National Library of Energy BETA

Sample records for link terrestrial ecosystem

  1. Terrestrial Climate Change and Ecosystem Response Recorded in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on ...

  2. Terrestrial Climate Change and Ecosystem Response Recorded in Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediments and Related Deposits terrestrial climate change Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on archives that incorporate and preserve information about changes in temperature, precipitation, nutrients, vegetation, fire history, etc. The resolution and length of such paleoclimate/ecological records is dependent on the type of archive. Although much

  3. Observing terrestrial ecosystems and the carbon cycle from space

    SciTech Connect (OSTI)

    Schimel, David; Pavlick, Ryan; Fisher, Joshua B.; Asner, Gregory P.; Saatchi, Sassan; Townsend, Philip; Miller, Charles E.; Frankenberg, Christian; Hibbard, Kathleen A.; Cox, Peter

    2015-02-06

    Modeled terrestrial ecosystem and carbon cycle feedbacks contribute substantial uncertainty to projections of future climate. The limitations of current observing networks contribute to this uncertainty. Here we present a current climatology of global model predictions and observations for photosynthesis, biomass, plant diversity and plant functional diversity. Carbon cycle tipping points occur in terrestrial regions where fluxes or stocks are largest, and where biological variability is highest, the tropics and Arctic/Boreal zones. Global observations are predominately in the mid-latitudes and are sparse in high and low latitude ecosystems. Observing and forecasting ecosystem change requires sustained observations of sufficient density in time and space in critical regions. Using data and theory available now, we can develop a strategy to detect and forecast terrestrial carbon cycle-climate interactions, by combining in situ and remote techniques.

  4. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    SciTech Connect (OSTI)

    Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

  5. Adaptation policies to increase terrestrial ecosystem resilience. Potential utility of a multicriteria approach

    SciTech Connect (OSTI)

    de Bremond, Ariane; Engle, Nathan L.

    2014-01-30

    Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in the realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.

  6. Modeling the role of terrestrial ecosystems in the global carbon cycle

    SciTech Connect (OSTI)

    Emanuel, W.R.; Post, W.M.; Shugart, H.H. Jr.

    1980-01-01

    A model for the global biogeochemical cycle of carbon which includes a five-compartment submodel for circulation in terrestrial ecosystems of the world is presented. Although this terrestrial submodel divides carbon into compartments with more functional detail than previous models, the variability in carbon dynamics among ecosystem types and in different climatic zones is not adequately treated. A new model construct which specifically treats this variability by modeling the distribution of ecosystem types as a function of climate on a 0.5/sup 0/ latitude by 0.5/sup 0/ longitude scale of resolution is proposed.

  7. Terrestrial Ecosystem Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Terrestrial Ecosystem Science Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  8. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  9. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Yuan, Fengming; Hanson, Paul J.; Wullschleger, Stan D.; Thornton, Peter E.; Riley, William J.; Song, Xia; Graham, David E.; Song, Changchun; Tian, Hanqin

    2016-06-28

    Over the past 4 decades, a number of numerical models have been developed to quantify the magnitude, investigate the spatial and temporal variations, and understand the underlying mechanisms and environmental controls of methane (CH4) fluxes within terrestrial ecosystems. These CH4 models are also used for integrating multi-scale CH4 data, such as laboratory-based incubation and molecular analysis, field observational experiments, remote sensing, and aircraft-based measurements across a variety of terrestrial ecosystems. Here we summarize 40 terrestrial CH4 models to characterize their strengths and weaknesses and to suggest a roadmap for future model improvement and application. Our key findings are that (1) themore » focus of CH4 models has shifted from theoretical to site- and regional-level applications over the past 4 decades, (2) large discrepancies exist among models in terms of representing CH4 processes and their environmental controls, and (3) significant data–model and model–model mismatches are partially attributed to different representations of landscape characterization and inundation dynamics. Three areas for future improvements and applications of terrestrial CH4 models are that (1) CH4 models should more explicitly represent the mechanisms underlying land–atmosphere CH4 exchange, with an emphasis on improving and validating individual CH4 processes over depth and horizontal space, (2) models should be developed that are capable of simulating CH4 emissions across highly heterogeneous spatial and temporal scales, particularly hot moments and hotspots, and (3) efforts should be invested to develop model benchmarking frameworks that can easily be used for model improvement, evaluation, and integration with data from molecular to global scales. These improvements in CH4 models would be beneficial for the Earth system models and further simulation of climate–carbon cycle feedbacks.« less

  10. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Yuan, Fengming; Hanson, Paul J.; Wullschleger, Stan D.; Thornton, Peter E.; Riley, William J.; Song, Xia; Graham, David E.; Song, Changchun; Tian, Hanqin

    2016-01-28

    A number of numerical models have been developed to quantify the magnitude, over the past 4 decades, such that we have investigated the spatial and temporal variations, and understand the underlying mechanisms and environmental controls of methane (CH4) fluxes within terrestrial ecosystems. These CH4 models are also used for integrating multi-scale CH4 data, such as laboratory-based incubation and molecular analysis, field observational experiments, remote sensing, and aircraft-based measurements across a variety of terrestrial ecosystems. Here we summarize 40 terrestrial CH4 models to characterize their strengths and weaknesses and to suggest a roadmap for future model improvement and application. Our keymore » findings are that (1) the focus of CH4 models has shifted from theoretical to site- and regional-level applications over the past 4 decades, (2) large discrepancies exist among models in terms of representing CH4 processes and their environmental controls, and (3) significant data–model and model–model mismatches are partially attributed to different representations of landscape characterization and inundation dynamics. Furthermore three areas for future improvements and applications of terrestrial CH4 models are that (1) CH4 models should more explicitly represent the mechanisms underlying land–atmosphere CH4 exchange, with an emphasis on improving and validating individual CH4 processes over depth and horizontal space, (2) models should be developed that are capable of simulating CH4 emissions across highly heterogeneous spatial and temporal scales, particularly hot moments and hotspots, and (3) efforts should be invested to develop model benchmarking frameworks that can easily be used for model improvement, evaluation, and integration with data from molecular to global scales. Finally, these improvements in CH4 models would be beneficial for the Earth system models and further simulation of climate–carbon cycle feedbacks.« less

  11. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, Pmore » and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg–1 dry soil, 0.1 mmol N Kg–1 dry soil, 0.1 mmol P Kg–1 dry soil, and 0.1 mmol S Kg–1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.« less

  12. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Hui, Dafeng; King, Anthony Wayne; Song, Xia; Thornton, Peter E.; Zhang, Lihua

    2015-11-27

    How soil microbes assimilate carbon-C, nitrogen-N, phosphorus-P, and sulfur-S is fundamental for understanding nutrient cycling in terrestrial ecosystems. We compiled a global database of C, N, P, and S concentrations in soils and microbes and developed relationships between them by using a power function model. The C:N:P:S was estimated to be 287:17:1:0.8 for soils, and 42:6:1:0.4 for microbes. We found a convergence of the relationships between elements in soils and in soil microbial biomass across C, N, P, and S. The element concentrations in soil microbial biomass follow a homeostatic regulation curve with soil element concentrations across C, N, P and S, implying a unifying mechanism of microbial assimilating soil elements. This correlation explains the well-constrained C:N:P:S stoichiometry with a slightly larger variation in soils than in microbial biomass. Meanwhile, it is estimated that the minimum requirements of soil elements for soil microbes are 0.8 mmol C Kg–1 dry soil, 0.1 mmol N Kg–1 dry soil, 0.1 mmol P Kg–1 dry soil, and 0.1 mmol S Kg–1 dry soil, respectively. Lastly, these findings provide a mathematical explanation of element imbalance in soils and soil microbial biomass, and offer insights for incorporating microbial contribution to nutrient cycling into Earth system models.

  13. DOE/SC-ARM-13-011 Green Ocean Amazon Terrestrial Ecosystem Collaborati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    late successional species) that can inform future versions of the CLM Ecosystem Demography model (Moorcroft et al. 2001). This will be an interactive process, with changes in...

  14. Quantifying the role of fire in the Earth system - Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century

    SciTech Connect (OSTI)

    Li, Fang; Bond-Lamberty, Benjamin; Levis, Samuel

    2014-03-07

    Fire is the primary terrestrial ecosystem disturbance agent on a global scale. It affects carbon balance of global terrestrial ecosystems by emitting carbon to atmosphere directly and immediately from biomass burning (i.e., fire direct effect), and by changing net ecosystem productivity and land-use carbon loss in post-fire regions due to biomass burning and fire-induced vegetation mortality (i.e., fire indirect effect). Here, we provide the first quantitative assessment about the impact of fire on the net carbon balance of global terrestrial ecosystems for the 20th century, and investigate the roles of fire direct and indirect effects. This study is done by quantifying the difference between the 20th century fire-on and fire-off simulations with NCAR community land model CLM4.5 as the model platform. Results show that fire decreases net carbon gain of the global terrestrial ecosystems by 1.0 Pg C yr-1 average across the 20th century, as a results of fire direct effect (1.9 Pg C yr-1) partly offset by indirect effect (-0.9 Pg C yr-1). Fire generally decreases the average carbon gains of terrestrial ecosystems in post-fire regions, which are significant over tropical savannas and part of forests in North America and the east of Asia. The general decrease of carbon gains in post-fire regions is because fire direct and indirect effects have similar spatial patterns and the former (to decrease carbon gain) is generally stronger. Moreover, the effect of fire on net carbon balance significantly declines prior to ~1970 with trend of 8 Tg C yr-1 due to increasing fire indirect effect and increases afterward with trend of 18 Tg C yr-1 due to increasing fire direct effect.

  15. Separating stressor influences from environmental variability: eight case studies from aquatic and terrestrial ecosystems

    SciTech Connect (OSTI)

    Luoma, Samuel N.; Clements, Will; Gerritsen, Jeroen; Hatch, Audrey; Jepson, Paul; Reynoldson, Trefor; Thom, Ronald M.

    2001-12-03

    It can be difficult to unambiguously establish the influences of a particular stressor or group of stressors in a complex ecosystem, except, perhaps, when the effects are extreme (Luoma and Carter, 1991). Yet this is a critical problem we face when attempting to understand the influences of human activities on ecosystems. Single experiments or studies are rarely adequate to establish cause and effect in complex ecosystems, and many of the individual approaches available to demonstrate stressor effects have important inadequacies. A multi-faceted body of work is usually at the center of most examples where stressor effects are explained. In this chapter seven case studies are presented where effects or influences of multiple stressors were explained and separated from natural variability. The goal of this chapter is to demonstrate that identification of stressor effects is tractable, although not necessarily simple; and to illustrate some specific strategies that have worked. We also present one case study where the quest for cause and effect is just beginning, to illustrate the range of challenges involved as a body of work begins to be established. The examples are from several different fields of ecology, they cover a variety of scales and a mix of disciplines.

  16. Bridging the Divide: Linking Genomics to Ecosystem Responses to Climate Change: Final Report

    SciTech Connect (OSTI)

    Smith, Melinda D.

    2014-03-15

    soil moisture) under a more variable precipitation regime, rather than reduced population numbers (A. gerardii tiller densities did not differ between altered and ambient treatments; p = 0.505) or a priori differences in genotype richness (Avolio et al.2013a). This ecological sorting of genotypes, which accounts for 40% of all sampled individuals in the altered plots, is an important legacy of the press chronic climate changes in the RaMPs experiment. Objective 2 In May 2010, we established the Climate Extremes Experiment at the Konza Prairie Biological Station. For the experiment, a gradient of temperatures, ranging from ambient to extreme, were imposed in 2010 and 2011 as a mid-season heat wave under well-watered or severe drought conditions. This study allowed us for the first time to examine species-specific thresholds of responses to climate extremes and assess how these phenotypic responses may impact selection of particular genotypes, with the ultimate goal of linking alterations in individual performance and genetic diversity to ecosystem structure and functioning. We found that tallgrass prairie was resistant to heat waves, but it was not resistant to extreme drought, which reduced aboveground net primary productivity (ANPP) below the lowest level measured in this grassland in almost thirty years (Hoover et al. in press(a)). This extreme reduction in ecosystem function was a consequence of reduced productivity of both C4 grasses and C3 forbs. This reduction in biomass of the C4 grasses (Andropogon gerardii and Sorghastrum nutans) was, in part, due to significant reductions in photosynthesis, leaf water potential and productivity with drought in the dominant grasses species, with S. nutans was more sensitive than A. gerardii to drought (Hoover et al. in press(b)). However, the dominant forb was negatively impacted by the drought more than the dominant grasses, and this led to a reordering of species abundances within the plant community. Although this change in

  17. Final Report on "Rising CO2 and Long-term Carbon Storage in Terrestrial Ecosystems: An Empirical Carbon Budget Validation"

    SciTech Connect (OSTI)

    J. Patrick Megonigal; Bert G. Drake

    2010-08-27

    The primary goal of this report is to report the results of Grant DE-FG02-97ER62458, which began in 1997 as Grant DOE-98-59-MP-4 funded through the TECO program. However, this project has a longer history because DOE also funded this study from its inception in 1985 through 1997. The original grant was focused on plant responses to elevated CO2 in an intact ecosystem, while the latter grant was focused on belowground responses. Here we summarize the major findings across the 25 years this study has operated, and note that the experiment will continue to run through 2020 with NSF support. The major conclusions of the study to date are: (1 Elevated CO2 stimulated plant productivity in the C3 plant community by ~30% during the 25 year study. The magnitude of the increase in productivity varied interannually and was sometime absent altogether. There is some evidence of down-regulation at the ecosystem level across the 25 year record that may be due to interactions with other factors such as sea-level rise or long-term changes in N supply; (2) Elevated CO2 stimulated C4 productivity by <10%, perhaps due to more efficient water use, but C3 plants at elevated CO2 did not displace C4 plants as predicted; (3) Increased primary production caused a general stimulation of microbial processes, but there were both increases and decreases in activity depending on the specific organisms considered. An increase in methanogenesis and methane emissions implies elevated CO2 may amplify radiative forcing in the case of wetland ecosystems; (4) Elevated CO2 stimulated soil carbon sequestration in the form of an increase in elevation. The increase in elevation is 50-100% of the increase in net ecosystem production caused by elevated CO2 (still under analysis). The increase in soil elevation suggests the elevated CO2 may have a positive outcome for the ability of coastal wetlands to persist despite accelerated sea level rise; (5) Crossing elevated CO2 with elevated N causes the elevated CO

  18. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Links BIOSYNC: Structural Biology Synchrotron Users Organization X-ray Anomalous Scattering Going MAD at CHESS Protein Data Bank Protein Data Bank Search International Union of Crystallography American Crystallographic Association Crystallography 101 Teaching Crystallography Periodic Table Periodic Table and X-ray Properties X-ray data booklet Merohedral crystal twinning server Software Links CCP4 MOSFLM HKL Research, Inc. homepage Solve/Resolve The O-files - Useful reference to the O

  19. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links: CAMD's SAXS beamline sister page By Derek Dorman General Reference: Glatter and Kratky Small Angle X-ray Scattering Book (subject to the permission letter and terms of use) SAXS Presentation by Jianhua Li SAXS Presentation by John Pople Dr. Brian Grady's Polymer Characterization Group SAXS page Jun, Y., Waychunas, G. "Molecular-Level Investigations of Nucleation Mechanisms and Kinetics of Formation of Environmental Nanoparticles" Poster SAXS Analysis/Simulation: Paul Scherrer

  20. RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01

    Radiation exposure of the biota in the shoreline area of the Chernobyl Nuclear Power Plant Cooling Pond was assessed to evaluate radiological consequences from the decommissioning of the Cooling Pond. The article addresses studies of radioactive contamination of the terrestrial faunal complex and radionuclide concentration ratios in bodies of small birds, small mammals, amphibians, and reptiles living in the area. The data were used to calculate doses to biota using the ERICA Tool software. Doses from {sup 90}Sr and {sup 137}Cs were calculated using the default parameters of the ERICA Tool and were shown to be consistent with biota doses calculated from the field data. However, the ERICA dose calculations for plutonium isotopes were much higher (2-5 times for small mammals and 10-14 times for birds) than the doses calculated using the experimental data. Currently, the total doses for the terrestrial biota do not exceed maximum recommended levels. However, if the Cooling Pond is allowed to drawdown naturally and the contaminants of the bottom sediments are exposed and enter the biological cycle, the calculated doses to biota may exceed the maximum recommended values. The study is important in establishing the current exposure conditions such that a baseline exists from which changes can be documented following the lowering of the reservoir water. Additionally, the study provided useful radioecological data on biota concentration ratios for some species that are poorly represented in the literature.

  1. Terrestrial sequestration

    ScienceCinema (OSTI)

    Charlie Byrer

    2010-01-08

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  2. Terrestrial sequestration

    SciTech Connect (OSTI)

    Charlie Byrer

    2008-03-10

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  3. Linking ecosystem scale vegetation change to shifts in carbon and water cycling: the consequences of widespread piñon mortality in the Southwest

    SciTech Connect (OSTI)

    Litvak, Marcy Ellen

    2012-10-01

    The southwestern United States experienced an extended drought from 1999-2002 which led to widespread coniferous tree mortality. Piñon-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, were extremely vulnerable to this drought. An abrupt die-off of 40 to 95% of piñon pine (Pinus edulis) and 2-25% of juniper (Juniperus monosperma) across 1.5 million ha triggered rapid and extensive changes in the structure of PJ woodlands with potentially large, yet unknown, consequences for ecosystem services and feedbacks between the carbon cycle and climate system. Given the spatial extent of PJ woodlands (3rd largest biome in the US) and climatic predictions of increased frequency and intensity of drought in the region, it is crucial to understand the consequences of these disturbances on regional carbon and energy dynamics, biogeochemical processes and atmospheric CO2. The overall objective of our research was to quantify what impact widespread mortality of piñon trees has for carbon and water cycling in PJ woodlands. Our specific objectives for this proposal were: 1) Quantify the carbon, water and energy exchange trajectory after mortality in PJ woodlands; 2) Determine the mechanisms controlling the response and recovery of ecosystem production and respiration processes following large-scale piñon mortality; 3) Use the relationships we measure between ecosystem structure and function PJ woodlands recover from mortality to scale the results of our study up to the regional scale.

  4. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    SciTech Connect (OSTI)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O'Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  5. T.G. Hinton: Radioactive Contaminants in Terrestrial Ecosystems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-7454 office (803) 725-3309 fax thinton(at)uga.edu Dr. Hinton has published numerous papers on plant ...

  6. External Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Links External Links This page contains links to web sites and pages having to do with the Federal Energy Technology Network, Department of Energy, and Energy related ...

  7. Terrestrial mapping of the Oak Ridge Reservation: Phase 1. Environmental Restoration Program

    SciTech Connect (OSTI)

    Washington-Allen, R.A.; Ashwood, T.L.; Christensen, S.W.; Offerman, H.; Scarbrough-Luther, P.

    1995-06-01

    This report presents the results of the first phase in development of a habitat map of the terrestrial ecosystem on the Oak Ridge Reservation (ORR). During this phase, a satellite image of the ORR was classified into land use/land cover types, the classified image was incorporated into a geographic information system map of the ORR, and the accuracy of the map was assessed. A habitat map is a critical foundation for evaluation of the potential impact of historical (or ongoing) contamination on terrestrial biota of the ORR. The abundance and distribution of wildlife species and plant communities of concern are intrinsically linked to the abundance and distribution of habitat on which those species and communities rely. Thus, the impact of spatially discrete patches of contamination on those biota is directly proportional to the degree of overlap between habitat and contamination. Landsat 5 Thematic Mapper satellite imagery was used to create the land use/land cover map. A Thematic Mapper image consists of seven images of the same point on the earth produced by seven separate sensors, each of which detects a unique part of the electromagnetic spectrum. Separately and in various combinations, these spectral images can be correlated with vegetation type or other land cover type. The image selected for this map was from April 13, 1994, and covers 189,000 ha.

  8. Terrestrial Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cycle Terrestrial Carbon Cycle "Only about half of the CO2 released into the atmosphere by human activities currently resides in the atmosphere, the rest absorbed on land and in the oceans. The period over which the carbon will be sequestered is unclear, and the efficiency of future sinks is unknown." US Carbon Cycle Research Plan "We" desire to be able to predict the future spatial and temporal distribution of sources and sinks of atmospheric CO2 and their interaction

  9. Dynamics and transformations of radionuclides in soils and ecosystem health

    SciTech Connect (OSTI)

    Fellows, Robert J. ); Ainsworth, Calvin C. ); Driver, Crystal J. ); Cataldo, Dominic A. )

    1998-12-01

    The chemical behavior of radionuclides can vary widely in soil and sediment environments. Equally important, for a given radionuclide the physico-chemical properties of the solids and aqueous phase can greatly influence a radionuclides behavior. Radionuclides can conceivably occur in soils as soluble-free, inorganic-soluble-complexed, organic-soluble, complexed, adsorbed, precipitated, coprecipitated, or solid structural species. While it is clear that an assessment of a radionuclide?s soil chemistry and potential shifts in speciation will yield a considerable understanding of its behavior in the natural environment, it does not directly translate to bioavailability or its impact on ecosystems health. The soil chemical factors have to be linked to food chain considerations and other ecological parameters that directly tie to an analysis of ecosystem health. In general, the movement of radionuclides from lower to higher trophic levels diminishes with each trophic level in both aqua tic and terrestrial systems. In some cases, transfer is limited because of low absorption/assimilation by successive trophic organisms (Pu, U); for other radionuclides (Tc, H) assimilation may be high but rapid metabolic turnover and low retention greatly reduce tissue concentrations available to predator species. Still others are chemical analogs of essential elements whose concentrations are maintained under strict metabolic control in tissues (Cs) or are stored in tissues seldom consumed by other organisms (Sr storage in exoskeleton, shells, and bone). Therefore, the organisms that receive the greatest ingestion exposures are those in lower trophic positions or are in higher trophic levels but within simple, short food chains. Food source, behavior, and habitat influence the accumulation of radionuclides in animals.

  10. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere

    SciTech Connect (OSTI)

    Wilkins, Michael J.; Daly, Rebecca; Mouser, Paula J.; Trexler, Ryan; Sharma, Shihka; Cole, David R.; Wrighton, Kelly C.; Biddle , Jennifer F.; Denis, Elizabeth; Fredrickson, Jim K.; Kieft, Thomas L.; Onstott, T. C.; Peterson, Lee; Pfiffner, Susan M.; Phelps, Tommy J.; Schrenk, Matthew O.

    2014-09-12

    Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on “Trends and Future Challenges in Sampling The Deep Subsurface” was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation’s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.

  11. Links - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Links Surplus Equipment Bolin Marketing Group | www.bmgsurplus.com Counties of the SRSCRO Region Aiken County | www.aikencounty.net Allendale County | www.allendalecounty.com Barnwell County | www.barnwellcounty.sc.gov Columbia County | www.columbiacountyga.gov Richmond County | www.augustaga.gov Chambers of Commerce Aiken SC | www.aikenchamber.net Augusta, GA | www.augustagausa.com Barnwell, SC | www.barnwellcountychamber.org Columbia County, GA | www.columbiacountychamber.com North

  12. MIDC: Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Other Data Collection Activities Baseline Surface Radiation Network (BSRN) Clear Sky Forcast for NREL/SRRL (or other locations) Colorado Dept. of Public Health & Environment: Air Quality Index (AQI) Reporting System Colorado State University: USDA UV-B Monitoring and Research Program European Skynet Radiometers network (ESR) Jefferson County, Colorado: Jeffco Weather Station NOAA: Climate Monitoring & Diagnostics Laboratory (CMDL) NREL OTF: Reference Meteorological and Irradiance

  13. Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks

    SciTech Connect (OSTI)

    Kicklighter, David W.; Hayes, Daniel J; Mcclelland, James W; Peterson, Bruce; Mcguire, David; Melillo, Jerry

    2014-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western

  14. Missing links in the root-soil organic matter continuum

    SciTech Connect (OSTI)

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  15. Photosynthesis, Nitrogen, Their Adjustment and its Effects on Ecosystem Carbon Gain at Elevated CO{sub 2}l. A Comparison of Loblolly and Ponderosa Pines

    SciTech Connect (OSTI)

    Ball, J. Timothy; Eichelmann, Hillar Y.; Tissue, David T.; Lewis, James D.; Picone, Johnn B.; Ross, Peter D.

    1996-12-01

    A functional understanding of terrestrial ecosystem carbon processes is essential for two reasons. First, carbon flow is a most fundamental aspects of ecosystem function as it mediates most of the energy flow in these systems. Second, carbon flow also mediates the majority of energy flow in the global economy and will do for the foreseeable future. The increased atmospheric carbon dioxide and its inevitable flow through global ecosystems will influence ecosystem processes. There is, of course, great interest in the potential of ecosystems to sequester some of the carbon being loaded into the atmosphere by economic activity.

  16. Climate Perspectives: Change in the Terrestrial Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perspectives: Change in the Terrestrial Arctic Climate Perspectives An interactive exploration of Arctic climate science through prisms of the visual arts, literary arts, info-vis, ...

  17. Management Opportunities for Enhancing Terrestrial Carbon Dioxide Sinks

    SciTech Connect (OSTI)

    Post, W. M.; Izaurralde, Roberto C.; West, Tristram O.; Liebig, Mark A.; King, Anthony W.

    2012-12-01

    The potential for mitigating increasing atmospheric carbon dioxide concentrations through the use of terrestrial biological carbon (C) sequestration is substantial. Here, we estimate the amount of C being sequestered by natural processes at global, North American, and national US scales. We present and quantify, where possible, the potential for deliberate human actions through forestry, agriculture, and use of biomass-based fuels to augment these natural sinks. Carbon sequestration may potentially be achieved through some of these activities but at the expense of substantial changes in land-use management. Some practices (eg reduced tillage, improved silviculture, woody bioenergy crops) are already being implemented because of their economic benefits and associated ecosystem services. Given their cumulative greenhouse-gas impacts, other strategies (eg the use of biochar and cellulosic bioenergy crops) require further evaluation to determine whether widespread implementation is warranted.

  18. Shelf-sea ecosystems

    SciTech Connect (OSTI)

    Walsh, J J

    1980-01-01

    An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

  19. Toward “optimal” integration of terrestrial biosphere models

    SciTech Connect (OSTI)

    Schwalm, Christopher R.; Huntingzger, Deborah; Fisher, Joshua B.; Michalak, A. M.; Bowman, Kevin; Cias, Philippe; Cook, Robert B.; El-Masri, Bassil; Hayes, Daniel J.; Huang, Maoyi; Ito, A.; Jain, Atul K.; King, Anthony W.; Lei, Huimin; Liu, Junjie; Lu, Chaoqun; Mao, Jiafu; Peng, Shushi; Poulter, Benjamin; Ricciuto, Daniel M.; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia; Zeng, Ning

    2015-06-10

    Multi-model ensembles (MME) are commonplace in Earth system modeling. Here we perform MME integration using a 10-member ensemble of terrestrial biosphere models (TBMs) from the Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP). We contrast optimal (skill-based for present-day carbon cycling) versus naïve (“one model – one vote”) integration. MsTMIP optimal and naïve mean land sink strength estimates (–1.16 vs. –1.15 Pg C per annum respectively) are statistically indistinguishable. This holds also for grid cell values and extends to gross uptake, biomass, and net ecosystem productivity. TBM skill is similarly indistinguishable. The added complexity of skill-based integration does not materially change MME values. This suggests that carbon metabolism has predictability limits and/or that all models and references are misspecified. Resolving this issue requires addressing specific uncertainty types (initial conditions, structure, references) and a change in model development paradigms currently dominant in the TBM community.

  20. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect (OSTI)

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  1. E-Link - Disclaimer

    Office of Scientific and Technical Information (OSTI)

    Javascript Not Enabled OSTI Security Website Policies and Important Links

  2. Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy...

    Open Energy Info (EERE)

    Webinar-Terrestrial Solar Spectral Modeling for Renewable Energy: SMARTS Model Jump to: navigation, search Tool Summary Name: Webinar-Terrestrial Solar Spectral Modeling for...

  3. Are GRACE-era Terrestrial Water Trends Driven by Anthropogenic...

    Office of Scientific and Technical Information (OSTI)

    Are GRACE-era Terrestrial Water Trends Driven by Anthropogenic Climate Change? Citation Details In-Document Search Title: Are GRACE-era Terrestrial Water Trends Driven by ...

  4. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications ...

  5. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    SciTech Connect (OSTI)

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; Fahey, Timothy J.; Fernandez, Christopher W.; Guo, Dali; Helmisaari, Helja -Sisko; Hobbie, Erik A.; Iversen, Colleen M.; Jackson, Robert B.; Leppälammi-Kujansuu, Jaana; Norby, Richard J.; Phillips, Richard P.; Pregitzer, Kurt S.; Pritchard, Seth G.; Rewald, Boris; Zadworny, Marcin

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.

  6. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; Fahey, Timothy J.; Fernandez, Christopher W.; Guo, Dali; Helmisaari, Helja -Sisko; Hobbie, Erik A.; Iversen, Colleen M.; Jackson, Robert B.; et al

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less

  7. DOE Manual Studies Terrestrial Carbon Sequestration

    Broader source: Energy.gov [DOE]

    There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy.

  8. Columbia Estuary Ecosystem Restoration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia Estuary Ecosystem Restoration Program Finding of No Significant Impact page 1 Columbia Estuary Ecosystem Restoration Program Finding of No Significant Impact Bonneville Power Administration DOE/EA-2006 July 2016 SUMMARY Bonneville Power Administration (BPA) announces its environmental findings for the Columbia Estuary Ecosystem Restoration Program. The ongoing program, implemented by BPA and United States Army Corps of Engineers (Corps), involves activities and projects to restore

  9. Planning the Next Generation of Arctic Ecosystem Experiments

    SciTech Connect (OSTI)

    Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

    2011-01-01

    Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

  10. Energy Efficiency Links

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Organizations Energy Efficiency Organizations Release Date: October 1999 Last Updated: Septembert 2009 EIA Links Disclaimer: These pages contain hypertext links...

  11. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Thornton, Peter E; Post, Wilfred M

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  12. Development of Monitoring & Verification Technology (MVT) for Carbon Sequestration in Terrestrial Ecosystems: Instrumentation and Protocols

    SciTech Connect (OSTI)

    Wielopolski, Lucian

    2008-09-29

    The objective of this CRADA is to further develop the Multiple Elemental Soil Analysis (MESA) system, based on inelastic neutron scattering technology that was originally developed by Dr. Lucian Wielopolski at BNL. The scope of this CRADA will center on the quantification and monitoring of non-destructive in situ carbon loading in soils to evaluate land application emission reduction activities. To accomplish this objective, the CRADA will center on three main joint activities as described below: A. To further develop and characterize a prototype, field deployable MESA system for static and scanning purposes. B. To develop applicable protocols for agricultural land applications; system validation and field sampling schemes. C. To implement field experiments for independent systems validation, verification, and acceptance by third parties for use in the market segment and commercialization. The technical approach involves a system for monitoring characteristic gamma rays emitted from carbon nuclei stimulated by inelastic neutron scattering from a carbon nucleus. The system consists of a neutron generator emitting fast, 14 MeV, neutrons, shielding materials, and a detection system with nuclear electronics for data acquisition. Following standard system calibration, the results are produced immediately at the end of the counting period.

  13. Ecosystem Spectroscopy: Investigating Associations between Hyperspectr...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ecosystem dynamics at the biosphere-atmosphere interface to enable more accurate climate forecasting. Although our ability to forecast ecosystem functions and climate at the...

  14. Website Policies / Important Links | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  15. Website Policies / Important Links | sciencecinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  16. Helpful Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helpful Links Helpful Links Helpful Links Hanford Staff Directory Hanford Site Wide Programs Energy Employees Occupational Illness Compensation Hanford Workers Compensation Projects & Facilities HERO PHOENIX Hanford Meteorological Station Definitions Abbreviations and Acronyms Visitor Control and Site Access Visitor Hanford Computer Access Request Helpful Links Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Contact Us Do you have a question? Contact Hanford

  17. Links - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Berkeley Lab Links: Nuclear Science Division Berkeley Lab Berkeley Lab Guest House Berkeley Lab Cafeteria Jobs at Berkeley Lab Today at Berkeley Lab Health and Safety Manual (PUB-3000) Science Links: Web Elements (Periodic Table) Science Daily News Sci Tech Daily News Space Weather Astronomy Picture of the Day The Cyclotron Kids Lawrence's Cyclotron Patent Science Fair Cyclotron Bay Area Links: Bay Area Traffic Bay Area Weather Bay Area Weather RADAR Bay Area Earthquakes

  18. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  19. Ecotoxicology of tropical marine ecosystems

    SciTech Connect (OSTI)

    Peters, E.C.; Gassman, N.J.; Firman, J.C.; Richmond, R.H.; Power, E.A.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

  20. Method for identifying anomalous terrestrial heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  1. Long-period solar-terrestrial variability

    SciTech Connect (OSTI)

    Sonett, C.P. )

    1991-01-01

    Studies aimed at extending the record of solar-terrestrial variability to longer periods are discussed in a critical review of US research from the period 1987--1990. Sections are devoted to the sunspot index, radioactive carbon studies, a potential climate connection between radiocarbon changes and the solar irradiance cycle, Be-10 studies, geological laminae, solar neutrino counts, and the construction of data sets. Also included is a selective bibliography. 66 refs.

  2. Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Related Links Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size

  3. ARM - Quick Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Related Links ISDAC Home AAF Home AVP Aircraft Instrumentation, October 14-16, 2008 ARM Data Discovery Browse Data Post-Campaign Data Sets Flight Summary Table (PDF, 440K) ISDAC Wiki Mission Summary Journal Deployment Resources NSA Site ARM Data Plots Quick Links Experiment Planning ISDAC Proposal Abstract Full Proposal (pdf, 1,735K) Science Questions Science Overview Document for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics Measurements &

  4. AlumniLink

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlumniLink Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit AlumniLink Bi-monthly publication connecting our alumni with news, information and former colleagues from the Lab. Alumni September 2015 September 2015 Neutrons find "missing" magnetism of plutonium Young, Jupiter-like planet discovered Four Los Alamos projects selected as R&D 100 Award finalists SHARE Alumni July 2015 July 2015 Mars Rover's

  5. Related Links | Department of Energy

    Energy Savers [EERE]

    Research & Development Algal Biofuels Related Links Related Links The links below ... Events Algal Biofuels Strategy Workshops Annual Biomass Conference Office-Attended ...

  6. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Useful Online Nuclear Physics Journals Important Online Resources Science Direct ... Elsevier Physics Online: Nuclear Physics A, B, Physics Repots, Physics Letters B and more. ...

  7. Links (pbl/contracts)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation Links to related sites Regional Dialogue Transmission Regional Dialogue issues Team ASC Methodology 2012 BPA Rate Case Page content last modified on: April 06, 2010...

  8. Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Tri-Party Agreement The Agreement Announcements List of Approved Changes TPA Project Manager's Lists Modifications for Public Comment Data Management MP-14 WIDS...

  9. Engineering approaches to ecosystem restoration

    SciTech Connect (OSTI)

    Hayes, D.F.

    1998-07-01

    This proceedings CD ROM contains 127 papers on developing and evaluating engineering approaches to wetlands and river restoration. The latest engineering developments are discussed, providing valuable insights to successful approaches for river restoration, wetlands restoration, watershed management, and constructed wetlands for stormwater and wastewater treatment. Potential solutions to a wide variety of ecosystem concerns in urban, suburban, and coastal environments are presented.

  10. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; et al

    2016-02-24

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less

  11. Ecosystem Japan Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ecosystem Japan Co Ltd Jump to: navigation, search Name: Ecosystem Japan Co Ltd Place: Tokyo, Tokyo, Japan Zip: 160-0002 Sector: Solar Product: Japan-based installer of solar...

  12. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect (OSTI)

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  13. Plutonium Isotopes in the Terrestrial Environment at the Savannah...

    Office of Scientific and Technical Information (OSTI)

    Plutonium Isotopes in the Terrestrial Environment at the Savannah River Site, USA. A Long-Term Study Citation Details In-Document Search Title: Plutonium Isotopes in the ...

  14. Biodiversity and industry ecosystem management

    SciTech Connect (OSTI)

    Coleman, W.G.

    1996-11-01

    Biodiversity describes the array of interacting, genetically distinct populations and species in a region, the communities they are functioning parts. Ecosystem health is a process identifying biological indicators, end points, and values. The decline of populations or species, an accelerating trend worldwide, can lead to simplification of ecosystem processes, thus threatening the stability an sustainability of ecosystem services directly relevant to human welfare in the chain of economic and ecological relationships. The challenge of addressing issues of such enormous scope and complexity has highlighted the limitations of ecology-as-science. Additionally, biosphere-scale conflicts seem to lie beyond the scope of conventional economics, leading to differences of opinion about the commodity value of biodiversity and of the services that intact ecosystems provide. In the fact of these uncertainties, many scientists and economists have adopted principles that clearly assign burdens of proof to those who would promote the loss of biodiversity and that also establish {open_quotes}near-trump{close_quotes} (preeminent) status for ecological integrity. Electric utility facilities and operations impact biodiversity whenever construction, operation, or maintenance of generation, delivery, and support facilities alters landscapes and habitats and thereby impacts species. Although industry is accustomed to dealing with broad environmental concerns (such as global warming or acid rain), the biodiversity issue invokes hemisphere-side, regional, local, and site-specific concerns all at the same time. Industry can proactively address these issues of scope and scale in two main ways: first, by aligning strategically with the broad research agenda put forth by informed scientists and institutions; and second, by supporting focused management processes whose results will contribute incrementally to the broader agenda of rebuilding or maintaining biodiversity. 40 refs., 8 figs.

  15. Consideration of Ecosystem for ICME

    SciTech Connect (OSTI)

    Ren, Weiju

    2013-01-01

    As the Integrated Computational Materials Engineering (ICME) emerges as a hot topic, computation, experimentation, and digital database are identified as its three major components. Efforts are being actively made from various aspects to bring ICME to reality. However, many factors that would affect ICEM development still remain vague. This paper is an attempt to discuss the needs for establishing a database centered ecosystem to facilitate ICEM development.

  16. ARM - Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links Related Links TWP-ICE Home Tropical Western Pacific Home ARM Data Discovery Browse Data Post-Experiment Data Sets Weather Summary (pdf, 6M) New York Workshop Presentations Experiment Planning TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press Media Coverage TWP-ICE Fact Sheet (pdf, 211K) Press Releases TWP-ICE Images ARM flickr site <=""

  17. Land Use and Ecosystems Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Land Use and Ecosystems information includes Terrestrial Carbon Sequestration Data Sets, data sets from Africa and Asia, the Worldwide Organic Soil Carbon and Nitrogen Dataset, and much more.

  18. Federal interagency ecosystem management initiative: Great Lakes ecosystem case study

    SciTech Connect (OSTI)

    Cordle, S.

    1995-12-01

    In August 1994 a team of representatives from six Federal agencies conducted a case study of ecosystem management practices in the Great Lakes. Its report was based on interviews carried out in Chicago, Illinois, and Ann Arbor, Michigan; on phone interviews; and on written materials provided by Federal and State officials as well as representatives of Tribal organizations, non-governmental organizations, academia, industry, and the International Joint Commission. The report describes mainly what the participants told or provided to the survey team, with a few explicit conclusions and recommendations from the team. The issues covered by the survey included Legal, Institutional, Science and Information, Budget, and Public Participation.

  19. Solar terrestrial coupling through space plasma processes

    SciTech Connect (OSTI)

    Birn, J.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  20. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    MAJOR CONFORMED CONTRACTS LINKS SiteProject Contract Link Idaho Idaho Cleanup Project http:www.id.doe.govdoeidICPContractICPContract.htm Advance Mixed Waste Treatment http:...

  1. Building an Innovation Ecosystem | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building an Innovation Ecosystem Building an Innovation Ecosystem June 30, 2016 - 4:13pm Addthis Graphic by Sarah Harman Graphic by Sarah Harman Mike Mueller Senior Digital Content Strategist, EERE Communications What are the key facts? EERE's Technology-to-Market program has been carefully studying and strengthening a nationwide innovation ecosystem to give game-changing clean energy technologies a fighting chance at success. Through significant stakeholder engagement and careful coordination,

  2. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  3. Skipso - The Cleantech Ecosystem | Open Energy Information

    Open Energy Info (EERE)

    Hide Map References: Skipso - The Cleantech Ecosystem1 The Cleantech Open Innovation Lab2 This article is a stub. You can help OpenEI by expanding it....

  4. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect (OSTI)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  5. Balanced link for dry coal extrusion pumps

    DOE Patents [OSTI]

    Bebejian, Maral

    2013-10-22

    A link which defines a link body that includes a multiple of link plates integral with a link body, the link body disposed at least partially forward of a forward edge of the multiple of link plates.

  6. Nuclear Data Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links to Other Useful Sites Online Journals Institutions and Programs Related to Nuclear Physics U.S. Nuclear Data Program: All evaluated nuclear data supported by the U.S. Department of Energy. National Nuclear Data Center: Brookhaven National Laboratory; Evaluated Nuclear Structure Data Files (ENSDF), Nuclear Science References (NSR) and other databases. Isotopes Project: (E.O.L. Berkeley National Laboratory) Table of Isotopes, Isotope Explorer, XUNDL, Nuclear Data Dissemination Homepage, and

  7. Page 11, Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 of 11 Previous Page Links Information for Employees & In-Processing DOE Order 3792.3 - Drug-Free Federal Workplace Testing http://www.archives.gov/federal-register/codification/executive-order/12564.html Flexible Spending Accounts (FSA) https://www.fsafeds.com/fsafeds/index.asp Pay & Pay Scales http://www.opm.gov/a-z-index/ Benefits Facts on Leave Programs http://www.opm.gov/policy-data-oversight/pay-leave/leave-administration/ Health Benefits

  8. CAMD Nanofabrication Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research :: Publications :: Infrastructure :: Links :: Nanofabrication Facility in News Nano 50TM Awards: The Nano 50TM Awards, presented by Nanotech Briefs magazine, recognize the top 50 technologies, products and innovators that have significantly impacted, or are expected to impact, the state of the art in nanotechnology. "The winners of the Nano 50 awards are the best of the best - the innovative people and technologies that will continue to move nanotechnology to key mainstream

  9. Tidal heating in multilayered terrestrial exoplanets

    SciTech Connect (OSTI)

    Henning, Wade G.; Hurford, Terry

    2014-07-01

    The internal pattern and overall magnitude of tidal heating for spin-synchronous terrestrial exoplanets from 1 to 2.5 R{sub E} is investigated using a propagator matrix method for a variety of layer structures. Particular attention is paid to ice-silicate hybrid super-Earths, where a significant ice mantle is modeled to rest atop an iron-silicate core, and may or may not contain a liquid water ocean. We find multilayer modeling often increases tidal dissipation relative to a homogeneous model, across multiple orbital periods, due to the ability to include smaller volume low viscosity regions, and the added flexure allowed by liquid layers. Gradations in parameters with depth are explored, such as allowed by the Preliminary Earth Reference Model. For ice-silicate hybrid worlds, dramatically greater dissipation is possible beyond the case of a silicate mantle only, allowing non-negligible tidal activity to extend to greater orbital periods than previously predicted. Surface patterns of tidal heating are found to potentially be useful for distinguishing internal structure. The influence of ice mantle depth and water ocean size and position are shown for a range of forcing frequencies. Rates of orbital circularization are found to be 10-100 times faster than standard predictions for Earth-analog planets when interiors are moderately warmer than the modern Earth, as well as for a diverse range of ice-silicate hybrid super-Earths. Circularization rates are shown to be significantly longer for planets with layers equivalent to an ocean-free modern Earth, as well as for planets with high fractions of either ice or silicate melting.

  10. Website Policies / Important Links | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  11. Website Policies / Important Links | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  12. Website Policies / Important Links | DOE Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  13. Major Conformed Contract Links | Department of Energy

    Office of Environmental Management (EM)

    Conformed Contract Links Major Conformed Contract Links Links to conformed copies of EM's major contracts. Major Conformed Contract Links (302.59 KB) More Documents & Publications ...

  14. A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle

    SciTech Connect (OSTI)

    Stephen C. Piper

    2005-10-15

    The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

  15. ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    woodland site used for DOE sponsored ecosystem research to measure the aerosol life ... PACE will measure changes in biogenic volatile organic from PJ ecosystem, the ...

  16. The sensitivity of the terrestrial biosphere to climatic change: A simulation of the middle Holocene

    SciTech Connect (OSTI)

    Foley, J.A.

    1994-12-01

    A process-based ecosystem model, DEMETER, is used to simulate the sensitivity of the terrestrial biosphere to changes in climate. In this study, DEMETER is applied to the two following climatic regimes: (1) the modern observed climate and (2) a simulated mid-Holocene climate (6000 years before present). The mid-Holocene climate is simulated using the GENESIS global climate model, where shifts in the Earth`s orbital parameters result in warmer northern continents and enhanced monsoons in Asia, North Africa, and North America. DEMETER simulates large differences between modern and mid-Holocene vegetation cover: (1) mid-Holocene boreal forests extend farther poleward than present in much of Europe, Asia, and North America, and (2) mid-Holocene North African grasslands extend substantially farther north than present. The simulated patterns of mid-Holocene vegetation are consistent with many features of the paleobotanical record. Simulated mid-Holocene global net primary productivity is approximately 3% larger than present, largely due to the increase of boreal forest and tropical grasslands relative to tundra and desert. Global vegetation carbon is higher at 6 kyr B.P. compared to present by roughly the same amount (4%). Mid-Holocene global litter carbon is larger than present by 10%, while global soil carbon is approximately 1% less. Despite the regional changes in productivity and carbon storage the simulated total carbon storage potential of the terrestrial biosphere (not including changes in peat) does not change significantly between the two simulations. 53 refs., 12 figs., 4 tabs.

  17. Links - MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links UW Madison Madison Symmetric Torus Links MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST People mst logo CPLA Home Directory Publications Links Internal University of Wisconsin Physics Department Research funding includes support from: Department of Energy National Science Foundation Other Reversed Field Pinch Experiments around the world: RFX-mod in Padua, Italy Extrap-T2R in Stockhom, Sweden RELAX at Kyoto Institute of

  18. Beryllium Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links About Us Hanford Cultural Resources Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Related Links Email Email Page | Print

  19. Ecosystem Spectroscopy - Investigating associations between hyperspect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yuki's research interests include ecosystem functions and processes, big eco-geospatial data analytics, and geospatial cloud analytics. Yuki holds a B.A. and M.S. degrees in...

  20. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; Hafer, M.; Hayes, Daniel J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, Werner; McGuire, A. David; Vargas, Rodrigo; et al

    2015-01-21

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North Americanmore » land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4

  1. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    SciTech Connect (OSTI)

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; Hafer, M.; Hayes, Daniel J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, Werner; McGuire, A. David; Vargas, Rodrigo; Wei, Yaxing; West, Tristram O.; Woodall, Chris W.

    2015-01-21

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the

  2. Multilevel DC link inverter

    DOE Patents [OSTI]

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  3. Impact of elevated CO2 on a Florida Scrub-oak Ecosystems

    SciTech Connect (OSTI)

    Drake, Bert G

    2013-01-01

    Since May of 1996, we have conducted an experiment in Florida Scrub Oak to determine the impact of elevated atmospheric CO2 and climate change on carbon, water, and nutrient cycling in this important terrestrial ecosystem. Florida scrub oak is the name for a collective of species occupying much of the Florida peninsula. The dominant tree species are oaks and the dwarf structure of this community makes it an excellent system in which to test hypotheses regarding the potential capacity of woody ecosystems to assimilate and sequester anthropogenic carbon. Scrub oak is fire dependent with a return cycle of 10-15 years, a time which would permit an experiment to follow the entire cycle. Our site is located on Cape Canaveral at the Kennedy Space Center, Florida. After burning in 1995, we built 16 open top chambers, half of which have been fumigated with pure CO2 sufficient to raise the concentration around the plants to 350 ppm above ambient. In the intervening 10 years we have non destructively measured biomass of shoots and roots, ecosystem gas exchange using chambers and eddy flux, leaf photosynthesis and respiration, soil respiration, and relevant environmental factors such as soil water availability, temperature, light, etc. The overwhelming result from analysis of our extensive data base is that elevated CO2 has had a profound impact on this ecosystem that, overall, has resulted in increased carbon accumulation in plant shoots, roots and litter. Our measurements of net ecosystem gas exchange also indicate that the ecosystem has accumulated carbon much in excess of the increased biomass or soil carbon suggesting a substantial export of carbon through the porous, sandy soil into the water table several meters below the surface. A major discovery is the powerful interaction between the stimulation of growth, photosynthesis, and respiration by elevated CO2 and other environmental factors particularly precipitation and nitrogen. Our measurements focused attention on

  4. Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S.: Final Report

    SciTech Connect (OSTI)

    Munger, J. William; Foster, David R.; Richardson, Andrew D.

    2014-10-01

    This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbon uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.

  5. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; et al

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis ofmore » the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be

  6. An ecosystem-scale perspective of the net land methanol flux. Synthesis of micrometeorological flux measurements

    SciTech Connect (OSTI)

    Wohlfahrt, G.; Amelynck, C.; Ammann, C.; Arneth, A.; Bamberger, I.; Goldstein, A. H.; Gu, L.; Guenther, A.; Hansel, A.; Heinesch, B.; Holst, T.; Hörtnagl, L.; Karl, T.; Laffineur, Q.; Neftel, A.; McKinney, K.; Munger, J. W.; Pallardy, S. G.; Schade, G. W.; Seco, R.; Schoon, N.

    2015-07-09

    Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates, reflecting uncertainties in the approaches used to model and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on production, and thus the methanol emission magnitude, as well as stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; however, they are neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow for full advantage to be taken of

  7. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Yaxing; Liu, Shishi; Huntzinger, Deborah N.; Michalak, Anna M.; Viovy, Nicolas; Post, Wilfred M.; Schwalm, Christopher R.; Schaeffer, Kevin; Jacobson, Andrew R.; Lu, Chaoqun; et al

    2014-12-05

    Ecosystems are important and dynamic components of the global carbon cycle, and terrestrial biospheric models (TBMs) are crucial tools in further understanding of how terrestrial carbon is stored and exchanged with the atmosphere across a variety of spatial and temporal scales. Improving TBM skills, and quantifying and reducing their estimation uncertainties, pose significant challenges. The Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal multi-scale and multi-model intercomparison effort set up to tackle these challenges. The MsTMIP protocol prescribes standardized environmental driver data that are shared among model teams to facilitate model model and model observation comparisons. Inmore » this article, we describe the global and North American environmental driver data sets prepared for the MsTMIP activity to both support their use in MsTMIP and make these data, along with the processes used in selecting/processing these data, accessible to a broader audience. Based on project needs and lessons learned from past model intercomparison activities, we compiled climate, atmospheric CO2 concentrations, nitrogen deposition, land use and land cover change (LULCC), C3 / C4 grasses fractions, major crops, phenology and soil data into a standard format for global (0.5⁰ x 0.5⁰ resolution) and regional (North American: 0.25⁰ x 0.25⁰ resolution) simulations. In order to meet the needs of MsTMIP, improvements were made to several of the original environmental data sets, by improving the quality, and/or changing their spatial and temporal coverage, and resolution. The resulting standardized model driver data sets are being used by over 20 different models participating in MsTMIP. Lastly, the data are archived at the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov) to provide long-term data management and distribution.« less

  8. Argonne Terrestrial Carbon Cycle Data from Batavia Prairie and Agricultural Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Matamala, Roser [ANL; Jastrow, Julie D.; Lesht, Barry [ANL; Cook, David [ANL; Pekour, Mikhail [ANL; Gonzalez-Meler, Miquel A. [University of Illinois at Chicago

    Carbon dioxide fluxes and stocks in terrestrial ecosystems are key measurements needed to constrain quantification of regional carbon sinks and sources and the mechanisms controlling them. This information is required to produce a sound carbon budget for North America. This project examines CO2 and energy fluxes from agricultural land and from restored tallgrass prairie to compare their carbon sequestration potentials. The study integrates eddy covariance measurements with biometric measurements of plant and soil carbon stocks for two systems in northeastern Illinois: 1) long-term cultivated land in corn-soybean rotation with conventional tillage, and 2) a 15 year-old restored prairie that represents a long-term application of CRP conversion of cultivated land to native vegetation. The study contributes to the North American Carbon Program (NACP) by providing information on the magnitude and distribution of carbon stocks and the processes that control carbon dynamics in cultivated and CRP-restored land in the Midwest. The prairie site has been functioning since October 2004 and the agricultural site since July 2005. (From http://www.atmos.anl.gov/ FERMI/index.html)

  9. Protective link for superconducting coil

    DOE Patents [OSTI]

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  10. MCNP6 Cosmic & Terrestrial Background Particle Fluxes -- Release 4

    SciTech Connect (OSTI)

    McMath, Garrett E.; McKinney, Gregg W.; Wilcox, Trevor

    2015-01-23

    Essentially a set of slides, the presentation begins with the MCNP6 cosmic-source option, then continues with the MCNP6 transport model (atmospheric, terrestrial) and elevation scaling. It concludes with a few slides on results, conclusions, and suggestions for future work.

  11. Links | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  12. EFFECTS OF ELEVATED CO2 ON ROOT FUNCTION AND SOIL RESPIRATION IN A MOJAVE DESERT ECOSYSTEM

    SciTech Connect (OSTI)

    Nowak, Robert S.

    2007-12-19

    belowground in relatively recalcitrant forms. Indeed, a model-based analysis predicted that the arid/semiarid southwestern bioclimatic region had one of the highest rates of net carbon storage in the United States over the past century (Schimel et al. 2000). Second, root systems of desert plants are often extensive (Foxx et al. 1984, Hartle et al. 2006) with relatively large proportions of roots deep in the soil (Schenk & Jackson 2002). Thus, an understanding of belowground processes in desert ecosystems provides information on the potential for terrestrial carbon sequestration in desert ecosystems.

  13. Using Ecosystem Experiments to Improve Vegetation Models

    SciTech Connect (OSTI)

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; Walker, Anthony P.; Dietze, Michael; Hanson, Paul J.; Hickler, Thomas; Jain, Atul; Luo, Yiqi; Parton, William; Prentice, I. Collin; Thornton, Peter E.; Wang, Shusen; Wang, Yingping; Weng, Ensheng; Iversen, Colleen M.; McCarthy, Heather R.; Warren, Jeffrey; Oren, Ram; Norby, Richard J

    2015-01-01

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced a clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.

  14. Using Ecosystem Experiments to Improve Vegetation Models

    SciTech Connect (OSTI)

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; Walker, Anthony P.; Dietze, Michael; Hanson, Paul J.; Hickler, Thomas; Jain, Atul; Luo, Yiqi; Parton, William; Prentice, I. Collin; Thornton, Peter E.; Wang, Shusen; Wang, Yingping; Weng, Ensheng; Iversen, Colleen M.; McCarthy, Heather R.; Warren, Jeffrey; Oren, Ram; Norby, Richard J

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced a clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.

  15. Using Ecosystem Experiments to Improve Vegetation Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; Walker, Anthony P.; Dietze, Michael; Hanson, Paul J.; Hickler, Thomas; Jain, Atul; Luo, Yiqi; Parton, William; et al

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore » clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less

  16. Coso geothermal environmental overview study ecosystem quality

    SciTech Connect (OSTI)

    Leitner, P.

    1981-09-01

    The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

  17. Terrestrial Heat Flow In The North Island Of New Zealand | Open...

    Open Energy Info (EERE)

    Terrestrial Heat Flow In The North Island Of New Zealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Terrestrial Heat Flow In The North...

  18. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  19. Update on Washington initiatives on ecosystem management

    SciTech Connect (OSTI)

    Kostka, D.

    1995-12-01

    A biological {open_quotes}revolution{close_quotes} is in progress. Due to initiatives of the Clinton-Gore administration, biologists across the nation are trying to define and use a new concept called ecosystem management. {open_quotes}Ecosystem management{close_quotes} was born in the frustration of trying to deal with the spotted owl controversy in the Northwest. Biologists could not agree on what should be done. And the biologists and economists rarely got together to try to solve problems. Some astute individuals realized that to achieve a sustainable development, ecosystems would have to be managed on a much larger scale than merely small plots of lands. And people from many different backgrounds and disciplines would need to come together to find solutions. This paper will present the views of a Washington insider who has been a player (although too frequently a minor league player!) in administration initiatives to infuse ecosystem management principles and practices in our national conscience. Today, federal agency staff talk to those in other offices within their own agency. Federal agency staff also work on joint projects across federal agencies. In addition, state government, nonprofits, universities, interested individuals, and tribal governments are becoming involved. This is the biological {open_quotes}revolution{close_quotes} that is in progress. The emphasis is shifting from looking at the life history and problems of single species to a much broader approach of examining many species, including humans. The author will present a report on results of the ecosystem management initiative in the last year and point out some of the hurdles still ahead.

  20. Final Technical Report: Effects of Changing Water and Nitrogen Inputs on a Mojave Desert Ecosystem

    SciTech Connect (OSTI)

    Smith, Stanley, D.; Nowak, Robert S.; Fenstermaker, Lynn, F.; Young, Michael,H.

    2007-11-30

    In order to anticipate the effects of global change on ecosystem function, it is essential that predictive relationships be established linking ecosystem function to global change scenarios. The Mojave Desert is of considerable interest with respect to global change. It contains the driest habitats in North America, and thus most closely approximates the worlds great arid deserts. In order to examine the effects of climate and land use changes, in 2001 we established a long-term manipulative global change experiment, called the Mojave Global Change Facility. Manipulations in this study include the potential effects of (1) increased summer rainfall (75 mm over three discrete 25 mm events), (2) increased nitrogen deposition (10 and 40 kg ha-1), and (3) the disturbance of biological N-fixing crusts . Questions addressed under this grant shared the common hypothesis that plant and ecosystem performance will positively respond to the augmentation of the most limiting resources to plant growth in the Mojave Desert, e.g., water and nitrogen. Specific hypotheses include (1) increased summer rainfall will significantly increase plant production through an alleviation of moisture stress in the dry summer months, (2) N-deposition will increase plant production in this N-limited system, particularly in wet years or in concert with added summer rain, and (3) biological crust disturbance will gradually decrease bio-available N, with concomitant long-term reductions in photosynthesis and ANPP. Individual plant and ecosystem responses to global change may be regulated by biogeochemical processes and natural weather variability, and changes in plant and ecosystem processes may occur rapidly, may occur only after a time lag, or may not occur at all. During the first PER grant period, we observed changes in plant and ecosystem processes that would fall under each of these time-response intervals: plant and ecosystem processes responded rapidly to added summer rain, whereas most

  1. LTS Related Links - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links About Us Hanford Cultural Resources LTS Home Page LTS Project Management LTS Transition and Timeline LTS Execution LTS Background LTS Information Management LTS Fact Sheets / Briefings LTS In The News LTS Related Links LTS Contact Us LTS Related Links Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Hanford Site Cleanup Completion Framework (DOE/RL 2009-10) (PDF) Hanford Long-Term Stewardship Program Plan (DOE/RL 2010-35) (PDF) DOE-EM LTS Site Legacy

  2. Multiple weak-link SQUID

    SciTech Connect (OSTI)

    Kroger, H.

    1980-09-23

    The disclosed SQUID (Superconducting quantum interference device) comprises two superposed superconductive layers with an insulating layer therebetween. A plurality of holes through the insulating layer filled with superconductive material form weak links between the superconductive layers. One or more control lines superposed with respect to the superconductive layers provide magnetic flux through the area between the weak links to control the zero voltage supercurrent flowing through the weak links from one of the superconductive layers to the other thereby providing the switching function for Josephson superconductive circuits.

  3. E-Link - User Account

    Office of Scientific and Technical Information (OSTI)

    Energy Link (E-LINK) Access Request FOR DOE MAJOR SITE/FACILITY MANAGEMENT CONTRACTOR AND DOE HEADQUARTERS AND FIELD OFFICE PERSONNEL ONLY (Financial Assistance Recipients/Non-Major Site/Facility Management Contractors, go to www.osti.gov/elink-2413/) Major Site/Facility Management Contractors and DOE Headquarters and Field personnel are required to obtain a user name and password to access E-Link submissions and related reports. The process to obtain a user name and password also requires the

  4. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Applications | Department of Energy Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed fluerial.pdf (3.11 MB) More Documents & Publications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications High Reliability, High TemperatureThermoelectric Power Generation Materials and

  5. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  6. UNEP MOOC Disasters and Ecosystems: Resilience in a Changing Climate

    Office of Energy Efficiency and Renewable Energy (EERE)

    The United Nations Environment Programme (UNEP) is launching the first Massive Open Online Course (MOOC) on Disasters and Ecosystems, which features ecosystem-based solutions for disaster risk reduction and climate change adaptation, case studies, guest speakers, etc.

  7. Microbes as engines of ecosystem function: When does community...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: microbial diversity; functional gene; statistical modeling; microbial ecology; ecosystem processes; respiration; nitrification; denitrification Word ...

  8. 2010 U.S. Smart Grid Vendor Ecosystem

    Energy Savers [EERE]

    ......... 89 3 I. Introduction Key Takeaways Market Takeaways: The Smart Grid vendor ecosystem is an increasingly interdependent web of companies. ...

  9. Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Related Links Private, public, and nonprofit organizations around the country offer a wide range of courses and other services to help you either improve your current skills or learn new ones. The sites featured here can help you find courses of specific interest as well as other information about training requirements for certain energy jobs. DOE Related Advanced Manufacturing Office: Training Find training sessions in your area and learn how to save energy in your manufacturing

  10. Alternative Fuels Data Center: Biodiesel Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Biodiesel Related Links to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Related Links on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Related Links on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Google Bookmark Alternative Fuels Data Center: Biodiesel Related Links on Delicious Rank Alternative Fuels Data Center: Biodiesel Related Links

  11. Alternative Fuels Data Center: Ethanol Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find

  12. Alternative Fuels Data Center: Hydrogen Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Related Links to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Related Links on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Related Links on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Google Bookmark Alternative Fuels Data Center: Hydrogen Related Links on Delicious Rank Alternative Fuels Data Center: Hydrogen Related Links on

  13. Alternative Fuels Data Center: Propane Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Related Links to someone by E-mail Share Alternative Fuels Data Center: Propane Related Links on Facebook Tweet about Alternative Fuels Data Center: Propane Related Links on Twitter Bookmark Alternative Fuels Data Center: Propane Related Links on Google Bookmark Alternative Fuels Data Center: Propane Related Links on Delicious Rank Alternative Fuels Data Center: Propane Related Links on Digg Find

  14. Alternative Fuels Data Center: Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Related Links to someone by E-mail Share Alternative Fuels Data Center: Related Links on Facebook Tweet about Alternative Fuels Data Center: Related Links on Twitter Bookmark Alternative Fuels Data Center: Related Links on Google Bookmark Alternative Fuels Data Center: Related Links on Delicious Rank Alternative Fuels Data Center: Related Links on Digg Find More places to share Alternative Fuels Data

  15. Khovanov homology of graph-links

    SciTech Connect (OSTI)

    Nikonov, Igor M

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  16. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.

    2015-11-09

    Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemicalmore » processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements. In order to successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following; 1. data acquisition and control system – set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system – set of hardware and software to deliver data to a central depository for storage and further processing; and 3. data management plan – set of plans, policies, and practices to control consistency, protect data integrity, and deliver data. This publication presents our approach to meeting the challenges of

  17. Maximum entropy models of ecosystem functioning

    SciTech Connect (OSTI)

    Bertram, Jason

    2014-12-05

    Using organism-level traits to deduce community-level relationships is a fundamental problem in theoretical ecology. This problem parallels the physical one of using particle properties to deduce macroscopic thermodynamic laws, which was successfully achieved with the development of statistical physics. Drawing on this parallel, theoretical ecologists from Lotka onwards have attempted to construct statistical mechanistic theories of ecosystem functioning. Jaynes’ broader interpretation of statistical mechanics, which hinges on the entropy maximisation algorithm (MaxEnt), is of central importance here because the classical foundations of statistical physics do not have clear ecological analogues (e.g. phase space, dynamical invariants). However, models based on the information theoretic interpretation of MaxEnt are difficult to interpret ecologically. Here I give a broad discussion of statistical mechanical models of ecosystem functioning and the application of MaxEnt in these models. Emphasising the sample frequency interpretation of MaxEnt, I show that MaxEnt can be used to construct models of ecosystem functioning which are statistical mechanical in the traditional sense using a savanna plant ecology model as an example.

  18. Measures of the Effects of Agricultural Practices on Ecosystem Services

    SciTech Connect (OSTI)

    Dale, Virginia H; Polasky, Stephen

    2007-01-01

    Agriculture produces more than just crops. Agricultural practices have environmental impacts that affect a wide range of ecosystem services, including water quality, pollination, nutrient cycling, soil retention, carbon sequestration, and biodiversity conservation. In turn, ecosystem services affect agricultural productivity. Understanding the contribution of various agricultural practices to the range of ecosystem services would help inform choices about the most beneficial agricultural practices. To accomplish this, however, we must overcome a big challenge in measuring the impact of alternative agricultural practices on ecosystem services and of ecosystem services on agricultural production.

  19. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  20. Links

    Broader source: Energy.gov [DOE]

    More Legal Research ResourcesEnergy Law NetLegal Citation Style GuideNuclear Regulatory LegislationOpen CRSPublic Library of LawTreatiesU.S. Code Classification TablesU.S. Congressional Documents...

  1. Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Sites National Nanotechnology Initiative Nano Technology Industries Advanced Materials Research Institute Institute of Physics Max-Planck Institute for Kohlenforschung The institute of nanotechnology Nanotechnology Now Nanotechnology - Education Nanojournals Chancellor's Distinguished Lectureship Series Patent Analytics and Patent Searching

  2. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    SciTech Connect (OSTI)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied significantly

  3. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, Anna M.; Cook, Robert; Ciais, Philippe; Hayes, Daniel; et al

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO₂) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-longmore » (1901–2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10¹⁵ g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr⁻¹ with a median value of 51 Pg C yr⁻¹ during 2001–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901–2010 ranges from –70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO₂ and nitrogen deposition over intact ecosystems increased SOC stocks—even though the responses varied

  4. ElectraLink | Open Energy Information

    Open Energy Info (EERE)

    ElectraLink Jump to: navigation, search Name: ElectraLink Place: London, United Kingdom Product: London-based ElectraLink specialises in technology to communicate data between the...

  5. Alternative Fuels Data Center: Electricity Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Related Links to someone by E-mail Share Alternative Fuels Data Center: Electricity Related Links on Facebook Tweet about Alternative Fuels Data Center: Electricity Related Links on Twitter Bookmark Alternative Fuels Data Center: Electricity Related Links on Google Bookmark Alternative Fuels Data Center: Electricity Related Links on Delicious Rank Alternative Fuels Data Center: Electricity

  6. BizLink Technology | Open Energy Information

    Open Energy Info (EERE)

    BizLink Technology Jump to: navigation, search Name: BizLink Technology Place: Fremont, California Zip: 94538 Sector: Solar Product: California-based manufacturer of solar modules,...

  7. Help:Linked images | Open Energy Information

    Open Energy Info (EERE)

    Linked images Redirect page Jump to: navigation, search REDIRECT Manual:Linked images Retrieved from "http:en.openei.orgwindex.php?titleHelp:Linkedimages&oldid58478" ...

  8. Useful Links - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQ Useful Links Useful Links Detailed campus map with CEFRC summer school buildings highlighted (NEW) Schedule of Events (NEW) Campus Map with CEFRC-specific buildings...

  9. Voluntary Protection Program - Related Links | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Related Links Voluntary Protection Program - Related Links VPPPA - The Voluntary Protection Programs Participants' Association, a non- profit organization is leading the way in ...

  10. ACES Linking Science, Practice, and Decision Making Conference

    Broader source: Energy.gov [DOE]

    ACES: A Community on Ecosystem Services represents a dynamic and growing assembly of professionals, researchers, and policy makers involved with ecosystem services. The ACES 2014 Conference brings...

  11. Coastal ecosystems of the southeastern United States

    SciTech Connect (OSTI)

    Carey, R.C.; Markovits, P.S.; Kirkwood, J.B.

    1981-02-01

    The purpose of the workshop was to provide training on recent developments in understanding coastal ecosystems in the southeastern United States for Fish and Wildlife Service (FWS) field personnel and other natural resource managers in the region. Major emphasis was given to three types of systems: marshes, mangroves, and sea grasses. Other systems such as coral reefs, mud flats, bottomland hardwoods, and estuaries were discussed in less detail. Twenty-three papers were presented during the workshop. One of these was abstracted and indexed individually for EDB/ERA.

  12. AlumniLink: January 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New Science 100 supercomputers later Explosives performance key to stockpile stewardship Software speeds detection of diseases and cancer-treatment targets Alumni spotlight Ni Ni: University of California - Los Angeles Francesco Grilli: Karlsruhe Institute of Technology Funding opportunities Potential partnerships and funding from a variety of sources

  13. AlumniLink: July 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New Science Project ATHENA creates surrogate human organ systems Uncovering the mysteries of cosmic explosions Portable MRI could aid wounded soldiers and children in the Third World Where former employees are now Alumni: Zoltán Toroczkai, University of Notre Dame Alumni: Sarah Nurre, University of Arkansas Funding opportunities Potential partnerships

  14. AlumniLink: June 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New science Neutrons provide new insights into human cell behavior Physics and biology intersect in breakthroughs Metallic glass could make your next cell phone harder to break Lab researcher works to rearrange the atoms in metals Alumni spotlight Shadi Dayeh: UCSD Former postdoc now an Associate Professor with the Jacobs School of Engineering at the UC

  15. AlumniLink: March 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New Science One in five online scholarly articles affected by 'reference rot' Scientists call for antibody 'bar code' system to follow Human Genome Project Los Alamos develops new technique for growing high-efficiency perovskite solar cells Alumni spotlight Mark Jankowski: Minnesota Pollution Control Agency Madalina Furis: University of Vermont Funding

  16. AlumniLink: May 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New Science Using magnetic fields to understand high-temperature superconductivity Los Alamos creates bioinformatics tool for metagenome analysis Multi-institutional project to study climate change's effect on tropical forests Where former employees are now Alumni: Claire White, Princeton University Alumni: Chih-Chun Chien, University of California Merced

  17. AlumniLink: November 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New Science Climate, Earth system project draws on science powerhouses Three climate change drivers and corresponding questions for project's initial phase Collaboration drives achievement in protein structure research By tracking down how bacterial defense systems work, the scientists can potentially fight infectious diseases and genetic disorders Secure

  18. AlumniLink: September 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New science Probing Fukushima with cosmic rays should speed cleanup Could reduce the time required for clean up Scientists uncover combustion mechanism to better predict warming by wildfires Scientists have uncovered key attributes of so-called "brown carbon" from wildfires High-performance computer system installed at Los Alamos National

  19. AlumniLink: September 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit IN THIS ISSUE New science and news Young, Jupiter-like planet discovered Four Los Alamos projects selected as R&D 100 Award finalists Seven federally protected Mexican spotted owl chicks hatch on Lab property Where former employees are now Alumni: Duane Hatch, Belmont University Alumni: Alexia Schulz, MIT Lincoln Laboratory Funding opportunities Potential

  20. Join our highlighted LinkedIn discussion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Join our highlighted LinkedIn discussion What experiences have alumni had in software releases and deployments at different institutions? March 1, 2015 Robert Jilek Robert Jilek Contact Linda Anderman Email alumni LinkedIn Join us for a variety of discussions on the Lab's LinkedIn Alumni page What experiences have alumni had in

  1. Join our highlighted LinkedIn discussion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Join our highlighted LinkedIn discussion Congratulations to LANL's Claudia Mora for being selected president elect of the Geological Society of America! July 1, 2015 Claudia Mora Claudia Mora Contact Linda Anderman Email alumni LinkedIn Join us for a variety of discussions on the Lab's LinkedIn Alumni page Congratulations to

  2. Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open...

    Open Energy Info (EERE)

    Solar Electric Corp aka Solar MW Energy Inc Jump to: navigation, search Name: Ecosystem Solar Electric Corp, aka Solar MW Energy Inc Place: Ontario, California Zip: 91761 Product:...

  3. "Thinking" Telescopes: An Autonomous Robotic Ecosystem for Persistent...

    Office of Scientific and Technical Information (OSTI)

    Conference: "Thinking" Telescopes: An Autonomous Robotic Ecosystem for Persistent Monitoring and Real-Time Response Citation Details In-Document Search Title: "Thinking"...

  4. "Thinking" Telescopes: An Autonomous Robotic Ecosystem for Persistent...

    Office of Scientific and Technical Information (OSTI)

    Telescopes: An Autonomous Robotic Ecosystem for Persistent Monitoring and Real-Time Response Citation Details In-Document Search Title: "Thinking" Telescopes: An...

  5. T.G. Hinton: Remediation of Radioactively Contaminated Ecosystems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remediation of Radioactively Contaminated Ecosystems Thomas G. Hinton Savannah River Ecology ... availability from sequential extractions compared to plant uptake of 137Cs and 90Sr. ...

  6. Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    Dataset: Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems, 1960-2012 Citation Details In-Document Search Title: Plant Root Characteristics and Dynamics in Arctic...

  7. Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    and dynamics, and their role in key ecosystem processes in the Arctic. Authors: Sullivan, Paddy ; Sloan, Victoria ; Warren, Jeff ; McGuire, Dave ; Euskirchen, Eugenie ;...

  8. SciTech Connect: Website Policies / Important Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  9. SciTech Connect: Website Policies / Important Links

    Office of Scientific and Technical Information (OSTI)

    Website Policies / Important Links Website Policies / Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  10. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    SciTech Connect (OSTI)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  11. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect (OSTI)

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  12. Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.; Asao, Shinichi; Hickler, Thomas; Parton, William; Ricciuto, Daniel M.; Wang, Ying -Ping; Wårlind, David; et al

    2015-04-27

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluate whether these assumptions can bemore » constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO2.« less

  13. System, method, and apparatus for remote measurement of terrestrial biomass

    DOE Patents [OSTI]

    Johnson, Patrick W

    2011-04-12

    A system, method, and/or apparatus for remote measurement of terrestrial biomass contained in vegetative elements, such as large tree boles or trunks present in an area of interest, are provided. The method includes providing an airborne VHF radar system in combination with a LiDAR system, overflying the area of interest while directing energy toward the area of interest, using the VHF radar system to collect backscatter data from the trees as a function of incidence angle and frequency, and determining a magnitude of the biomass from the backscatter data and data from the laser radar system for each radar resolution cell. A biomass map is generated showing the magnitude of the biomass of the vegetative elements as a function of location on the map by using each resolution cell as a unique location thereon. In certain preferred embodiments, a single frequency is used with a linear array antenna.

  14. A Graded Approach for Evaluating Radiation Doses to Acquatic and Terrestrial Biota

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-08-14

    This technical standard provides methods, models, and guidance within a graded approach that the U.S. Department of Energy (DOE) and its contractors may use to evaluate doses of ionizing radiation to populations of aquatic animals, terrestrial plants, and terrestrial animals from DOE activities for the purpose of demonstrating protection relative to Dose Rate Guidelines.

  15. Energy flow, nutrient cycling, and ecosystem resilience

    SciTech Connect (OSTI)

    DeAngelis, D.L.

    1980-08-01

    The resilience, defined here as the speed with which a system returns to equilibrium state following a perturbation, is investigated for both food web energy models and nutrient cycling models. Previous simulation studies of food web energy models have shown that resilience increases as the flux of energy through the food web per unit amount of energy in the steady state web increases. Studies of nutrient cycling models have shown that resilience increases as the mean number of cycles that nutrient (or other mineral) atoms make before leaving the system decreases. In the present study these conclusions are verified analytically for general ecosystem models. The behavior of resilience in food web energy models and nutrient cycling models is a reflection of the time that a given unit, whether of energy or matter, spends in the steady state system. The shorter this residence time is, the more resilient the system is.

  16. Overview of the federal interagency ecosystem management initiative

    SciTech Connect (OSTI)

    Huke, S.

    1995-12-01

    In early 1994, the White House established a Federal Interagency Ecosystem Management Task Force and Working Group to implement the ecosystem management recommendation in the Vice President`s National Performance Review. The Task Force identified seven ecosystems where mature interagency ecosystem-based activities are mature and ongoing and may provide valuable lessons for broader application. Case studies of each of the seven ecosystems were prepared by interagency teams conducting interviews with representatives of federal, state, and local governments and private interests. The seven ecosystems are: the Southern Appalachian Highlands, Anacostia River Watershed, Prince William Sound, Pacific Northwest Forests, Coastal Louisiana, South Florida, and Great Lakes ecosystems. A final synthesis report, scheduled for completion in the Spring of 1995, will provide an overview of constraints, opportunities, and recommendations in five issue areas: legal, budgetary, science, institutional, policy, and public involvement. A second phase of this initiative will entail the development of ecosystem management strategies for three {open_quotes}new initiatives{close_quotes} laboratories.

  17. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that

  18. Applied Ecosystem Analysis - Background : EDT the Ecosystem Diagnosis and Treatment Method.

    SciTech Connect (OSTI)

    Mobrand, Lars E.

    1996-05-01

    This volume consists of eight separate reports. We present them as background to the Ecosystem Diagnosis and Treatment (EDT) methodology. They are a selection from publications, white papers, and presentations prepared over the past two years. Some of the papers are previously published, others are currently being prepared for publication. In the early to mid 1980`s the concern for failure of both natural and hatchery production of Columbia river salmon populations was widespread. The concept of supplementation was proposed as an alternative solution that would integrate artificial propagation with natural production. In response to the growing expectations placed upon the supplementation tool, a project called Regional Assessment of Supplementation Project (RASP) was initiated in 1990. The charge of RASP was to define supplementation and to develop guidelines for when, where and how it would be the appropriate solution to salmon enhancement in the Columbia basin. The RASP developed a definition of supplementation and a set of guidelines for planning salmon enhancement efforts which required consideration of all factors affecting salmon populations, including environmental, genetic, and ecological variables. The results of RASP led to a conclusion that salmon issues needed to be addressed in a manner that was consistent with an ecosystem approach. If the limitations and potentials of supplementation or any other management tool were to be fully understood it would have to be within the context of a broadly integrated approach - thus the Ecosystem Diagnosis and Treatment (EDT) method was born.

  19. Link Force Holdings Ltd | Open Energy Information

    Open Energy Info (EERE)

    search Name: Link Force Holdings Ltd Place: China Product: China-based energy saving LED street light maker. References: Link Force Holdings Ltd1 This article is a stub. You...

  20. linked open data | OpenEI Community

    Open Energy Info (EERE)

    linked open data Home Jweers's picture Submitted by Jweers(88) Contributor 10 October, 2012 - 08:20 LOD Workshop Invitation Event linked open data LOD Open Data workshop Update the...

  1. Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements

    SciTech Connect (OSTI)

    Olson, R.J.

    2002-03-19

    Understanding global-scale ecosystem responses to changing environmental conditions is important both as a scientific question and as the basis for making policy decisions. The confidence in regional models depends on how well the field data used to develop the model represent the region of interest, how well the environmental model driving variables (e.g., vegetation type, climate, and soils associated with a site used to parameterize ecosystem models) represent the region of interest, and how well regional model predictions agree with observed data for the region. To assess the accuracy of global model forecasts of terrestrial carbon cycling, two Ecosystem Model-Data Intercomparison (EMDI) workshops were held (December 1999 and April 2001). The workshops included 17 biogeochemical, satellite-driven, detailed process, and dynamic vegetation global model types. The approach was to run regional or global versions of the models for sites with net primary productivity (NPP) measurements (i.e., not fine-tuned for specific site conditions) and analyze the model-data differences. Extensive worldwide NPP data were assembled with model driver data, including vegetation, climate, and soils data, to perform the intercomparison. This report describes the compilation of NPP estimates for 2,523 sites and 5,164 0.5{sup o}-grid cells under the Global Primary Production Data Initiative (GPPDI) and the results of the EMDI review and outlier analysis that produced a refined set of NPP estimates and model driver data. The EMDI process resulted in 81 Class A sites, 933 Class B sites, and 3,855 Class C cells derived from the original synthesis of NPP measurements and associated driver data. Class A sites represent well-documented study sites that have complete aboveground and below ground NPP measurements. Class B sites represent more numerous ''extensive'' sites with less documentation and site-specific information available. Class C cells represent estimates of NPP for 0.5{sup o

  2. Tunable Thermal Link - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Thermal Link Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryThermal links are incorporated into everything from frying pans to internal combustion engine spark plugs and heat sinks on integrated circuit boards. Typically, the link's thermal resistance is fixed and cannot be tuned after manufacture. While the ability to tune electrical resistors is widespread, virtually no tunable thermal resistance link exists, which has held back the

  3. Track with overlapping links for dry coal extrusion pumps

    DOE Patents [OSTI]

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  4. E-print Network Website Policies and Important Links -- Energy...

    Office of Scientific and Technical Information (OSTI)

    Website Policies Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links

  5. 2015 Aser links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aser links 2015 Aser links Annual Site Environmental Reports (ASER); Sites; contacts; email 2015 ASER links (94.62 KB) More Documents & Publications DOE Annual Site Environmental Reports (ASER) 2010 Annual Site Environmental Report (ASER) Supplement 2011 Annual Site Environmental Report (ASER) Supplement

  6. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models. Current status and future directions

    SciTech Connect (OSTI)

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N.; Schwalm, Christopher R.; Michalak, A. M.; Cook, Robert B.; Ciais, Philippe; Hayes, Daniel J.; Huang, Maoyi; Ito, Akihiko; Jain, Atul K.; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, W. M.; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel M.; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-05

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and loss from soil accounts for a large pro portion of land-atmosphere C exchange. Due to large pool size and variable residence time from years to millennia, even small changes in soil organic C(SOC) have substantial effects on the terrestrial C budget, thereby affecting atmospheric carbon dioxide (CO2)concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain and identifying major driving forces controlling soil C storage and fluxes remains a key research challenge his study has compiled century-long (1901-2010)estimates of SOC storage and heterotrophic respiration (Rh) from ten terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and two observation based datasets. The ten-TBM ensemble shows that global SOC estimate range from 4 to 2111 Pg C (1 Pg = 1015g) with a median value of 1158 Pg C33 in 2010. Modeling approach estimates a broad range of Rh from 35 to 69 Pg C yr-1 with a median value of 51Pg C yr-1 during 200–2010. The largest uncertainty in SOC stocks exists in the 40–65°N latitude band while Rh differences are the largest in the tropics. All the models agreed that climate and land use changes have decreased SOC stocks while elevated CO2 and atmospheric nitrogen deposition have increased SOC stocks though the response varied significantly among models. Model representations of temperature and moisture sensitivity,nutrient limitation and land use partially explain the divergent estimates of global SOC stocks and soil fluxes in this study. In addition, major sources of uncertainty from model estimation include exclusion of SOC storage in

  7. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    SciTech Connect (OSTI)

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.

  8. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; et al

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified globalmore » ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  9. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    SciTech Connect (OSTI)

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; Piao, Shilong; Wang, Kaicun; Schwalm, Christopher R.; Tian, Hanqin; Mu, Mingquan; Arain, Altaf; Ciais, Philippe; Cook, Robert; Dai, Yongjiu; Hayes, Daniel; Huang, Maoyi; Huang, Suo; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; King, Anthony W.; Lei, Huimin; Lu, Chaoqun; Michalak, Anna M.; Parazoo, Nicholas; Peng, Changhui; Peng, Shushi; Poulter, Benjamin; Schaefer, Kevin; Jafarov, Elchin; Wang, Weile; Zeng, Ning; Zeng, Zhenzhong; Zhao, Fang; Zhu, Qiuan; Zhu, Zaichun

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  10. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    SciTech Connect (OSTI)

    West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

    2013-08-08

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

  11. Join our highlighted LinkedIn discussion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Join our highlighted LinkedIn discussion Do you use social media when at conferences? November 1, 2014 Robert Jilek Robert Jilek Contact Linda Anderman Email alumni LinkedIn Join us for a variety of discussions on the Lab's LinkedIn Alumni page Do you use social media when at conferences? We are fascinated by this question and

  12. Join our highlighted LinkedIn discussion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Join our highlighted LinkedIn discussion Top science stories of 2014 from Los Alamos National Lab January 1, 2015 Robert Jilek Robert Jilek Contact Linda Anderman Email alumni LinkedIn Join us for a variety of discussions on the Lab's LinkedIn Alumni page Top science stories of 2014 from Los Alamos National Lab What was your

  13. REMM: The Riparian Ecosystem Management Model

    SciTech Connect (OSTI)

    Lowrance, R.; Altier, L.S.; Williams, R.G.; Inamdar, S.P.; Sheridan, J.M.; Bosch, D.D.; Hubbard, R.K.; Thomas, D.L.

    2000-03-01

    Riparian buffer zones are effective in mitigating nonpoint source pollution and have been recommended as a best management practice (BMP). The Riparian Ecosystem Management Model (REMM) has been developed for researchers and natural resource agencies as a modeling tool that can help quantify the water quality benefits of riparian buffers under varying site conditions. Processes simulated in REMM include surface and subsurface hydrology; sediment transport and deposition; carbon, nitrogen, and phosphorus transport, removal, and cycling; and vegetation growth. Management options, such as vegetation type, size of the buffer zone, and biomass harvesting also can be simulated. REMM can be used in conjunction with upland models, empirical data, or estimated loadings to examine scenarios of buffer zone design for a hillslope. Evaluation of REMM simulations with field observations shows generally good agreement between simulated and observed data for groundwater nitrate concentrations and water table depths in a mature riparian forest buffer. Sensitivity analysis showed that changes that influenced the water balance or soil moisture storage affected the streamflow output. Parameter changes that influence either hydrology or rates of nutrient cycling affected total N transport and plant N uptake.

  14. Adjustable link for kinematic mounting systems

    DOE Patents [OSTI]

    Hale, L.C.

    1997-07-01

    An adjustable link for kinematic mounting systems is disclosed. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two. 3 figs.

  15. Adjustable link for kinematic mounting systems

    DOE Patents [OSTI]

    Hale, Layton C.

    1997-01-01

    An adjustable link for kinematic mounting systems. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two.

  16. A comprehensive data acquisition and management system for an ecosystem-scale peatland warming and elevated CO2 experiment

    SciTech Connect (OSTI)

    Krassovski, M. B.; Riggs, J. S.; Hook, L. A.; Nettles, W. R.; Hanson, P. J.; Boden, T. A.

    2015-11-09

    Ecosystem-scale manipulation experiments represent large science investments that require well-designed data acquisition and management systems to provide reliable, accurate information to project participants and third party users. The SPRUCE project (Spruce and Peatland Responses Under Climatic and Environmental Change, http://mnspruce.ornl.gov) is such an experiment funded by the Department of Energy's (DOE), Office of Science, Terrestrial Ecosystem Science (TES) Program. The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. SPRUCE provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes, and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, and the cycling and release of CO2 and CH4 to the atmosphere). The SPRUCE experiment will generate a wide range of continuous and discrete measurements.

    In order to successfully manage SPRUCE data collection, achieve SPRUCE science objectives, and support broader climate change research, the research staff has designed a flexible data system using proven network technologies and software components. The primary SPRUCE data system components are the following; 1. data acquisition and control system – set of hardware and software to retrieve biological and engineering data from sensors, collect sensor status information, and distribute feedback to control components; 2. data collection system – set of hardware and software to deliver data to a central depository for storage and further processing; and 3. data management plan – set of plans, policies, and practices to control consistency, protect data integrity, and

  17. Observed and modeled ecosystem isoprene fluxes from an oak-dominated...

    Office of Scientific and Technical Information (OSTI)

    ecosystem isoprene fluxes from an oak-dominated temperate forest and the influence of drought stress Citation Details In-Document Search Title: Observed and modeled ecosystem ...

  18. An ecosystem-scale perspective of the net land methanol flux...

    Office of Scientific and Technical Information (OSTI)

    An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements Citation Details In-Document Search Title: An ecosystem-scale ...

  19. Extensions to the CYCLUS Ecosystem in Support of Market-Driven...

    Office of Scientific and Technical Information (OSTI)

    Conference: Extensions to the CYCLUS Ecosystem in Support of Market-Driven Transition Capability Citation Details In-Document Search Title: Extensions to the CYCLUS Ecosystem in ...

  20. Mercury contamination of terrestrial vegetation near a caustic soda factory in Thailand

    SciTech Connect (OSTI)

    Suckcharoen, S.

    1980-03-01

    The present study is concerned with the fall-out of mercury on some terrestrial plants and one species of aquatic plant growing in the vicinity of the TACSCO factory.

  1. Final Strategic Plan Released by Gulf Coast Ecosystem Restoration Taskforce

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today (December 5) the Gulf Coast Ecosystem Restoration Task Force released its final strategy for long-term restoration in the Gulf, a path forward based on input from states, tribes, federal...

  2. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The natural resources of the Gulf’s ecosystem are vital to many of the region’s industries that directly support economic progress and job creation, including tourism and recreation, seafood...

  3. Excess /sup 129/Xe in terrestrial samples: A non-primordial hypothesis

    SciTech Connect (OSTI)

    Caffee, M.W.; Hudson, G.B.

    1987-03-01

    Excesses of /sup 129/Xe relative to the isotopic composition in air are observed in some terrestrial samples. Traditionally these /sup 129/Xe excesses have been thought to be related to /sup 129/I that was present in abundance in the early solar system. We propose an alternative hypothesis to explain terrestrial /sup 129/Xe excesses based on the production of /sup 129/I from the spontaneous fission of /sup 238/U.

  4. Developing micro-level urban ecosystem indicators for sustainability assessment

    SciTech Connect (OSTI)

    Dizdaroglu, Didem

    2015-09-15

    Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national and global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [Turkish] Highlights: • As the impacts of environmental problems have multi-scale characteristics, sustainability assessment needs to be considered on all scales. • The detailed data is necessary to assess local environmental change in urban ecosystems to provide insights into the national and global scales. • This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. • This paper also describes theoretical foundations for the selection of each indicator with reference to the literature.

  5. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems

    Office of Scientific and Technical Information (OSTI)

    (HI-SCALE) Science Plan (Program Document) | SciTech Connect Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Citation Details In-Document Search Title: Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the

  6. Building the American Clean Energy Innovation Ecosystem: Cyclotron Road

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces New Innovators, Success of First Cohort | Department of Energy the American Clean Energy Innovation Ecosystem: Cyclotron Road Announces New Innovators, Success of First Cohort Building the American Clean Energy Innovation Ecosystem: Cyclotron Road Announces New Innovators, Success of First Cohort March 15, 2016 - 2:05pm Addthis Raymond Weitekamp and Corinne Allen utilize the resources and expertise of Lawrence Berkeley National Laboratory’s Molecular Foundry lab to analyze and

  7. Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs September 14, 2011 - 4:22pm Addthis Rich Earley, CEO of Clean Urban Energy presents at Clean Energy Trust's Clean Energy Challenge in March 2011 | Courtesy of Clean Energy Trust Rich Earley, CEO of Clean Urban Energy presents at Clean Energy Trust's Clean Energy Challenge in March 2011 | Courtesy of Clean Energy Trust Sarah Jane Maxted

  8. Terrestrial perturbation experiments as an environmental assessment tool

    SciTech Connect (OSTI)

    Suter, G.W. II

    1980-08-01

    The National Environmental Policy Act of 1969 (NEPA) was initially interpreted as requiring full disclosure of the environmental impacts of a federal action. Because of the limitations of time, money, and manpower, this requirement that all impacts be considered has led to superficial analysis of many important impacts. The President's Council on Environmental Quality (CEQ) has provided a solution to this problem by reinterpreting NEPA as requiring analysis of those impacts which have significant bearing on decision making. Because assessment resources can now be concentrated on a few critical issues, it should be possible to perform field perturbation experiments to provide direct evidence of the effects of a specific mixture of pollutants or physical disturbances on the specific receiving ecosystem. Techniques are described for field simulation of gaseous and particulate air pollution, soil pollutants, disturbance of the earth's surface, and disturbance of wildlife. These techniques are discussed in terms of their realism, cost, and the restrictions which they place on the measurement of ecological parameters.

  9. DOE - NNSA/NFO -- FRMAC Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > National Security > Homeland Security > FRMAC > Links NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office FRMAC Links Instructions: Click the -/+ next to the Category name to collapse or expand the listings collapse Category: Assets Atmospheric Release Advisory Capability Radiological Emergency Assistance Center/Training Site (REAC/TS) collapse Category: Federal Agency Links Emergency Operations Training Academy Environmental Protection Agency (EPA) Federal

  10. Join our highlighted LinkedIn discussion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join our highlighted LinkedIn discussion Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Join our highlighted LinkedIn discussion Descartes Labs is using deep learning technology developed at LANL to help us better understand our world May 1, 2015 The site offers a variety of Los Alamos-developed biosurveillance tools that can be used for decision support in disease surveillance. The site offers a variety of Los

  11. Fuel Cells Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells » Fuel Cells Related Links Fuel Cells Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell activities, research plans and roadmaps, partnerships, and additional related links. DOE-Funded Fuel Cell Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the

  12. Hydrogen Delivery Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery » Hydrogen Delivery Related Links Hydrogen Delivery Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen delivery activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Delivery Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters

  13. Hydrogen Production Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Related Links Hydrogen Production Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen production activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Production Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and

  14. Hydrogen Storage Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Links Hydrogen Storage Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded hydrogen storage activities, research plans and roadmaps, models and tools, and additional related links. DOE-Funded Hydrogen Storage Activities Each year, hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program are reviewed for their merit during an Annual Merit Review and Peer Evaluation Meeting. View posters and presentations from the latest

  15. Related Links | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Association for Computing Machinery External link Computing Research Association External link International Exascale Software Project External link Last modified: 352016 7:59:23

  16. OSTIblog Articles in the reference linking Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    reference linking Topic OSTI and Reference Linking by Daphne Evans 13 May, 2008 in Technology OSTI actively supports the practice of Reference Linking. Also referred to as citation ...

  17. Linked Energy Data | OpenEI

    Open Energy Info (EERE)

    traditional web provides interlinked documents that are designed for humans to read, the web of Linked Data provides interlinked data that is designed to be processed by software...

  18. WaikatoLink Limited | Open Energy Information

    Open Energy Info (EERE)

    Limited Jump to: navigation, search Name: WaikatoLink Limited Place: New Zealand Sector: Services Product: General Financial & Legal Services ( Individual Angel network )...

  19. Threshold responses to interacting global changes in a California grassland ecosystem

    SciTech Connect (OSTI)

    Field, Christopher; Cortinas, Susan

    2015-02-02

    Final Report for Threshold responses to interacting global changes in a California grassland ecosystem

  20. Determining the appropriate scope: Assessing at the ecosystem level

    SciTech Connect (OSTI)

    Southerland, M.T.

    1995-12-01

    Traditional approaches to determining the scope of environmental impact assessment have been based on an ad hoc selection of issues by the project proponent and other interested parties. Resulting in an inadequate consideration of both cumulative effects and impacts on biodiversity. Although public involvement in scoping the assessment must by resource-oriented, rather than activity-oriented, the appropriate scope of environmental impact assessment is the ecosystem. Drawing from the Council on Environmental Quality (CEQ) guidance on the consideration of biodiversity under the National Environmental Policy Act (NEPA) and the growing consensus on principles of ecosystem management, scoping should begin with the large-scale ecosystem focusing on essential components potentially affected by the project to determine the appropriate bounds for the study. Although the science of analyzing ecosystems has many limitation, progress in improving environmental impact assessment can be made at any of the three increasingly difficult steps in assessing at the ecosystem level: (1) The first step involves bounding the assessment within the regional context to address cumulative effects and biodiversity. The adoption of a landscape scale has proven to be the most effective solution to the problems of setting boundaries for study units in time and space that do not omit important sources, endpoints (indicators), or processes. (2) The second step involves the use of higher-level indicators to characterize biodiversity and ecosystem integrity. Useful measures include community indices of biological integrity and landscape parameters such as habitat composition and fragmentation. (3) The third step involves identifying ecosystem thresholds (i.e., carrying capacities) to analyze the significance of cumulative impacts. Trends analysis can help identify potential threshold effects when process models are not available.

  1. Property:Incentive/Auth7Link | Open Energy Information

    Open Energy Info (EERE)

    Auth7Link Jump to: navigation, search Property Name IncentiveAuth7Link Property Type URL Description Url link to authority. Pages using the property "IncentiveAuth7Link" Showing...

  2. Property:Incentive/Auth9Link | Open Energy Information

    Open Energy Info (EERE)

    Auth9Link Jump to: navigation, search Property Name IncentiveAuth9Link Property Type URL Description Url link to authority. Pages using the property "IncentiveAuth9Link" Showing...

  3. Property:Incentive/Auth11Link | Open Energy Information

    Open Energy Info (EERE)

    1Link Jump to: navigation, search Property Name IncentiveAuth11Link Property Type URL Description Url link to authority Pages using the property "IncentiveAuth11Link" Showing 20...

  4. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Merz, Norm

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is known as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which

  5. Predicting long-term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ?

    SciTech Connect (OSTI)

    Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.; Asao, Shinichi; Hickler, Thomas; Parton, William; Ricciuto, Daniel M.; Wang, Ying -Ping; Wårlind, David; Norby, Richard J.

    2015-04-27

    Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluate whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO2.

  6. Jonathan Link, Columbia NuCosmo '02

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7-19, 2002 Jonathan Link, Columbia NuCosmo '02 Jonathan Link Columbia University Workshop on Neutrino News from the Lab and the Cosmos October 17-19, 2002 October 17-19, 2002 Jonathan Link, Columbia NuCosmo '02 Outline 1. The LSND Experiment a. The experimental setup b. Results c. Ramifications 2. MiniBooNE a. The BooNE Collaboration b. The beam line and expected neutrino flux c. The MiniBooNE detector d. Expected backgrounds and systematics e. First neutrino events, and cosmic rays f.

  7. Jonathan Link, Columbia KEK Topical Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -22, 2001 Jonathan Link, Columbia KEK Topical Conference Short Baseline Neutrino Oscillations and MiniBooNE Jonathan Link Columbia University The 5 th KEK Topical Conference - Frontiers in Flavor Physics November 20-22, 2001 November 20-22, 2001 Jonathan Link, Columbia KEK Topical Conference Outline 1. Background on Short Baseline Neutrino Oscillations * A little neutrino physics * The LSND oscillation result 2. About MiniBooNE 3. Status of MiniBooNE. Some of you may have noticed that I'll be

  8. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  9. Highly cross-linked nanoporous polymers

    DOE Patents [OSTI]

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  10. EEO Links | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Links DOE Office of Civil Rights Department Of Justice Civil Rights Division Department of Veterans Affairs Equal Employment Opportunity Commission Office of Personnel Management U.S. Merit Systems Protection Board U.S. Office of Special Counsel

  11. OpenEI Community - linked open data

    Open Energy Info (EERE)

    linked-open-data-workshop-washington-dc

  12. Guiding Documents and Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding Documents and Links Guiding Documents and Links Federal Executive Order 13653, Preparing the United States for the Impacts of Climate Change Executive Order 13693, Planning for Federal Sustainability in the Next Decade DOE DOE Orders DOE Order 430.1B - Real Property and Asset Management DOE Order 436.1 - Departmental Sustainability DOE Policy 450.4A - Integrated Safety Management Policy 2014 DOE Strategic Sustainability Performance Plan LM Documents EMS Description LM Environmental

  13. Thermochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion » Thermochemical Conversion Related Links Thermochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Thermochemical Platform can be found in this website's Information Resources section. Some key publications are: Biomass Conversion: From Feedstocks to Final Products (July 2016) Thermochemical Conversion 2009 Peer Review Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and

  14. Related Links | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Related Links NNSA and Other Related Links DOE/NNSA Phonebook Freedom of Information Act Department of Energy DOE Directives DOE Jobs Online Defense Nuclear Facilities Safety Board DOE Pulse Publication DOE Office of Health, Safety and Security USA.Gov Los Alamos County Los Alamos National Laboratory LANL Phonebook National Nuclear Security Administration NNSA Service Center - Albuquerque NNSA Nevada Field Office New Mexico Environmental Department - LANL Sandia National Laboratories Waste

  15. Environmental Justice Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Links Environmental Justice Links Public Information Center DOE Library U.S. Department of Health and Human Services (HHS), National Health Information Center U.S. Department of Health and Human Services (HHS), Office of Minority Health Resource Center U.S. Department of Housing and Urban Development Online Library U.S. Department of Interior Library U.S. Department of Labor Library U.S. Department of Transportation (DOT) Library U.S. Environmental Protection Agency Library Services for the

  16. Archived Links: International EERE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Archived Links: International EERE Archived Links: International EERE Below you may view and download the archived Success Stories / Fact Sheets from International EERE: Accelerating the Clean Energy Transition in South Africa (May 28, 2015) Fact Sheet: Accelerating the Deployment of Energy Efficiency & Renewable Energy in South Africa (May 27, 2015) Sustainable Energy for Remote Indonesian Grids Explores Opportunities in Stakeholder Workshop (October 15, 2014) Mapping Opportunities for U.S.

  17. Feedstock Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Feedstocks » Feedstock Related Links Feedstock Related Links There are a variety of other resources available for information on biomass feedstocks. We have organized some of those resources into the following categories: Other DOE Offices and Federal Agencies Department of Energy (DOE) Office of Science Biological and Environmental Research (BER) Biofuels Mission Focus DOE Office of Science BER Bioenergy Research Centers U.S. Department of Agriculture (USDA) 2007

  18. Links for Scientists and Researchers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links for Scientists and Researchers Below you will find links commonly used by scientists, users and others who conduct research at Jefferson Lab. Experimental Areas Hall A Hall B Hall C Hall D Other Work Areas Physics Division Work Planning Requirements Physics Division Work Governance Area Access for Students Training requirements for experimental areas Nuclear Physics Program Physics Home Page Experiment Schedule Three-Year Accelerator Schedule Program Advisory Committee (PAC) Experiment

  19. Emerging semantics to link phenotype and environment

    SciTech Connect (OSTI)

    Thessen, Anne E.; Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; Mungall, Christopher J.; Ramirez, Martin J.; Specht, Chelsea D.; Vogt, Lars; Vos, Rutger Aldo; Walls, Ramona L.; White, Jeffrey W.; Zhang, Guanyang; Deans, Andrew R.; Huala, Eva; Lewis, Suzanna E.; Mabee, Paula M.

    2015-12-14

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. Lastly, in this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

  20. Emerging semantics to link phenotype and environment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thessen, Anne E.; Bunker, Daniel E.; Buttigieg, Pier Luigi; Cooper, Laurel D.; Dahdul, Wasila M.; Domisch, Sami; Franz, Nico M.; Jaiswal, Pankaj; Lawrence-Dill, Carolyn J.; Midford, Peter E.; et al

    2015-12-14

    Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies aremore » well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. Lastly, in this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.« less

  1. Simulation of hydrologic influences on wetland ecosystem succession. Master's thesis

    SciTech Connect (OSTI)

    Pompilio, R.A.

    1994-09-01

    This research focuses on the development of a simulation model to determine the affects of hydrological influences on a wetland ecosystem. The model allows perturbations to the inputs of various wetland data which in turn, influences the successional development of the ecosystem. This research consisted of converting a grassland ecosystem model to one which simulates wetland conditions. The critical factor in determining the success of wetland creation is the hydrology of the system. There are four of the areas of the original model which are affected by the hydrology. The model measures the health or success of the ecosystem through the measurement of the systems gross plant production, the respiration and the net primary production of biomass. Altering the auxiliary variables of water level and the rate of flow through the system explicitly details the affects hydrologic influences on those production rates. Ten case tests depicting exogenous perturbations of the hydrology were run to identify these affects. Although the tests dealt with the fluctuation of water through the system, any one of the auxiliary variables in the model could be changed to reflect site specific data. Productivity, Hazardous material management, Hazardous material pharmacy.

  2. A new way to study the changing Arctic ecosystem

    SciTech Connect (OSTI)

    Hubbard, Susan

    2011-01-01

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  3. A new way to study the changing Arctic ecosystem

    ScienceCinema (OSTI)

    Hubbard, Susan

    2013-05-29

    Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

  4. 2010 U.S. Smart Grid Vendor Ecosystem

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape The Cleantech Group www.cleantech.com Principal Authors Greg Neichin David Cheng Contributing Authors Sheeraz Haji Josh Gould Debjit Mukerji David Hague 2 Table of Contents Page I. Introduction .............................................................................. 3 In-Depth Market Analysis II. Advanced Metering

  5. 2010 U.S. Smart Grid Vendor Ecosystem

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 U.S. Smart Grid Vendor Ecosystem Report on the companies and market dynamics shaping the current U.S. smart grid landscape The Cleantech Group www.cleantech.com Principal Authors Greg Neichin David Cheng Contributing Authors Sheeraz Haji Josh Gould Debjit Mukerji David Hague 2 Table of Contents Page I. Introduction .............................................................................. 3 In-Depth Market Analysis II. Advanced Metering

  6. Columbia Estuary Ecosystem Restoration Program (DOE/EA-2006)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Public Involvement Contact Link to BPA Home Page EFW - Salmon Swimming Upriver EFW - Forest, Evening Sky EFW - Deer in River Advanced Search About BPA Newsroom Integrated Fish...

  7. Links - Plasma Couette Experiment - Cary Forest Group - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links UW Madison Plasma Couette Experiment Links PCX HomeResearch MissionPhysics TopicsDeviceDiagnosticsContacts LinksPCX People CPLA Home Directory Publications Links University of Wisconsin Physics Department Department of Energy National Science Foundation No links yet

  8. Using a Regional Cluster of AmeriFlux Sites in Central California to Advance Our Knowledge on Decadal-Scale Ecosystem-Atmosphere Carbon Dioxide Exchange

    SciTech Connect (OSTI)

    Baldocchi, Dennis

    2015-03-24

    Continuous eddy convariance measurements of carbon dioxide, water vapor and heat were measured continuously between an oak savanna and an annual grassland in California over a 4 year period. These systems serve as representative sites for biomes in Mediterranean climates and experience much seasonal and inter-annual variability in temperature and precipitation. These sites hence serve as natural laboratories for how whole ecosystem will respond to warmer and drier conditions. The savanna proved to be a moderate sink of carbon, taking up about 150 gC m-2y-1 compared to the annual grassland, which tended to be carbon neutral and often a source during drier years. But this carbon sink by the savanna came at a cost. This ecosystem used about 100 mm more water per year than the grassland. And because the savanna was darker and rougher its air temperature was about 0.5 C warmer. In addition to our flux measurements, we collected vast amounts of ancillary data to interpret the site and fluxes, making this site a key site for model validation and parameterization. Datasets consist of terrestrial and airborne lidar for determining canopy structure, ground penetrating radar data on root distribution, phenology cameras monitoring leaf area index and its seasonality, predawn water potential, soil moisture, stem diameter and physiological capacity of photosynthesis.

  9. Hawaii Noise Forms and Links Webpage | Open Energy Information

    Open Energy Info (EERE)

    and Links Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Noise Forms and Links Webpage Abstract This webpage contains links to...

  10. Property:Incentive/Auth6Link | Open Energy Information

    Open Energy Info (EERE)

    Auth6Link Jump to: navigation, search Property Name IncentiveAuth6Link Property Type URL Pages using the property "IncentiveAuth6Link" Showing 25 pages using this property....