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

1997-12-31T23:59:59.000Z

372

Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC  

E-Print Network [OSTI]

Modeling Liquid-Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC different excess Gibbs free energy models are evaluated: the NRTL, UNIQUAC and electrolyte- NRTL (eNRTL) models. In the case of eNRTL, a new formulation of the model is used, based on a symmetric reference

Stadtherr, Mark A.

373

Liquid filtration simulation  

SciTech Connect (OSTI)

We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

Corey, I.; Bergman, W.

1996-06-01T23:59:59.000Z

374

Oil field waste disposal in salt caverns: An information website  

SciTech Connect (OSTI)

Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

Tomasko, D.; Veil, J. A.

1999-12-10T23:59:59.000Z

375

Vitrification of IFR and MSBR halide salt reprocessing wastes  

SciTech Connect (OSTI)

Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

Siemer, D.D. [Idaho National Laboratory, 12N 3167E, Idaho Falls, ID 83402 (United States)

2013-07-01T23:59:59.000Z

376

Effect of water in salt repositories. Final report  

SciTech Connect (OSTI)

Additional results confirm that during most of the consolidation of polycrystalline salt in brine, the previously proposed rate expression applies. The final consolidation, however, proceeds at a lower rate than predicted. The presence of clay hastens the consolidation process but does not greatly affect the previously observed relationship between permeability and void fraction. Studies of the migration of brine within polycrystalline salt specimens under stress indicate that the principal effect is the exclusion of brine as a result of consolidation, a process that evidently can proceed to completion. No clear effect of a temperature gradient could be identified. A previously reported linear increase with time of the reciprocal permeability of salt-crystal interfaces to brine was confirmed, though the rate of increase appears more nearly proportional to the product of sigma ..delta..P rather than sigma ..delta..P/sup 2/ (sigma is the uniaxial stress normal to the interface and ..delta..P is the hydraulic pressure drop). The new results suggest that a limiting permeability may be reached. A model for the permeability of salt-crystal interfaces to brine is developed that is reasonably consistent with the present results and may be used to predict the permeability of bedded salt. More measurements are needed, however, to choose between two limiting forms of the model.

Baes, C.F. Jr.; Gilpatrick, L.O.; Kitts, F.G.; Bronstein, H.R.; Shor, A.J.

1983-09-01T23:59:59.000Z

377

Mechanical modeling of the growth of salt structures  

SciTech Connect (OSTI)

A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 {times} 10{sup {minus}15}s{sup {minus}1} for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 10{sup 2} times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

Alfaro, R.A.M.

1993-05-01T23:59:59.000Z

378

Desiccant-Based Combined Systems  

E-Print Network [OSTI]

and Testing Final Report Phase 4 August 2004 By J. Fischer SEMCO J. Sand Oak Ridge National Laboratory #12 System Development and Testing Final Report: Phase 4 August 2004 J. Fischer SEMCO, Inc. J. Sand Oak Ridge by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 #12;#12;iii

Oak Ridge National Laboratory

379

Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing  

SciTech Connect (OSTI)

The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

2013-07-01T23:59:59.000Z

380

Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems  

SciTech Connect (OSTI)

The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

2009-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stress measurements in rock salt using hydraulic fracturing  

SciTech Connect (OSTI)

Hydraulic fracturing was applied in horizontal drillholes in the Salado salt formation near Carlsbad, New Mexico. Testing took place approximately 650 m below surface in order to support the design of a Waste Isolation Pilot Plant (WIPP) for the disposal of radioactive waste from defense activities of the United States. Hydraulic fracturing was performed primarily to determine whether the virgin in situ stress state at the WIPP site is isotropic and whether the magnitudes of the the virgin in situ stresses correspond to the weight of the overburden. Beyond these limited objectives, measurements are being analyzed to evaluate the usefulness of hydraulic fracturing in salt formations in general. Such measurements are desirable to determine stresses induced by mining and to monitor time-dependent stress changes around underground excavations in salt masses. Hydraulic fracturing measurements are also relevant to the evaluation of allowable pressures before fracturing is induced in pressurized boreholes and storage caverns.

Wawersik, W.R.; Stone, C.M.

1986-01-01T23:59:59.000Z

382

Damage-induced nonassociated inelastic flow in rock salt  

SciTech Connect (OSTI)

The multi-mechanism deformation coupled fracture model recently developed by CHAN, et al. (1992), for describing time-dependent, pressure-sensitive inelastic flow and damage evolution in crystalline solids was evaluated against triaxial creep experiments on rock salt. Guided by experimental observations, the kinetic equation and the flow law for damage-induced inelastic flow in the model were modified to account for the development of damage and inelastic dilatation in the transient creep regime. The revised model was then utilized to obtain the creep response and damage evolution in rock salt as a function of confining pressure and stress difference. Comparison between model calculation and experiment revealed that damage-induced inelastic flow is nonassociated, dilatational, and contributes significantly to the macroscopic strain rate observed in rock salt deformed at low confining pressures. The inelastic strain rate and volumetric strain due to damage decrease with increasing confining pressures, and all are suppressed at sufficiently high confining pressures.

Chan, K.S.; Bodner, S.R. [Southwest Research Inst., San Antonio, TX (United States); Brodsky, N.S.; Fossum, A.F. [RE/SPEC, Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1993-06-01T23:59:59.000Z

383

Salt transport extraction of transuranium elements from lwr fuel  

DOE Patents [OSTI]

A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

Pierce, R. Dean (Naperville, IL); Ackerman, John P. (Downers Grove, IL); Battles, James E. (Oak Forest, IL); Johnson, Terry R. (Wheaton, IL); Miller, William E. (Naperville, IL)

1992-01-01T23:59:59.000Z

384

Salt transport extraction of transuranium elements from LWR fuel  

DOE Patents [OSTI]

A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

1992-11-03T23:59:59.000Z

385

Seismic stratigraphy and salt tectonics along the Sigsbee Escarpment, southeastern Green Canyon region  

E-Print Network [OSTI]

nsobil layer of salt which has been emplaced at least 10 ? 15 km seav"ard as a result of sediment loading up dip by the Mississippi River. The tabular or lobate nature ol' salt in this region is nrarkedly different frona the typical domes and ridges... of salt domes as well as along the base of salt layers or tongues. The salt within the study area is generally tabular or tongue ? like in nature (as opposed to the predominantlv vertical salt spines and domes found on thc upper slope and shell). Since...

Swiercz, Alan Mark

1986-01-01T23:59:59.000Z

386

Heat driven heat pump using paired ammoniated salts  

SciTech Connect (OSTI)

A cycle for a heat driven heat pump using two salts CaCl/sup 2/.8NH/sup 3/, and ZnCl/sup 2/.4NH3 which may reversibly react with ammonia with the addition or evolution of heat. These salts were chosen so that both ammoniation processes occur at the same temperature so that the heat evolved may be used for comfort heating. The heat to drive the system need only be slightly hotter than 122 C. The low temperature source need only be slightly warmer than 0 C.

Dunlap, R.M.

1980-08-29T23:59:59.000Z

387

Geology of the Salt Creek area, Mason County, Texas  

E-Print Network [OSTI]

and to the entrapment of. surface water in the fractures. GEOLXiBPBOLOGY The Salt Creek area in @aeon County, Texas is located on the southwestern flank of the Llano Uplift, a structural dome which has been reduced to a topographic basin by erosional processes.... STSUCT "SALCEOL00Y IIegional Structure The Llano region, which includes the Salt Creek area, is a structural dome which has been reduced to a topographic basin by erosional processes. The dose is roughly elliptical with a maximum diameter...

Harwood, William Eugene

1959-01-01T23:59:59.000Z

388

A mechanical model of early salt dome growth  

E-Print Network [OSTI]

of Department) December 1988 A Mechanical Analysis of Early Salt Dome Growth. (December 1988) Frank Albert Irwin, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Raymond C. Fletcher A two-layer superposition model, the lower layer representing... of the sediments results in growth rates much higher than those observed. Analysis of the case with a diffusivity of 104m2/Ka agrees with all observa- tions. A range of diffusivities which will produce a realistic salt dome model is then determined. The lower...

Irwin, Frank Albert

1988-01-01T23:59:59.000Z

389

Analysis of salt concentrations in the Brazos River Basin, Texas  

E-Print Network [OSTI]

Oct 48 . Nov 51 Oct 48 Nov 51 08080540 NcDcnsld Creek Neer Post 080810DD Selt Fork Srszon River Neer I'escock MMI200 Croton Creek Neer Jsyton 08081500 Salt Croton Creek Near Aspermont 08082000 Salt Fork Srszos Aiver Near Anperamnt 103 4, 619 64..., 988 Nov 49 . Nov df- Oct 81 Sep Sl Sep 79 Sep 84 Nov 49 . Nov 67 . Oct 81 Scp 51 Sep 79 Sep 84 0808605 D 08086100 08086150 08086212 08086260 08086290 08086300 08086500 08087300 08088000 Deep Creek at Horan HiARerd Creek Near...

Ganze, Charles Keith

1990-01-01T23:59:59.000Z

390

Materials and methods for stabilizing nanoparticles in salt solutions  

DOE Patents [OSTI]

Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.

Robinson, David Bruce; Zuckermann, Ronald; Buffleben, George M.

2013-06-11T23:59:59.000Z

391

Ionic Liquid Pretreatment Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch,IntroducingIonic Liquid Pretreatment EERE

392

Supported liquid membrane electrochemical separators  

DOE Patents [OSTI]

Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

Pemsler, J. Paul (Lexington, MA); Dempsey, Michael D. (Revere, MA)

1986-01-01T23:59:59.000Z

393

Liquid monobenzoxazine based resin system  

DOE Patents [OSTI]

The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

2014-10-07T23:59:59.000Z

394

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

395

FLARE, Fermilab Liquid Argon Experiments  

E-Print Network [OSTI]

Mature technology of Liquid Argon Time Projection Chambers in conjunction with intense neutrino beams constructed at Fermilab offer a broad program of neutrino physics for the next decade.

L. Bartoszek

2004-08-24T23:59:59.000Z

396

Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids  

SciTech Connect (OSTI)

The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation phenomena involved in aluminum deposition on copper in AlCl3-BMIMCl electrolyte was found to be instantaneous followed by diffusion controlled three-dimensional growth of nuclei. Diffusion coefficient (Do) of the electroactive species Al2Cl7Ż ion was in the range from 6.5 to 3.9×10–7 cm2?s–1 at a temperature of 30°C. Relatively little research efforts have been made toward the fundamental understanding and modeling of the species transport and transformation information involved in ionic liquid mixtures, which eventually could lead to quantification of electrochemical properties. Except that experimental work in this aspect usually is time consuming and expensive, certain characteristics of ionic liquids also made barriers for such analyses. Low vapor pressure and high viscosity make them not suitable for atomic absorption spectroscopic measurement. In addition, aluminum electrodeposition in ionic liquid electrolytes are considered to be governed by multi-component mass, heat and charge transport in laminar and turbulent flows that are often multi-phase due to the gas evolution at the electrodes. The kinetics of the electrochemical reactions is in general complex. Furthermore, the mass transfer boundary layer is about one order of magnitude smaller than the thermal and hydrodynamic boundary layer (Re=10,000). Other phenomena that frequently occur are side reactions and temperature or concentration driven natural convection. As a result of this complexity, quantitative knowledge of the local parameters (current densities, ion concentrations, electrical potential, temperature, etc.) is very difficult to obtain. This situation is a serious obstacle for improving the quality of products, efficiency of manufacturing and energy consumption. The gap between laboratory/batch scale processing with global process control and nanoscale deposit surface and materials specifications needs to be bridged. A breakthrough can only be realized if on each scale the occurring phenomena are understood and quantified. Multiscale numerical modeling nevertheless can help t

Dr. R. G. Reddy

2007-09-01T23:59:59.000Z

397

Supporting Information for: Salt concentration differences alter membrane  

E-Print Network [OSTI]

). The membrane area available for ion transport was 11.4 cm2 . Platinum mesh electrodes that spanned the crossS1 Supporting Information for: Salt concentration differences alter membrane resistance in reverse-814-867-1847 #12;S2 Membrane resistance measurement Without a concentration difference Membrane resistance

398

Salt Lake City, Utah: Solar in Action (Brochure)  

SciTech Connect (OSTI)

This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

399

ARE DEICING SALTS NECESSARY TO PROMOTE SCALING IN CONCRETE?  

E-Print Network [OSTI]

. Keywords: Concrete, cryosuction, durability, frost, poromechanics, porous media, thermo- dynamics, spallingARE DEICING SALTS NECESSARY TO PROMOTE SCALING IN CONCRETE? A. Fabbri1,2 , O. Coussy1 , T. Fen of the different phases that form the porous material. It eventually predicts that a less perme- able sample

Paris-Sud XI, Université de

400

THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR  

E-Print Network [OSTI]

THORIUM FUEL CYCLES: A GRAPHITE-MODERATED MOLTEN SALT REACTOR VERSUS A FAST SPECTRUM SOLID FUEL is to compare two main options dedicated to long-term energy production with Thorium: solid fuel with fast its be- haviour until it reaches the 232Th/233U equilibrium from two di erent starting fuels: 232Th

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Water, Vapor, and Salt Dynamics in a Hot Repository  

SciTech Connect (OSTI)

The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

2007-07-01T23:59:59.000Z

402

Bile Salts and Nuclear Receptors in Biliary Epithelial Cell Pathophysiology  

E-Print Network [OSTI]

Bile Salts and Nuclear Receptors in Biliary Epithelial Cell Pathophysiology by Dr. Nicolas Chignard shaped the way I perform my work today. Among many other examples, she showed me how to simply performed by students that I had the pleasure to supervise. I'm grateful to all of them. I especially would

Boyer, Edmond

403

Molten salts and nuclear energy production Christian Le Bruna*  

E-Print Network [OSTI]

Molten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches, thorium cycle 1. Introduction The main characteristic of nuclear energy production is the large energy

Boyer, Edmond

404

SALT DAMAGE CRITERION PROOF-OF-CONCEPT RESEARCH  

SciTech Connect (OSTI)

This document is the annual technical progress report for Department of Energy Contract No. DE-FC26-00NT41026 entitled Proof-of-Concept Research for an Advanced Design Criterion to Improve Working Gas Capacity for Natural Gas Storage Caverns in Salt Formations. This report covers the reporting period from October 1, 2000, through September 30, 2001. During this reporting period, the project was initiated and work was performed to develop structural models that will be used to evaluate two compressed natural gas storage caverns in the McIntosh Dome northwest of Mobile, Alabama. Information necessary to define the structural models include site-specific stress, temperature, geometry, stratigraphy, and operating scenarios in the dome and for the caverns. Additionally, material model development for the salt at the McIntosh Dome was initiated. Material model development activities include acquisition of salt core for testing, laboratory testing, and regression analyses to determine site-specific model parameter values that describe the behavior of salt around a storage cavern. Although not performed during this reporting period, the information and models developed will be used to perform advanced design storage cavern analyses for the Bay Gas caverns to determine the operating pressure ranges to maintain stable conditions.

Kerry L. DeVries; Kirby D. Mellegard; Gary D. Callahan

2001-12-01T23:59:59.000Z

405

Molten-Salt-Based Growth of Group III Nitrides  

DOE Patents [OSTI]

A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

2008-10-14T23:59:59.000Z

406

Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container  

E-Print Network [OSTI]

of Energy (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees Isolation Plan (Plan) for identified nitrate salt bearing waste disposed in the Waste Isolation Pilot Plant detailed proposal for the expedited closure of underground Hazardous Waste Disposal Unit (HWDU) Panel 6, so

Napp, Nils

407

Simulation of salt migrations in density dependent groundwater flow  

E-Print Network [OSTI]

and uses a finite element method for the simulation of groundwater flow in the lateral (2D) direction (third dimension) a finite difference method is used in the simula- tions. Numerical experiments are done of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater

Vuik, Kees

408

New Opportunities for Metals Extraction and Waste Treatment by Electrochemical Processing in Molten Salts  

E-Print Network [OSTI]

Molten salt electrolysis is a proven technology for the extraction of metals -- all the world's primary aluminum is produced in this manner. The unique properties of molten salts also make them

Sadoway, Donald R.

2001-01-01T23:59:59.000Z

409

Effects of Nutrient Additions on Three Coastal Salt Marsh Plants Found in Sunset Cove, Texas  

E-Print Network [OSTI]

Eutrophication, particularly due to nitrogen (N) and phosphorus (P) input, has been massively altered by anthropogenic activities. Thus it is important to understand the impact on salt marsh plants; however studies on salt marsh plants within...

Rulon, Leslie

2012-02-14T23:59:59.000Z

410

Corrosion in Very High-Temperature Molten Salt for Next Generation...  

Broader source: Energy.gov (indexed) [DOE]

Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems This presentation was...

411

E-Print Network 3.0 - air pollution salt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

salt Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution salt Page: << < 1 2 3 4 5 > >> 1 Contact: Lori M. Quillen, Director of...

412

System and method for conditioning a hardwood pulp liquid hydrolysate  

DOE Patents [OSTI]

A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hyrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

Waite, Darrell M; Arnold, Richard; St. Pierre, James; Pendse, Hemant P; Ceckler, William H

2013-12-17T23:59:59.000Z

413

EFFECTS OF GAMMA RADIATION ON ELECTROCHEMICAL PROPERTIES OF IONIC LIQUIDS  

SciTech Connect (OSTI)

The electrochemical properties of ionic liquids (ILs) make them attractive for possible replacement of inorganic salts in high temperature molten salt electrochemical processing of nuclear fuel. To be a feasible replacement solvent, ILs need to be stable in moderate and high doses of radiation without adverse chemical and physical effects. Here, we exposed seven different ILs to a 1.2 MGy dose of gamma radiation to investigate their physical and chemical properties as they related to radiological stability. The azolium-based ILs experienced the greatest change in appearance, but these ILs were chemically more stable to gamma radiation than some of the other classes of ILs tested, due to the presence of aromatic electrons in the azolium ring. All the ILs exhibited a decrease in their conductivity and electrochemical window (at least 1.1 V), both of which could affect the utility of ILs in electrochemical processing. The concentration of the irradiation decomposition products was less than 3 mole %, with no impurities detectable using NMR techniques.

Visser, A; Nicholas Bridges, N; Thad Adams, T; John Mickalonis, J; Mark02 Williamson, M

2009-04-21T23:59:59.000Z

414

E-Print Network 3.0 - arutlus salt lake Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN... Accounting Master's Degree Summary: salary) 11 Employment Information Armstrong, Johnson & Seatsen Accountant Salt Lake City UT Baird... Longyear Accounting...

415

E-Print Network 3.0 - awra salt lake Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IN... Accounting Master's Degree Summary: salary) 11 Employment Information Armstrong, Johnson & Seatsen Accountant Salt Lake City UT Baird... Longyear Accounting...

416

Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters  

DOE Patents [OSTI]

A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

Moens, Luc (Lakewood, CO)

2003-06-24T23:59:59.000Z

417

Water Balance, Salt Loading, and Salinity Control Options of Red Bluff Reservoir, Texas  

E-Print Network [OSTI]

objectives: i) to outline water balance of the reservoir, ii) to establish salt loading trends over the past several decades, and iii) to evaluate the impact of salt loading on salinity of the reservoir and its outflow. We also outlined the needs... presumably has less seepage losses. The study reported here was conducted i) for examining the reservoir water balance of Red Bluff over the past several decades, ii) for establishing salt loading trends, and iii) for evaluating the impact of salt...

Miyamoto, S.; Yuan, Fasong; Anand, Shilpa

418

E-Print Network 3.0 - alkali salt deposition Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formation and salt ... Source: Zachariah, Michael R. - Departments of Chemistry & Mechanical Engineering, University of Minnesota Collection: Chemistry ; Materials Science...

419

E-Print Network 3.0 - acids lead salts Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Partial list Chemical Incompatibilities Summary: hypochlorite, all oxidizing agents Carbon tetrachloride Sodium Chlorates Ammonium salts, acids, powdered metals... ammonium...

420

E-Print Network 3.0 - acid ammonium salt Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Partial list Chemical Incompatibilities Summary: hypochlorite, all oxidizing agents Carbon tetrachloride Sodium Chlorates Ammonium salts, acids, powdered metals... ammonium...

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electrodialysis-based separation process for salt recovery and recycling from waste water  

DOE Patents [OSTI]

A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

Tsai, S.P.

1997-07-08T23:59:59.000Z

422

Electrodialysis-based separation process for salt recovery and recycling from waste water  

DOE Patents [OSTI]

A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

Tsai, Shih-Perng (Naperville, IL)

1997-01-01T23:59:59.000Z

423

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids  

SciTech Connect (OSTI)

Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

2013-07-22T23:59:59.000Z

424

Molten Salt Test Loop (MSTL) system customer interface document.  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

2013-09-01T23:59:59.000Z

425

The results of HLW processing using zirconium salt of dibutyl phosphoric acid  

SciTech Connect (OSTI)

Available in abstract form only. Full text of publication follows: Zirconium salt of dibutyl-phosphoric acid (ZS HDBP) dissolved in a diluent, is a promising solvent for liquid HLW processing. The investigations carried out earlier showed that ZS HDBP can recover a series of radionuclides (TPE, RE, U, Pu, Np, Sr) and some other elements (Mo, Ca, Fe) from aqueous solutions. The possibility of TPE and RE effective recovery and separation into appropriate fractions with high purification from each other was demonstrated as well. The results of extraction tests in the mixer-settlers in the course of liquid HLW treatment in hot cells, using ZS HDBP (0.4 M HDBP and 0.044 M Zr) dissolved in 30% TBP are presented. 30 liters of the feed solution containing TPE, RE, Sr and Cs with the total specific activity of 520 MBq/L and acidity of 2 M HNO{sub 3} were processed using the two-cycle flowsheet. TPE and RE recovery with subsequent stripping was realized in the first cycle, while Sr was recovered and concentrated in the second cycle. Raffinate of the latter contained almost all Cs. The degree of TPE and RE recovery was 104, and that of Sr was {approx}10. Decontamination factor of TPE and RE from Cs and Sr was 104, and that of Sr from TPE and Cs was 103. So, ZS HDBP can be used for separation of long-lived radionuclides from HLW with respect to radio-toxic category of the process products. (authors)

Fedorov, Yury; Zilberman, Boris; Shmidt, Olga; Saprikin, Vladimir; Ryasantsev, Valery [V. G. Khlopin Radium Institute, 194021, 28, 2nd Murinsky pr., Saint-Petersburg (Russian Federation)

2007-07-01T23:59:59.000Z

426

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect (OSTI)

The overall goal of this research conducted under the auspices of the USDOE Environmental Management Science Program (EMSP) is to provide a scientific foundation upon which the feasibility of new liquid- liquid extraction chemistry applicable to the bulk reduction of the volume of tank waste can be evaluated. Disposal of high- level nuclear waste is horrendously expensive, in large part because the actual radioactive matter in the tanks has been diluted over 10,000-fold by ordinary inorganic chemicals.1 Quite simply, if the radioactive matter and bulk inorganic chemicals could be separated into separate streams, large cost savings would accrue, because the latter stream is much cheaper to dispose of. In principle, one could remove the radionuclides from the waste, leaving behind the bulk of the waste; or one could remove certain bulk chemicals from the waste, leaving behind a mixture of radionuclides and minor inorganic salts. The preponderance of effort over the past two decades has focused on the former approach, which produces a high- level stream for vitrification and a low-activity stream for either vitrification (Hanford) or grout (Savannah River). At Hanford, a particular concern arises in that vitrification of a large volume of low-activity waste will be unacceptably expensive. To make matters worse, a projected future deficit of tank space may necessitate construction of expensive new tanks. These problems have raised questions as to whether a solution could be devised based on separation of sodium from the waste, resulting in the reduction of the total volume of waste that must be vitrified.

Moyer, Bruce A; Lumetta, Gregg J.; Marchand, Alan P.

2003-06-01T23:59:59.000Z

427

Lubricants or lubricant additives composed of ionic liquids containing ammonium cations  

DOE Patents [OSTI]

A lubricant or lubricant additive is an ionic liquid alkylammonium salt. The alkylammonium salt has the structure R.sub.xNH.sub.(4-x).sup.+,[F.sub.3C(CF.sub.2).sub.yS(O).sub.2].sub.2N.sup- .- where x is 1 to 3, R is independently C.sub.1 to C.sub.12 straight chain alkyl, branched chain alkyl, cycloalkyl, alkyl substituted cycloalkyl, cycloalkyl substituted alkyl, or, optionally, when x is greater than 1, two R groups comprise a cyclic structure including the nitrogen atom and 4 to 12 carbon atoms, and y is independently 0 to 11. The lubricant is effective for the lubrication of many surfaces including aluminum and ceramics surfaces.

Qu, Jun (Knoxville, TN) [Knoxville, TN; Truhan, Jr.,; John J. (Cookeville, TN) [Cookeville, TN; Dai, Sheng (Knoxville, TN) [Knoxville, TN; Luo, Huimin (Knoxville, TN) [Knoxville, TN; Blau, Peter J. (Knoxville, TN) [Knoxville, TN

2010-07-13T23:59:59.000Z

428

Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives  

SciTech Connect (OSTI)

The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

Elder, H.H.

2001-07-11T23:59:59.000Z

429

Direct conversion of carboxylate salts to carboxylic acids via reactive extraction  

E-Print Network [OSTI]

the fermentation conversion. In this case, fermentation broth contains ammonium salts (e.g., ammonium acetate, propionate, butyrate, pentanoate). Therefore, the downstream processing steps (including extraction, purification, esterification, and product... separation) must be compatible with the ammonium carboxylate salts formed in the fermentation. This research focuses on converting fermentation broth carboxylate salts into their corresponding acids via “acid springing.” Reactive extraction and thermal...

Xu, Xin

2008-10-10T23:59:59.000Z

430

Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-20T23:59:59.000Z

431

Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

Peters, T. B.; Fink, S. D.

2012-12-11T23:59:59.000Z

432

THE THORIUM MOLTEN SALT REACTOR: LAUNCHING THE THORIUM CYCLE WHILE CLOSING THE CURRENT  

E-Print Network [OSTI]

THE THORIUM MOLTEN SALT REACTOR: LAUNCHING THE THORIUM CYCLE WHILE CLOSING THE CURRENT FUEL CYCLE E ABSTRACT Molten salt reactors, in the configuration presented here and called Thorium Molten Salt Reactor on a Thorium base, i.e. started in the Th/Pu fuel cycle. We study the transition between the reactors of second

Paris-Sud XI, Université de

433

Insulators for cold urban areas: The problem of Road Salt Ravi Gorur and Sreeram Venkataraman  

E-Print Network [OSTI]

Insulators for cold urban areas: The problem of Road Salt Ravi Gorur and Sreeram Venkataraman of insulators in winter due to road salt. We have started a research project at Arizona State University are more concerned with the effect that the road salts have on insulators, both ceramic and composite

434

Growth and metal uptake of microalgae produced using salt groundwaters from the Bay of Bourgneuf  

E-Print Network [OSTI]

Growth and metal uptake of microalgae produced using salt groundwaters from the Bay of Bourgneuf production of microalgae. Salt groundwaters, available in this region, support a large part of four microalgae grown in two salt groundwaters or in enriched coastal seawater. Cultures of microalgae

Paris-Sud XI, Université de

435

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)  

SciTech Connect (OSTI)

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

CHANG, ROBERT

2006-02-02T23:59:59.000Z

436

Salt Disposal Investigations to Study Thermally Hot Radioactive Waste In A Deep Geologic Repository in Bedded Rock Salt - 12488  

SciTech Connect (OSTI)

A research program is proposed to investigate the behavior of salt when subjected to thermal loads like those that would be present in a high-level waste repository. This research would build upon results of decades of previous salt repository program efforts in the US and Germany and the successful licensing and operation of a repository in salt for disposal of defense transuranic waste. The proposal includes a combination of laboratory-scale investigations, numerical simulations conducted to develop validated models that could be used for future repository design and safety case development, and a thermal field test in an underground salt formation with a configuration that replicates a small portion of a conceptual repository design. Laboratory tests are proposed to measure salt and brine properties across and beyond the range of possible repository conditions. Coupled numerical models will seek to describe phenomenology (thermal, mechanical, and hydrological) observed in the laboratory tests. Finally, the field test will investigate many phenomena that have been variously cited as potential issues for disposal of thermally hot waste in salt, including buoyancy effects and migration of pre-existing trapped brine up the thermal gradient (including vapor phase migration). These studies are proposed to be coordinated and managed by the Carlsbad Field Office of DOE, which is also responsible for the operation of the Waste Isolation Pilot Plant (WIPP) within the Office of Environmental Management. The field test portion of the proposed research would be conducted in experimental areas of the WIPP underground, far from disposal operations. It is believed that such tests may be accomplished using the existing infrastructure of the WIPP repository at a lower cost than if such research were conducted at a commercial salt mine at another location. The phased field test is proposed to be performed over almost a decade, including instrumentation development, several years of measurements during heating and then subsequent cooling periods, and the eventual forensic mining back of the test bed to determine the multi-year behavior of the simulated waste/rock environment. Funding possibilities are described, and prospects for near term start-up are discussed. Mining of the access drifts required to create the test area in the WIPP underground began in November 2011. Because this mining uses existing WIPP infrastructure and labor, it is estimated to take about two years to complete the access drifts. WIPP disposal operations and facility maintenance activities will take priority over the SDI field test area mining. Funding of the SDI proposal was still being considered by DOE's Offices of Environmental Management and Nuclear Energy at the time this paper was written, so no specific estimates of the progress in 2012 have been included. (authors)

Nelson, Roger A. [DOE, Carlsbad Field Office, Carlsbad NM (United States); Buschman, Nancy [DOE, Office of Environmental Management, Washington DC (United States)

2012-07-01T23:59:59.000Z

437

Lithium-loaded liquid scintillators  

DOE Patents [OSTI]

The invention is directed to a liquid scintillating composition containing (i) one or more non-polar organic solvents; (ii) (lithium-6)-containing nanoparticles having a size of up to 10 nm and surface-capped by hydrophobic molecules; and (iii) one or more fluorophores. The invention is also directed to a liquid scintillator containing the above composition.

Dai, Sheng (Knoxville, TN); Kesanli, Banu (Mersin, TR); Neal, John S. (Knoxville, TN)

2012-05-15T23:59:59.000Z

438

Freezing of a Liquid Marble  

E-Print Network [OSTI]

In this study, we present for the first time the observations of a freezing liquid marble. In the experiment, liquid marbles are gently placed on the cold side of a Thermo-Electric Cooler (TEC) and the morphological changes are recorded and characterized thereafter. These liquid marbles are noticed to undergo a shape transition from a spherical to a flying-saucer shaped morphology. The freezing dynamics of liquid marbles is observed to be very different from that of a freezing water droplet on a superhydrophobic surface. For example, the pointy tip appearing on a frozen water drop could not be observed for a frozen liquid marble. In the end, we highlight a possible explanation for the observed morphology.

Ali Hashmi; Adam Strauss; Jie Xu

2012-07-03T23:59:59.000Z

439

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

1995-12-26T23:59:59.000Z

440

Method for treating liquid wastes  

DOE Patents [OSTI]

The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

Katti, Kattesh V. (Columbia, MO); Volkert, Wynn A. (Columbia, MO); Singh, Prahlad (Columbia, MO); Ketring, Alan R. (Columbia, MO)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING  

SciTech Connect (OSTI)

This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires h

King, W

2007-11-30T23:59:59.000Z

442

Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona  

SciTech Connect (OSTI)

This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

Mathur, A K

1983-09-01T23:59:59.000Z

443

Temperature-dependent mechanical property testing of nitrate thermal storage salts.  

SciTech Connect (OSTI)

Three salt compositions for potential use in trough-based solar collectors were tested to determine their mechanical properties as a function of temperature. The mechanical properties determined were unconfined compressive strength, Young's modulus, Poisson's ratio, and indirect tensile strength. Seventeen uniaxial compression and indirect tension tests were completed. It was found that as test temperature increases, unconfined compressive strength and Young's modulus decreased for all salt types. Empirical relationships were developed quantifying the aforementioned behaviors. Poisson's ratio tends to increase with increasing temperature except for one salt type where there is no obvious trend. The variability in measured indirect tensile strength is large, but not atypical for this index test. The average tensile strength for all salt types tested is substantially higher than the upper range of tensile strengths for naturally occurring rock salts. Interest in raising the operating temperature of concentrating solar technologies and the incorporation of thermal storage has motivated studies on the implementation of molten salt as the system working fluid. Recently, salt has been considered for use in trough-based solar collectors and has been shown to offer a reduction in levelized cost of energy as well as increasing availability (Kearney et al., 2003). Concerns regarding the use of molten salt are often related to issues with salt solidification and recovery from freeze events. Differences among salts used for convective heat transfer and storage are typically designated by a comparison of thermal properties. However, the potential for a freeze event necessitates an understanding of salt mechanical properties in order to characterize and mitigate possible detrimental effects. This includes stress imparted by the expanding salt. Samples of solar salt, HITEC salt (Coastal Chemical Co.), and a low melting point quaternary salt were cast for characterization tests to determine unconfined compressive strength, indirect tensile strength, coefficient of thermal expansion (CTE), Young's modulus, and Poisson's ratio. Experiments were conducted at multiple temperatures below the melting point to determine temperature dependence.

Everett, Randy L.; Iverson, Brian D.; Broome, Scott Thomas; Siegel, Nathan Phillip; Bronowski, David R.

2010-09-01T23:59:59.000Z

444

Shearing Flows in Liquid Crystal Models  

E-Print Network [OSTI]

The liquid crystal phase is a phase of matter between the solid and liquid phase whose flow is characterized by a velocity field and a director field which describes locally the orientation of the liquid crystal. In this ...

Dorn, Timothy

2012-05-31T23:59:59.000Z

445

Method of measuring a liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid.

Garcia, Gabe V. (Las Cruces, NM); Carlson, Nancy M. (Idaho Falls, ID); Donaldson, Alan D. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

446

Process for the preparation of protected dihydroxypropyl trialkylammonium salts and derivatives thereof  

DOE Patents [OSTI]

A process for the preparation of protected dihydroxypropyl trialkylammonium salts, particularly in chiral form is described. In particular, a process for the preparation of (2,2-dimethyl-1,3-dioxolan-4-ylmethyl)trialkylammonium salts, particularly in chiral form is described. Furthermore, a process is described wherein the (2,2-dimethyl-1,3-dioxolan-4ylmethyl)trialkylammonium salts is a 2,2-dimethyl-1,3-dioxolan-4-ylmethyl trimethylammonium salt, preferably in chiral form. The protected dihydroxypropyl trialkylammonium salts lead to L-carnitine (9) when in chiral form (5).

Hollingsworth, Rawle I. (Haslett, MI); Wang, Guijun (East Lansing, MI)

2000-01-01T23:59:59.000Z

447

Renewable Liquid Fuels Reforming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Liquid Fuels Reforming The Program anticipates that distributed reforming of biomass-derived liquid fuels could be commercial during the transition to hydrogen and used...

448

Singular Limits in Polymer Stabilized Liquid Crystals  

E-Print Network [OSTI]

We investigate equilibrium configurations for a polymer stabilized liquid crys- tal material ... eling the cross section of the liquid crystal-polymer fiber composite.

1910-31-00T23:59:59.000Z

449

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen...  

Broader source: Energy.gov (indexed) [DOE]

Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Liquid Hydrogen Delivery - Strategic Directions for Hydrogen Delivery Workshop Targets, barriers and...

450

Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance  

SciTech Connect (OSTI)

Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilic cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.

Zhang, Tao; Datta, Supratim; Eichler, Jerry; Ivanova, Natalia; Axen, Seth D.; Kerfeld, Cheryl A.; Chen, Feng; Kyrpides, Nikos; Hugenholtz, Philip; Cheng, Jan-Fang; Sale, Kenneth L.; Simmons, Blake; Rubin, Eddy

2011-02-17T23:59:59.000Z

451

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

452

Fluoride Salt-Cooled High-Temperature Reactor Development Roadmap  

SciTech Connect (OSTI)

Fluoride salt-cooled high-temperature reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics and fully passive safety. This paper provides an overview of a technology development pathway for expeditious commercial deployment of first-generation FHRs. The paper describes the principal remaining FHR technology challenges and the development path needed to address the challenges. First-generation FHRs do not appear to require any technology breakthroughs, but will require significant technology development and demonstration. FHRs are currently entering early phase engineering development. As such, the development roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant; the lack of an approved licensing framework; the lack of qualified, salt-compatible structural materials; and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

453

STAINLESS STEEL INTERACTIONS WITH SALT CONTAINING PLUTONIUM OXIDES  

SciTech Connect (OSTI)

Salt containing plutonium oxide materials are treated, packaged and stored within nested, stainless steel containers based on requirements established in the DOE 3013 Standard. The moisture limit for the stored materials is less than 0.5 weight %. Surveillance activities which are conducted to assess the condition of the containers and assure continuing 3013 container integrity include the destructive examination of a select number of containers to determine whether corrosion attack has occurred as a result of stainless steel interactions with salt containing plutonium oxides. To date, some corrosion has been observed on the innermost containers, however, no corrosion has been noted on the outer containers and the integrity of the 3013 container systems is not expected to be compromised over a 50 year storage lifetime.

Nelson, Z.; Chandler, G.; Dunn, K.; Stefek, T.; Summer, M.

2010-02-01T23:59:59.000Z

454

Dam constructions as sealing systems in rock salt  

SciTech Connect (OSTI)

Dam constructions represent an essential component of the multibarrier safety concept in the Federal Republic of Germany for a repository of radioactive waste in salt formations. They enhance safety during the operational phase as well as in the post operational phase of the repository. In the framework of a joint R and D-project between BGR, DBE and GSF the components of a suitable dam have been developed and will be constructed and tested in the GSF-Asse salt mine in Lower-Saxony. The aims of the investigation program, its realization and some results on the development of construction materials will be presented and discussed. Experiences gained during these tests in laboratory and in situ will be described.

Engelmann, H.J.; Bollingerfehr, W.; Fischer, H. [Deutsche Gesellschaft zum Bau und Betrieb von Endlagern fuer Abfallstoffe mbH, Peine (Germany)

1993-12-31T23:59:59.000Z

455

Effect of pore pressure on damage accumulation in salt  

SciTech Connect (OSTI)

Laboratory data acquired from two multistage, triaxial compression creep experiments are presented for bedded salt. The experiments were conducted to study the effect of pore pressure changes on the accumulation of damage (dilatant volumetric strain). The first experiment comprised five constant total stress tests in which the internal pore pressure was incremented during successive stages, while the externally applied axial and radial stresses were maintained constant. The second experiment comprised three constant effective stress tests in which the pore pressure and the externally applied axial and radial stresses were increased in equal increments in successive stages. Volumetric strain rates were determined both before and after the pore pressure changes were made in all tests. The data suggest pore pressure changes made during the constant total stress tests have a greater effect on salt dilation than do changes made during the constant effective stress tests.

PFEIFLE,T.W.; HURTADO,L. DIANE

2000-06-12T23:59:59.000Z

456

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect (OSTI)

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

2010-06-01T23:59:59.000Z

457

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect (OSTI)

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

2009-03-01T23:59:59.000Z

458

Process for removal of mineral particulates from coal-derived liquids  

DOE Patents [OSTI]

Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

McDowell, William J. (Knoxville, TN)

1980-01-01T23:59:59.000Z

459

Evaluation of potential crushed-salt constitutive models  

SciTech Connect (OSTI)

Constitutive models describing the deformation of crushed salt are presented in this report. Ten constitutive models with potential to describe the phenomenological and micromechanical processes for crushed salt were selected from a literature search. Three of these ten constitutive models, termed Sjaardema-Krieg, Zeuch, and Spiers models, were adopted as candidate constitutive models. The candidate constitutive models were generalized in a consistent manner to three-dimensional states of stress and modified to include the effects of temperature, grain size, and moisture content. A database including hydrostatic consolidation and shear consolidation tests conducted on Waste Isolation Pilot Plant and southeastern New Mexico salt was used to determine material parameters for the candidate constitutive models. Nonlinear least-squares model fitting to data from the hydrostatic consolidation tests, the shear consolidation tests, and a combination of the shear and hydrostatic tests produces three sets of material parameter values for the candidate models. The change in material parameter values from test group to test group indicates the empirical nature of the models. To evaluate the predictive capability of the candidate models, each parameter value set was used to predict each of the tests in the database. Based on the fitting statistics and the ability of the models to predict the test data, the Spiers model appeared to perform slightly better than the other two candidate models. The work reported here is a first-of-its kind evaluation of constitutive models for reconsolidation of crushed salt. Questions remain to be answered. Deficiencies in models and databases are identified and recommendations for future work are made. 85 refs.

Callahan, G.D.; Loken, M.C.; Sambeek, L.L. Van; Chen, R.; Pfeifle, T.W.; Nieland, J.D. [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.

1995-12-01T23:59:59.000Z

460

Preliminary siting characterization Salt Disposition Facility - Site B  

SciTech Connect (OSTI)

A siting and reconnaissance geotechnical program has been completed in S-Area at the Savannah River Site in South Carolina. This program investigated the subsurface conditions for the area known as ``Salt Disposition Facility (SDF), Site B'' located northeast of H-Area and within the S-Area. Data acquired from the Site B investigation includes both field exploration and laboratory test data.

Wyatt, D.

2000-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "liquid desiccant salt" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Generic effluent monitoring system certification for salt well portable exhauster  

SciTech Connect (OSTI)

Tests were conducted to verify that the Generic Effluent Monitoring System (GEMS), as it is applied to the Salt Well Portable Exhauster, meets all applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the air sampling probe location and the transport of the sample to the collection devices. The criteria covering air sampling probe location ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in the report. The tests demonstrated that the GEMS/Salt Well Exhauster system meets all applicable performance criteria. Pacific Northwest National Laboratory conducted the testing using a mockup of the Salt Well Portable Exhauster stack at the Numatec Hanford Company`s 305 Building. The stack/sampling system configuration tested was designed to provide airborne effluent control for the Salt Well pumping operation at some U.S. Department of Energy (DOE) radioactive waste storage tanks at the Hanford Site, Washington. The portable design of the exhauster allows it to be used in other applications and over a range of exhaust air flowrates (approximately 200 - 1100 cubic feet per minute). The unit includes a stack section containing the sampling probe and another stack section containing the airflow, temperature and humidity sensors. The GEMS design features a probe with a single shrouded sampling nozzle, a sample delivery line, and sample collection system. The collection system includes a filter holder to collect the sample of record and an in-line detector head and filter for monitoring beta radiation-emitting particles.

Glissmeyer, J.A.; Maughan, A.D.

1997-09-01T23:59:59.000Z

462

Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor  

SciTech Connect (OSTI)

The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

2011-04-01T23:59:59.000Z

463

Haze Formation and Behavior in Liquid-Liquid Extraction Processes  

SciTech Connect (OSTI)

Aqueous haze formation and behavior was studied in the liquid-liquid system tri-n-butyl phosphate in odorless kerosene and 3M nitric acid with uranyl nitrate and cesium nitrate representing the major solute and an impurity, respectively. A pulsed column, mixer-settler and centrifugal contactor were chosen to investigate the effect of different turbulence characteristics on the manifestation of haze since these contactors exhibit distinct mixing phenomena. The dispersive processes of drop coalescence and breakage, and water precipitation in the organic phase were observed to lead to the formation of haze drops of {approx}1 um in diameter. The interaction between the haze and primary drops of the dispersion was critical to the separation efficiency of the liquid-liquid extraction equipment. Conditions of high power input and spatially homogeneous mixing enabled the haze drops to become rapidly assimilated within the dispersion to maximize the scrub performance and separation efficiency of the equipment.

Arm, Stuart T.; Jenkins, J. A.

2006-07-31T23:59:59.000Z

464

Transpiring wall supercritical water oxidation reactor salt deposition studies  

SciTech Connect (OSTI)

Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G. [and others

1996-09-01T23:59:59.000Z

465