Sample records for lines limited gravity

  1. The Weak-Coupling Limit of Simplicial Quantum Gravity

    E-Print Network [OSTI]

    G. Thorleifsson; P. Bialas; B. Petersson

    1998-12-23T23:59:59.000Z

    In the weak-coupling limit, kappa_0 going to infinity, the partition function of simplicial quantum gravity is dominated by an ensemble of triangulations with the ratio N_0/N_D close to the upper kinematic limit. For a combinatorial triangulation of the D--sphere this limit is 1/D. Defining an ensemble of maximal triangulations, i.e. triangulations that have the maximal possible number of vertices for a given volume, we investigate the properties of this ensemble in three dimensions using both Monte Carlo simulations and a strong-coupling expansion of the partition function, both for pure simplicial gravity and a with a suitable modified measure. For the latter we observe a continuous phase transition to a crinkled phase and we investigate the fractal properties of this phase.

  2. Einstein gravity as the thermodynamic limit of an underlying quantum statistics

    E-Print Network [OSTI]

    T. P. Singh

    2009-05-15T23:59:59.000Z

    The black hole area theorem suggests that classical general relativity is the thermodynamic limit of a quantum statistics. The degrees of freedom of the statistical theory cannot be the spacetime metric. We argue that the statistical theory should be constructed from a noncommutative gravity, whose classical, and thermodynamic, approximation is Einstein gravity. The noncommutative gravity theory exhibits a duality between quantum fields and macroscopic black holes, which is used to show that the black hole possesses an entropy of the order of its area. The principle on which this work is based also provides a possible explanation for the smallness of the cosmological constant, and for the quantum measurement problem, indicating that this is a promising avenue towards the merger of quantum mechanics and gravity.

  3. Post-Minkowskian Limit and Gravitational Waves solutions of Fourth Order Gravity: a complete study

    E-Print Network [OSTI]

    A. Stabile; S. Capozziello

    2015-04-26T23:59:59.000Z

    The post-Minkowskian limit and gravitational wave solutions for general fourth-order gravity theories are discussed. Specifically, we consider a Lagrangian with a generic function of curvature invariants $f(R, R_{\\alpha\\beta}R^{\\alpha\\beta}, R_{\\alpha\\beta\\gamma\\delta}R^{\\alpha\\beta\\gamma\\delta})$. It is well known that when dealing with General Relativity such an approach provides massless spin-two waves as propagating degree of freedom of the gravitational field while this theory implies other additional propagating modes in the gravity spectra. We show that, in general, fourth order gravity, besides the standard massless graviton is characterized by two further massive modes with a finite-distance interaction. We find out the most general gravitational wave solutions in terms of Green functions in vacuum and in presence of matter sources. If an electromagnetic source is chosen, only the modes induced by $R_{\\alpha\\beta}R^{\\alpha\\beta}$ are present, otherwise, for any $f(R)$ gravity model, we have the complete analogy with tensor modes of General Relativity. Polarizations and helicity states are classified in the hypothesis of plane wave.

  4. Mass and Weak Field Limit of Boson Stars in Brans Dicke Gravity

    E-Print Network [OSTI]

    A. W. Whinnett

    1999-06-14T23:59:59.000Z

    We study boson stars in Brans Dicke gravity and use them to illustrate some of the properties of three different mass definitions: the Schwarzschild mass, the Keplerian mass and the Tensor mass. We analyse the weak field limit of the solutions and show that only the Tensor mass leads to a physically reasonable definition of the binding energy. We examine numerically strong field $\\omega=-1$ solutions and show how, in this extreme case, the three mass values and the conserved particle number behave as a function of the central boson field amplitude. The numerical studies imply that for $\\omega=-1$, solutions with extremal Tensor mass also have extremal particle number. This is a property that a physically reasonable definition of the mass of a boson star must have, and we prove analytically that this is true for all values of $\\omega$. The analysis supports the conjecture that the Tensor mass uniquely describes the total energy of an asymptotically flat solution in BD gravity.

  5. General relativity limit of Ho?ava-Lifshitz gravity with a scalar field in gradient expansion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gümrükçüo?lu, A. Emir; Mukohyama, Shinji; Wang, Anzhong

    2012-03-01T23:59:59.000Z

    We present a fully nonlinear study of long-wavelength cosmological perturbations within the framework of the projectable Horava-Lifshitz gravity, coupled to a single scalar field. Adopting the gradient expansion technique, we explicitly integrate the dynamical equations up to any order of the expansion, then restrict the integration constants by imposing the momentum constraint. While the gradient expansion relies on the long-wavelength approximation, amplitudes of perturbations do not have to be small. When the ??1 limit is taken, the obtained nonlinear solutions exhibit a continuous behavior at any order of the gradient expansion, recovering general relativity in the presence of a scalar field and the “dark matter as an integration constant.” This is in sharp contrast to the results in the literature based on the “standard” (and naive) perturbative approach where in the same limit, the perturbative expansion of the action breaks down and the scalar graviton mode appears to be strongly coupled. We carry out a detailed analysis on the source of these apparent pathologies and determine that they originate from an improper application of the perturbative approximation in the momentum constraint. We also show that there is a new branch of solutions, valid in the regime where |?-1| is smaller than the order of perturbations. In the limit ??1, this new branch allows the theory to be continuously connected to general relativity, with an effective component which acts like pressureless fluid.

  6. False Vacuum Decay With Gravity in Non-Thin-Wall Limit

    E-Print Network [OSTI]

    Uchida Gen; Misao Sasaki

    1999-12-22T23:59:59.000Z

    We consider a wave-function approach to the false vacuum decay with gravity and present a new method to calculate the tunneling amplitude under the WKB approximation. The result agrees with the one obtained by the Euclidean path-integral method, but gives a much clearer interpretation of an instanton (Euclidean bounce solution) that dominates the path integral. In particular, our method is fully capable of dealing with the case of a thick wall with the radius of the bubble comparable to the radius of the instanton, thus surpassing the path-integral method whose use can be justified only in the thin-wall and small bubble radius limit. The calculation is done by matching two WKB wave functions, one with the final state and another with the initial state, with the wave function in the region where the scale factor of the metric is sufficiently small compared with the inverse of the typical energy scale of the field potential at the tunneling. The relation of the boundary condition on our wave function for the false vacuum decay with Hartle-Hawking's no-boundary boundary condition and Vilenkin's tunneling boundary condition on the wave function of the universe is also discussed.

  7. Copyright 2013 IEEE. Reprinted, with permission from: Line Limit Preserving Power System Equivalent

    E-Print Network [OSTI]

    Copyright © 2013 IEEE. Reprinted, with permission from: Line Limit Preserving Power System IEEE endorsement of any of the Power Systems Engineering Research Center 's products or services equivalent of a power system is a simplified model of the original system with the ability to preserve some

  8. Vaidya Solution in General Covariant Ho?ava-Lifshitz Gravity with the Minimum Coupling and without Projectability: Infrared Limit

    E-Print Network [OSTI]

    O. Goldoni; M. F. A. da Silva; R. Chan; G. Pinheiro

    2014-12-16T23:59:59.000Z

    In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory ($U(1)$ extension) of {the} Ho\\v{r}ava-Lifshitz gravity with the minimum coupling, in the post-newtonian approximation (PPN), without the projectability condition and in the infrared limit. The Newtonian prepotential $\\varphi$ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Ho\\v{r}ava-Lifshitz Theory (HLT) with the minimum coupling, as we know in the General Relativity Theory (GRT).

  9. Static post-Newtonian limits in nonprojectable Ho?ava-Lifshitz gravity with an extra U(1) symmetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Kai; Wang, Anzhong

    2013-04-01T23:59:59.000Z

    In this paper, we study static post-Newtonian limits in nonprojectable Horava-Lifshitz gravity with an extra U(1) symmetry. After obtaining all static spherical solutions in the infrared, we apply them to the Solar System tests, and obtain the Eddington-Robertson-Schiff parameters in terms of the coupling constants of the theory. These parameters are well consistent with observations for the physically viable coupling constants. In contrast to the projectable case, this consistence is achieved without taking the gauge field and Newtonian prepotential as part of the metric.

  10. Is nonrelativistic gravity possible?

    SciTech Connect (OSTI)

    Kocharyan, A. A. [School of Mathematical Sciences, Monash University, Clayton 3800 (Australia)

    2009-07-15T23:59:59.000Z

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  11. Test of relativistic gravity using microlensing of relativistically broadened lines in gravitationally lensed quasars

    E-Print Network [OSTI]

    Neronov, A

    2015-01-01T23:59:59.000Z

    We show that observation of the time-dependent effect of microlensing of relativistically broadened emission lines (such as e.g. the Fe Kalpha line in X-rays) in strongly lensed quasars could provide data on celestial mechanics of circular orbits in the direct vicinity of the horizon of supermassive black holes. This information can be extracted from the observation of evolution of red / blue edge of the magnified line just before and just after the period of crossing of the innermost stable circular orbit by the microlensing caustic. The functional form of this evolution is insensitive to numerous astrophysical parameters of the accreting black hole and of the microlensing caustics network system (as opposed to the evolution the full line spectrum). Measurement of the temporal evolution of the red / blue edge could provide a precision measurement of the radial dependence of the gravitational redshift and of velocity of the circular orbits, down to the innermost stable circular orbit. These measurements could...

  12. RESULTS OF CAUSTIC DISSOLUTION OF ALUMINOSILICATE SCALE AND CHARACTERIZATION DATA FOR SAMPLES FROM THE EVAPORATOR POT AND GRAVITY DRAIN LINE

    SciTech Connect (OSTI)

    Wilmarth, B; Rita Sullivan, R; Chris Martino, C

    2006-08-21T23:59:59.000Z

    The build-up of sodium aluminosilicate scale in the 2H Evaporator system continues to cause operational difficulties. The use of a nitric acid cleaning operation proved successful in 2001. However, the operation required additional facilities to support spent cleaning solution neutralization and was quite costly. A proposed caustic cleaning flowsheet has many advantages over the acid flowsheet. Therefore, samples were retrieved from the evaporator system (gravity drain line and pot) for both chemical and radiological characterization and dissolution testing. The characterization of these scale samples showed the presence of nitrated cancrinite along with a dehydrated zeolite. Small amounts of depleted uranium were also found in these samples as expected and the amount of uranium ranged from 0.5 wt% to 2 wt%. Dissolution in sodium hydroxide solutions of various caustic concentrations showed that the scale slowly dissolves at elevated temperature (90 C). Data from similar testing indicate that the scale removed from the GDL in 2005 dissolves slower than that removed in 1997. Differences in the particle size of these samples of scale may well explain the measured dissolution rate differences.

  13. Constraints on Braneworld Gravity Models from a Kinematic Limit on the Age of the Black Hole XTE J1118+480

    SciTech Connect (OSTI)

    Psaltis, Dimitrios [Departments of Physics and Astronomy, University of Arizona, Tucson, Arizona 85721 (United States)

    2007-05-04T23:59:59.000Z

    In braneworld gravity models with a finite anti-de Sitter space (AdS) curvature in the extra dimension, the AdS/conformal field theory correspondence leads to a prediction for the lifetime of astrophysical black holes that is significantly smaller than the Hubble time, for asymptotic curvatures that are consistent with current experiments. Using the recent measurements of the position, three-dimensional spatial velocity, and mass of the black hole XTE J1118+480, I calculate a lower limit on its kinematic age of {>=}11 Myr (95% confidence). This translates into an upper limit for the asymptotic AdS curvature in the extra dimensions of <0.08 mm, which significantly improves the limit obtained by table top experiments of sub mm gravity.

  14. The Limited Influence of Pressure Gradients on Late-type Stellar Line Asymmetries

    E-Print Network [OSTI]

    C. Allende Prieto; R. J. Garcia Lopez; J. Trujillo Bueno

    1997-01-13T23:59:59.000Z

    Line asymmetries and shifts are a powerful tool for studying velocity fields in the stellar photospheres. Other effects, however, could also generate asymmetries blurring the information of the velocity patterns. We have studied the shifts and asymmetries induced in the profiles of spectral lines by pressure effects. The best theoretical and experimental data on line broadening and shifts caused by collisions with atomic hydrogen were used to analyze the NaI D and three CaI lines. Line bisectors of synthetic spectra computed with accurate data for the NaI and CaI lines are compared with very high resolution high signal-to-noise ratio solar spectra and indicate that pressure broadening reproduces the wings of the observed lines, but pressure shifts introduce neither asymmetries nor shifts comparable to the observed ones.

  15. Low surface brightness galaxies rotation curves in the low energy limit of $R^n$ gravity no need for dark matter?

    E-Print Network [OSTI]

    Capozziello, S; Troisi, A

    2006-01-01T23:59:59.000Z

    We investigate the possibility that the observed flatness of the rotation curves of spiral galaxies is not an evidence for the existence of dark matter haloes, but rather a signal of the breakdown of General Relativity. To this aim, we consider power - law fourth order theories of gravity obtained by replacing the scalar curvature $R$ with $f(R) = f_0 R^n$ in the gravity Lagrangian. We show that, in the low energy limit, the gravitational potential generated by a pointlike source may be written as $\\Phi(r) \\propto r^{-1} \\left [ 1 + (r/r_c)^{\\beta} \\right ]$ with $\\beta$ a function of the slope $n$ of the gravity Lagrangian and $r_c$ a scalelength depending on the gravitating system properties. In order to apply the model to realistic systems, we compute the modified potential and the rotation curve for spherically symmetric and for thin disk mass distributions. It turns out that the potential is still asymptotically decreasing, but the corrected rotation curve, although not flat, is higher than the Newtonian...

  16. Low surface brightness galaxies rotation curves in the low energy limit of $R^n$ gravity : no need for dark matter?

    E-Print Network [OSTI]

    S. Capozziello; V. F. Cardone; A. - Troisi

    2006-12-13T23:59:59.000Z

    We investigate the possibility that the observed flatness of the rotation curves of spiral galaxies is not an evidence for the existence of dark matter haloes, but rather a signal of the breakdown of General Relativity. To this aim, we consider power - law fourth order theories of gravity obtained by replacing the scalar curvature $R$ with $f(R) = f_0 R^n$ in the gravity Lagrangian. We show that, in the low energy limit, the gravitational potential generated by a pointlike source may be written as $\\Phi(r) \\propto r^{-1} \\left [ 1 + (r/r_c)^{\\beta} \\right ]$ with $\\beta$ a function of the slope $n$ of the gravity Lagrangian and $r_c$ a scalelength depending on the gravitating system properties. In order to apply the model to realistic systems, we compute the modified potential and the rotation curve for spherically symmetric and for thin disk mass distributions. It turns out that the potential is still asymptotically decreasing, but the corrected rotation curve, although not flat, is higher than the Newtonian one thus offering the possibility to fit rotation curves without dark matter. To test the viability of the model, we consider a sample of 15 low surface brightness (LSB) galaxies with combined HI and H$\\alpha$ measurements of the rotation curve extending in the putative dark matter dominated region. We find a very good agreement between the theoretical rotation curve and the data using only stellar disk and interstellar gas.

  17. Holographic Superconductors in Horava-Lifshitz Gravity

    E-Print Network [OSTI]

    Kai Lin; Elcio Abdalla; Anzhong Wang

    2014-06-18T23:59:59.000Z

    We consider holographic superconductors related to the Schwarzschild black hole in the low energy limit of Ho\\v{r}ava-Lifshitz spacetime. The non-relativistic electromagnetic and scalar fields are introduced to construct a holographic superconductor model in Ho\\v{r}ava-Lifshitz gravity and the results show that the $\\alpha_2$ term plays an important role, modifying the conductivity curve line by means of an attenuation the conductivity.

  18. LIMITS ON THE NUMBER OF GALACTIC YOUNG SUPERNOVA REMNANTS EMITTING IN THE DECAY LINES OF {sup 44}Ti

    SciTech Connect (OSTI)

    Dufour, François; Kaspi, Victoria M., E-mail: dufourf@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8 (Canada)

    2013-09-20T23:59:59.000Z

    We revise the assumptions of the parameters involved in predicting the number of supernova remnants detectable in the nuclear lines of the decay chain of {sup 44}Ti. Specifically, we consider the distribution of the supernova progenitors, the supernova rate in the Galaxy, the ratios of supernova types, the Galactic production of {sup 44}Ti, and the {sup 44}Ti yield from supernovae of different types to derive credible bounds on the expected number of detectable remnants. We find that, within 1? uncertainty, the Galaxy should contain an average of 5.1{sup +2.4}{sub -2.0} remnants detectable to a survey with a {sup 44}Ti decay line flux limit of 10{sup –5} photons cm{sup –2} s{sup –1}, with a probability of detecting a single remnant of 2.7{sup +10.0}{sub -2.4}%, and an expected number of detections between two and nine remnants, making the single detection of Cas A unlikely but consistent with our models. Our results show that the probability of detecting the brightest {sup 44}Ti flux source at the high absolute Galactic longitude of Cas A or above is ?10%. Using the detected flux of Cas A, we attempt to constrain the Galactic supernova rate and Galactic production of {sup 44}Ti, but find the detection to be only weakly informative. We conclude that even future surveys having 200 times more sensitivity than state-of-the-art surveys can be guaranteed to detect only a few new remnants, with an expected number of detections between 8 and 21 at a limiting {sup 44}Ti decay flux of 10{sup –7} photons cm{sup –2} s{sup –1}.

  19. Stochastic Gravity

    E-Print Network [OSTI]

    B. L. Hu

    1999-02-22T23:59:59.000Z

    We give a summary of the status of current research in stochastic semiclassical gravity and suggest directions for further investigations. This theory generalizes the semiclassical Einstein equation to an Einstein-Langevin equation with a stochastic source term arising from the fluctuations of the energy-momentum tensor of quantum fields. We mention recent efforts in applying this theory to the study of black hole fluctuations and backreaction problems, linear response of hot flat space, and structure formation in inflationary cosmology. To explore the physical meaning and implications of this stochastic regime in relation to both classical and quantum gravity, we find it useful to take the view that semiclassical gravity is mesoscopic physics and that general relativity is the hydrodynamic limit of certain spacetime quantum substructures. Three basic issues - stochasticity, collectivity, correlations- and three processes - dissipation, fluctuations, decoherence- underscore the transformation from quantum micro structure and interaction to the emergence of classical macro structure and dynamics. We discuss ways to probe into the high energy activity from below and make two suggestions: via effective field theory and the correlation hierarchy. We discuss how stochastic behavior at low energy in an effective theory and how correlation noise associated with coarse-grained higher correlation functions in an interacting quantum field could carry nontrivial information about the high energy sector. Finally we describe processes deemed important at the Planck scale, including tunneling and pair creation, wave scattering in random geometry, growth of fluctuations and forms, Planck scale resonance states, and spacetime foams.

  20. Entropic Gravity in Rindler Space

    E-Print Network [OSTI]

    Edi Halyo

    2011-04-13T23:59:59.000Z

    We show that Rindler horizons are entropic screens and gravity is an entropic force in Rindler space by deriving the Verlinde entropy formula from the focusing of light due to a mass close to the horizon. Consequently, gravity is also entropic in the near horizon regions of Schwarzschild and de Sitter space-times. In different limits, the entropic nature of gravity in Rindler space leads to the Bekenstein entropy bound and the uncertainty principle.

  1. Applications of operation research to the analysis for the impacts of the transmission line capacity limitation on

    E-Print Network [OSTI]

    capacity limitation on clean power development Jinxu Ding and Arun Somani 1 Abstract--As global warming has system development. In the tool, we 1Department of Electrical and Computer Engineering, Iowa State Uni regulation that requires the increased production of energy from renewable energy sources, such as wind

  2. Natural Inflation and Quantum Gravity

    E-Print Network [OSTI]

    Anton de la Fuente; Prashant Saraswat; Raman Sundrum

    2015-01-29T23:59:59.000Z

    Cosmic Inflation provides an attractive framework for understanding the early universe and the cosmic microwave background. It can readily involve energies close to the scale at which Quantum Gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular the constraint of the Weak Gravity Conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically-controlled and predictive class of Natural Inflation models.

  3. Riding Gravity Away from Doomsday

    E-Print Network [OSTI]

    Sen, Ashoke

    2015-01-01T23:59:59.000Z

    The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular our current limited understanding of quantum theory of gravity indicates that some time in the future our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However the laws of gravity also suggest a way out -- some of our descendants could survive this catastrophe by riding gravity away from the danger. In this essay I describe the tale of this escape from doomsday.

  4. Riding Gravity Away from Doomsday

    E-Print Network [OSTI]

    Ashoke Sen

    2015-03-27T23:59:59.000Z

    The discovery that most of the energy density in the universe is stored in the form of dark energy has profound consequences for our future. In particular our current limited understanding of quantum theory of gravity indicates that some time in the future our universe will undergo a phase transition that will destroy us and everything else around us instantaneously. However the laws of gravity also suggest a way out -- some of our descendants could survive this catastrophe by riding gravity away from the danger. In this essay I describe the tale of this escape from doomsday.

  5. Born-Infeld gravity in three dimensions

    SciTech Connect (OSTI)

    Alishahiha, Mohsen [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Naseh, Ali [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Soltanpanahi, Hesam [School of physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); School of Physics and Centre for Theoretical Physics, University of the Witwatersrand, WITS 2050 Johannesburg (South Africa)

    2010-07-15T23:59:59.000Z

    In this paper we explore different aspects of three dimensional Born-Infeld as well as Born-Infeld-Chern-Simons gravity. We show that the models have anti-de Sitter and anti-de Sitter wave vacuum solutions. Moreover, we observe that although Born-Infeld-Chern-Simons gravity admits a logarithmic solution, Born-Infeld gravity does not, though it has a limiting logarithmic solution as we approach the critical point.

  6. Gravity on Conformal Superspace

    E-Print Network [OSTI]

    Bryan Kelleher

    2003-11-11T23:59:59.000Z

    The configuration space of general relativity is superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Taking this conformal nature seriously leads to a new theory of gravity which although very similar to general relativity has some very different features particularly in cosmology and quantisation. It should reproduce the standard tests of general relativity. The cosmology is studied in some detail. The theory is incredibly restrictive and as a result admits an extremely limited number of possible solutions. The problems of the standard cosmology are addressed and most remarkably the cosmological constant problem is resolved in a natural way. The theory also has several attractive features with regard to quantisation particularly regarding the problem of time.

  7. Strong and weak gravitational field in $R+?^4/R$ gravity

    E-Print Network [OSTI]

    Kh. Saaidi; A. Vajdi; S. W. Rabiei; A. Aghamohammadi; H. Sheikhahmadi

    2012-01-18T23:59:59.000Z

    We introduce a new approach for investigating the weak field limit of vacuum field equations in $f(R)$ gravity and we find the weak field limit of $f(R)=R+\\mu ^4/R$ gravity. Furthermore, we study the strong gravity regime in $R+\\mu^{4}/R$ model of $f(R)$ gravity. We show the existence of strong gravitational field in vacuum for such model. We find out in the limit $\\mu\\rightarrow 0$, the weak field limit and the strong gravitational field can be regarded as a perturbed Schwarzschild metric.

  8. Liouville quantum gravity and KPZ

    E-Print Network [OSTI]

    Duplantier, Bertrand

    Consider a bounded planar domain D, an instance h of the Gaussian free field on D, with Dirichlet energy ... and a constant 0[less than or equal to]?<2. The Liouville quantum gravity measure on D is the weak limit as ...

  9. Cosmological Tests of Gravity

    E-Print Network [OSTI]

    Koyama, Kazuya

    2015-01-01T23:59:59.000Z

    Einstein's theory of General Relativity (GR) is tested accurately within the local universe i.e., the Solar System, but this leaves open the possibility that it is not a good description at the largest scales in the Universe. The standard model of cosmology assumes GR as the theory to describe gravity on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. The standard model of cosmology is based on a huge extrapolation of our limited knowledge of gravity. This discovery of the late time acceleration of the Universe may require us to revise the theory of gravity and the standard model of cosmology based on GR. We will review recent ...

  10. Quantum Gravity: Motivations and Alternatives

    E-Print Network [OSTI]

    Reiner Hedrich

    2009-08-03T23:59:59.000Z

    The mutual conceptual incompatibility between GR and QM/QFT is generally seen as the most essential motivation for the development of a theory of Quantum Gravity (QG). It leads to the insight that, if gravity is a fundamental interaction and QM is universally valid, the gravitational field will have to be quantized, not at least because of the inconsistency of semi-classical theories of gravity. If this means to quantize GR, its identification of the gravitational field with the spacetime metric has to be taken into account. And the resulting quantum theory has to be background-independent. This can not be achieved by means of quantum field theoretical procedures. More sophisticated strategies have to be applied. One of the basic requirements for such a quantization strategy is that the resulting quantum theory has GR as a classical limit. - However, should gravity not be a fundamental, but an residual, emergent interaction, it could very well be an intrinsically classical phenomenon. Should QM be nonetheless universally valid, we had to assume a quantum substrate from which gravity would result as an emergent classical phenomenon. And there would be no conflict with the arguments against semi-classical theories, because there would be no gravity at all on the substrate level. The gravitational field would not have any quantum properties, and a quantization of GR would not lead to any fundamental theory. The objective of a theory of 'QG' would instead be the identification of the quantum substrate from which gravity results. - The paper tries to give an overview over the main options for theory construction in the field of QG. Because of the still unclear status of gravity and spacetime, it pleads for the necessity of a plurality of conceptually different approaches to QG.

  11. Modes of log gravity

    SciTech Connect (OSTI)

    Bergshoeff, Eric A.; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-05-15T23:59:59.000Z

    The physical modes of a recently proposed D-dimensional 'critical gravity', linearized about its anti-de Sitter vacuum, are investigated. All 'log mode' solutions, which we categorize as 'spin-2' or 'Proca', arise as limits of the massive spin-2 modes of the noncritical theory. The linearized Einstein tensor of a spin-2 log mode is itself a 'nongauge' solution of the linearized Einstein equations whereas the linearized Einstein tensor of a Proca mode takes the form of a linearized general coordinate transformation. Our results suggest the existence of a holographically dual logarithmic conformal field theory.

  12. Quantum Field Theory & Gravity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664...

  13. Consistent Modified Gravity Analysis of Anisotropic Galaxy Clustering Using BOSS DR11

    E-Print Network [OSTI]

    Song, Yong-Seon; Linder, Eric; Koyama, Kazuya; Sabiu, Cristiano G; Zhao, Gong-Bo; Bernardeau, Francis; Nishimichi, Takahiro; Okumura, Teppei

    2015-01-01T23:59:59.000Z

    We analyse the clustering of cosmic large scale structure using a consistent modified gravity perturbation theory, accounting for anisotropic effects along and transverse to the line of sight. The growth factor has a particular scale dependence in f(R) gravity and we fit for the shape parameter f_{R0} simultaneously with the distance and the large scale (general relativity) limit of the growth function. Using more than 690,000 galaxies in the Baryon Oscillation Spectroscopy Survey Data Release 11, we find no evidence for extra scale dependence, with the 95\\% confidence upper limit |f_{R0}| <8 \\times 10^{-4}. Future clustering data, such as from the Dark Energy Spectroscopic Instrument, can use this consistent methodology to impose tighter constraints.

  14. Chiral gravity, log gravity, and extremal CFT

    SciTech Connect (OSTI)

    Maloney, Alexander [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Song Wei [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Center for the Fundamental Laws of Nature Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138 (United States); Strominger, Andrew [Center for the Fundamental Laws of Nature Jefferson Physical Laboratory, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2010-03-15T23:59:59.000Z

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  15. Comment on "A limit on the variation of the speed of light arising from quantum gravity effects" aka "Testing Einstein's special relativity with Fermi's short hard gamma-ray burst GRB090510"

    E-Print Network [OSTI]

    Konstantin G. Zloshchastiev

    2009-11-30T23:59:59.000Z

    Recently the Fermi GBM and LAT Collaborations reported their new observational data disfavoring quite a number of the quantum gravity theories, including the one suggesting the nonlinear (logarithmic) modification of a quantum wave equation. We show that the latter is still far from being ruled out: it is not only able to explain the new data but also its phenomenological implications turn out to be more vast (and more interesting) than one expected before.

  16. Solar System experiments do not yet veto modified gravity models

    E-Print Network [OSTI]

    Valerio Faraoni

    2006-07-05T23:59:59.000Z

    The dynamical equivalence between modified and scalar-tensor gravity theories is revisited and it is concluded that it breaks down in the limit to general relativity. A gauge-independent analysis of cosmological perturbations in both classes of theories lends independent support to this conclusion. As a consequence, the PPN formalism of scalar-tensor gravity and Solar System experiments do not veto modified gravity, as previously thought.

  17. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    SciTech Connect (OSTI)

    Prost, Lionel Robert

    2007-02-14T23:59:59.000Z

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx}0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  18. Holographic superconductors from the massive gravity

    E-Print Network [OSTI]

    Hua Bi Zeng; Jian-Pin Wu

    2014-09-24T23:59:59.000Z

    A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.

  19. Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations

    E-Print Network [OSTI]

    Garrett Goon; Kurt Hinterbichler; Austin Joyce; Mark Trodden

    2014-12-18T23:59:59.000Z

    The existence of a ghost free theory of massive gravity begs for an interpretation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham--Gabadadze--Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be non-trivial for certain classes of multi-metric theories.

  20. Status of Matter-Gravity Couplings in the SME

    E-Print Network [OSTI]

    Tasson, Jay D

    2013-01-01T23:59:59.000Z

    Constraints on Lorentz violation in matter-gravity couplings are summarized along with existing proposals to obtain sensitivities that exceed current limits by up to 11 orders of magnitude.

  1. Status of Matter-Gravity Couplings in the SME

    E-Print Network [OSTI]

    Jay D. Tasson

    2013-08-06T23:59:59.000Z

    Constraints on Lorentz violation in matter-gravity couplings are summarized along with existing proposals to obtain sensitivities that exceed current limits by up to 11 orders of magnitude.

  2. The shape dynamics description of gravity

    E-Print Network [OSTI]

    Tim Koslowski

    2015-01-13T23:59:59.000Z

    Classical gravity can be described as a relational dynamical system without ever appealing to spacetime or its geometry. This description is the so-called shape dynamics description of gravity. The existence of relational first principles from which the shape dynamics description of gravity can be derived is a motivation to consider shape dynamics (rather than GR) as the fundamental description of gravity. Adopting this point of view leads to the question: What is the role of spacetime in the shape dynamics description of gravity? This question contains many aspects: Compatibility of shape dynamics with the description of gravity in terms of spacetime geometry, the role of local Minkowski space, universality of spacetime geometry and the nature of quantum particles, which can no longer be assumed to be irreducible representations of the Poincare group. In this contribution I derive effective spacetime structures by considering how matter fluctuations evolve along with shape dynamics. This evolution reveals an "experienced spacetime geometry." This leads (in an idealized approximation) to local Minkowski space and causal relations. The small scale structure of the emergent geometric picture depends on the specific probes used to experience spacetime, which limits the applicability of effective spacetime to describe shape dynamics. I conclude with discussing the nature of quantum fluctuations (particles) in shape dynamics and how local Minkowski spacetime emerges from the evolution of quantum particles.

  3. Topology in 4D simplicial quantum gravity

    E-Print Network [OSTI]

    S. Bilke; Z. Burda; B. Petersson

    1996-11-22T23:59:59.000Z

    We simulate 4d simplicial gravity for three topologis S4, S3xS1, (S1)^4 and show that the free energy for these three fixed topology ensembles is the same in the thermodynamic limit. We show, that the next-to-leading order corrections, at least away from the critical point, can be described by kinematic sources.

  4. Particle Dynamics And Emergent Gravity

    E-Print Network [OSTI]

    Amir H. Fatollahi

    2008-05-08T23:59:59.000Z

    The emergent gravity proposal is examined within the framework of noncommutative QED/gravity correspondence from particle dynamics point of view.

  5. Effects of 'Limited Product Line Audits'

    E-Print Network [OSTI]

    Van Ormer, H.

    2006-01-01T23:59:59.000Z

    . This is higher than the normal quoted percentage and could be caused by improper adjustments. Estimated annual electrical energy operating cost at idle (not including loaded time) at $0.05 per kWh ((1,000 hp x .746 x 0.05 x 8,760 x .40) / .95 me) equals... 23% Lowest % 14 Highest % 48% Average Electric Rate $0.06/kWh Lowest rate $0.04/kWh Highest rate $0.09/kWh Third-party Incentives Obtained: Audit Cost 5...

  6. Weak Gravity Conjecture for Noncommutative Field Theory

    E-Print Network [OSTI]

    Qing-Guo Huang; Jian-Huang She

    2006-11-20T23:59:59.000Z

    We investigate the weak gravity bounds on the U(1) gauge theory and scalar field theories in various dimensional noncommutative space. Many results are obtained, such as the upper bound on the noncommutative scale $g_{YM}M_p$ for four dimensional noncommutative U(1) gauge theory. We also discuss the weak gravity bounds on their commutative counterparts. For example, our result on 4 dimensional noncommutative U(1) gauge theory reduces in certain limit to its commutative counterpart suggested by Arkani-Hamed et.al at least at tree-level.

  7. Plane wave holonomies in loop quantum gravity I: symmetries and gauges

    E-Print Network [OSTI]

    Donald E. Neville

    2014-11-10T23:59:59.000Z

    This is the first of two papers which study the behavior of the SU(2) holonomies of loop quantum gravity (LQG), when they are acted upon by a unidirectional, plane gravity wave. Initially, the LQG flux-holonomy variables are treated as classical, commuting functions rather than quantized operators, in a limit where variation from vertex to vertex are small and fields are weak. Despite the weakness of the fields, the field equations are not linear. Also, the theory can be quantized, and the expectation values of the quantum operators behave like their classical analogs. Exact LQG theories may be either local or non-local. The present paper argues that a wide class of non-local theories share non-local features which survive to the semiclassical limit, and these non-local features are included in the classical limit studied here. An appendix computes the surface term required when the propagation direction is the real line rather than $\\mathrm{S}_1$. Paper II introduces coherent states, constructs a damped sine wave solution to the constraints, and solves for the behavior of the holonomies in the presence of the wave.

  8. Quantum gravity effects in the Kerr spacetime

    SciTech Connect (OSTI)

    Reuter, M. [Institute of Physics, University of Mainz, Staudingerweg 7, D-55099 Mainz (Germany); Tuiran, E. [Departamento de Fisica, Universidad del Norte, Km 5 via a Puerto Colombia, AA-1569 Barranquilla (Colombia)

    2011-02-15T23:59:59.000Z

    We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.

  9. Gravity Train Project

    E-Print Network [OSTI]

    Dec 7, 2013 ... As soon as the brakes of a railroad car in West Lafayette are released, the car will roll down under the force of gravity. It will accelerate, then ...

  10. Photon and graviton mass limits

    SciTech Connect (OSTI)

    Nieto, Michael [Los Alamos National Laboratory; Goldhaber Scharff, Alfred [SUNY

    2008-01-01T23:59:59.000Z

    We review past and current studies of possible long-distance, low-frequency deviations from Maxwell electrodynamics and Einstein gravity. Both have passed through three phases: (1) Testing the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, and (3) Considering more degrees of freedom, allowing mass while preserving gauge or general-coordinate invariance. For electrodynamics there continues to be no sign of any deviation. Since our previous review the lower limit on the photon Compton wavelength (associated with weakening of electromagnetic fields in vacuum over large distance scale) has improved by four orders of magnitude, to about one astronomical unit. Rapid current progress in astronomical observations makes it likely that there will be further advances. These ultimately could yield a bound exceeding galactic dimensions, as has long been contemplated. Meanwhile, for gravity there have been strong arguments about even the concept of a graviton rest mass. At the same time there are striking observations, commonly labeled 'dark matter' and 'dark energy' that some argue imply modified gravity. This makes the questions for gravity much more interesting. For dark matter, which involves increased attraction at large distances, any explanation by modified gravity would be qualitatively different from graviton mass. Because dark energy is associated with reduced attraction at large distances, it might be explained by a graviton-mass-like effect.

  11. Generalized massive gravity in AdS{sub 3} spacetime

    SciTech Connect (OSTI)

    Liu Yan; Sun Yawen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P. O. Box 2735, Beijing 100190 (China)

    2009-06-15T23:59:59.000Z

    In this note we investigate the generalized massive gravity in asymptotically AdS{sub 3} spacetime by combining the two mass terms of topological massive gravity and new massive gravity theory. We study the linearized excitations around the AdS{sub 3} background and find that at a specific value of a certain combination of the two mass parameters (chiral line), one of the massive graviton solutions becomes the left-moving massless mode. It is shown that the theory is chiral at this line under Brown-Henneaux boundary condition. Because of this degeneration of the gravitons the new log solution which has a logarithmic asymptotic behavior is also a solution to this gravity theory at the chiral line. The log boundary condition which was proposed to accommodate this log solution is proved to be consistent at this chiral line. The resulting theory is no longer chiral except at a special point on the chiral line, where another new solution with log-square asymptotic behavior exists. At this special point, we prove that a new kind of boundary condition called log-square boundary condition, which accommodates this new solution, can be consistent.

  12. Gravity Effects on Antimatter in the Standard-Model Extension

    E-Print Network [OSTI]

    Jay D. Tasson

    2015-01-30T23:59:59.000Z

    The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.

  13. Gravity Effects on Antimatter in the Standard-Model Extension

    E-Print Network [OSTI]

    Tasson, Jay D

    2015-01-01T23:59:59.000Z

    The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.

  14. Matter Bounce Loop Quantum Cosmology from $F(R)$ Gravity

    E-Print Network [OSTI]

    S. D. Odintsov; V. K. Oikonomou

    2014-12-04T23:59:59.000Z

    Using the reconstruction method, we investigate which $F(R)$ theories, with or without the presence of matter fluids, can produce the matter bounce scenario of holonomy corrected Loop Quantum Cosmology. We focus our study in two limits of the cosmic time, the large cosmic time limit and the small cosmic time limit. For the former, we found that, in the presence of non-interacting and non-relativistic matter, the $F(R)$ gravity that reproduces the late time limit of the matter bounce solution is actually the Einstein-Hilbert gravity plus a power law term. In the early time limit, since it corresponds to large spacetime curvatures, assuming that the Jordan frame is described by a general metric that when it is conformally transformed to the Einstein frame, produces an accelerating Friedmann-Robertson-Walker metric, we found explicitly the scalar field dependence on time. After demonstrating that the solution in the Einstein frame is indeed accelerating, we calculate the spectral index derived from the Einstein frame scalar-tensor counterpart theory of the $F(R)$ theory and compare it with the Planck experiment data. In order to implement the resulting picture, we embed the $F(R)$ gravity explicitly in a Loop Quantum Cosmology framework by introducing holonomy corrections to the $F(R)$ gravity. In this way, the resulting inflation picture corresponding to the $F(R)$ gravity can be corrected in order it coincides to some extent with the current experimental data.

  15. Is the Broad-Line Region Clumped or Smooth? Constraints from the H alpha Profile in NGC 4395, the Least Luminous Seyfert 1 Galaxy

    E-Print Network [OSTI]

    Ari Laor; Aaron J. Barth; Luis C. Ho; Alexei V. Filippenko

    2005-09-07T23:59:59.000Z

    The origin and configuration of the gas which emits broad lines in Type I active galactic nuclei is not established yet. The lack of small-scale structure in the broad emission-line profiles is consistent with a smooth gas flow, or a clumped flow with many small clouds. An attractive possibility for the origin of many small clouds is the atmospheres of bloated stars, an origin which also provides a natural mechanism for the cloud confinement. Earlier studies of the broad-line profiles have already put strong lower limits on the minimum number of such stars, but these limits are sensitive to the assumed width of the lines produced by each cloud. Here we revisit this problem using high-resolution Keck spectra of the H alpha line in NGC 4395, which has the smallest known broad-line region (~10^14 cm). Only a handful of the required bloated stars (each having r~10^14 cm) could fit into the broad-line region of NGC 4395, yet the observed smoothness of the H alpha line implies a lower limit of ~10^4-10^5 on the number of discrete clouds. This rules out conclusively the bloated-stars scenario, regardless of any plausible line-broadening mechanisms. The upper limit on the size of the clouds is ~10^12 cm, which is comparable to the size implied by photoionization models. This strongly suggests that gas in the broad-line region is structured as a smooth rather than a clumped flow, most likely in a rotationally dominated thick disk-like configuration. However, it remains to be clarified why such a smooth, gravity-dominated flow generates double-peaked emission lines only in a small fraction of active galactic nuclei.

  16. Time Gravity and Quantum Mechanics

    E-Print Network [OSTI]

    W. G. Unruh

    1993-12-17T23:59:59.000Z

    Time plays different roles in quantum mechanics and gravity. These roles are examined and the problems that the conflict in the roles presents for quantum gravity are briefly summarised.

  17. Extra force in Kaluza-Klein gravity theory

    E-Print Network [OSTI]

    W. B. Belayev

    2007-06-18T23:59:59.000Z

    In induced matter Kaluza-Klein gravity theory the solution of the dynamics equations for the test particle on null path leads to additional force in four-dimensional space-time. We find such force from five-dimensional geodesic line equations and apply this approach to analysis of the asymmetrically warped space-time.

  18. Explicit versus Spontaneous Diffeomorphism Breaking in Gravity

    E-Print Network [OSTI]

    Robert Bluhm

    2015-04-02T23:59:59.000Z

    Gravitational theories with fixed background fields break local Lorentz and diffeomorphism invariance either explicitly or spontaneously. In the case of explicit breaking it is known that conflicts can arise between the dynamics and geometrical constraints, while spontaneous breaking evades this problem. It is for this reason that in the gravity sector of the Standard-Model Extension (SME) it is assumed that the background fields (SME coefficients) originate from spontaneous symmetry breaking. However, in other examples, such as Chern-Simons gravity and massive gravity, diffeomorphism invariance is explicitly broken by the background fields, and the potential conflicts between the dynamics and geometry can be avoided in most cases. An analysis of how this occurs is given, and the conditions that are placed on the metric tensor and gravitational structure as a result of the presence of an explicit-breaking background are described. The gravity sector of the SME is then considered for the case of explicit breaking. However, it is found that a useful post-Newtonian limit is only obtained when the symmetry breaking is spontaneous.

  19. French Guidelines for Structural Safety of Gravity Dams in a Semi-probabilistic Format

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    French Guidelines for Structural Safety of Gravity Dams in a Semi-probabilistic Format Paul Royet1 the French Committee on Dams and Reservoirs ­ FrCOLD - issued provisional guidelines for structural safety of gravity dams. It was the first attempt to produce a semi-probabilistic limit-state method for the design

  20. Holographic studies of quasi-topological gravity

    E-Print Network [OSTI]

    Robert C. Myers; Miguel F. Paulos; Aninda Sinha

    2010-06-09T23:59:59.000Z

    Quasi-topological gravity is a new gravitational theory including curvature-cubed interactions and for which exact black hole solutions were constructed. In a holographic framework, classical quasi-topological gravity can be thought to be dual to the large $N_c$ limit of some non-supersymmetric but conformal gauge theory. We establish various elements of the AdS/CFT dictionary for this duality. This allows us to infer physical constraints on the couplings in the gravitational theory. Further we use holography to investigate hydrodynamic aspects of the dual gauge theory. In particular, we find that the minimum value of the shear-viscosity-to-entropy-density ratio for this model is $\\eta/s \\simeq 0.4140/(4\\pi)$.

  1. Quantum gravity and inventory accumulation

    E-Print Network [OSTI]

    Scott Sheffield

    2011-08-10T23:59:59.000Z

    We begin by studying inventory accumulation at a LIFO (last-in-first-out) retailer with two products. In the simplest version, the following occur with equal probability at each time step: first product ordered, first product produced, second product ordered, second product produced. The inventory thus evolves as a simple random walk on Z^2. In more interesting versions, a p fraction of customers orders the "freshest available" product regardless of type. We show that the corresponding random walks scale to Brownian motions with diffusion matrices depending on p. We then turn our attention to the critical Fortuin-Kastelyn random planar map model, which gives, for each q>0, a probability measure on random (discretized) two-dimensional surfaces decorated by loops, related to the q-state Potts model. A longstanding open problem is to show that as the discretization gets finer, the surfaces converge in law to a limiting (loop-decorated) random surface. The limit is expected to be a Liouville quantum gravity surface decorated by a conformal loop ensemble, with parameters depending on q. Thanks to a bijection between decorated planar maps and inventory trajectories (closely related to bijections of Bernardi and Mullin), our results about the latter imply convergence of the former in a particular topology. A phase transition occurs at p = 1/2, q=4.

  2. Encoding field theories into gravities

    E-Print Network [OSTI]

    Aoki, Sinya; Onogi, Tetsuya

    2015-01-01T23:59:59.000Z

    We propose a method, which encodes the information of a $d$ dimensional quantum field theory into a $d+1$ dimensional gravity in the $1/N$ expansion. We first construct a $d+1$ dimensional field theory from the $d$ dimensional one via the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We then define the induced metric from $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large $N$ limit, in a sense that quantum fluctuations of the metric are suppressed as $1/N$ due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the induced metric in three dimensions, which is shown to describe De Sitter (dS) or Anti De Sitter (AdS) space in the massless limit, where the mass is dynamically generated in the O(N) non-l...

  3. Gravity, Dimension, Equilibrium, & Thermodynamics

    E-Print Network [OSTI]

    Jerome Perez

    2006-03-30T23:59:59.000Z

    Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.

  4. Viscosity in modified gravity

    E-Print Network [OSTI]

    Iver Brevik

    2012-11-23T23:59:59.000Z

    A bulk viscosity is introduced in the formalism of modified gravity. It is shown that, on the basis of a natural scaling law for the viscosity, a simple solution can be found for quantities such as the Hubble parameter and the energy density. These solutions may incorporate a viscosity-induced Big Rip singularity. By introducing a phase transition in the cosmic fluid, the future singularity can nevertheless in principle be avoided.

  5. Lie algebraic noncommutative gravity

    SciTech Connect (OSTI)

    Banerjee, Rabin; Samanta, Saurav [S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata-700098 (India); Mukherjee, Pradip [Presidency College, 86/1 College Street, Kolkata-700073, West-Bengal (India)

    2007-06-15T23:59:59.000Z

    We exploit the Seiberg-Witten map technique to formulate the theory of gravity defined on a Lie algebraic noncommutative space-time. Detailed expressions of the Seiberg-Witten maps for the gauge parameters, gauge potentials, and the field strengths have been worked out. Our results demonstrate that notwithstanding the introduction of more general noncommutative structure there is no first order correction, exactly as happens for a canonical (i.e. constant) noncommutativity.

  6. Junhong Wei and Fuqing Zhang, Pennsylvania State University Mesoscale Gravity Waves in Moist Baroclinic Jet-Front Systems

    E-Print Network [OSTI]

    Thompson, Anne

    with small amount of moisture, dry dynamic gravity wave modes continue to dominate. However, convective-permitting simulations with the Weather Research and Forecast (WRF) model are performed to study mesoscale gravity waves/negative), and 7-km dynamic tropopause (turquoise lines). Wave Identification Figure 3. Comparison of WP5 at 132 h

  7. There is no Federal permit requirement, minimum size, or bag limit for smoothhound or spiny dogfish Ridgeback sharks are sharks with an interdorsal ridge (a visible line of raised skin between dorsal fins)

    E-Print Network [OSTI]

    Ridgeback sharks are sharks with an interdorsal ridge (a visible line of raised skin between dorsal fins) Oceanic whitetip shark: young sharks have black mottling on most fins; does not always have interdorsal inches Smoothhound: second dorsal fin slightly smaller than first dorsal fin and much larger than anal

  8. Comments on "Solar System constraints to general f(R) gravity"

    E-Print Network [OSTI]

    Valerio Faraoni; Nicolas Lanahan-Tremblay

    2008-02-11T23:59:59.000Z

    We comment on, and complete, the analysis of the weak field limit of metric f(R) gravity in T. Chiba, T.L. Smith, and A.L. Erickcek, Phys. Rev. D 75, 124014 (2007).

  9. Transmission line: design manual

    SciTech Connect (OSTI)

    Farr, H.H.

    1980-01-01T23:59:59.000Z

    The purpose of this manual is to outline the various requirements for, and the procedures to be followed in the design of power transmission lines by the Bureau of Reclamation, US Department of the Interior. Numerous design studies, which have been made on specific aspects of transmission line design, are included with explanations of their applications. Information is presented concerning such aspects as selection of type of construction, conductor sags and tensions, insulation, lightning protection, clearance patterns, galloping conductors, structure limitation and guying charts, and structure spotting. Structure design examples are limited to wood-pole construction. Interpretations of the National Electrical Safety Code and other codes are made as required. Some of the example problems were developed when the sixth edition of NESC was current, and are so noted; however, most examples use the 1977 edition of NESC.

  10. Lifshitz Gravity for Lifshitz Holography

    E-Print Network [OSTI]

    Tom Griffin; Petr Horava; Charles M. Melby-Thompson

    2012-11-20T23:59:59.000Z

    We argue that Horava-Lifshitz (HL) gravity provides the minimal holographic dual for Lifshitz-type field theories with anisotropic scaling and dynamical exponent z. First we show that Lifshitz spacetimes are vacuum solutions of HL gravity, without need for additional matter. Then we perform holographic renormalization of HL gravity, and show how it reproduces the full structure of the z=2 anisotropic Weyl anomaly in dual field theories in 2+1 dimensions, while its minimal relativistic gravity counterpart yields only one of two independent central charges in the anomaly.

  11. Stiffness modeling of robotic manipulator with gravity compensator

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to the stiffness modeling of a heavy industrial robot of the Kuka family. Key words: Stiffness modeling, gravity compensator, industrial robot. 1 Introduction Recently, in aerospace industry much attention is paid these requirements, industrial robots are more and more used to replace conventional CNC-machines, which are limited

  12. Abelian-Higgs strings in Rastall gravity

    E-Print Network [OSTI]

    Eugenio R. Bezerra de Mello; Julio C. Fabris; Betti Hartmann

    2015-04-02T23:59:59.000Z

    In this paper we analyze Abelian-Higgs strings in a phenomenological model that takes quantum effects in curved space-time into account. This model, first introduced by Rastall, cannot be derived from an action principle. We formulate phenomenological equations of motion under the guiding principle of minimal possible deformation of the standard equations. We construct string solutions that asymptote to a flat space-time with a deficit angle by solving the set of coupled non-linear ordinary differential equations numerically. Decreasing the Rastall parameter from its Einstein gravity value we find that the deficit angle of the space-time increases and becomes equal to $2\\pi$ at some critical value of this parameter that depends on the remaining couplings in the model. For smaller values the resulting solutions are supermassive string solutions possessing a singularity at a finite distance from the string core. Assuming the Higgs boson mass to be on the order of the gauge boson mass we find that also in Rastall gravity this happens only when the symmetry breaking scale is on the order of the Planck mass. We also observe that for specific values of the parameters in the model the energy per unit length becomes proportional to the winding number, i.e. the degree of the map $S^1 \\rightarrow S^1$. Unlike in the BPS limit in Einstein gravity, this is, however, not connect to an underlying mathematical structure, but rather constitutes a would-be-BPS bound.

  13. A new quasidilaton theory of massive gravity

    E-Print Network [OSTI]

    Shinji Mukohyama

    2014-10-08T23:59:59.000Z

    We present a new quasidilaton theory of Poincare invariant massive gravity, based on the recently proposed framework of matter coupling that makes it possible for the kinetic energy of the quasidilaton scalar to couple to both physical and fiducial metrics simultaneously. We find a scaling-type exact solution that expresses a self-accelerating de Sitter universe, and then analyze linear perturbations around it. It is shown that in a range of parameters all physical degrees of freedom have non-vanishing quadratic kinetic terms and are stable in the subhorizon limit, while the effective Newton's constant for the background is kept positive.

  14. A high frequency resonance gravity gradiometer

    SciTech Connect (OSTI)

    Bagaev, S. N.; Kvashnin, N. L.; Skvortsov, M. N. [Laser Physics Institute SB RAS, Novosibirsc (Russian Federation); Bezrukov, L. B.; Krysanov, V. A. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Oreshkin, S. I.; Motylev, A. M.; Popov, S. M.; Samoilenko, A. A.; Yudin, I. S. [Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation); Rudenko, V. N. [Institute of Nuclear Physics RAS, Moscow (Russian Federation); Lomonosov MSU, Sternberg Astronomical Institute, Moscow (Russian Federation)

    2014-06-15T23:59:59.000Z

    A new setup OGRAN—the large scale opto-acoustical gravitational detector is described. As distinguished from known gravitational bar detectors it uses the optical interferometrical readout for registering weak variations of gravity gradient at the kilohetz frequency region. At room temperature, its sensitivity is limited only by the bar Brownian noise at the bandwidth close to 100 Hz. It is destined for a search for rare events—gravitational pulses coincident with signals of neutrino scintillator (BUST) in the deep underground of Baksan Neutrino Observatory of INR RAS.

  15. Massive higher derivative gravity in D-dimensional anti-de Sitter spacetimes

    SciTech Connect (OSTI)

    Guellue, Ibrahim; Tekin, Bayram [Department of Physics, Middle East Technical University, 06531, Ankara (Turkey)

    2009-09-15T23:59:59.000Z

    We find the propagator and calculate the tree level scattering amplitude between two covariantly conserved sources in an anti-de Sitter background for the most general D-dimensional quadratic, four-derivative, gravity with a Pauli-Fierz mass. We also calculate the Newtonian potential for various limits of the theory in flat space. We show how the recently introduced three-dimensional New Massive Gravity is uniquely singled out among higher derivative models as a (tree level) unitary model and that its Newtonian limit is equivalent to that of the usual massive gravity in flat space.

  16. On Modified Gravity

    E-Print Network [OSTI]

    Ivan Dimitrijevic; Branko Dragovich; Jelena Grujic; Zoran Rakic

    2012-04-09T23:59:59.000Z

    We consider some aspects of nonlocal modified gravity, where nonlocality is of the type $R \\mathcal{F}(\\Box) R$. In particular, using ansatz of the form $\\Box R = c R^\\gamma,$ we find a few $R(t)$ solutions for the spatially flat FLRW metric. There are singular and nonsingular bounce solutions. For late cosmic time, scalar curvature R(t) is in low regime and scale factor a(t) is decelerated. R (t) = 0 satisfies all equations when k = -1.

  17. Mechanism of Gravity Impulse

    E-Print Network [OSTI]

    Ning Wu

    2005-10-01T23:59:59.000Z

    It is well-known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.

  18. Reduced models for quantum gravity

    E-Print Network [OSTI]

    T. Thiemann

    1999-10-04T23:59:59.000Z

    The preceding talks given at this conference have dealt mainly with general ideas for, main problems of and techniques for the task of quantizing gravity canonically. Since one of the major motivations to arrange for this meeting was that it should serve as a beginner's introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism by means of applying it to simplified models of quantum gravity, here formulated in terms of Ashtekar's new variables. From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely 2+1 gravity and the spherically symmetric model. The former model arises from a dimensional, the latter from a Killing reduction of full 3+1 gravity. While 2+1 gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the toplogy for the spherically symmetric system is chosen to be asymptotically flat. Finally, 2+1 gravity is more suitably quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation. Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice. What makes the discussion especially clear is the fact that for both models the reduced phase space turns out to be finitely dimensional.

  19. Canonical Analysis of Unimodular Gravity

    E-Print Network [OSTI]

    J. Kluson

    2014-10-07T23:59:59.000Z

    This short note is devoted to the Hamiltonian analysis of the Unimodular Gravity.We treat the unimodular gravity as General Relativity action with the unimodular constraint imposed with the help of Lagrange multiplier. We perform the canonical analysis of the resulting theory and determine its constraint structure.

  20. Time Delay Predictions in a Modified Gravity Theory

    E-Print Network [OSTI]

    J. W. Moffat

    2006-06-01T23:59:59.000Z

    The time delay effect for planets and spacecraft is obtained from a fully relativistic modified gravity theory including a fifth force skew symmetric field by fitting to the Pioneer 10/11 anomalous acceleration data. A possible detection of the predicted time delay corrections to general relativity for the outer planets and future spacecraft missions is considered. The time delay correction to GR predicted by the modified gravity is consistent with the observational limit of the Doppler tracking measurement reported by the Cassini spacecraft on its way to Saturn, and the correction increases to a value that could be measured for a spacecraft approaching Neptune and Pluto.

  1. Constructing Amplitudes from Their Soft Limits

    SciTech Connect (OSTI)

    Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC

    2011-12-09T23:59:59.000Z

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  2. AdS Chern-Simons Gravity induces Conformal Gravity

    E-Print Network [OSTI]

    Rodrigo Aros; Danilo E. Diaz

    2013-12-25T23:59:59.000Z

    The leitmotif of this paper is the question of whether four- and higher even-dimensional Conformal Gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauged-fixed, tractor-like) five-dimensional AdS connection. The gauge-fixing and dimensional reduction program admits a readily generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.

  3. Galactic space-times in modified theories of gravity

    E-Print Network [OSTI]

    Dipanjan Dey; Kaushik Bhattacharya; Tapobrata Sarkar

    2014-07-01T23:59:59.000Z

    We study Bertrand space-times (BSTs), which have been proposed as viable models of space-times seeded by galactic dark matter, in modified theories of gravity. We first critically examine the issue of galactic rotation curves in General Relativity, and establish the usefulness of BSTs to fit experimental data in this context. We then study BSTs in metric $f(R)$ gravity and in Brans-Dicke theories. For the former, the nature of the Newtonian potential is established, and we also compute the effective equation of state and show that it can provide good fits to some recent experimental results. For the latter, we calculate the Brans-Dicke scalar analytically in some limits and numerically in general, and find interesting constraints on the parameters of the theory. Our results provide evidence for the physical nature of Bertrand space-times in modified theories of gravity.

  4. Quantum Gravity and Inflation

    E-Print Network [OSTI]

    M. G. Romania; N. C. Tsamis; R. P. Woodard

    2014-12-05T23:59:59.000Z

    We review some perturbative results obtained in quantum gravity in an accelerating cosmological background. We then describe a class of non-local, purely gravitational models which have the correct structure to reproduce the leading infrared logarithms of quantum gravitational back-reaction during the inflationary regime. These models end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition and should, when coupled to matter, lead to rapid reheating. By elaborating this class of models we exhibit one that has the same behaviour during inflation, goes quiescent until the onset of matter domination, and induces a small, positive cosmological constant of about the right size thereafter. We also briefly comment on the primordial density perturbations that this class of models predict.

  5. Duality in linearized gravity

    SciTech Connect (OSTI)

    Henneaux, Marc; Teitelboim, Claudio [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, Campus Plaine C. P. 231, B-1050 Brussels (Belgium) and Centro de Estudios Cientificos (CECS), Valdivia (Chile); Centro de Estudios Cientificos (CECS), Valdivia (Chile)

    2005-01-15T23:59:59.000Z

    We show that duality transformations of linearized gravity in four dimensions, i.e., rotations of the linearized Riemann tensor and its dual into each other, can be extended to the dynamical fields of the theory so as to be symmetries of the action and not just symmetries of the equations of motion. Our approach relies on the introduction of two superpotentials, one for the spatial components of the spin-2 field and the other for their canonically conjugate momenta. These superpotentials are two-index, symmetric tensors. They can be taken to be the basic dynamical fields and appear locally in the action. They are simply rotated into each other under duality. In terms of the superpotentials, the canonical generator of duality rotations is found to have a Chern-Simons-like structure, as in the Maxwell case.

  6. Entropy and quantum gravity

    E-Print Network [OSTI]

    Kay, Bernard S

    2015-01-01T23:59:59.000Z

    We give an account of the matter-gravity entanglement hypothesis which, unlike the standard approach to entropy based on coarse-graining, offers a definition for the entropy of a closed system as a real and objective quantity. We explain how this new approach offers an explanation for the Second Law of Thermodynamics in general and a non-paradoxical understanding of information loss during black hole formation and evaporation in particular. We also very briefly review some recent related work on the nature of equilibrium states involving quantum black holes and point out how it promises to resolve some puzzling issues in the current version of the string theory approach to black hole entropy.

  7. Unscreening modified gravity in the matter power spectrum

    E-Print Network [OSTI]

    Lucas Lombriser; Fergus Simpson; Alexander Mead

    2015-01-20T23:59:59.000Z

    Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k Solar System tests or distance indicators in unscreened dwarf galaxies.

  8. Unscreening modified gravity in the matter power spectrum

    E-Print Network [OSTI]

    Lombriser, Lucas; Mead, Alexander

    2015-01-01T23:59:59.000Z

    Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k < 0.3 h...

  9. Critical Gravity in Four Dimensions

    SciTech Connect (OSTI)

    Lue, H. [China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081 (China); Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060 (China); Pope, C. N. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2011-05-06T23:59:59.000Z

    We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This ''critical'' theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical 'new massive gravity' with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.

  10. A Grid of NLTE Line-Blanketed Model Atmospheres of Early B-type Stars

    E-Print Network [OSTI]

    Thierry Lanz; Ivan Hubeny

    2006-11-29T23:59:59.000Z

    We have constructed a comprehensive grid of 1540 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to early B-type stars. The BSTAR2006 grid considers 16 values of effective temperatures, 15,000 K grid complements our earlier OSTAR2002 grid of O-type stars (Lanz & Hubeny, 2003, ApJS, 146, 417). The paper contains a description of the BSTAR2006 grid and some illustrative examples and comparisons. NLTE ionization fractions, bolometric corrections, radiative accelerations, and effective gravities are obtained over the parameter range covered by the grid. By extrapolating radiative accelerations, we have determined an improved estimate of the Eddington limit in absence of rotation between 55,000 and 15,000 K. The complete BSTAR2006 grid is available at the TLUSTY website (http://nova.astro.umd.edu).

  11. Critical gravity as van Dam-Veltman-Zakharov discontinuity in anti de Sitter space

    E-Print Network [OSTI]

    Yun Soo Myung

    2011-07-20T23:59:59.000Z

    We consider critical gravity as van Dam-Vletman-Zakharov (vDVZ) discontinuity in anti de Sitter space. For this purpose, we introduce the higher curvature gravity. This discontinuity can be confirmed by calculating the residues of relevant poles explicitly. For the non-critical gravity of $0limit first and then the $m^2_2 \\to 0$ limit. This indicates that the vDVZ discontinuity occurs in the higher curvature theory, showing that propagating degrees of freedom is decreased from 5 to 3. However, at the critical point of $m^2_2=-2\\Lambda/3$, the tensor residue of a massive pole blows up and scalar residue is -5/36, showing the unpromising feature of the critical gravity.

  12. Instabilities and Anti-Evaporation of Reissner-Nordström Black Holes in modified $F(R)$ gravity

    E-Print Network [OSTI]

    Shin'ichi Nojiri; Sergei D. Odintsov

    2014-10-05T23:59:59.000Z

    We study the instabilities and related anti-evaporation of the extremal Reissner-Nordstr\\"om (RN) black hole in $F(R)$ gravity. It is remarkable that the effective electric charge can be generated for some solutions of $F(R)$ gravity without electromagnetic field. The anti-evaporation effect occurs but it emerges only in the strong coupling limit of the effective gravitational coupling. The instabilities of RN black hole are also investigated when the electromagnetic sector is added to the action of $F(R)$ gravity. We show the anti-evaporation occurs in the Maxwell-$F(R)$ gravity with the arbitrary gravitational coupling constant although it does not occur in the Maxwell-Einstein gravity. Furthermore, general spherically-symmetric solution of $F(R)$ gravity in the Einstein frame is obtained.

  13. Quantum-Gravity Fluctuations and the Black-Hole Temperature

    E-Print Network [OSTI]

    Hod, Shahar

    2015-01-01T23:59:59.000Z

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the {\\it discrete} quantum spectrum suggested by Bekenstein with the {\\it continuous} semi-classical spectrum suggested by Hawking ? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quanti...

  14. Comment on 'Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter'

    E-Print Network [OSTI]

    Nagornyi, V D

    2011-01-01T23:59:59.000Z

    The article (Niebauer et al. 2011 Metrologia 48 154-163) reports on the important innovations enhancing the ability of absolute gravimeter to measure vertical gravity gradient along with the gravity acceleration. This comment suggests experiments to further assess the improvements and the results obtained with the modified instrument, considers some limitations of non-linear models in metrology and ways to overcome them, and discusses possible applications of the described instrument.

  15. MOVING CONTACT LINES IN THE CAHN-HILLIARD PIERRE SEPPECHER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the flow in the immediate vicinity of the contact line shows the connection between the static contact, the shape of the interface of a drop lying on a smooth horizontal surface depends on gravity and surface, they are responsible for the rising of a fluid in a capillary tube. When the interface is moving with respect

  16. Torsion-Gravity for Dirac fields and their effective phenomenology

    E-Print Network [OSTI]

    Luca Fabbri

    2014-09-01T23:59:59.000Z

    We will consider the torsional completion of gravity for a background filled with Dirac matter fields, studying the weak-gravitational non-relativistic approximation, in view of an assessment about their effective phenomenology: we discuss how the torsionally-induced non-linear interactions among fermion fields in this limit are compatible with all experiments, and remarks on the role of torsion to suggest new physics are given.

  17. From massive gravity to dark matter density II

    E-Print Network [OSTI]

    G. Scharf

    2009-02-18T23:59:59.000Z

    As previously observed the massless limit of massive gravity leads to a modification of general relativity. Here we study spherically symmetric solutions of the modified field equations which contain normal matter together with a dark energy density. If the dark density profile is assumed to be known, the whole problem is reduced to a linear first order differential equation which can be solved by quadratures.

  18. Transmission Lines Emulating Moving Media

    E-Print Network [OSTI]

    Vehmas, Joni; Tretyakov, Sergei

    2014-01-01T23:59:59.000Z

    In this paper, we show how the electromagnetic phenomena in moving magnetodielectric media can be emulated using artificial composite structures at rest. In particular, we introduce nonreciprocal periodically loaded transmission lines which support waves obeying the same rules as plane electromagnetic waves in moving media. Because the actual physical structure is at rest, in these transmission lines there are no fundamental limitations on the velocity values, which may take values larger than the speed of light or even complex values (considering complex amplitudes in the time-harmonic regime). An example circuit of a unit cell of a "moving" transmission line is presented and analyzed both numerically and experimentally. The special case of composite right/left handed host line is also studied numerically. Besides the fundamental interest, the study is relevant for potential applications in realizing engineered materials for various transformations of electromagnetic fields.

  19. Conformal Lifshitz Gravity from Holography

    E-Print Network [OSTI]

    Tom Griffin; Petr Horava; Charles M. Melby-Thompson

    2012-04-03T23:59:59.000Z

    We show that holographic renormalization of relativistic gravity in asymptotically Lifshitz spacetimes naturally reproduces the structure of gravity with anisotropic scaling: The holographic counterterms induced near anisotropic infinity take the form of the action for gravity at a Lifshitz point, with the appropriate value of the dynamical critical exponent $z$. In the particular case of 3+1 bulk dimensions and $z=2$ asymptotic scaling near infinity, we find a logarithmic counterterm, related to anisotropic Weyl anomaly of the dual CFT, and show that this counterterm reproduces precisely the action of conformal gravity at a $z=2$ Lifshitz point in 2+1 dimensions, which enjoys anisotropic local Weyl invariance and satisfies the detailed balance condition. We explain how the detailed balance is a consequence of relations among holographic counterterms, and point out that a similar relation holds in the relativistic case of holography in $AdS_5$. Upon analytic continuation, analogous to the relativistic case studied recently by Maldacena, the action of conformal gravity at the $z=2$ Lifshitz point features in the ground-state wavefunction of a gravitational system with an interesting type of spatial anisotropy.

  20. Efficient buffer design algorithms for production line profit maximization

    E-Print Network [OSTI]

    Shi, Chuan, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    A production line is a manufacturing system where machines are connected in series and separated by buffers. The inclusion of buffers increases the average production rate of the line by limiting the propagation of ...

  1. More on massive 3D gravity

    SciTech Connect (OSTI)

    Bergshoeff, Eric A.; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2009-06-15T23:59:59.000Z

    We explore the space of static solutions of the recently discovered three-dimensional 'new massive gravity' (NMG), allowing for either sign of the Einstein-Hilbert term and a cosmological term parametrized by a dimensionless constant {lambda}. For {lambda}=-1 we find black hole solutions asymptotic (but not isometric) to the unique (anti) de Sitter [(A)dS] vacuum, including extremal black holes that interpolate between this vacuum and (A)dS{sub 2}xS{sup 1}. We also investigate unitarity of linearized NMG in (A)dS vacua. We find unitary theories for some dS vacua, but (bulk) unitarity in AdS implies negative central charge of the dual conformal field theories (CFT), except for {lambda}=3 where the central charge vanishes and the bulk gravitons are replaced by 'massive photons'. A similar phenomenon is found in the massless limit of NMG, for which the linearized equations become equivalent to Maxwell's equations.

  2. Accurate Gravities of F, G, and K stars from High Resolution Spectra Without External Constraints

    E-Print Network [OSTI]

    Brewer, John M; Basu, Sarbani; Valenti, Jeff A; Piskunov, Nikolai

    2015-01-01T23:59:59.000Z

    We demonstrate a new procedure to derive accurate and precise surface gravities from high resolution spectra without the use of external constraints. Our analysis utilizes Spectroscopy Made Easy (SME) with robust spectral line constraints and uses an iterative process to mitigate degeneracies in the fitting process. We adopt an updated radiative transfer code, a new treatment for neutral perturber broadening, a line list with multiple gravity constraints and separate fitting for global stellar properties and abundance determinations. To investigate the sources of temperature dependent trends in determining log g noted in previous studies, we obtained Keck HIRES spectra of 42 Kepler asteroseismic stars. In comparison to asteroseismically determined log g our spectroscopic analysis has a constant offset of 0.01 dex with a root mean square (RMS) scatter of 0.05 dex. We also analyzed 30 spectra which had published surface gravities determined using the $a/R_*$ technique from planetary transits and found a constan...

  3. Noncommutative SO(2,3) gauge theory and noncommutative gravity

    E-Print Network [OSTI]

    Marija Dimitrijevic; Voja Radovanovic

    2014-07-30T23:59:59.000Z

    In this paper noncommutative gravity is constructed as a gauge theory of the noncommutative SO(2,3) group, while the noncommutativity is canonical (constant). The Seiberg-Witten map is used to express noncommutative fields in terms of the corresponding commutative fields. The commutative limit of the model is the Einstein-Hilbert action with the cosmological constant term and the topological Gauss-Bonnet term. We calculate the second order correction to this model and obtain terms that are of zeroth to fourth power in the curvature tensor and torsion. Trying to relate our results with $f(R)$ and $f(T)$ models, we analyze different limits of our model. In the limit of big cosmological constant and vanishing torsion we obtain a $x$-dependent correction to the cosmological constant, i.e. noncommutativity leads to a $x$-dependent cosmological constant. We also discuss the limit of small cosmological constant and vanishing torsion and the teleparallel limit.

  4. Gauge Theory of Quantum Gravity

    E-Print Network [OSTI]

    J. W. Moffat

    1994-01-04T23:59:59.000Z

    A gauge theory of quantum gravity is formulated, in which an internal, field dependent metric is introduced which non-linearly realizes the gauge fields on the non-compact group $SL(2,C)$, while linearly realizing them on $SU(2)$. Einstein's $SL(2,C)$ invariant theory of gravity emerges at low energies, since the extra degrees of freedom associated with the quadratic curvature and the internal metric only dominate at high energies. In a fixed internal metric gauge, only the the $SU(2)$ gauge symmetry is satisfied, the particle spectrum is identified and the Hamiltonian is shown to be bounded from below. Although Lorentz invariance is broken in this gauge, it is satisfied in general. The theory is quantized in this fixed, broken symmetry gauge as an $SU(2)$ gauge theory on a lattice with a lattice spacing equal to the Planck length. This produces a unitary and finite theory of quantum gravity.

  5. Energy bounds in designer gravity

    SciTech Connect (OSTI)

    Amsel, Aaron J.; Marolf, Donald [Physics Department, UCSB, Santa Barbara, California 93106 (United States)

    2006-09-15T23:59:59.000Z

    We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. By comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.

  6. Counterterms, critical gravity and holography

    E-Print Network [OSTI]

    Kallol Sen; Aninda Sinha; Nemani V. Suryanarayana

    2012-05-18T23:59:59.000Z

    We consider counterterms for odd dimensional holographic CFTs. These counterterms are derived by demanding cut-off independence of the CFT partition function on $S^d$ and $S^1 \\times S^{d-1}$. The same choice of counterterms leads to a cut-off independent Schwarzschild black hole entropy. When treated as independent actions, these counterterm actions resemble critical theories of gravity, i.e., higher curvature gravity theories where the additional massive spin-2 modes become massless. Equivalently, in the context of AdS/CFT, these are theories where at least one of the central charges associated with the trace anomaly vanishes. Connections between these theories and logarithmic CFTs are discussed. For a specific choice of parameters, the theories arising from counterterms are non-dynamical and resemble a DBI generalization of gravity. For even dimensional CFTs, analogous counterterms cancel log-independent cut-off dependence.

  7. Fluid Gravity Engineering Rocket motor flow analysis

    E-Print Network [OSTI]

    Anand, Mahesh

    Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External (plume / contamination) · Effect on landing site (surface alteration) -In-depth flow through porous young scientists/engineers Fluid Gravity Engineering Ltd #12;

  8. Lovelock-Brans-Dicke gravity

    E-Print Network [OSTI]

    Tian, David Wenjie

    2015-01-01T23:59:59.000Z

    According to Lovelock's theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the \\emph{Lovelock-Brans-Dicke} (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density $\\mathscr{L}_{\\text{LBD}}=\\frac{1}{16\\pi}\\left[\\phi\\left(R+\\frac{a}{\\sqrt{-g}}{}^*RR + b\\mathcal{G}\\right)-\\frac{\\omega_{\\text L}}{\\phi}\

  9. Lovelock-Brans-Dicke gravity

    E-Print Network [OSTI]

    David Wenjie Tian; Ivan Booth

    2015-03-02T23:59:59.000Z

    According to Lovelock's theorem, the Hilbert-Einstein and the Lovelock actions are indistinguishable from their field equations. However, they have different scalar-tensor counterparts, which correspond to the Brans-Dicke and the \\emph{Lovelock-Brans-Dicke} (LBD) gravities, respectively. In this paper the LBD model of alternative gravity with the Lagrangian density $\\mathscr{L}_{\\text{LBD}}=\\frac{1}{16\\pi}[\\phi(R+\\frac{a}{\\sqrt{-g}}{}^*RR + b\\mathcal{G})-\\frac{\\omega_{\\text L}}{\\phi}\

  10. Intrusive gravity currents in two-layer

    E-Print Network [OSTI]

    Flynn, Morris R.

    Intrusive gravity currents in two-layer stratified media Morris R. Flynn & Paul F. Linden Dept.avalanche.org/pictures #12;· `Microbursts' pose a non-trivial threat to airplane safety Introduction Impacts on human health;· Whereas gravity currents travel along a solid boundary, intrusive gravity currents or intrusions propagate

  11. Imprint of modified Einstein's gravity on white dwarfs: Unifying type Ia supernovae

    E-Print Network [OSTI]

    Das, Upasana

    2015-01-01T23:59:59.000Z

    We establish the importance of modified Einstein's gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar's limit are expected to trigger type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under- and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar's limit. Explosions of MG induced sub- and super-Chandrasekhar limiting mass WDs explain under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein's gravity and the uniqueness of Chandrasekhar's limit.

  12. Quasistellar Objects: Intervening Absorption Lines

    E-Print Network [OSTI]

    Jane C. Charlton; Christopher W. Churchill

    2000-05-31T23:59:59.000Z

    We briefly review, at a level appropriate for graduate students and non-specialists, the field of quasar absorption lines (QALs). Emphasis is on the intervening absorbers. We present the anatomy of a quasar spectrum due to various classes of intervening absorption systems, and a brief historical review of each absorber class (Lyman-alpha forest and Lyman limit systems, and metal-line and damped Lyman-alpha absorbers). We also provide several heuristic examples on how the physical properties of both the intergalactic medium and the gaseous environments associated with earlier epoch galaxies can be inferred from QALs. The evolution of these environments from z=4 are discussed.

  13. Relativistic emission lines from accreting black holes - The effect of disk truncation on line profiles

    E-Print Network [OSTI]

    Andreas Mueller; Max Camenzind

    2003-09-30T23:59:59.000Z

    Relativistic emission lines generated by thin accretion disks around rotating black holes are an important diagnostic tool for testing gravity near the horizon. The iron K-line is of special importance for the interpretation of the X-ray emission of Seyfert galaxies, quasars and galactic X-ray binary systems. A generalized kinematic model is presented which includes radial drifts and non-Keplerian rotations for the line emitters. The resulting line profiles are obtained with an object-oriented ray tracer operating in the curved Kerr background metric. The general form of the Doppler factor is presented which includes all kinds of poloidal and toroidal motions near the horizon. The parameters of the model include the spin parameter, the inclination, the truncation and outer radius of the disk, velocity profiles for rotation and radial drift, the emissivity profile and a multi-species line-system. The red wing flux is generally reduced when radial drift is included as compared to the pure Keplerian velocity field. All resulting emission line profiles can be classified as triangular, double-horned, double-peaked, bumpy and shoulder-like. Of particular interest are emission line profiles generated by truncated standard accretion disks (TSD). It is also shown that the emissivity law has a great influence on the profiles. The characteristic shoulder-like line profile observed for the Seyfert galaxy MCG-6-30-15 can be reproduced for suitable parameters

  14. Quantum Gravity and Precision Tests

    E-Print Network [OSTI]

    C. P. Burgess

    2006-06-24T23:59:59.000Z

    This article provides a cartoon of the quantization of General Relativity using the ideas of effective field theory. These ideas underpin the use of General Relativity as a theory from which precise predictions are possible, since they show why quantum corrections to standard classical calculations are small. Quantum corrections can be computed controllably provided they are made for the weakly-curved geometries associated with precision tests of General Relativity, such as within the solar system or for binary pulsars. They also bring gravity back into the mainstream of physics, by showing that its quantization (at low energies) exactly parallels the quantization of other, better understood, non-renormalizable field theories which arise elsewhere in physics. Of course effective field theory techniques do not solve the fundamental problems of quantum gravity discussed elsewhere in these pages, but they do helpfully show that these problems are specific to applications on very small distance scales. They also show why we may safely reject any proposals to modify gravity at long distances if these involve low-energy problems (like ghosts or instabilities), since such problems are unlikely to be removed by the details of the ultimate understanding of gravity at microscopic scales.

  15. High-gravity central stars

    E-Print Network [OSTI]

    Thomas Rauch

    2006-07-11T23:59:59.000Z

    NLTE spectral analyses of high-gravity central stars by means of state-of-the-art model atmosphere techniques provide information about the precursor AGB stars. The hydrogen-deficient post-AGB stars allow investigations on the intershell matter which is apparently exhibited at the stellar surface. We summarize recent results from imaging, spectroscopy, and spectropolarimetry.

  16. Antimatter, the SME, and Gravity

    E-Print Network [OSTI]

    Jay D. Tasson

    2012-12-07T23:59:59.000Z

    A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.

  17. Antimatter, the SME, and Gravity

    E-Print Network [OSTI]

    Tasson, Jay D

    2012-01-01T23:59:59.000Z

    A general field-theoretic framework for the analysis of CPT and Lorentz violation is provided by the Standard-Model Extension (SME). This work discusses a number of SME-based proposals for tests of CPT and Lorentz symmetry, including antihydrogen spectroscopy and antimatter gravity tests.

  18. Process Limits on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process Limits Process Limits Limit Hard Soft core file size (blocks) 0 unlimited data seg size (kbytes) unlimited unlimited scheduling priority 0 0 file size (blocks) unlimited...

  19. Viscous Dark Energy in $f(T)$ Gravity

    E-Print Network [OSTI]

    M. Sharif; Shamaila Rani

    2014-05-18T23:59:59.000Z

    We study the bulk viscosity taking dust matter in the generalized teleparallel gravity. We consider different dark energy models in this scenario along with a time dependent viscous model to construct the viscous equation of state parameter for these dark energy models. We discuss the graphical representation of this parameter to investigate the viscosity effects on the accelerating expansion of the universe. It is mentioned here that the behavior of the universe depends upon the viscous coefficients showing the transition from decelerating to accelerating phase. It leads to the crossing of phantom divide line and becomes phantom dominated for specific ranges of these coefficients.

  20. Cloud of strings for radiating black holes in Lovelock gravity

    E-Print Network [OSTI]

    Sushant G. Ghosh; Sunil D. Maharaj

    2014-09-28T23:59:59.000Z

    We present exact spherically symmetric null dust solutions in the third order Lovelock gravity with a string cloud background in arbitrary $N$ dimensions,. This represents radiating black holes and generalizes the well known Vaidya solution to Lovelock gravity with a string cloud in the background. We also discuss the energy conditions and horizon structures, and explicitly bring out the effect of the string clouds on the horizon structure of black hole solutions for the higher dimensional general relativity and Einstein-Gauss-Bonnet theories. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms and/or background string clouds completely changes the structure of the horizon and this may lead to a naked singularity. We recover known spherically symmetric radiating models as well as static black holes in the appropriate limits.

  1. Clouds of strings in third-order Lovelock gravity

    E-Print Network [OSTI]

    Sushant G. Ghosh; Uma Papnoi; Sunil D. Maharaj

    2014-08-20T23:59:59.000Z

    Lovelock theory is a natural extension of the Einstein theory of general relativity to higher dimensions in which the first and second orders correspond, respectively, to general relativity and Einstein-Gauss-Bonnet gravity. We present exact black hole solutions of $D\\geq 4$-dimensional spacetime for first-, second-, and third-order Lovelock gravities in a string cloud background. Further, we compute the mass, temperature, and entropy of black hole solutions for the higher-dimensional general relativity and Einstein-Gauss-Bonnet theories and also perform thermodynamic stability of black holes. It turns out that the presence of the Gauss-Bonnet term and/or background string cloud completely changes the black hole thermodynamics. Interestingly, the entropy of a black hole is unaffected due to a background string cloud. We rediscover several known spherically symmetric black hole solutions in the appropriate limits.

  2. Gravity monitoring of CO2 movement during sequestration: Model studies

    SciTech Connect (OSTI)

    Gasperikova, E.; Hoversten, G.M.

    2008-07-15T23:59:59.000Z

    We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.

  3. Testing Gravity with Cold-Atom Interferometers

    E-Print Network [OSTI]

    G. W. Biedermann; X. Wu; L. Deslauriers; S. Roy; C. Mahadeswaraswamy; M. A. Kasevich

    2014-12-10T23:59:59.000Z

    We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$\\times10^{-9}g/\\sqrt{Hz}$ over a 70 cm baseline or 3.0$\\times10^{-9}g/\\sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$\\times10^{-4}$ that is competitive with the present limit of 1.2$\\times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$\\times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.

  4. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Environmental Management (EM)

    from Block Plains and Eastern Clean Line: Arkansas and Oklahoma Plains and Eastern Clean Line Transmission Line: Comment from Block Plains and Eastern Clean Line: Arkansas and...

  5. Axions in gravity with torsion

    E-Print Network [OSTI]

    Oscar Castillo-Felisola; Cristobal Corral; Sergey Kovalenko; Ivan Schmidt; Valery E. Lyubovitskij

    2015-04-13T23:59:59.000Z

    We study a scenario allowing a solution of the strong charge parity problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as Kalb-Ramond axion. We compare it with the so-called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the viewpoint of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.

  6. Axions in gravity with torsion

    E-Print Network [OSTI]

    Castillo-Felisola, Oscar; Kovalenko, Sergey; Schmidt, Ivan; Lyubovitskij, Valery E

    2015-01-01T23:59:59.000Z

    We study a scenario allowing a solution of the strong CP-problem via the Peccei-Quinn mechanism, implemented in gravity with torsion. In this framework there appears a torsion-related pseudoscalar field known as Kalb-Ramond axion. We compare it with the so called Barbero-Immirzi axion recently proposed in the literature also in the context of the gravity with torsion. We show that they are equivalent from the view point of the effective theory. The phenomenology of these torsion-descended axions is completely determined by the Planck scale without any additional model parameters. These axions are very light and very weakly interacting with ordinary matter. We briefly comment on their astrophysical and cosmological implications in view of the recent BICEP2 and Planck data.

  7. Black holes in massive gravity

    E-Print Network [OSTI]

    Babichev, Eugeny

    2015-01-01T23:59:59.000Z

    We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...

  8. Supersymmetry and Gravity in Noncommutative Field Theories

    E-Print Network [OSTI]

    Victor O. Rivelles

    2003-05-14T23:59:59.000Z

    We discuss the renormalization properties of noncommutative supersymmetric theories. We also discuss how the gauge field plays a role similar to gravity in noncommutative theories.

  9. Can Gravity Probe B usefully constrain torsion gravity theories?

    SciTech Connect (OSTI)

    Flanagan, Eanna E.; Rosenthal, Eran [Center for Radiophysics and Space Research, Cornell University, Ithaca, New York, 14853 (United States)

    2007-06-15T23:59:59.000Z

    In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the amount of torsion generated by macroscopic bodies is normally negligible. However, in a recent paper, Mao et al. (arXiv:gr-qc/0608121) point out that there is a class of theories, including the Hayashi-Shirafuji (1979) theory, in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They further argue that, by the principle of action equals reaction, one would expect the angular momentum of test bodies to couple to a background torsion field, and therefore the precession of the Gravity Probe B gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories, essentially because the torsion is not an independent dynamical degree of freedom. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of different versions of this theory, depending on the precise form of the coupling to matter chosen for the torsion. We show that, for any coupling to matter that is compatible with the spin transport equation postulated by Mao et al., the theory has either ghosts or an ill-posed initial-value formulation. These theoretical problems can be avoided by specializing the parameters of the theory and in addition choosing the standard minimal coupling to matter of the torsion tensor. This yields a consistent theory, but one in which the action equals reaction principle is violated, and in which the angular momentum of the gyroscopes does not couple to the Earth's torsion field. Thus, the Einstein-Hayashi-Shirafuji theory does not predict a detectable torsion signal for Gravity Probe B. There may be other torsion theories which do.

  10. Quantum Limit on Stability of Clocks in a Gravitational Field

    E-Print Network [OSTI]

    Supurna Sinha; Joseph Samuel

    2014-03-21T23:59:59.000Z

    Good clocks are of importance both to fundamental physics and for applications in astronomy, metrology and global positioning systems. In a recent technological breakthrough, researchers at NIST have been able to achieve a stability of 1 part in $10^{18}$ using an Ytterbium clock. This naturally raises the question of whether there are fundamental limits to the stability of clocks. In this paper we point out that gravity and quantum mechanics set a fundamental limit on the stability of clocks. This limit comes from a combination of the uncertainty relation, the gravitational redshift and the relativistic time dilation effect. For example, a single ion hydrogen maser clock in a terrestrial gravitational field cannot achieve a stability better than one part in $10^{22}$. This observation has implications for laboratory experiments involving both gravity and quantum theory.

  11. Uniqueness Theorem for Stationary Axisymmetric Black Holes in Einstein-Maxwell-axion-dilaton Gravity

    E-Print Network [OSTI]

    Marek Rogatko

    2010-07-26T23:59:59.000Z

    We prove the uniqueness theorem for stationary axisymmetric black hole solution in Einstein-Maxwell-axion-dilaton gravity being the low-energy limit of the heterotic string theory. We consider both non-degenerate and extremal Kerr-Sen black hole solutions.

  12. Uniqueness theorem for stationary axisymmetric black holes in Einstein-Maxwell-axion-dilaton gravity

    SciTech Connect (OSTI)

    Rogatko, Marek [Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, pl. Marii Curie-Sklodowskiej 1 (Poland)

    2010-08-15T23:59:59.000Z

    We prove the uniqueness theorem for the stationary axisymmetric black hole solution in Einstein-Maxwell-axion-dilaton gravity being the low-energy limit of the heterotic string theory. We consider both the nonextremal and extremal Kerr-Sen black hole solutions.

  13. Aspects of Neutrino Oscillation in Alternative Gravity Theories

    E-Print Network [OSTI]

    Sumanta Chakraborty

    2015-06-08T23:59:59.000Z

    Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes. This finally lends itself to non-zero probability of neutrino helicity flip. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to different gravity theories. These include dilaton field coupled to Maxwell field tensor, generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action and finally regular black hole solutions. In all these cases using the solar neutrino oscillation data we can put bounds on the parameters of these gravity theories. While for spin oscillation probability, we have considered two cases, Gauss-Bonnet term added to the Einstein-Hilbert action and the f(R) gravity theory. In both these cases we could impose bounds on the parameters which are consistent with previous considerations. Implications are also discussed.

  14. Disformal Theories of Gravity: From the Solar System to Cosmology

    E-Print Network [OSTI]

    Jeremy Sakstein

    2014-10-20T23:59:59.000Z

    This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use local tests of gravity to place new constraints on the disformal coupling and find $\\mathcal{M}>\\mathcal{O}(\\textrm{eV})$, which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.

  15. Intersecting hypersurfaces in anti-de Sitter and Lovelock gravity

    SciTech Connect (OSTI)

    Gravanis, Elias; Willison, Steven [Department of Physics, Kings College, Strand, London WC2R 2LS (United Kingdom); Department of Physics, Kings College, Strand, London WC2R 2LS (United Kingdom) and Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)

    2006-09-15T23:59:59.000Z

    Colliding and intersecting hypersurfaces filled with matter (membranes) are studied in the Lovelock higher order curvature theory of gravity. Lovelock terms couple hypersurfaces of different dimensionalities, extending the range of possible intersection configurations. We restrict the study to constant curvature membranes in constant curvature anti-de Sitter (AdS) and dS background and consider their general intersections. This illustrates some key features which make the theory different from the Einstein gravity. Higher co-dimension membranes may lie at the intersection of co-dimension one hypersurfaces in Lovelock gravity; the hypersurfaces are located at the discontinuities of the first derivative of the metric, and they need not carry matter. The example of colliding membranes shows that general solutions can only be supported by (spacelike) matter at the collision surface, thus naturally conflicting with the dominant energy condition (DEC). The imposition of the DEC gives selection rules on the types of collision allowed. When the hypersurfaces do not carry matter, one gets a solitonlike configuration. Then, at the intersection one has a co-dimension two or higher membrane standing alone in AdS-vacuum space-time without conical singularities. Another result is that if the number of intersecting hypersurfaces goes to infinity the limiting space-time is free of curvature singularities if the intersection is put at the boundary of each AdS bulk.

  16. Gravity modeling of Cenozoic extensional basins, offshore Vietnam

    E-Print Network [OSTI]

    Mauri, Steven Joseph

    1993-01-01T23:59:59.000Z

    (Yinggehai) basins. Gravity modeling results provide important clues to the controversial tectonic development of Southeast Asia during the Tertiary. Combined Bouguer and free-air gravity maps and residual gravity anomaly maps were generated for the study...

  17. Anomalous diffusion for inertial particles under gravity in parallel flows

    E-Print Network [OSTI]

    Marco Martins Afonso

    2014-07-04T23:59:59.000Z

    We investigate the bounds between normal or anomalous effective diffusion for inertial particles transported by parallel flows. The infrared behavior of the fluid kinetic-energy spectrum, i.e. the possible presence of long-range spatio-temporal correlations, is modeled as a power law by means of two parameters, and the problem is studied as a function of these latter. Our results, obtained in the limit of weak relative inertia, extend well-known results for tracers and apply to particles of any mass density, subject to gravity and Brownian diffusion. We consider both steady and time-dependent flows, and cases of both vanishing and finite particle sedimentation.

  18. Lessons from Classical Gravity about the Quantum Structure of Spacetime

    E-Print Network [OSTI]

    Padmanabhan, T

    2010-01-01T23:59:59.000Z

    I present the theoretical evidence which suggests that gravity is an emergent phenomenon like gas dynamics or elasticity with the gravitational field equations having the same status as, say, the equations of fluid dynamics/elasticity. This paradigm views a wide class of gravitational theories - including Einstein's theory - as describing the thermodynamic limit of the statistical mechanics of "atoms of spacetime". The evidence for this paradigm is hidden in several classical features of the gravitational theories and depends on just one quantum mechanical input, viz. the existence of Davies-Unruh temperature of horizons. I discuss several conceptual ingredients of this approach.

  19. Lessons from Classical Gravity about the Quantum Structure of Spacetime

    E-Print Network [OSTI]

    T. Padmanabhan

    2011-01-22T23:59:59.000Z

    I present the theoretical evidence which suggests that gravity is an emergent phenomenon like gas dynamics or elasticity with the gravitational field equations having the same status as, say, the equations of fluid dynamics/elasticity. This paradigm views a wide class of gravitational theories - including Einstein's theory - as describing the thermodynamic limit of the statistical mechanics of "atoms of spacetime". The evidence for this paradigm is hidden in several classical features of the gravitational theories and depends on just one quantum mechanical input, viz. the existence of Davies-Unruh temperature of horizons. I discuss several conceptual ingredients of this approach.

  20. Mutated hybrid inflation in f(R,?R)-gravity

    SciTech Connect (OSTI)

    Iihoshi, Masao, E-mail: iihoshi@kiso.phys.se.tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)

    2011-02-01T23:59:59.000Z

    A new hybrid inflationary scenario in the context of f(R,?R)-gravity is proposed. Demanding the waterfall field to 'support the potential from below' [unlike the original proposal by Stewart in Phys. Lett. B 345, 414 (1995)], we demonstrate that the scalar potential is similar to that of the large-field chaotic inflation model proposed by Linde in Phys. Lett. B 129, 177 (1983). Inflationary observables are used to constrain the parameter space of our model; in the process, an interesting limit on the number of e-folds N is found.

  1. Negative mass solitons in gravity

    SciTech Connect (OSTI)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram [Anadolu University, Department of Physics, Yunus Emre Campus, 26470, Eskisehir (Turkey); Department of Physics, Faculty of Arts and Sciences, Middle East Technical University, 06531, Ankara (Turkey)

    2006-03-15T23:59:59.000Z

    We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z{sub p} spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics.

  2. Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Technique Ground Gravity Survey Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity surveys were conducted to gain a better...

  3. airborne gravity survey: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravity CERN Preprints Summary: Modified gravity theories may provide an alternative to dark energy to explain cosmic acceleration. We argue that the observational program...

  4. Reconstruction of Einstein-Aether Gravity from other Modified Gravity Models

    E-Print Network [OSTI]

    Chayan Ranjit; Ujjal Debnath

    2014-09-08T23:59:59.000Z

    We briefly describe the modified Friedmann equations for Einstein-Aether gravity theory and we find the effective density and pressure. The purpose of our present work is to reconstruction of Einstein-Aether Gravity from other modified gravities like $f(T)$, $f(R)$, $f(G)$, $f(R,T)$ and $f(R,G)$ and check its viability. The scale factor is chosen in power law form. The free function $F(K)$ for Einstein-Aether gravity (where $K$ is proportional to $H^{2}$) have been found in terms for $K$ by the correspondence between Einstein-Aether gravity and other modified gravities and the nature of $F(K)$ vs $K$ have been shown graphically for every cases. Finally, we analyzed the stability of each reconstructed Einstein-Aether gravity model.

  5. Conserved charges in 3D gravity

    SciTech Connect (OSTI)

    Blagojevic, M.; Cvetkovic, B. [University of Belgrade, Institute of Physics, P. O. Box 57, 11001 Belgrade (Serbia)

    2010-06-15T23:59:59.000Z

    The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.

  6. The Superheavy Elements and Anti-Gravity

    SciTech Connect (OSTI)

    Anastasovski, Petar K. [Department of Physics, Faculty of Technology and Metallurgy, Saints Cyril and Methodius University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2004-02-04T23:59:59.000Z

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.

  7. Dual Accretion Disks in Alternate Gravity Theories

    E-Print Network [OSTI]

    James S. Graber

    1997-12-15T23:59:59.000Z

    The interior of gravitationally collapsed objects in alternate theories of gravity in which event horizons and singularities do not occur in strong field gravity were generically investigated. These objects, called red holes, were found to contain dynamic configurations of matter, radiation and spacetime similar to inside out accretion disks well inside the photon orbit. Applications to astrophysical phenomena are briefly described.

  8. Threat Mitigation: The Gravity Tractor

    E-Print Network [OSTI]

    Russell Schweickart; Clark Chapman; Dan Durda; Piet Hut

    2006-08-15T23:59:59.000Z

    The Gravity Tractor (GT) is a fully controlled asteroid deflection concept using the mutual gravity between a robotic spacecraft and an asteroid to slowly accelerate the asteroid in the direction of the "hovering" spacecraft. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. Ion engines would be utilized for both the rendezvous with the asteroid and the towing phase. Since the GT does not dock with or otherwise physically contact the asteroid during the deflection process there is no requirement for knowledge of the asteroid's shape, composition, rotation state or other "conventional" characteristics. The GT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while station keeping with the asteroid. If, after analysis of the more precise asteroid orbit a deflection is indeed indicated, the GT would "hover" above the surface of the asteroid in the direction of the required acceleration vector for a duration adequate to achieve the desired velocity change. The orbit of the asteroid is continuously monitored throughout the deflection process and the end state is known in real time. The performance envelope for the GT includes most NEOs which experience close gravitational encounters prior to impact and those below 150-200 meters in diameter on a direct Earth impact trajectory.

  9. Solar System constraints to nonminimally coupled gravity

    E-Print Network [OSTI]

    Orfeu Bertolami; Riccardo March; Jorge Páramos

    2013-06-05T23:59:59.000Z

    We extend the analysis of Chiba, Smith and Erickcek \\cite{CSE} of Solar System constraints on $f(R)$ gravity to a class of nonminimally coupled (NMC) theories of gravity. These generalize $f(R)$ theories by replacing the action functional of General Relativity (GR) with a more general form involving two functions $f^1(R)$ and $f^2(R)$ of the Ricci scalar curvature $R$. While the function $f^1(R)$ is a nonlinear term in the action, analogous to $f(R)$ gravity, the function $f^2(R)$ yields a NMC between the matter Lagrangian density $\\LL_m$ and the scalar curvature. The developed method allows for obtaining constraints on the admissible classes of functions $f^1(R)$ and $f^2(R)$, by requiring that predictions of NMC gravity are compatible with Solar System tests of gravity. We apply this method to a NMC model which accounts for the observed accelerated expansion of the Universe.

  10. Plasmon-graviton conversion in a magnetic field in TeV-scale gravity

    E-Print Network [OSTI]

    E. Yu. Melkumova

    2011-12-13T23:59:59.000Z

    Kaluza-Klein (KK) gravitons emission rates due to plasmon-graviton conversion in magnetic field are computed within the ADD model of TeV-scale gravity. Plasma is described in the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with $n$ compact extra dimensions is introduced within the linearized theory. Plasma collective effects enter through the two-point correlation function of the fluctuations of the energy-momentum tensor. The estimate for magnetic stars is presented leading to the lower limit of the D-dimensional Plank mass.

  11. Review of short-range gravity experiments in the LHC era

    E-Print Network [OSTI]

    Jiro Murata; Saki Tanaka

    2014-08-19T23:59:59.000Z

    This document briefly reviews recent short-range gravity experiments that were performed at below laboratory scales to test the Newtonian inverse square law of gravity. To compare sensitivities of these measurements, estimates using the conventional Yukawa parametrization are introduced. Since these experiments were triggered by the prediction of the large extra-dimension model, experiments performed at different length scales are compared with this prediction. In this paper, a direct comparison between laboratory-scale experiments and the LHC results is presented for the first time. A laboratory experiment is shown to determine the best limit at $M_D > 4.6 \\;\\rm{TeV}$ and $\\lambdagravitational microlaboratories.

  12. Polymer Quantum Mechanics and its Continuum Limit

    E-Print Network [OSTI]

    Alejandro Corichi; Tatjana Vukasinac; Jose A. Zapata

    2007-08-22T23:59:59.000Z

    A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.

  13. Classical and Quantum Gravity in 1+1 Dimensions, Part I: A Unifying Approach

    E-Print Network [OSTI]

    T. Kloesch; T. Strobl

    1997-08-11T23:59:59.000Z

    We provide a concise approach to generalized dilaton theories with and without torsion and coupling to Yang-Mills fields. Transformations on the space of fields are used to trivialize the field equations locally. In this way their solution becomes accessible within a few lines of calculation only. In this first of a series of papers we set the stage for a thorough global investigation of classical and quantum aspects of more or less all available 2D gravity-Yang-Mills models.

  14. Relativistic emission lines from accreting black holes - The effect of disk truncation on line profiles

    E-Print Network [OSTI]

    Müller, A; Mueller, Andreas; Camenzind, Max

    2004-01-01T23:59:59.000Z

    Relativistic emission lines generated by thin accretion disks around rotating black holes are an important diagnostic tool for testing gravity near the horizon. The iron K-line is of special importance for the interpretation of the X-ray emission of Seyfert galaxies, quasars and galactic X-ray binary systems. A generalized kinematic model is presented which includes radial drifts and non-Keplerian rotations for the line emitters. The resulting line profiles are obtained with an object-oriented ray tracer operating in the curved Kerr background metric. The general form of the Doppler factor is presented which includes all kinds of poloidal and toroidal motions near the horizon. The parameters of the model include the spin parameter, the inclination, the truncation and outer radius of the disk, velocity profiles for rotation and radial drift, the emissivity profile and a multi-species line-system. The red wing flux is generally reduced when radial drift is included as compared to the pure Keplerian velocity fie...

  15. Modified Gravity N-body Code Comparison Project

    E-Print Network [OSTI]

    Hans A. Winther; Fabian Schmidt; Alexandre Barreira; Christian Arnold; Sownak Bose; Claudio Llinares; Marco Baldi; Bridget Falck; Wojciech A. Hellwing; Kazuya Koyama; Baojiu Li; David F. Mota; Ewald Puchwein; Robert Smith; Gong-Bo Zhao

    2015-06-21T23:59:59.000Z

    Self-consistent ${\\it N}$-body simulations of modified gravity models are a key ingredient to obtain rigorous constraints on deviations from General Relativity using large-scale structure observations. This paper provides the first detailed comparison of the results of different ${\\it N}$-body codes for the $f(R)$, DGP, and Symmetron models, starting from the same initial conditions. We find that the fractional deviation of the matter power spectrum from $\\Lambda$CDM agrees to better than $1\\%$ up to $k \\sim 5-10~h/{\\rm Mpc}$ between the different codes. These codes are thus able to meet the stringent accuracy requirements of upcoming observational surveys. All codes are also in good agreement in their results for the velocity divergence power spectrum, halo abundances and halo profiles. We also test the quasi-static limit, which is employed in most modified gravity ${\\it N}$-body codes, for the Symmetron model for which the most significant non-static effects among the models considered are expected. We conclude that this limit is a very good approximation for all of the observables considered here.

  16. Toward the gravity dual of heterotic small instantons

    SciTech Connect (OSTI)

    Chen Fang; Dasgupta, Keshav; Franche, Paul [Ernest Rutherford Physics Building, McGill University, 3600 University Street, Montreal Quebec, H3A 2T8 (Canada); Tatar, Radu [Division of Theoretical Physics, Department of Mathematical Sciences, University of Liverpool, Liverpool, L693 BX (United Kingdom)

    2011-02-15T23:59:59.000Z

    The question of what happens when the heterotic SO(32) instanton becomes small was answered sometime back by Witten. The heterotic theory develops an enhanced Sp(2k) gauge symmetry for k small instantons, besides the allowed SO(32) gauge symmetry. An interesting question now is to ask what happens when we take the large k limit. In this paper we argue that in some special cases, where Gauss' law allows the large k limit, the dynamics of the large k small instantons can be captured by a dual gravitational description. For the cases that we elaborate in this paper, the gravity duals are non-Kaehler manifolds although in general they could be nongeometric. These small instantons are heterotic five-branes and the duality allows us to study the strongly coupled field theories on these five-branes. We review and elaborate on some of the recent observations pointing towards this duality and argue that in certain cases the gauge-gravity duality may be understood as small instanton transitions under which the instantons smoothen out and consequently lose the Sp(2k) gauge symmetry. This may explain how branes disappear on the dual side and are replaced by fluxes. We analyze the torsion classes before and after the transitions and discuss briefly how the Atiyah-Drinfeld-Hitchin-Manin sigma model and related vector bundles could be studied for these scenarios.

  17. Deeply Virtual Compton Scattering from Gauge/Gravity Duality

    E-Print Network [OSTI]

    Miguel S. Costa; Marko Djuri?

    2012-03-05T23:59:59.000Z

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. Using conformal Regge theory we review the form of the amplitude for pomeron exchange, both at strong and weak 't Hooft coupling. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  18. Deeply virtual Compton scattering from gauge/gravity duality

    SciTech Connect (OSTI)

    Costa, Miguel S.; Djuric, Marko [University of Porto (Portugal)

    2013-04-15T23:59:59.000Z

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  19. Emergent Horava gravity in graphene

    E-Print Network [OSTI]

    G. E. Volovik; M. A. Zubkov

    2013-07-07T23:59:59.000Z

    First of all, we reconsider the tight - binding model of monolayer graphene, in which the variations of the hopping parameters are allowed. We demonstrate that the emergent 2D Weitzenbock geometry as well as the emergent U(1) gauge field appear. The emergent gauge field is equal to the linear combination of the components of the zweibein. Therefore, we actually deal with the gauge fixed version of the emergent 2+1 D teleparallel gravity. In particular, we work out the case, when the variations of the hopping parameters are due to the elastic deformations, and relate the elastic deformations with the emergent zweibein. Next, we investigate the tight - binding model with the varying intralayer hopping parameters for the multilayer graphene with the ABC stacking. In this case the emergent 2D Weitzenbock geometry and the emergent U(1) gauge field appear as well, the emergent low energy effective field theory has the anisotropic scaling.

  20. Dimensional Reduction in Quantum Gravity

    E-Print Network [OSTI]

    G. 't Hooft

    2009-03-20T23:59:59.000Z

    The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.

  1. Ising-link Quantum Gravity

    E-Print Network [OSTI]

    Tom Fleming; Mark Gross; Ray Renken

    1994-01-04T23:59:59.000Z

    We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2^links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the ``curvature susceptibility'' which grows with increasing system size. However, the value of the corresponding critical exponent as well as the behavior of the curvature at the transition differ from that found by Hamber and Williams for the Regge theory with continuously varying link lengths.

  2. Gravity-Induced Vacuum Dominance

    SciTech Connect (OSTI)

    Lima, William C. C.; Vanzella, Daniel A. T. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 369, CEP 15980-900, Sao Carlos, SP (Brazil)

    2010-04-23T23:59:59.000Z

    It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.

  3. Newtonian gravity, red shift, confinement, asymptotic freedom and quarks oscillations

    E-Print Network [OSTI]

    G. Quznetsov

    2008-10-18T23:59:59.000Z

    Quarks oscillations give the Newtonian gravity law, the red shift, the confinement and the asymptotic freedom.

  4. Loop Quantum Gravity 1. Classical framework : Ashtekar-Barbero connection

    E-Print Network [OSTI]

    Sart, Remi

    gravity Why Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large scales-perturbative renormalization Gravity is not a fundamental theory but it is effective (law energy) · it has to be modified

  5. Fractal Structure of Loop Quantum Gravity

    E-Print Network [OSTI]

    Leonardo Modesto

    2008-12-11T23:59:59.000Z

    In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.

  6. CDT meets Horava-Lifshitz gravity

    E-Print Network [OSTI]

    J. Ambjorn; A. Gorlich; S. Jordan; J. Jurkiewicz; R. Loll

    2010-04-06T23:59:59.000Z

    The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over space-time geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Ho\\v{r}ava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Ho\\v{r}ava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.

  7. Gauge Gravity and Space-Time

    E-Print Network [OSTI]

    Ning Wu

    2012-07-11T23:59:59.000Z

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machine which can physically prolong human's lifetime.

  8. Series Transmission Line Transformer

    DOE Patents [OSTI]

    Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

    2004-06-29T23:59:59.000Z

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  9. Electric Transmission Lines (Nebraska)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has jurisdiction over all electricity transmission lines crossing over or under railroad tracks at public highway crossings. This section contains general regulations...

  10. Bounds on quantum communication via Newtonian gravity

    E-Print Network [OSTI]

    D. Kafri; G. J. Milburn; J. M. Taylor

    2014-10-08T23:59:59.000Z

    Newtonian gravity yields specific observable consequences, the most striking of which is the emergence of a $1/r^2$ force. In so far as communication can arise via such interactions between distant particles, we can ask what would be expected for a theory of gravity that only allows classical communication. Many heuristic suggestions for gravity-induced decoherence have this restriction implicitly or explicitly in their construction. Here we show that communication via a $1/r^2$ force has a minimum noise induced in the system when the communication cannot convey quantum information, in a continuous time analogue to Bell's inequalities. Our derived noise bounds provide tight constraints from current experimental results on any theory of gravity that does not allow quantum communication.

  11. The Shape of a Gravity Finger

    SciTech Connect (OSTI)

    Zhan, Lang; Yortsos, Yanis

    2000-09-11T23:59:59.000Z

    A new gravity finger model was proposed in this report in the absence of interfacial tension but in the presence of gravities. This model considered differences in density and viscosity of the two fluids. Thus, it was able to represent both stable and unstable displacements, and the finger development along either the upper or the bottom walls of a channel. This solution recovers the Saffman - Taylar solution if gravity is neglected. The results of the solution are very similar to the solutions proposed by Brener et al. for the gravity number up to 10. The solution provided in this work only has one free parameter while the solution of Brener et al. has three.

  12. Gravity waves from vortex dipoles and jets

    E-Print Network [OSTI]

    Wang, Shuguang

    2009-05-15T23:59:59.000Z

    The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...

  13. State sum models for quantum gravity

    E-Print Network [OSTI]

    John W. Barrett

    2000-10-12T23:59:59.000Z

    This paper reviews the construction of quantum field theory on a 4-dimensional spacetime by combinatorial methods, and discusses the recent developments in the direction of a combinatorial construction of quantum gravity.

  14. Energy conditions in f(R) gravity

    SciTech Connect (OSTI)

    Santos, J. [Universidade Federal do Rio Grande do Norte, Departamento de Fisica C.P. 1641, 59072-970 Natal-Rio Grande do Norte (Brazil); Departamento de Astronomia, Observatorio Nacional, 20921-400 Rio de Janeiro-Rio de Janeiro (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-Rio de Janeiro (Brazil); Alcaniz, J. S.; Carvalho, F. C. [Departamento de Astronomia, Observatorio Nacional, 20921-400 Rio de Janeiro-Rio de Janeiro (Brazil); Reboucas, M. J. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-Rio de Janeiro (Brazil)

    2007-10-15T23:59:59.000Z

    In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R) gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R) cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.

  15. Cosmology of modified (but second order) gravity

    E-Print Network [OSTI]

    Tomi S. Koivisto

    2009-10-21T23:59:59.000Z

    This is a brief review of modified gravity cosmologies. Generically extensions of gravity action involve higher derivative terms, which can result in ghosts and instabilities. There are three ways to circumvent this: Chern-Simons terms, first order variational principle and nonlocality. We consider recent cosmological applications of these three classes of modified gravity models, in particular to the dark energy problem. The viable parameter spaces can be very efficiently constrained by taking into account cosmological data from all epochs in addition to Solar system tests and stability considerations. We make some new remarks concerning so called algebraic scalar-tensor theories, biscalar reformulation of nonlocal actions involving the inverse d'Alembertian, and a possible covariant formulation holographic cosmology with nonperturbative gravity.

  16. Energy conditions in f(R)-gravity

    E-Print Network [OSTI]

    J. Santos; J. S. Alcaniz; M. J. Reboucas; F. C. Carvalho

    2007-09-06T23:59:59.000Z

    In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from the Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R)-gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R)-cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.

  17. Test particle motion in modified gravity theories

    E-Print Network [OSTI]

    Mahmood Roshan

    2013-02-05T23:59:59.000Z

    We derive the equations of motion of an electrically neutral test particle for modified gravity theories in which the covariant divergence of the ordinary matter energy-momentum tensor dose not vanish (i.e. $\

  18. A new vacuum for Loop Quantum Gravity

    E-Print Network [OSTI]

    Bianca Dittrich; Marc Geiller

    2015-05-05T23:59:59.000Z

    We construct a new vacuum for loop quantum gravity, which is dual to the Ashtekar-Lewandowski vacuum. Because it is based on BF theory, this new vacuum is physical for $(2+1)$-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra which is cylindrically consistent with respect to the notion of refinement by time evolution suggested in [1]. This supports the proposal for a construction of a physical vacuum made in [1,2], also for $(3+1)$-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.

  19. Antimatter-Gravity Couplings, and Lorentz Symmetry

    E-Print Network [OSTI]

    Tasson, Jay D

    2015-01-01T23:59:59.000Z

    Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).

  20. Antimatter-Gravity Couplings, and Lorentz Symmetry

    E-Print Network [OSTI]

    Jay D. Tasson

    2015-01-27T23:59:59.000Z

    Implications of possible CPT and Lorentz violation for antimatter-gravity experiments as well as other antimatter tests are considered in the context of the general field-theory-based framework of the Standard-Model Extension (SME).

  1. Oblique reflections of internal gravity wave beams

    E-Print Network [OSTI]

    Karimi, Hussain H. (Hussain Habibullah)

    2012-01-01T23:59:59.000Z

    We study nonlinear effects in reflections of internal gravity wave beams in a continuously stratified liquid which are incident upon a uniform slope at an oblique angle. Wave motion in a stratified fluid medium is unique ...

  2. Gravity Recovery and Interior Laboratory (GRAIL) Launch

    E-Print Network [OSTI]

    Gravity Recovery and Interior Laboratory (GRAIL) Launch Press Kit/AUGUst 2011 #12;http of its four channels to AC-3, making each channel's secondary audio MPEG 1 Layer II. For digital downlink

  3. Lie-Santilli isoapproach to the unification of gravity and electromagnetism

    SciTech Connect (OSTI)

    Animalu, A.O.E. [Univ. of Nigeria, Nsukka (Nigeria)]|[Istituto per la Ricerca di Base, Monteroduni (Italy)

    1996-06-01T23:59:59.000Z

    The author reviews the problem of Einstein`s original proposal for the unification of gravity and electromagnetism in space-time differential geometry along the lines of the recent contributions by A.A. Logunov, R.M. Santilli, D.F. Lopez and others. The author presents a new method of unification based on the Lie-Santilli isotopic theory whereby the unified field tensor g = (g{sub {mu}{nu}}) is constructed from the symmetric Riemannian gravitational tensor, g = (g{mu}{nu}), and the antisymmetric electromagnetic field tensor F = (F{sub {mu}{nu}}) via an isotopic lifting g {yields} {cflx g} = Fg of the type of Lax pairing, where det F {ne} 0, the unified field {cflx g} satisfies Logunov-Santilli equations while g and F are treated as Lax pair. Because of Santilli`s isotopic equivalence between Minkowskian and Riemannian geometries, the author infers that in the Minkowskian limit F = f, g = {eta}, the metric {eta} satisfies Lax`s equation of motion {partial_derivative}{eta}/{partial_derivative}t = f{eta} {minus} {eta}f which insures the conservation of the eigenvalues of g. The invariance of the electromagnetic group of transformations (F) in Minkowski space is determined by the eigenvalue equations, det (F{sub {mu}{nu}}){minus}{lambda}{eta}{sub {mu}{nu}} = 0, from which the author deduces a Lie-isotopic {open_quotes}extended{close_quotes} relativity principle. A wave equation for a spin-2 particle in the unified field is derived, and the experimental consequences of the theory are discussed.

  4. Anisotropic induced gravity and inflationary universe

    E-Print Network [OSTI]

    W. F. Kao

    2006-12-09T23:59:59.000Z

    Existence and stability analysis of the Kantowski-Sachs type universe in a higher derivative induced gravity theory is studied in details. Existence of one stable mode and one unstable mode is shown to be in favor of the inflationary universe. As a result, the de Sitter background can be made to be stable against anisotropic perturbations with proper constraints imposed on the coupling constants of the induced gravity model.

  5. Gravity waves from cosmic bubble collisions

    SciTech Connect (OSTI)

    Salem, Michael P.; Saraswat, Prashant; Shaghoulian, Edgar, E-mail: mpsalem@stanford.edu, E-mail: ps88@stanford.edu, E-mail: edgars@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, California 94305 (United States)

    2013-02-01T23:59:59.000Z

    Our local Hubble volume might be contained within a bubble that nucleated in a false vacuum with only two large spatial dimensions. We study bubble collisions in this scenario and find that they generate gravity waves, which are made possible in this context by the reduced symmetry of the global geometry. These gravity waves would produce B-mode polarization in the cosmic microwave background, which could in principle dominate over the inflationary background.

  6. Gravity as Quantum Foam In-Flow

    E-Print Network [OSTI]

    Reginald T Cahill

    2003-07-01T23:59:59.000Z

    The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory suggests that the so-called spiral galaxy rotation-velocity anomaly may be explained without the need of `dark matter'. Various other gravitational anomalies also appear to be explainable. Newtonian gravity appears to be strictly valid only outside of spherically symmetric matter systems.

  7. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  8. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  9. Apply early! Limited enrollment.

    E-Print Network [OSTI]

    volcano. Experience the culture and history of Hawaii, and the impact of human activitiesApply early! Limited enrollment. Environmental Science in the Hawaiian Islands Observe, research

  10. Universality of Gravity from Entanglement

    E-Print Network [OSTI]

    Brian Swingle; Mark Van Raamsdonk

    2014-05-12T23:59:59.000Z

    The entanglement "first law" in conformal field theories relates the entanglement entropy for a ball-shaped region to an integral over the same region involving the expectation value of the CFT stress-energy tensor, for infinitesimal perturbations to the CFT vacuum state. In recent work, this was exploited at leading order in $N$ in the context of large N holographic CFTs to show that any geometry dual to a perturbed CFT state must satisfy Einstein's equations linearized about pure AdS. In this note, we investigate the implications of the leading 1/N correction to the exact CFT result. We show that these corrections give rise to the source term for the gravitational equations: for semiclassical bulk states, the expectation value of the bulk stress-energy tensor appears as a source in the linearized equations. In particular, the CFT first law leads to Newton's Law of gravitation and the fact that all sources of stress-energy source the gravitational field. In our derivation, this universality of gravity comes directly from the universality of entanglement (the fact that all degrees of freedom in a subsystem contribute to entanglement entropy).

  11. Online Transmission Line Loadability Assessment Using Synchrophasor Measurements

    E-Print Network [OSTI]

    Liberzon, Daniel

    a stable operation. Transmission line loading limits are also essential to deter- mine locational marginal loading margins provide a useful metric to operate the power sys- tem to satisfy demands while ensuring prices in power markets. Therefore, the assessment of transmission line loadability under various

  12. Intrinsic AGN Absorption Lines

    E-Print Network [OSTI]

    Fred Hamann

    2000-06-12T23:59:59.000Z

    Strong absorption lines are common in rest-frame UV spectra of AGNs due to a variety of resonant transitions, for example the HI Lyman series lines (most notably Ly-alpha 1216) and high-ionization doublets like CIV 1549,1551. The lines are called ``intrinsic'' if the absorbing gas is physically related to the AGN, e.g. if the absorber resides broadly within the radius of the AGN's surrounding ``host'' galaxy. Intrinsic absorption lines are thus valuable probes of the kinematics, physical conditions and elemental abundances in the gas near AGNs. Studies of intrinsic absorbers have historically emphasized the broad absorption lines (BALs) in quasars. Today we recognize a wider variety of intrinsic lines in a wider range of objects. For example, we now know that Seyfert 1 galaxies (the less luminous cousins of quasars) have intrinsic absorption. We also realize that intrinsic lines can form in a range of AGN environments --- from the dynamic inner regions like the BALs, to the more quiescent outer host galaxies >10 kpc away. This article provides a brief introduction to current observational and theoretical work on intrinsic AGN absorbers.

  13. Gravity and Anti-gravity of Fermions: the Unification of Dark Matter and Dark Energy

    E-Print Network [OSTI]

    Chen, X S

    2005-01-01T23:59:59.000Z

    Massive gravity with second and fourth derivatives is shown to give both attractive and repulsive gravity between fermions. In contrast to the attractive gravity correlated with energy-momentum tensor, the repulsive gravity is proportional to the graviton mass. Therefore, weakly interacting fermions with energy smaller than the graviton mass are both dark matter and dark energy: Their overall gravity is attractive with normal matter but repulsive among themselves. Detailed analyses reveal that this unified dark scenario can properly account for the observed dark matter/energy phenomena: galaxy rotation curves, transition from early cosmic deceleration to recent acceleration; and naturally overcome other dark scenarios' difficulties: the substructure and cuspy core problems, the difference of dark halo distributions in galaxies and clusters, and the cosmic coincidence.

  14. Coherent soliton communication lines

    SciTech Connect (OSTI)

    Yushko, O. V., E-mail: olesya.yushko@gmail.com; Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K. [Novosibirsk State University (Russian Federation)

    2014-11-15T23:59:59.000Z

    The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.

  15. Flux formulation of loop quantum gravity: Classical framework

    E-Print Network [OSTI]

    Bianca Dittrich; Marc Geiller

    2014-12-11T23:59:59.000Z

    We recently introduced a new representation for loop quantum gravity, which is based on the BF vacuum and is in this sense much nearer to the spirit of spin foam dynamics. In the present paper we lay out the classical framework underlying this new formulation. The central objects in our construction are the so-called integrated fluxes, which are defined as the integral of the electric field variable over surfaces of codimension one, and related in turn to Wilson surface operators. These integrated flux observables will play an important role in the coarse graining of states in loop quantum gravity, and can be used to encode in this context the notion of curvature-induced torsion. We furthermore define a continuum phase space as the modified projective limit of a family of discrete phase spaces based on triangulations. This continuum phase space yields a continuum (holonomy-flux) algebra of observables. We show that the corresponding Poisson algebra is closed by computing the Poisson brackets between the integrated fluxes, which have the novel property of being allowed to intersect each other.

  16. A Kinetic Theory Approach to Quantum Gravity

    E-Print Network [OSTI]

    B. L. Hu

    2002-04-22T23:59:59.000Z

    We describe a kinetic theory approach to quantum gravity -- by which we mean a theory of the microscopic structure of spacetime, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotted poles: quantum matter field on the right and spacetime on the left. Each rung connecting the corresponding knots represent a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein-Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: 1) Deduce the correlations of metric fluctuations from correlation noise in the matter field; 2) Reconstituting quantum coherence -- this is the reverse of decoherence -- from these correlation functions 3) Use the Boltzmann-Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding spacetime counterparts. This will give us a hierarchy of generalized stochastic equations -- call them the Boltzmann-Einstein hierarchy of quantum gravity -- for each level of spacetime structure, from the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).

  17. Gravity monitoring of CO{sub 2} movement during sequestration: Model studies

    SciTech Connect (OSTI)

    Gasperikova, E.; Hoversten, G.M. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2008-11-15T23:59:59.000Z

    Sequestration/enhanced oil recovery (EOR) petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and carbon dioxide, or CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m) but shallow compared to either EOR or brine formations. Injecting CO{sub 2} into an oil reservoir decreases the bulk density in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is correlated directly with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identify the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20-m-thick brine formation at 1900-m depth with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10-{mu} Gal surface gravity anomaly. Such an anomaly would be detectable in the field. The amount of CO{sub 2} in a coal-bed methane scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial-size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrate that the general position of density changes caused by CO{sub 2} can be recovered but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.

  18. Holes in Spectral Lines

    E-Print Network [OSTI]

    Fontana, Peter R.; Srivastava, Rajendra P.

    1973-06-01T23:59:59.000Z

    The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency difference between...

  19. Line Extension Alternatives

    Broader source: Energy.gov [DOE]

    The Public Service Board (PSB) of Vermont developed rules regarding utility line extension requests. While the majority of the rules focus on the procedure followed (and associated fees) for the...

  20. Electric Transmission Lines (Iowa)

    Broader source: Energy.gov [DOE]

    Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

  1. Power line detection system

    DOE Patents [OSTI]

    Latorre, V.R.; Watwood, D.B.

    1994-09-27T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

  2. Power line detection system

    DOE Patents [OSTI]

    Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

    1994-01-01T23:59:59.000Z

    A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

  3. Constraints on Covariant Horava-Lifshitz Gravity from frame-dragging experiment

    E-Print Network [OSTI]

    Ninfa Radicella; Gaetano Lambiase; Luca Parisi; Gaetano Vilasi

    2014-08-06T23:59:59.000Z

    The effects of Horava-Lifshitz corrections to the gravito-magnetic field are analyzed. Solutions in the weak field, slow motion limit, referring to the motion of a satellite around the Earth are considered. The post-newtonian paradigm is used to evaluate constraints on the Horava-Lifshitz parameter space from current satellite and terrestrial experiments data. In particular, we focus on GRAVITY PROBE B, LAGEOS and the more recent LARES mission, as well as a forthcoming terrestrial project, GINGER.

  4. Spin networks in quantum gravity

    E-Print Network [OSTI]

    M. Lorente

    2005-12-23T23:59:59.000Z

    This is a review paper about one of the approaches to unify Quantum Mechanics and the theory of General Relativity. Starting from the pioneer work of Regge and Penrose other scientists have constructed state sum models, as Feymann path integrals, that are topological invariant on the triangulated Riemannian surfaces, and that in the continuous limit become the Hilbert-Einstein action.

  5. Gravity as Quantum Foam In-Flow

    E-Print Network [OSTI]

    Cahill, R T

    2003-01-01T23:59:59.000Z

    The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory...

  6. Newton-Cartan Gravity in Noninertial Reference Frames

    E-Print Network [OSTI]

    Leo Rodriguez; James St. Germaine-Fuller; Sujeev Wickramasekara

    2014-12-26T23:59:59.000Z

    We study properties of Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. The set of these transformations has the structure of an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. We show that the fictitious forces of noninertial reference frames are naturally encoded in the Cartan connection transformed under the Galilean line group. These noninertial forces, which are coordinate effects, do not contribute to the Ricci tensor which describes the curvature of Newtonian spacetime. We show that only the $00$-component of the Ricci tensor is non-zero and equal to ($4\\pi$ times) the matter density in any inertial or noninetial reference frame and that it leads to what may be called Newtonian ADM mass. While the Ricci field equation and Gauss law are both fulfilled by the same physical matter density in inertial and linearly accelerating reference frames, there appears a discrepancy between the two in rotating reference frames in that Gauss law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field that appears in rotating frames, highlighting a rather striking difference between linearly and rotationally accelerating reference frames. We further show that the dynamical equations that govern the simulated gravitational and magnetic fields have the same form as Maxwell's equations, a surprising conclusion given that these equations are well-known to obey special relativity (and $U(1)$-gauge symmetry), rather than Galilean symmetry.

  7. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

    1998-01-01T23:59:59.000Z

    Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

  8. Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity

    E-Print Network [OSTI]

    Long Cheng; Xian-Hui Ge; Zu-Yao Sun

    2015-04-28T23:59:59.000Z

    We present a mechanism of momentum relaxation in higher derivative gravity by adding linear scalar fields to the Gauss-Bonnet theory. We analytically computed all of the DC thermoelectric conductivities in this theory by adopting the method given by Donos and Gauntlett in [arXiv:1406.4742]. The results show that the DC electric conductivity is not a monotonic function of the effective impurity parameter $\\beta$: in the small $\\beta$ limit, the DC conductivity is dominated by the coherent phase, while for larger $\\beta$, pair creation contribution to the conductivity becomes dominant, signaling an incoherent phase. In addition, the DC heat conductivity is found independent of the Gauss-Bonnet coupling constant.

  9. Aspects of Neutrino Oscillation in Alternative Gravity Theories

    E-Print Network [OSTI]

    Chakraborty, Sumanta

    2015-01-01T23:59:59.000Z

    Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes. This finally lends itself to non-zero probability of neutrino helicity flip. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to different gravity theories. These include dilaton field coupled to Maxwell field tensor, generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action and finally regular black hole solutions. In all these cases using the solar neutrino oscil...

  10. Observational consequences of chaotic inflation with nonminimal coupling to gravity

    SciTech Connect (OSTI)

    Linde, Andrei; Noorbala, Mahdiyar [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: alinde@stanford.edu, E-mail: noorbala@stanford.edu, E-mail: alexander.westphal@desy.de [Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg (Germany)

    2011-03-01T23:59:59.000Z

    Recently there was an extensive discussion of Higgs inflation in the theory with the potential ?/4 (?{sup 2}?v{sup 2}){sup 2} and nonminimal coupling to gravity ?/2 ?{sup 2}R, for ? >> 1 and v || 1. We extend this investigation to the theories m{sup 2}/2 ?{sup 2} and ?/4 (?{sup 2}?v{sup 2}){sup 2} with arbitrary values of ? and v and describe implementation of these models in supergravity. We analyze observational consequences of these models and find a surprising coincidence of the inflationary predictions of the model ?/4 (?{sup 2}?v{sup 2}){sup 2} with ? < 0 in the limit |?|v{sup 2} ? 1 with the predictions of the Higgs inflation scenario for ? >> 1.

  11. Sound damping constant for generalized theories of gravity

    SciTech Connect (OSTI)

    Brustein, Ram [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel); Medved, A. J. M. [Physics Department, University of Seoul, Seoul 130-743 (Korea, Republic of)

    2009-06-15T23:59:59.000Z

    The near-horizon metric for a black brane in anti-de Sitter space and the metric near the AdS boundary both exhibit hydrodynamic behavior. We demonstrate the equivalence of this pair of hydrodynamic systems for the sound mode of a conformal theory. This is first established for Einstein's gravity, but we then show how the sound damping constant will be modified from its Einstein form for a generalized theory. The modified damping constant is expressible as the ratio of a pair of gravitational couplings that are indicative of the sound-channel class of gravitons. This ratio of couplings differs from both that of the shear diffusion coefficient and the shear viscosity to entropy ratio. Our analysis is mostly limited to conformal theories, but suggestions are made as to how this restriction might eventually be lifted.

  12. How does gravity save or kill Q-balls?

    E-Print Network [OSTI]

    Takashi Tamaki; Nobuyuki Sakai

    2011-05-15T23:59:59.000Z

    We explore stability of gravitating Q-balls with potential $V_4(\\phi)={m^2\\over2}\\phi^2-\\lambda\\phi^4+\\frac{\\phi^6}{M^2}$ via catastrophe theory, as an extension of our previous work on Q-balls with potential $V_3(\\phi)={m^2\\over2}\\phi^2-\\mu\\phi^3+\\lambda\\phi^4$. In flat spacetime Q-balls with $V_4$ in the thick-wall limit are unstable and there is a minimum charge $Q_{{\\rm min}}$, where Q-balls with $Qsaves Q-balls with small charge. We also show how stability of Q-balls changes as gravity becomes strong.

  13. Synchronization of Limit Sets

    E-Print Network [OSTI]

    Changpin Li; Weihua Deng

    2005-10-10T23:59:59.000Z

    In this Letter, we derive a sufficient condition of synchronizing limit sets (attractors and repellers) by using the linear feedback control technique proposed here. There examples are included. The numerical simulations and computer graphics show that our method work well.

  14. Cross delay line sensor characterization

    SciTech Connect (OSTI)

    Owens, Israel J [Los Alamos National Laboratory; Remelius, Dennis K [Los Alamos National Laboratory; Tiee, Joe J [Los Alamos National Laboratory; Buck, Steven E [Los Alamos National Laboratory; Whittemore, Stephen R [Los Alamos National Laboratory; Thompson, David C [Los Alamos National Laboratory; Shirey, Robert [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recording space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.

  15. Quantum Limits of Thermometry

    E-Print Network [OSTI]

    Thomas M. Stace

    2010-06-08T23:59:59.000Z

    The precision of typical thermometers consisting of $N$ particles is shot noise limited, improving as $\\sim1/\\sqrt{N}$. For high precision thermometry and thermometric standards this presents an important theoretical noise floor. Here it is demonstrated that thermometry may be mapped onto the problem of phase estimation, and using techniques from optimal phase estimation, it follows that the scaling of the precision of a thermometer may in principle be improved to $\\sim1/N$, representing a Heisenberg limit to thermometry.

  16. Solar System Constraints on Disformal Gravity Theories

    E-Print Network [OSTI]

    Hiu Yan Ip; Jeremy Sakstein; Fabian Schmidt

    2015-07-02T23:59:59.000Z

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to $\\mathcal{M} \\gtrsim 100$ eV. These constraints render all disformal effects irrelevant for cosmology.

  17. Holographic Superconductors in Quasi-topological Gravity

    E-Print Network [OSTI]

    Xiao-Mei Kuang; Wei-Jia Li; Yi Ling

    2010-12-05T23:59:59.000Z

    In this paper we study (3+1) dimensional holographic superconductors in quasi-topological gravity which is recently proposed by R. Myers {\\it et.al.}. Through both analytical and numerical analysis, we find in general the condensation becomes harder with the increase of coupling parameters of higher curvature terms. In particular, comparing with those in ordinary Gauss-Bonnet gravity, we find that positive cubic corrections in quasi-topological gravity suppress the condensation while negative cubic terms make it easier. We also calculate the conductivity numerically for various coupling parameters. It turns out that the universal relation of $\\omega_g/T_c\\simeq 8$ is unstable and this ratio becomes larger with the increase of the coupling parameters. A brief discussion on the condensation from the CFT side is also presented.

  18. Solar system constraints on alternative gravity theories

    E-Print Network [OSTI]

    Sumanta Chakraborty; Soumitra Sengupta

    2014-01-14T23:59:59.000Z

    The perihelion precession of planetary orbits and the bending angle of null geodesics are estimated for different gravity theories in string-inspired models. It is shown that, for dilaton coupled gravity, the leading order measure in the angle of bending of light comes purely from vacuum expectation value of the dilaton field which may be interpreted as an indicator of a dominant stringy effect over the curvature effect. We arrive at similar results for spherically symmetric solution in quadratic gravity. We also present the perihelion shift and bending of light in the Einstein-Maxwell-Gauss-Bonnet theory with special reference to the Casimir effect and Damour-Polyakov mechanism. Numerical bounds to different coupling parameters in these models are estimated.

  19. Gauge theory of gravity and supergravity

    SciTech Connect (OSTI)

    Kaul, Romesh K. [Institute of Mathematical Sciences, Chennai 600 113 (India)

    2006-03-15T23:59:59.000Z

    We present a formulation of gravity in terms of a theory based on complex SU(2) gauge fields with a general coordinate invariant action functional quadratic in the field strength. Self-duality or anti-self-duality of the field strength emerges as a constraint from the equations of motion of this theory. This in turn leads to Einstein gravity equations for a dilaton and an axion conformally coupled to gravity for the self-dual constraint. The analysis has also been extended to N=1 and 2 super Yang-Mills theory of complex SU(2) gauge fields. This leads to, besides other equations of motion, self-duality/anti-self-duality of generalized supercovariant field strengths. The self-dual case is then shown to yield as its solutions N=1, 2 supergravity equations, respectively.

  20. Solar System Constraints on Disformal Gravity Theories

    E-Print Network [OSTI]

    Ip, Hiu Yan; Schmidt, Fabian

    2015-01-01T23:59:59.000Z

    Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to $\\mathcal{M} \\gtrsim 100$ eV. These constraints render all disformal effects irrelevant for cosmology.

  1. Entropic force, noncommutative gravity, and ungravity

    SciTech Connect (OSTI)

    Nicolini, Piero [Frankfurt Institute for Advanced Studies (FIAS), Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany)

    2010-08-15T23:59:59.000Z

    After recalling the basic concepts of gravity as an emergent phenomenon, we analyze the recent derivation of Newton's law in terms of entropic force proposed by Verlinde. By reviewing some points of the procedure, we extend it to the case of a generic quantum gravity entropic correction to get compelling deviations to the Newton's law. More specifically, we study: (1) noncommutative geometry deviations and (2) ungraviton corrections. As a special result in the noncommutative case, we find that the noncommutative character of the manifold would be equivalent to the temperature of a thermodynamic system. Therefore, in analogy to the zero temperature configuration, the description of spacetime in terms of a differential manifold could be obtained only asymptotically. Finally, we extend the Verlinde's derivation to a general case, which includes all possible effects, noncommutativity, ungravity, asymptotically safe gravity, electrostatic energy, and extra dimensions, showing that the procedure is solid versus such modifications.

  2. Emergence in Holographic Scenarios for Gravity

    E-Print Network [OSTI]

    Dieks, Dennis; de Haro, Sebastian

    2015-01-01T23:59:59.000Z

    'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightfowardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and ...

  3. Theoretical and experimental study of nonlinear internal gravity wave beams

    E-Print Network [OSTI]

    Tabaei Befrouei, Ali, 1974-

    2005-01-01T23:59:59.000Z

    Continuously stratified fluids, like the atmosphere and the oceans, support internal gravity waves due to the effect of buoyancy. This type of wave motion is anisotropic since gravity provides a preferred direction. As a ...

  4. EHV transmission line design opportunities for cost reduction

    SciTech Connect (OSTI)

    Kennon, R.E. (Electric Power Research Inst., Palo Alto, CA (USA)); Douglass, D.A. (Power Technologies, Inc., New York, NY (US))

    1990-04-01T23:59:59.000Z

    The design of transmission lines is often limited to a few standard conductors and structures in order to minimize the costs of engineering, construction, inventory, and speed of damage restoration. Certain design factors, such as unloaded conductor tensions, maximum allowable conductor temperatures, and phase spacing to avoid ice galloping induced flashovers, are also fixed. Limiting the designer's choices can be economic in certain situations but not in others. What makes economic sense in flat terrain or with a lightly loaded line may not be economic in hilly terrain or with a line whose electric load is consistently high. This paper considers a range of line optimization techniques which can be applied to decide whether standard or optimized line designs are appropriate. It is found that even simple methods of optimization can help the designer keep his costs to a minimum.

  5. Exact solutions of three dimensional black holes: Einstein gravity vs F(R) gravity

    E-Print Network [OSTI]

    S. H. Hendi; B. Eslam Panah; R. Saffari

    2014-10-28T23:59:59.000Z

    In this paper, we consider Einstein gravity in the presence of a class of nonlinear electrodynamics, called power Maxwell invariant (PMI). We take into account $(2+1)$-dimensional spacetime in Einstein-PMI gravity and obtain its black hole solutions. Then, we regard pure $F(R)$ gravity as well as $F(R)$-conformally invariant Maxwell theory to obtain exact solutions of the field equations with black hole interpretation. Finally, we investigate the conserved and thermodynamic quantities and discuss about the first law of thermodynamics for the mentioned gravitational models.

  6. Testing a Dilaton Gravity Model using Nucleosynthesis

    E-Print Network [OSTI]

    Sibel Boran; Emre Onur Kahya

    2014-09-05T23:59:59.000Z

    Big Bang Nucleosynthesis (BBN) offers one of the most strict evidences for the Lambda-CDM cosmology at present, as well as the Cosmic Microwave Background (CMB) radiation. In this work, our main aim is to present the outcomes of our calculations related to primordial abundances of light elements, in the context of higher dimensional steady-state universe model in the dilaton gravity. Our results show that abundances of light elements (primordial D, 3He, 4He, T, 7Li) are significantly different for some cases, and a comparison is given between a particular dilaton gravity model and Lambda-CDM in the light of the astrophysical observations.

  7. Energy Distribution in f(R) Gravity

    E-Print Network [OSTI]

    M. Sharif; M. Farasat Shamir

    2009-12-18T23:59:59.000Z

    The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.

  8. Multidimensional Gravity on the Principal Bundles

    E-Print Network [OSTI]

    V. D. Dzhunushaliev

    1997-11-10T23:59:59.000Z

    The multidimensional gravity on the total space of principal bundle is considered. In this theory the gauge fields arise as nondiagonal components of multidimensional metric. The spherically symmetric and cosmology solutions for gravity on SU(2) principal bundle are obtained. The static spherically symmetric solution is wormhole-like solution located between two null surfaces, in contrast to 4D Einstein-Yang-Mills theory where corresponding solution (black hole) located outside of event horizon. Cosmology solution (at least locally) has the bouncing off effect for spatial dimensions. In spirit of Einstein these solutions are vacuum solutions without matter.

  9. Violation of Energy Bounds in Designer Gravity

    E-Print Network [OSTI]

    Thomas Hertog

    2006-07-31T23:59:59.000Z

    We continue our study of the stability of designer gravity theories, where one considers anti-de Sitter gravity coupled to certain tachyonic scalars with boundary conditions defined by a smooth function W. It has recently been argued there is a lower bound on the conserved energy in terms of the global minimum of W, if the scalar potential arises from a superpotential P and the scalar reaches an extremum of P at infinity. We show, however, there are superpotentials for which these bounds do not hold.

  10. One Loop Beta Functions in Topologically Massive Gravity

    E-Print Network [OSTI]

    R. Percacci; E. Sezgin

    2010-02-15T23:59:59.000Z

    We calculate the running of the three coupling constants in cosmological, topologically massive 3d gravity. We find that \

  11. Dynamic Line Rating: Research and Policy Evaluation

    SciTech Connect (OSTI)

    Jake P. Gentle; Kurt S. Myers; Michael R. West

    2014-07-01T23:59:59.000Z

    Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative rating based on worst case scenarios. We demonstrate that observing the conditions in real time leads to additional capacity and safer operation. This paper provides a report of a pioneering scheme in the United States of America in which DLR has been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Secondly, we discuss limitations involved. In doing so, we arrive at novel insights which will inform and improve future DLR projects. Third, we provide a policy background and discussion to clarify the technology’s potential and identifies barriers to the imminent adoption of dynamic line rating systems. We provide suggestions for regulatory bodies about possible improvements in policy to encourage adoption of this beneficial technology.

  12. Notes on several phenomenological laws of quantum gravity

    E-Print Network [OSTI]

    Jean-Philippe Bruneton

    2013-08-19T23:59:59.000Z

    Phenomenological approaches to quantum gravity try to infer model-independent laws by analyzing thought experiments and combining both quantum, relativistic, and gravitational ingredients. We first review these ingredients -three basic inequalities- and discuss their relationships with the nature of fundamental constants. In particular, we argue for a covariant mass bound conjecture: in a spacetime free of horizon, the mass inside a surface $A$ cannot exceed $16 \\pi G^2 m^2inequalities and find/review the following: (1) Any system must have a size greater than the Planck length, in the sense that there exists a minimal area (2) We comment on the Minimal Length Scenarios and the fate of Lorentz symmetry near the Planck scale (3) Quanta with transplanckian frequencies are allowed in a large enough boxes (4) There exists a mass-dependent maximal acceleration given by $m c^3/\\hbar$ if $mm_p$ (5) There exists a mass dependent maximal force and power (6) There exists a maximal energy density and pressure (7) Physical systems must obey the Holographic Principle (8) Holographic bounds can only be saturated by systems with $m>m_p$; systems lying on the ``Compton line'' $l \\sim 1/m$ are fundamental objects without substructures (9) We speculate on a new bound from above for the action. In passing, we note that the maximal acceleration is of the order of Milgrom's acceleration $a_0$ for ultra-light particles ($m\\sim H_0)$ that could be associated to the Dark Energy fluid. This suggests designing toy-models in which modified gravity in galaxies is driven by the DE field, via the maximal acceleration principle.

  13. HoravaLifshitz gravity Victoria University of Wellington

    E-Print Network [OSTI]

    Visser, Matt

    Abstract Horava­Lifshitz gravity Victoria University of Wellington Te Whare W¯ananga o te ¯Upoko o Vancouver Tuesday 25 August 2009 Matt Visser Who's afraid of Lorentz symmetry breaking? #12;Abstract Horava­Lifshitz gravity Horava­Lifshitz gravity: As of 23 August 2009 Spires reports that this topic has generated: 3

  14. Nordstrom's scalar theory of gravity and the equivalence principle

    E-Print Network [OSTI]

    Nathalie Deruelle

    2011-04-24T23:59:59.000Z

    Nordstrom's theory of gravity, which describes gravity by a scalar field in flat spacetime, is observationally ruled out. It is however the only theory of gravity with General Relativity to obey the strong equivalence principle. I show in this paper that this remarkable property is true beyond post-newtonian level and can be related to the existence of a 'Nordstrom-Katz' superpotential.

  15. Observing ocean heat content using satellite gravity and altimetry

    E-Print Network [OSTI]

    Jayne, Steven

    : ocean heat content, altimetry, satellite gravity, steric height, remote sensing Citation: Jayne, S. RObserving ocean heat content using satellite gravity and altimetry Steven R. Jayne1,2 and John M with satellite measurements of the Earth's time-varying gravity to give improved estimates of the ocean's heat

  16. Conformal gravity from the AdS/CFT mechanism

    SciTech Connect (OSTI)

    Aros, Rodrigo; Romo, Mauricio; Zamorano, Nelson [Departamento de Ciencias Fisicas, Universidad Andres Bello, Av. Republica 252, Santiago (Chile); Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Avda Blanco Encalada 2008, Santiago (Chile)

    2007-03-15T23:59:59.000Z

    We explicitly calculate the induced gravity theory at the boundary of an asymptotically anti-de Sitter five dimensional Einstein gravity. We also display the action that encodes the dynamics of radial diffeomorphisms. It is found that the induced theory is a four dimensional conformal gravity plus a scalar field. This calculation confirms some previous results found by a different approach.

  17. Quantum Gravity in Three Dimensions from Higher-Spin Holography

    E-Print Network [OSTI]

    Tan, Hai Siong

    2013-01-01T23:59:59.000Z

    Higher Spin Anti-de Sitter Gravity,” JHEP 1012, 007 (2010)gravity in three dimensions from the per- spective of higher-spin holography in anti-gravity in three dimen- sions in the framework of higher-spin holography in anti-

  18. Emission Line Properties of the Large Bright Quasar Survey

    E-Print Network [OSTI]

    Karl Forster; Paul J. Green; Thomas L. Aldcroft; Marianne Vestergaard; Craig B. Foltz; Paul C. Hewett

    2000-11-20T23:59:59.000Z

    We present measurements of the optical/UV emission lines for a large homogeneous sample of 993 quasars from the Large Bright Quasar Survey. Our largely automated technique accounts for continuum breaks and galactic reddening, and we perform multicomponent fits to emission line profiles, including the effects of blended iron emission, and of absorption lines both galactic and intrinsic. Here we describe the fitting algorithm and present the results of line fits to the LBQS sample, including upper limits to line equivalent widths when warranted. The distribution of measured line parameters, principally equivalent width and FWHM, are detailed for a variety of lines, including upper limits. We thus initiate a large-scale investigation of correlations between the high energy continuum and emission lines in quasars, to be extended to complementary samples using similar techniques. High quality, reproducible measurements of emission lines for uniformly selected samples will advance our understanding of active galaxies, especially in a new era of large surveys selected by a variety of complementary methods.

  19. Line profile and continuum variability in the very broad-line Seyfert galaxy Mrk 926

    E-Print Network [OSTI]

    Kollatschny, W

    2010-01-01T23:59:59.000Z

    We present results of an intensive spectroscopic variability campaign of the very broad-line Seyfert 1 galaxy Mrk 926. Our aim is to investigate the broad-line region (BLR) by studying the intensity and line profile variations of this galaxy on short timescales. High signal-to-noise ratio(S/N) spectra were taken with the 9.2m Hobby-Eberly Telescope (HET) in identical conditions during two observing campaigns in 2004 and 2005. After the spectral reduction and internal calibration we achieved a relative flux accuracy of better than 1\\%. The rms profiles of the very broad Balmer lines have shapes that differ from their mean line profiles, consisting of two inner (v $\\lesssim \\pm{}$ 6~000 km s$^{-1}$) and two outer (v $\\gtrsim \\pm{}$ 6~000 km s$^{-1}$) line components in addition to a central component (v $\\lesssim \\pm{}$ 600 km s$^{-1}$). These outer and inner line segments varied with different amplitudes during our campaign. The radius of the BLR is very small with an upper limit of 2~light-days for the H$\\bet...

  20. Towards Noncommutative Quantization of Gravity

    E-Print Network [OSTI]

    M. Heller; W. Sasin

    1997-12-01T23:59:59.000Z

    We propose a mathematical structure, based on a noncommutative geometry, which combines essential aspects of general relativity and quantum mechanics, and leads to correct "limiting cases" of both these theories. We quantize a groupoid constructed on space-time rather than space-time itself. Both space and time emerge in the transition process to the commutative case. Our approach clearly suggests that quantum gravitational observables should be looked for among correlations of distant phenomena rather than among local effects. A toy model is computed (based on a finite group) which predicts the value of "cosmological constants" (in the quantum sector) which vanish when going to the standard space-time physics.

  1. The Mars Gravity Biosatellite as an innovative partial gravity research platform

    E-Print Network [OSTI]

    Fulford-Jones, Thaddeus R. F

    2008-01-01T23:59:59.000Z

    The Mars Gravity Biosatellite is an unprecedented independent spaceflight platform for gravitational biology research. With a projected first launch after 2010, the low Earth orbit satellite will support a cohort of fifteen ...

  2. Crustal structure beneath the gravity lineations in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition

    E-Print Network [OSTI]

    Webb, Spahr C.

    , Petrologic and Seismic Expedition (GLIMPSE) study area from seismic refraction data R. Chadwick Holmes,1, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) experiment investigated the velocity in the Gravity Lineations, Intraplate Melting, Petrologic and Seismic Expedition (GLIMPSE) study area from

  3. Optical limiting materials

    DOE Patents [OSTI]

    McBranch, D.W.; Mattes, B.R.; Koskelo, A.C.; Heeger, A.J.; Robinson, J.M.; Smilowitz, L.B.; Klimov, V.I.; Cha, M.; Sariciftci, N.S.; Hummelen, J.C.

    1998-04-21T23:59:59.000Z

    Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO{sub 2}) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400--1,100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes. 5 figs.

  4. Infrared fixed point in quantum Einstein gravity

    E-Print Network [OSTI]

    S. Nagy; J. Krizsan; K. Sailer

    2012-06-28T23:59:59.000Z

    We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent $\

  5. A New Model of Nonlocal Modified Gravity

    E-Print Network [OSTI]

    Ivan Dimitrijevic; Branko Dragovich; Jelena Grujic; Zoran Rakic

    2014-11-18T23:59:59.000Z

    We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$

  6. Energy definition for quadratic curvature gravities

    E-Print Network [OSTI]

    Ahmet Baykal

    2012-12-03T23:59:59.000Z

    A conserved current for generic quadratic curvature gravitational models is defined, and it is shown that, at the linearized level, it corresponds to the Deser-Tekin charges. An explicit expression for the charge for new massive gravity in three dimensions is given. Some implications of the linearized equations are discussed.

  7. Ultrasonic hydrometer. [Specific gravity of electrolyte

    DOE Patents [OSTI]

    Swoboda, C.A.

    1982-03-09T23:59:59.000Z

    The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

  8. Topological Black Holes in Quantum Gravity

    E-Print Network [OSTI]

    J. Kowalski-Glikman; D. Nowak-Szczepaniak

    2000-07-31T23:59:59.000Z

    We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.

  9. Schwarzschild solution in extended teleparallel gravity

    E-Print Network [OSTI]

    Nashed, G G L

    2015-01-01T23:59:59.000Z

    Tetrad field, with two unknown functions of radial coordinate and an angle $\\Phi$ which is the polar angle $\\phi$ times a function of the redial coordinate, is applied to the field equation of modified theory of gravity. Exact vacuum solution is derived whose scalar torsion, $T ={T^\\alpha}_{\\mu \

  10. Constraining torsion with Gravity Probe B

    SciTech Connect (OSTI)

    Mao Yi; Guth, Alan H.; Cabi, Serkan [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tegmark, Max [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, Massachusetts 02139 (United States)

    2007-11-15T23:59:59.000Z

    It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) such as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.

  11. Scale invariance, unimodular gravity and dark energy

    E-Print Network [OSTI]

    Mikhail Shaposhnikov; Daniel Zenhausern

    2008-12-16T23:59:59.000Z

    We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.

  12. Schwarzschild solution in extended teleparallel gravity

    E-Print Network [OSTI]

    G. G. L. Nashed

    2015-01-05T23:59:59.000Z

    Tetrad field, with two unknown functions of radial coordinate and an angle $\\Phi$ which is the polar angle $\\phi$ times a function of the redial coordinate, is applied to the field equation of modified theory of gravity. Exact vacuum solution is derived whose scalar torsion, $T ={T^\\alpha}_{\\mu \

  13. The diffeomorphism algebra approach to quantum gravity

    E-Print Network [OSTI]

    T. A. Larsson

    1999-09-13T23:59:59.000Z

    The representation theory of non-centrally extended Lie algebras of Noether symmetries, including spacetime diffeomorphisms and reparametrizations of the observer's trajectory, has recently been developped. It naturally solves some long-standing problems in quantum gravity, e.g. the role of diffeomorphisms and the causal structure, but some new questions also arise.

  14. Running Coupling Constants in 2D Gravity

    E-Print Network [OSTI]

    Christof Schmidhuber

    1993-08-26T23:59:59.000Z

    The renormalization group flow in two--dimensional field theories that are coupled to gravity is discussed at the example of the sine-Gordon model. In order to derive the phase diagram in agreement with the matrix model results, it is necessary to generalize the theory of David, Distler and Kawai.

  15. Second order noncommutative corrections to gravity

    SciTech Connect (OSTI)

    Calmet, Xavier [Universite Libre de Bruxelles, Service de Physique Theorique, CP225 Boulevard du Triomphe (Campus plaine), B-1050 Brussels (Belgium); Kobakhidze, Archil [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2006-08-15T23:59:59.000Z

    In this work, we calculate the leading order corrections to general relativity formulated on a canonical noncommutative spacetime. These corrections appear in the second order of the expansion in theta. First order corrections can only appear in the gravity-matter interactions. Some implications are briefly discussed.

  16. Omega Transmission Lines

    E-Print Network [OSTI]

    Vehmas, Joni

    2013-01-01T23:59:59.000Z

    In this paper, we show how bi-anisotropic media with omega-type response can be realized using periodically loaded transmission lines. General conditions for the needed unit cell circuit block are derived. Also, an implementation is shown and analyzed.

  17. Command Line Tools Cloud Computing

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Command Line Tools Cloud Computing #12;Everybody (or nearly everybody) loves GUI. AWS Command Line of advanced features. After surviving the cloud computing class till now, Your are almost a command line guru! You need AWS command line tools, ec2-api-tools, to maximize the power of AWS cloud computing. Plugging

  18. Measuring the Earth's gravity field with cold atom interferometers

    E-Print Network [OSTI]

    Carraz, Olivier; Massotti, Luca; Haagmans, Roger; Silvestrin, Pierluigi

    2015-01-01T23:59:59.000Z

    The scope of the paper is to propose different concepts for future space gravity missions using Cold Atom Interferometers (CAI) for measuring the diagonal elements of the gravity gradient tensor, the spacecraft angular velocity and the spacecraft acceleration. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behaviour of the CAI instrument and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field.

  19. A Proposed Alternative Low Energy Quantum Field Theory of Gravity Based on a Bose-Einstein Condensate Effect

    E-Print Network [OSTI]

    Alexander Oshmyansky

    2007-03-08T23:59:59.000Z

    An alternative quantum field theory for gravity is proposed for low energies based on an attractive effect between contaminants in a Bose-Einstein Condensate rather than on particle exchange. In the ``contaminant in condensate effect," contaminants cause a potential in an otherwise uniform condensate, forcing the condensate between two contaminants to a higher energy state. The energy of the system decreases as the contaminants come closer together, causing an attractive force between contaminants. It is proposed that mass-energy may have a similar effect on Einstein's space-time field, and gravity is quantized by the same method by which the contaminant in condensate effect is quantized. The resulting theory is finite and, if a physical condensate is assumed to underly the system, predictive. However, the proposed theory has several flaws at high energies and is thus limited to low energies. Falsifiable predictions are given for the case that the Higgs condensate is assumed to be the condensate underlying gravity.

  20. Printed circuit dispersive transmission line

    DOE Patents [OSTI]

    Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

    1991-08-27T23:59:59.000Z

    A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

  1. A new expression for the ground transient resistance matrix elements of multiconductor overhead transmission lines

    E-Print Network [OSTI]

    Loyka, Sergey

    transmission lines F. Rachidi a, *, S.L. Loyka b , C.A. Nucci c , M. Ianoz a a Swiss Federal Institute The ground impedance matrix elements of a multiconductor overhead transmission line do not have analytical-singular, and which describe, within the limits of transmission line theory, both the early-time and late

  2. Formation depths of Fraunhofer lines

    E-Print Network [OSTI]

    Gurtovenko, E A

    2015-01-01T23:59:59.000Z

    We have summed up our investigations performed in 1970--1993. The main task of this paper is clearly to show processes of formation of spectral lines as well as their distinction by validity and by location. For 503 photospheric lines of various chemical elements in the wavelength range 300--1000 nm we list in Table the average formation depths of the line depression and the line emission for the line centre and on the half-width of the line, the average formation depths of the continuum emission as well as the effective widths of the layer of the line depression formation. Dependence of average depths of line depression formation on excitation potential, equivalent widths, and central line depth are demonstrated by iron lines.

  3. Limitations on the topological BF scheme in Riemann-Cartan spacetime with torsion

    SciTech Connect (OSTI)

    Mielke, Eckehard W. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, Apartado Postal 55-534, C.P. 09340, Mexico, D.F. (Mexico)

    2009-08-15T23:59:59.000Z

    Cartan's structure equations in the Riemann-Cartan framework and some topological invariants of gravity are reanalyzed from the perspective of BF theories. This is related to a variational approach to Chern-Simons terms and Bianchi identities employing Lagrange multipliers. Here, it is pointed out that the BF scheme has some limitations to the effect that a coupling to matter would leave the minimal coupling prescription of gauge theories. In the case of gravity, the field equations would, generically, become higher order with a coupling to the relocalized Belinfante-Rosenfeld energy-momentum current.

  4. On Effective Spacetime Dimension in the Ho\\v{r}ava-Lifshitz Gravity

    E-Print Network [OSTI]

    Alencar, G; Cunha, M S; Muniz, C R

    2015-01-01T23:59:59.000Z

    In this manuscript we explicitly compute the effective dimension of spacetime in some backgrounds of Ho\\v{r}ava-Lifshitz (H-L) gravity. For all the cases considered, the results are compatible with a dimensional reduction of the spacetime to $d+1=2$, at high energies (ultraviolet limit), which is confirmed by other quantum gravity approaches, as well as to $d+1=4$, at low energies (infrared limit). This is obtained by computing the free energy of massless scalar and gauge fields. We find that the only effect of the background is to change the proportionality constant between the internal energy and temperature. Firstly, we consider both the non-perturbative and perturbative models involving the matter action, without gravitational sources but with manifest time and space symmetry breaking, in order to calculate modifications in the Stephan-Boltzmann law. When gravity is taken into account, we assume a scenario in which there is a spherical source with mass $M$ and radius $R$ in thermal equilibrium with radiat...

  5. Bimetric gravity is cosmologically viable

    E-Print Network [OSTI]

    Akrami, Yashar; Könnig, Frank; Schmidt-May, Angnis; Solomon, Adam R

    2015-01-01T23:59:59.000Z

    Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, $M_f$, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to $\\Lambda$CDM, but with a technically-natural value for the cosmological constant. We find $M_f$ should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis.

  6. The equilibrium of dense plasma in a gravity field

    E-Print Network [OSTI]

    B. V. Vasiliev

    2000-10-31T23:59:59.000Z

    The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.

  7. Flat Space Limit of (Higher-Spin) Cardy Formula

    E-Print Network [OSTI]

    Max Riegler

    2014-11-14T23:59:59.000Z

    In this note I derive the flat space limit of the modified Cardy formula associated with inner horizons and show that it reproduces the correct Galilean conformal field theory counting of flat space cosmology microstates. l also determine the entropy of flat space cosmologies in flat space chiral gravity in this way. In addition, I derive a Cardy-like expression for flat space cosmologies with spin-3 charges and thus give a prediction for the corresponding Galilean conformal field theory counting of flat space cosmology microstates with spin-3 charges.

  8. The combination of de Broglie's Harmony of the Phases and Mie's theory of gravity results in a Principle of Equivalence for Quantum Gravity

    E-Print Network [OSTI]

    E. P. J. de Haas

    2005-07-21T23:59:59.000Z

    Under a Lorentz-transformation, Mie's 1912 gravitational mass behaves identical as de Broglie's 1923 clock-like frequency. The same goes for Mie's inertial mass and de Broglie's wave-like frequency. This allows the interpretation of de Broglie's "Harmony of the Phases" as a "Principle of Equivalence" for Quantum Gravity. Thus, the particle-wave duality can be given a realist interpretation. The "Mie-de Broglie" interpretation suggests a correction of Hamilton's variational principle in the quantum domain. The equivalence of the masses can be seen as the classical "limit" of the quantum equivalence of the phases.

  9. Renyi Entropies, the Analytic Bootstrap, and 3D Quantum Gravity at Higher Genus

    E-Print Network [OSTI]

    Headrick, Matthew; Perlmutter, Eric; Zadeh, Ida G

    2015-01-01T23:59:59.000Z

    We compute the contribution of the vacuum Virasoro representation to the genus-two partition function of an arbitrary CFT with central charge $c>1$. This is the perturbative pure gravity partition function in three dimensions. We employ a sewing construction, in which the partition function is expressed as a sum of sphere four-point functions of Virasoro vacuum descendants. For this purpose, we develop techniques to efficiently compute correlation functions of holomorphic operators, which by crossing symmetry are determined exactly by a finite number of OPE coefficients; this is an analytic implementation of the conformal bootstrap. Expanding the results in $1/c$, corresponding to the semiclassical bulk gravity expansion, we find that---unlike at genus one---the result does not truncate at finite loop order. Our results also allow us to extend earlier work on multiple-interval Renyi entropies and on the partition function in the separating degeneration limit.

  10. Renyi Entropies, the Analytic Bootstrap, and 3D Quantum Gravity at Higher Genus

    E-Print Network [OSTI]

    Matthew Headrick; Alexander Maloney; Eric Perlmutter; Ida G. Zadeh

    2015-03-24T23:59:59.000Z

    We compute the contribution of the vacuum Virasoro representation to the genus-two partition function of an arbitrary CFT with central charge $c>1$. This is the perturbative pure gravity partition function in three dimensions. We employ a sewing construction, in which the partition function is expressed as a sum of sphere four-point functions of Virasoro vacuum descendants. For this purpose, we develop techniques to efficiently compute correlation functions of holomorphic operators, which by crossing symmetry are determined exactly by a finite number of OPE coefficients; this is an analytic implementation of the conformal bootstrap. Expanding the results in $1/c$, corresponding to the semiclassical bulk gravity expansion, we find that---unlike at genus one---the result does not truncate at finite loop order. Our results also allow us to extend earlier work on multiple-interval Renyi entropies and on the partition function in the separating degeneration limit.

  11. Elimination of IR/UV via Gravity in Noncommutative Field Theory

    E-Print Network [OSTI]

    N. Kersting; J. Yan

    2009-01-05T23:59:59.000Z

    Models of particle physics with Noncommutative Geometry (NCG) generally suffer from a manifestly non-Wilsonian coupling of infrared and ultraviolet degrees of freedom known as the "IR/UV Problem" which would tend to compromise their phenomenological relevance. In this Letter we explicitly show how one may remedy this by coupling NCG to gravity. In the simplest scenario the Lagrangian gets multiplied by a nonconstant background metric; in $\\phi-4$ theory the theorem that $\\int d^4 x \\phi \\star \\phi = \\int d^4 x \\phi^2$ is no longer true and the field propagator gets modified by a factor which depends on both NCG and the variation of the metric. A suitable limit of this factor as the propagating momentum gets asymptotically large then eradicates the IR/UV problem. With gravity and NCG coupled to each other, one might expect anti-symmetric components to arise in the metric. Cosmological implications of such are subsequently discussed.

  12. Projected Constraints on Lorentz-Violating Gravity with Gravitational Waves

    E-Print Network [OSTI]

    Devin Hansen; Nicolas Yunes; Kent Yagi

    2014-12-12T23:59:59.000Z

    Gravitational waves are excellent tools to probe the foundations of General Relativity in the strongly dynamical and non-linear regime. One such foundation is Lorentz symmetry, which can be broken in the gravitational sector by the existence of a preferred time direction, and thus, a preferred frame at each spacetime point. This leads to a modification in the orbital decay rate of binary systems, and also in the generation and chirping of their associated gravitational waves. We here study whether waves emitted in the late, quasi-circular inspiral of non-spinning, neutron star binaries can place competitive constraints on two proxies of gravitational Lorentz-violation: Einstein-\\AE{}ther theory and khronometric gravity. We model the waves in the small-coupling (or decoupling) limit and in the post-Newtonian approximation, by perturbatively solving the field equations in small deformations from General Relativity and in the small-velocity/weak-gravity approximation. We assume a gravitational wave consistent with General Relativity has been detected with second- and third-generation, ground-based detectors, and with the proposed space-based mission, DECIGO, with and without coincident electromagnetic counterparts. Without a counterpart, a detection consistent with General Relativity of neutron star binaries can only place competitive constraints on gravitational Lorentz violation when using future, third-generation or space-based instruments. On the other hand, a single counterpart is enough to place constraints that are 10 orders of magnitude more stringent than current binary pulsar bounds, even when using second-generation detectors. This is because Lorentz violation forces the group velocity of gravitational waves to be different from that of light, and this difference can be very accurately constrained with coincident observations.

  13. Signals for Lorentz violation in post-Newtonian gravity

    SciTech Connect (OSTI)

    Bailey, Quentin G.; Kostelecky, V. Alan [Physics Department, Indiana University, Bloomington, Indiana 47405 (United States)

    2006-08-15T23:59:59.000Z

    The pure-gravity sector of the minimal standard-model extension is studied in the limit of Riemann spacetime. A method is developed to extract the modified Einstein field equations in the limit of small metric fluctuations about the Minkowski vacuum, while allowing for the dynamics of the 20 independent coefficients for Lorentz violation. The linearized effective equations are solved to obtain the post-Newtonian metric. The corresponding post-Newtonian behavior of a perfect fluid is studied and applied to the gravitating many-body system. Illustrative examples of the methodology are provided using bumblebee models. The implications of the general theoretical results are studied for a variety of existing and proposed gravitational experiments, including lunar and satellite laser-ranging, laboratory experiments with gravimeters and torsion pendula, measurements of the spin precession of orbiting gyroscopes, timing studies of signals from binary pulsars, and the classic tests involving the perihelion precession and the time delay of light. For each type of experiment considered, estimates of the attainable sensitivities are provided. Numerous effects of local Lorentz violation can be studied in existing or near-future experiments at sensitivities ranging from parts in 10{sup 4} down to parts in 10{sup 15}.

  14. Drill string transmission line

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Bradford, Kline (Orem, UT); Fox, Joe (Spanish Fork, UT)

    2006-03-28T23:59:59.000Z

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  15. Powerful evidences for supporting the claim that gamma-ray burst redshifts are gravity-generated

    E-Print Network [OSTI]

    Fu-Gao Song

    2012-06-24T23:59:59.000Z

    At present, it is widely believed that the phenomenon of the gamma-ray burst redshift is cosmological origin. From a theoretical point of view, this redshift has either a cosmological or a cause that is related to gravity. However, the question of whether the gamma-ray burst redshift has a cosmological origin or not should be answerable in no uncertain terms because both the spectrum characteristics and the count distribution law arising from the two distinct settings are completely different. If the redshift of GRB is generated by gravity, then the afterglow spectrum will certainly contain both the gravitational redshits (containing emission and absorption feature) and Doppler absorption redshift, and hold a definite relation between the two redshifts. In this paper, we present nine direct and decisive evidences to show that the gamma-ray burst redshift is indeed generated by gravity of neutron stars in their merging process; in which, 114 GRBs' redshifts showed that the statistical count distribution law for the two kinds redshift is the same (with errors less than 1.5%), and 74 spectral line redshifts of two GRBs showed that the relation between the two kinds redshift is completely correct (with errors less than 0.0061%).

  16. Decoupling of gravity on non-susy D$p$ branes

    E-Print Network [OSTI]

    Kuntal Nayek; Shibaji Roy

    2015-06-29T23:59:59.000Z

    We study the graviton scattering in the background of non-susy D$p$ branes of type II string theories consisting of a metric, a dilaton and a $(p+1)$ form gauge field. We show numerically that in these backgrounds graviton experiences a scattering potential which takes the form of an infinite barrier in the low energy (near brane) limit for $p\\leq 5$ and therefore is never able to reach the branes. This shows, contrary to what is known in the literature, that gravity indeed decouples from the non-susy D$p$ brane for $p \\leq 5$. For non-susy D6 brane, gravity couples as there is no such barrier for the potential. To give further credence to our claim we solve the scattering equation in certain situation analytically and calculate the graviton absorption cross-section on the non-susy branes and show that it vanishes for $p \\leq 4$ and diverges for $p=6$ in the low energy limit. This shows, as in the case of BPS branes, that gravity does decouple for non-susy D$p$ brane for $p\\leq 4$ but it does not decouple for D6 brane as the potential here is always attractive. We argue for the non-susy D5 brane that depending on one of the parameters of the solution gravity either always decouples (unlike the BPS D5 brane) or it decouples when the energy of the graviton is below certain critical value, otherwise it couples, very similar to BPS D5 brane.

  17. On Effective Spacetime Dimension in the Ho?ava-Lifshitz Gravity

    E-Print Network [OSTI]

    G. Alencar; V. B. Bezerra; M. S. Cunha; C. R. Muniz

    2015-05-22T23:59:59.000Z

    In this manuscript we explicitly compute the effective dimension of spacetime in some backgrounds of Ho\\v{r}ava-Lifshitz (H-L) gravity. For all the cases considered, the results are compatible with a dimensional reduction of the spacetime to $d+1=2$, at high energies (ultraviolet limit), which is confirmed by other quantum gravity approaches, as well as to $d+1=4$, at low energies (infrared limit). This is obtained by computing the free energy of massless scalar and gauge fields. We find that the only effect of the background is to change the proportionality constant between the internal energy and temperature. Firstly, we consider both the non-perturbative and perturbative models involving the matter action, without gravitational sources but with manifest time and space symmetry breaking, in order to calculate modifications in the Stephan-Boltzmann law. When gravity is taken into account, we assume a scenario in which there is a spherical source with mass $M$ and radius $R$ in thermal equilibrium with radiation, and consider the static and spherically symmetric solution of the H-L theory found by Kehagias-Sfetsos (K-S), in the weak and strong field approximations. As byproducts, for the weak field regime, we used the current uncertainty of the solar radiance measurements to establish a constraint on the $\\omega$ free parameter of the K-S solution. We also calculate the corrections, due to gravity, to the recently predicted attractive force that black bodies exert on nearby neutral atoms and molecules.

  18. Propagation of gravitational waves in multimetric gravity

    E-Print Network [OSTI]

    Manuel Hohmann

    2012-04-22T23:59:59.000Z

    We discuss the propagation of gravitational waves in a recently discussed class of theories containing N >= 2 metric tensors and a corresponding number of standard model copies. Using the formalism of gauge-invariant linear perturbation theory we show that all gravitational waves propagate at the speed of light. We then employ the Newman-Penrose formalism to show that two to six polarizations of gravitational waves may exist, depending on the parameters entering the equations of motion. This corresponds to E(2) representations N_2, N_3, III_5 and II_6. We finally apply our general discussion to a recently presented concrete multimetric gravity model and show that it is of class N_2, i.e., it allows only two tensor polarizations, as it is the case for general relativity. Our results provide the theoretical background for tests of multimetric gravity theories using the upcoming gravitational wave experiments.

  19. Hydrogen atom in Palatini theories of gravity

    E-Print Network [OSTI]

    Gonzalo J. Olmo

    2008-06-03T23:59:59.000Z

    We study the effects that the gravitational interaction of $f(R)$ theories of gravity in Palatini formalism has on the stationary states of the Hydrogen atom. We show that the role of gravity in this system is very important for lagrangians $f(R)$ with terms that grow at low curvatures, which have been proposed to explain the accelerated expansion rate of the universe. We find that new gravitationally induced terms in the atomic Hamiltonian generate a strong backreaction that is incompatible with the very existence of bound states. In fact, in the 1/R model, Hydrogen disintegrates in less than two hours. The universe that we observe is, therefore, incompatible with that kind of gravitational interaction. Lagrangians with high curvature corrections do not lead to such instabilities.

  20. Quantum Gravity models - brief conceptual summary

    E-Print Network [OSTI]

    Jerzy Lukierski

    2014-11-27T23:59:59.000Z

    After short historical overview we describe the difficulties with application of standard QFT methods in quantum gravity (QG). The incompatibility of QG with the use of classical continuous space-time required conceptually new approach. We present briefly three proposals: loop quantum gravity (LQG), the field-theoretic framework on noncommutative space-time and QG models formulated on discretized (triangularized) space-time. We evaluate these models as realizing expected important properties of QG: background independence, consistent quantum diffeomorphisms, noncommutative or discrete structure of space-time at very short distances, finite/renormalizable QG corrections. We only briefly outline an important issue of embedding QG into larger geometric and dynamical frameworks (e.g. supergravity, (super)strings, p-branes, M-theory), with the aim to achieve full unification of all fundamental interactions.

  1. Black holes in Asymptotically Safe Gravity

    E-Print Network [OSTI]

    Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca

    2015-01-01T23:59:59.000Z

    Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.

  2. Elliptic Genera and 3d Gravity

    E-Print Network [OSTI]

    Benjamin, Nathan; Kachru, Shamit; Moore, Gregory W; Paquette, Natalie M

    2015-01-01T23:59:59.000Z

    We describe general constraints on the elliptic genus of a 2d supersymmetric conformal field theory which has a gravity dual with large radius in Planck units. We give examples of theories which do and do not satisfy the bounds we derive, by describing the elliptic genera of symmetric product orbifolds of $K3$, product manifolds, certain simple families of Calabi-Yau hypersurfaces, and symmetric products of the "Monster CFT." We discuss the distinction between theories with supergravity duals and those whose duals have strings at the scale set by the AdS curvature. Under natural assumptions we attempt to quantify the fraction of (2,2) supersymmetric conformal theories which admit a weakly curved gravity description, at large central charge.

  3. Chaotic inflation in higher derivative gravity theories

    E-Print Network [OSTI]

    Myrzakul, Shynaray; Sebastiani, Lorenzo

    2015-01-01T23:59:59.000Z

    In this paper, we investigate chaotic inflation from scalar field subjected to potential in the framework of $f(R^2, P, Q)$-gravity, where we add a correction to Einstein's gravity based on a function of the square of the Ricci scalar $R^2$, the contraction of the Ricci tensor $P$, and the contraction of the Riemann tensor $Q$. The Gauss-Bonnet case is also discussed. We give the general formalism of inflation, deriving the slow-roll parameters, the $e$-folds number, and the spectral indexes. Several explicit examples are furnished, namely we will consider the cases of massive scalar field and scalar field with quartic potential and some power-law function of the curvature invariants under investigation in the gravitational action of the theory. Viable inflation according with observations is analyzed.

  4. Infrared modification of gravity from conformal symmetry

    E-Print Network [OSTI]

    Gegenberg, Jack; Seahra, Sanjeev S

    2015-01-01T23:59:59.000Z

    We reconsider a gauge theory of gravity in which the gauge group is the conformal group SO(4,2) and the action is of the Yang-Mills form, quadratic in the curvature. The resulting gravitational theory exhibits local conformal symmetry and reduces to Weyl-squared gravity under certain conditions. When the theory is linearized about flat spacetime, we find that matter which couples to the generators of special conformal transformations reproduces Newton's inverse square law. Conversely, matter which couples to generators of translations induces a constant and possibly repulsive force far from the source, which may be relevant for explaining the late time acceleration of the universe. The coupling constant of theory is dimensionless, which means that it is potentially renormalizable.

  5. Notes on several phenomenological laws of quantum gravity

    E-Print Network [OSTI]

    Bruneton, Jean-Philippe

    2013-01-01T23:59:59.000Z

    Phenomenological approaches to quantum gravity try to infer model-independent laws by analyzing thought experiments and combining both quantum, relativistic, and gravitational ingredients. We first review these ingredients -three basic inequalities- and discuss their relationships with the nature of fundamental constants. In particular, we argue for a covariant mass bound conjecture: in a spacetime free of horizon, the mass inside a surface $A$ cannot exceed $16 \\pi G^2 m^2m_p$ (5) There exists a mass dependent maximal force and power (6) There exists a maximal energy density and pressure (7) Physical systems must obey the Holographic Principle (8) Holographic bounds can only be saturated by systems with $m>m_p$; systems lying on the ``Compton line'' $l \\sim 1/m$ are fundamental objects without substructures (9) We speculate on a new bound from above for the action. In passing, we note that the maximal acceleration is of the order of Milgrom's acceleration $a_0$ for ultra-light particles ($m\\sim H_0)$ that co...

  6. Aperture-based antihydrogen gravity experiment: Parallel plate geometry

    SciTech Connect (OSTI)

    Rocha, J. R.; Hedlof, R. M.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)] [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-10-15T23:59:59.000Z

    An analytical model and a Monte Carlo simulation are presented of an experiment that could be used to determine the direction of the acceleration of antihydrogen due to gravity. The experiment would rely on methods developed by existing antihydrogen research collaborations. The configuration consists of two circular, parallel plates that have an axis of symmetry directed away from the center of the earth. The plates are separated by a small vertical distance, and include one or more pairs of circular barriers that protrude from the upper and lower plates, thereby forming an aperture between the plates. Antihydrogen annihilations that occur just beyond each barrier, within a “shadow” region, are asymmetric on the upper plate relative to the lower plate. The probability for such annihilations is determined for a point, line and spheroidal source of antihydrogen. The production of 100,000 antiatoms is predicted to be necessary for the aperture-based experiment to indicate the direction of free fall acceleration of antimatter, provided that antihydrogen is produced within a sufficiently small antiproton plasma at a temperature of 4 K.

  7. Can f(T) gravity theories mimic ?CDM cosmic history

    SciTech Connect (OSTI)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2013-01-01T23:59:59.000Z

    Recently the teleparallel Lagrangian density described by the torsion scalar T has been extended to a function of T. The f(T) modified teleparallel gravity has been proposed as the natural gravitational alternative for dark energy to explain the late time acceleration of the universe. In order to reconstruct the function f(T) by demanding a background ?CDM cosmology we assume that, (i) the background cosmic history provided by the flat ?CDM (the radiation ere with ?{sub eff} = (1/3), matter and de Sitter eras with ?{sub eff} = 0 and ?{sub eff} = ?1, respectively) (ii) the radiation dominate in the radiation era with ?{sub 0r} = 1 and the matter dominate during the matter phases when ?{sub 0m} = 1. We find the cosmological dynamical system which can obey the ?CDM cosmic history. In each era, we find a critical lines that, the radiation dominated and the matter dominated are one points of them in the radiation and matter phases, respectively. Also, we drive the cosmologically viability condition for these models. We investigate the stability condition with respect to the homogeneous scalar perturbations in each era and we obtain the stability conditions for the fixed points in each eras. Finally, we reconstruct the function f(T) which mimics cosmic expansion history.

  8. Equivalence principle in scalar-tensor gravity

    E-Print Network [OSTI]

    Dirk Puetzfeld; Yuri N. Obukhov

    2015-05-06T23:59:59.000Z

    We present a direct confirmation of the validity of the equivalence principle for unstructured test bodies in scalar tensor gravity. Our analysis is complementary to previous approaches and valid for a large class of scalar-tensor theories of gravitation. A covariant approach is used to derive the equations of motion in a systematic way and allows for the experimental test of scalar-tensor theories by means of extended test bodies.

  9. Charged Cylindrical Black Holes in Conformal Gravity

    E-Print Network [OSTI]

    Jackson Levi Said; Joseph Sultana; Kristian Zarb Adami

    2013-01-04T23:59:59.000Z

    Considering cylindrical topology we present the static solution for a charged black hole in conformal gravity. We show that unlike the general relativistic case there are two different solutions, both including a factor that when set to zero recovers the familiar static charged black string solution in Einstein's theory. This factor gives rise to a linear term in the potential that also features in the neutral case and may have significant ramifications for particle trajectories.

  10. QPOs: Einstein's gravity non-linear resonances

    E-Print Network [OSTI]

    Paola Rebusco; Marek A. Abramowicz

    2006-01-30T23:59:59.000Z

    There is strong evidence that the observed kHz Quasi Periodic Oscillations (QPOs) in the X-ray flux of neutron star and black hole sources in LMXRBs are linked to Einstein's General Relativity. Abramowicz&Klu\\'zniak (2001) suggested a non-linear resonance model to explain the QPOs origin: here we summarize their idea and the development of a mathematical toy-model which begins to throw light on the nature of Einstein's gravity non-linear oscillations.

  11. Twisted covariant noncommutative self-dual gravity

    SciTech Connect (OSTI)

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C. [Centro de Estudios en Fisica y Matematicas Basicas y Aplicadas, Universidad Autonoma de Chiapas, Calle 4 Oriente Norte 1428, Tuxtla Gutierrez, Chiapas (Mexico); Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, P.O. Box 14-740, 07000 Mexico D.F. (Mexico); Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey, PIIT, Via del Conocimiento 201, Autopista nueva al Aeropuerto km 9.5, 66600, Apodaca Nuevo Leon (Mexico); Instituto de Fisica de la Universidad de Guanajuato, P.O. Box E-143, 37150, Leon Gto. (Mexico); Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000, Puebla (Mexico)

    2008-12-15T23:59:59.000Z

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the {theta} expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in {theta} for the Plebanski action is explicitly obtained.

  12. Gravity and Yang-Mills amplitude relations

    SciTech Connect (OSTI)

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas [Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen O (Denmark); FengBo [Center of Mathematical Science, Zhejiang University, Hangzhou (China)

    2010-11-15T23:59:59.000Z

    Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.

  13. Gravity controlled anti-reverse rotation device

    DOE Patents [OSTI]

    Dickinson, Robert J. (Shaler Township, Allegheny County, PA); Wetherill, Todd M. (Lower Burrell, PA)

    1983-01-01T23:59:59.000Z

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  14. Exact Gravity Dual of a Gapless Superconductor

    E-Print Network [OSTI]

    George Koutsoumbas; Eleftherios Papantonopoulos; George Siopsis

    2009-06-17T23:59:59.000Z

    A model of an exact gravity dual of a gapless superconductor is presented in which the condensate is provided by a charged scalar field coupled to a bulk black hole of hyperbolic horizon in asymptotically AdS spacetime. Below a critical temperature, the black hole acquires its hair through a phase transition while an electromagnetic perturbation of the background Maxwell field determines the conductivity of the boundary theory.

  15. Holographic Superconductivity with Gauss-Bonnet gravity

    E-Print Network [OSTI]

    Ruth Gregory

    2010-12-07T23:59:59.000Z

    I review recent work on holographic superconductivity with Einstein-Gauss-Bonnet gravity, and show how the critical temperature of the superconductor depends on both gravitational backreaction and the Gauss-Bonnet parameter, using both analytic and numerical arguments. I also review computations of the conductivity, finding the energy gap, and demonstrating that there is no universal gap ratio, $\\omega_g/T_c$, for these superconductors.

  16. Fault current limiter

    DOE Patents [OSTI]

    Darmann, Francis Anthony

    2013-10-08T23:59:59.000Z

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  17. Constraining Torsion with Gravity Probe B

    E-Print Network [OSTI]

    Yi Mao; Max Tegmark; Alan Guth; Serkan Cabi

    2007-10-05T23:59:59.000Z

    It is well-entrenched folklore that torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope should also feel torsion. Using symmetry arguments, we show that to lowest order, the torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the PPN formalism and provide a concrete framework for further testing GR. We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi- Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B (GPB) is an ideal experiment for further constraining torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters

  18. Utility Lines and Facilities (Montana)

    Broader source: Energy.gov [DOE]

    These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

  19. (Limiting the greenhouse effect)

    SciTech Connect (OSTI)

    Rayner, S.

    1991-01-07T23:59:59.000Z

    Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.

  20. Maersk Line Equipment guide

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AOU1a ComplexMaersk Line Equipment

  1. Cooling, Gravity and Geometry: Flow-driven Massive Core Formation

    E-Print Network [OSTI]

    Fabian Heitsch; Lee Hartmann; Adrianne D. Slyz; Julien E. G. Devriendt; Andreas Burkert

    2007-09-15T23:59:59.000Z

    We study numerically the formation of molecular clouds in large-scale colliding flows including self-gravity. The models emphasize the competition between the effects of gravity on global and local scales in an isolated cloud. Global gravity builds up large-scale filaments, while local gravity -- triggered by a combination of strong thermal and dynamical instabilities -- causes cores to form. The dynamical instabilities give rise to a local focusing of the colliding flows, facilitating the rapid formation of massive protostellar cores of a few 100 M$_\\odot$. The forming clouds do not reach an equilibrium state, though the motions within the clouds appear comparable to ``virial''. The self-similar core mass distributions derived from models with and without self-gravity indicate that the core mass distribution is set very early on during the cloud formation process, predominantly by a combination of thermal and dynamical instabilities rather than by self-gravity.

  2. New Agegraphic Dark Energy in $f(R)$ Gravity

    E-Print Network [OSTI]

    M. R. Setare

    2009-08-03T23:59:59.000Z

    In this paper we study cosmological application of new agegraphic dark energy density in the $f(R)$ gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in spatially flat universe. Our calculation show, taking $nnew agegraphic dark energy model in flat universe in the modified gravity cosmology framework. Also we develop a reconstruction scheme for the modified gravity with $f(R)$ action.

  3. AdS waves as exact solutions to quadratic gravity

    SciTech Connect (OSTI)

    Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Guerses, Metin [Department of Mathematics, Faculty of Sciences Bilkent University, 06800 Ankara (Turkey)

    2011-04-15T23:59:59.000Z

    We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane-fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity. A subset of the solutions change the asymptotic structure of the anti-de Sitter space due to their logarithmic behavior.

  4. Analysis of faults using gravity methods in Mason County, Texas

    E-Print Network [OSTI]

    Milligan, Michael Glen

    1992-01-01T23:59:59.000Z

    Committee: Dr. D. A. Fahlquist Dr. B. Johnson The objective of this study is to determine the applicability of gravity profiling methods for determining the location and throw of a series of faults related to a structural graben in northern Mason County... profiles. For two faults with the best geologic control, the best-fit gravity models compared favorably with the the geologic model constructed by Randolph (1991) on the basis of surface mapping, structural control and well control. The gravity models...

  5. Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming

    E-Print Network [OSTI]

    Silver, Wendy Ilene

    1979-01-01T23:59:59.000Z

    provide a potential source of information about the configuration of the sedimentary rock / Precambrian basement interface as well as the geometry of the overlying younger rocks. GRAVITY DA. A Regional Gravity The regional gravity field of Wyoming..., Jurassic and Lower Cretaceous units. It may therefore be concluded that the uplifts of the Precambrian basement were fomed after the deposition of those overly1ng sedimentary rocks. ACKNOWLEDGEMEWTS I w1sh to thank Dr, R. R. Berg, chairman of my...

  6. The Limits of Quintessence

    SciTech Connect (OSTI)

    Caldwell, R.R.; Linder, Eric V.

    2005-05-24T23:59:59.000Z

    We present evidence that the simplest particle-physics scalar-field models of dynamical dark energy can be separated into distinct behaviors based on the acceleration or deceleration of the field as it evolves down its potential towards a zero minimum. We show that these models occupy narrow regions in the phase-plane of w and w', the dark energy equation-of-state and its time-derivative in units of the Hubble time. Restricting an energy scale of the dark energy microphysics limits how closely a scalar field can resemble a cosmological constant. These results, indicating a desired measurement resolution of order \\sigma(w')\\approx (1+w), define firm targets for observational tests of the physics of dark energy.

  7. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    NA

    2004-11-22T23:59:59.000Z

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  8. asymptotically safe gravity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at high energies. Elisa Manrique; Stefan Rechenberger; Frank Saueressig 2011-02-24 2 Fractal Spacetime Structure in Asymptotically Safe Gravity General Relativity & Quantum...

  9. Ground Gravity Survey At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Survey Activity Date - 1986 Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting...

  10. Quantized gauge-affine gravity in the superfiber bundle approach

    E-Print Network [OSTI]

    A. Meziane; M. Tahiri

    2005-11-10T23:59:59.000Z

    The quantization of gauge-affine gravity within the superfiber bundle formalism is proposed. By introducing an even pseudotensorial 1-superform over a principal superfibre bundle with superconnection, we obtain the geometrical Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST transformations of the fields occurring in such a theory. Reducing the four-dimensional general affine group double-covering to the Poincare group double-covering we also find the BRST and anti-BRST transformations of the fields present in Einstein's gravity. Furthermore, we give a prescription leading to the construction of both BRST-invariant gauge-fixing action for gauge-affine gravity and Einstein's gravity.

  11. atmospheric gravity waves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gravity waves (AGWs). Satellite imagery shows evidence the characteristics of these waves. The favorable wave propagation conditions in 12;this region are illustrated 5...

  12. Integration of Full Tensor Gravity and ZTEM Passive Low Frequency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and ZTEM Passive Low Frequency EM Instruments for Simultaneous Data Acquisition Integration of Full Tensor Gravity and ZTEM Passive Low Frequency EM Instruments for...

  13. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not...

  14. Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration...

  15. Exercise protocols during short-radius centrifugation for artificial gravity

    E-Print Network [OSTI]

    Edmonds, Jessica Leigh

    2008-01-01T23:59:59.000Z

    Long-duration spaceflight results in severe physiological deconditioning, threatening the success of interplanetary travel. Exercise combined with artificial gravity provided by centrifugation may be the comprehensive ...

  16. The f(R) Gravity Function of the Linde Quintessence

    E-Print Network [OSTI]

    Sergei V. Ketov; Natsuki Watanabe

    2014-10-20T23:59:59.000Z

    We calculate the f(R) gravity function in the dual gravity description of the quintessence model with a quadratic (Linde) scalar potential and a positive cosmological constant. We find that in the large curvature regime relevant to chaotic inflation in early Universe, the dual f(R) gravity is well approximated by the (matter) loop-corrected Starobinsky inflationary model. In the small curvature regime relevant to dark energy in the present Universe, the f(R) gravity function reduces to the Einstein-Hilbert one with a positive cosmological constant.

  17. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    fault zones. The focus of Lake City Geothermal's current effort is on enhancing the site interpretation by re-evaluating the existing seismic data, conducting a detailed gravity...

  18. Lessons in quantum gravity from quantum field theory

    SciTech Connect (OSTI)

    Berenstein, David [Department of Physics, University of California at Santa Barbara, CA 93106 (United States); Institute for Advanced Study, School of Natural Science, Princeton, NJ 08540 (United States)

    2010-12-07T23:59:59.000Z

    This paper reviews advances in the understanding of quantum gravity based on field theory calculations in the AdS/CFT correspondence.

  19. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Gravity surveys were conducted to monitor the evolution of the geothermal reservoir. Notes A 12 month long experiment was conducted using a...

  20. Summary of Session A6: Alternative Theories of Gravity

    E-Print Network [OSTI]

    R. B. Mann

    1998-03-13T23:59:59.000Z

    This is a summary of the workshop A.6 on Alternative Theories of Gravity, prepared for the proceedings for the GR15 conference.

  1. Ground Gravity Survey At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

  2. Transmission line design manual. A guide for the investigation, development, and design of power transmission lines. Water resources technical pub

    SciTech Connect (OSTI)

    Farr, H.H.

    1980-01-01T23:59:59.000Z

    The purpose of the manual is to outline the various requirements for, and the procedures to be followed in the design of power transmission lines by the Bureau of Reclamation. U.S. Department of the Interior. Numerous design studies, which have been made on specific aspects of transmission line design, are included with explanations of their applications. Information is presented concerning such aspects as selection of type of construction, conductor sags and tensions, insulation, lightning protection, clearance patterns, galloping conductors, structure limitation and guying charts, and structure spotting. Structure design examples are limited to wood-pole construction. Interpretations of the National Electrical Safety Code and other codes are made as required.

  3. Detailed validation of an empirical model for viscous fingering with gravity effects

    SciTech Connect (OSTI)

    Fayers, F.J.; Newley, T.M.J.

    1988-05-01T23:59:59.000Z

    This paper extends to two-dimensional (2D) flows the derivation and validation of an empirical model for viscous fingering previously developed. Fine-scale numerical simulations are used to provide basic data for validating the approximations, and these fingering results are also checked against a range of experiments. The flow rate dependence of gravity segregation in vertical section experiments conducted by van der Poel is examined, where the broadly acceptable agreement of the empirical model is limited by some identified additional features.

  4. Low-energy quantum gravity: new challenges for an experiment and observation

    E-Print Network [OSTI]

    Michael A. Ivanov

    2009-01-05T23:59:59.000Z

    Some new challenges for an experiment and observation, which are consequences of the model of low-energy quantum gravity by the author, are considered here. In particular, the property of asymptotic freedom of this model leads to the unexpected consequence: if a black hole arises due to a collapse of a matter with some characteristic mass of particles, its full mass should be restricted from the bottom. For usual baryonic matter, this limit of mass is of the order $10^{7}M_{\\odot}$.

  5. Phantom energy accretion onto a black hole in Horava Lifshitz gravity

    E-Print Network [OSTI]

    G. Abbas

    2013-03-27T23:59:59.000Z

    In this Letter, we examine the phantom energy accretion onto a Kehagias-Sfetsos black hole in Ho$\\check{r}$ava Lifshitz gravity. To discuss the accretion process onto the black hole, the equations of phantom flow near the black hole have been derived. It is found that mass of the black hole decreases because of phantom accretion. We discuss the conditions for critical accretion. Graphically, it has been found that the critical accretion phenomena is possible for different values of parameters. The results for the Schwarzschild black hole can be recovered in the limiting case.

  6. Generalized Recursion Relations for Correlators in the Gauge-Gravity Correspondence

    SciTech Connect (OSTI)

    Raju, Suvrat [Harish-Chandra Research Institute, Chatnag Marg, Jhunsi, Allahabad 211019 (India)

    2011-03-04T23:59:59.000Z

    We show that a generalization of the Britto-Cachazo-Feng-Witten recursion relations gives a new and efficient method of computing correlation functions of the stress tensor or conserved currents in conformal field theories with an (d+1)-dimensional anti-de Sitter space dual, for d{>=}4, in the limit where the bulk theory is approximated by tree-level Yang-Mills theory or gravity. In supersymmetric theories, additional correlators of operators that live in the same multiplet as a conserved current or stress tensor can be computed by these means.

  7. Hamiltonian formulation of teleparallel theories of gravity in the time gauge

    E-Print Network [OSTI]

    J. W. Maluf; A. A. Sousa

    2000-02-16T23:59:59.000Z

    We consider the most general class of teleparallel theories of gravity quadratic in the torsion tensor, and carry out a detailed investigation of its Hamiltonian formulation in the time gauge. Such general class is given by a three-parameter family of theories. A consistent implementation of the Legendre transform reduces the original theory to a one-parameter theory determined in terms of first class constraints. The free parameter is fixed by requiring the Newtonian limit. The resulting theory is the teleparallel equivalent of general relativity.

  8. A completely solvable model with an infinite number of Dirac observables for a real sector of complexified Ashtekar gravity

    E-Print Network [OSTI]

    T. Thiemann

    1993-11-11T23:59:59.000Z

    We introduce a reduced model for a real sector of complexified Ashtekar gravity that does not correspond to a subset of Einstein's gravity but for which the programme of canonical quantization can be carried out completely, both, via the reduced phase space approach or along the lines of the algebraic quantization programme.\\\\ This model stands in a certain correspondence to the frequently treated cylindrically symmetric waves.\\\\ In contrast to other models that have been looked at up to now in terms of the new variables the reduced phase space is infinite dimensional while the scalar constraint is genuinely bilinear in the momenta.\\\\ The infinite number of Dirac observables can be expressed in compact and explicit form in terms of the original phase space variables.\\\\ They turn out, as expected, to be non-local and form naturally a set of countable cardinality.

  9. Fractal Spacetime Structure in Asymptotically Safe Gravity

    E-Print Network [OSTI]

    O. Lauscher; M. Reuter

    2005-08-26T23:59:59.000Z

    Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-Planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.

  10. Gamma Ray Burst Neutrinos Probing Quantum Gravity

    E-Print Network [OSTI]

    M. C. Gonzalez-Garcia; F. Halzen

    2006-11-28T23:59:59.000Z

    Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

  11. Dynamics of generalized Palatini theories of gravity

    SciTech Connect (OSTI)

    Vitagliano, Vincenzo; Liberati, Stefano [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy) and INFN sezione di Trieste, sezione di Trieste, via Valerio 2, 34127 Trieste (Italy); Sotiriou, Thomas P. [Department of Applied Mathematics and Theoretical Physics, Center for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-10-15T23:59:59.000Z

    It is known that in f(R) theories of gravity with an independent connection which can be both nonmetric and nonsymmetric, this connection can always be algebraically eliminated in favor of the metric and the matter fields, so long as it is not coupled to the matter explicitly. We show here that this is a special characteristic of f(R) actions, and it is not true for actions that include other curvature invariants. This contradicts some recent claims in the literature. We clarify the reasons for this contradiction.

  12. Modification of gravity due to torsion

    SciTech Connect (OSTI)

    Nair, V. P. [Physics Department, City College of the CUNY, New York, NY 10031 (United States); Nikiforova, V. [Physics Department, Mascow State University Moscow (Russian Federation); Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation)

    2010-01-01T23:59:59.000Z

    Modifications of general relativity have been considered as one of the possible ways of addressing some of the outstanding problems related to the large scale gravitational physics. In this contribution we review some of the recent results which are due to the inclusion of dynamical torsion. More specifically we shall discuss the propagation of massive spin-2 particles in flat and curved space times. We shall show that, contrary to what is generally believed, spinning matter is not the sole source of torsion field. A symmetric energy momentum tensor can also couple to torsion degrees of freedom. The massive and massless spin-2 particles mix giving rise to an infrared modification of gravity.

  13. Confronting Dilaton-exchange gravity with experiments

    E-Print Network [OSTI]

    H. V. Klapdor-Kleingrothaus; H. Päs; U. Sarkar

    2000-08-16T23:59:59.000Z

    We study the experimental constraints on theories, where the equivalence principle is violated by dilaton-exchange contributions to the usual graviton-exchange gravity. We point out that in this case it is not possible to have any CPT violation and hence there is no constraint from the CPT violating measurements in the $K-$system. The most stringent bound is obtained from the $K_L - K_S$ mass difference. In contrast, neither neutrino oscillation experiments nor neutrinoless double beta decay imply significant constraints.

  14. Wave Packets Propagation in Quantum Gravity

    E-Print Network [OSTI]

    Kourosh Nozari; S. H. Mehdipour

    2005-07-03T23:59:59.000Z

    Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.

  15. Anisotropic higher derivative gravity and inflationary universe

    E-Print Network [OSTI]

    W. F. Kao

    2006-05-21T23:59:59.000Z

    Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.

  16. Inflationary Universe in Higher Derivative Induced Gravity

    E-Print Network [OSTI]

    W. F. Kao

    2000-06-27T23:59:59.000Z

    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be $\\phi_0 \\partial_{\\phi_0}V(\\phi_0)=4V(\\phi_0)$. The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.

  17. Loop Quantum Gravity: An Inside View

    E-Print Network [OSTI]

    Thomas Thiemann

    2006-08-29T23:59:59.000Z

    This is a (relatively) non -- technical summary of the status of the quantum dynamics in Loop Quantum Gravity (LQG). We explain in detail the historical evolution of the subject and why the results obtained so far are non -- trivial. The present text can be viewed in part as a response to an article by Nicolai, Peeters and Zamaklar [hep-th/0501114]. We also explain why certain no go conclusions drawn from a mathematically correct calculation in a recent paper by Helling et al [hep-th/0409182] are physically incorrect.

  18. Hall viscosity from gauge/gravity duality

    E-Print Network [OSTI]

    Omid Saremi; Dam Thanh Son

    2011-03-24T23:59:59.000Z

    In (2+1)-dimensional systems with broken parity, there exists yet another transport coefficient, appearing at the same order as the shear viscosity in the hydrodynamic derivative expansion. In condensed matter physics, it is referred to as "Hall viscosity". We consider a simple holographic realization of a (2+1)-dimensional isotropic fluid with broken spatial parity. Using techniques of fluid/gravity correspondence, we uncover that the holographic fluid possesses a nonzero Hall viscosity, whose value only depends on the near-horizon region of the background. We also write down a Kubo's formula for the Hall viscosity. We confirm our results by directly computing the Hall viscosity using the formula.

  19. Thermodynamics of 5D dilaton-gravity

    SciTech Connect (OSTI)

    Megias, E. [Institute for Theoretical Physics, University of Heidelberg (Germany); Instituto de Fisica Teorica CSIC-UAM, Universidad Autonoma de Madrid (Spain)

    2011-05-23T23:59:59.000Z

    We calculate the free energy, spatial string tension and Polyakov loop of the gluon plasma using the dilaton potential of Ref. [1] in the dilaton-gravity theory of AdS/QCD. The free energy is computed from the Black Hole solutions of the Einstein equations in two ways: first, from the Bekenstein-Hawking proportionality of the entropy with the area of the horizon, and secondly from the Page-Hawking computation of the free energy. The finite temperature behaviour of the spatial string tension and Polyakov loop follow from the corresponding string theory in AdS{sub 5}. Comparison with lattice data is made.

  20. Holographic renormalization of new massive gravity

    SciTech Connect (OSTI)

    Alishahiha, Mohsen [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Naseh, Ali [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of)

    2010-11-15T23:59:59.000Z

    We study holographic renormalization for three-dimensional new massive gravity. By studying the general falloff conditions for the metric allowed by the model at infinity, we show that at the critical point where the central charges of the dual conformal field theory (CFT) are zero, it contains a leading logarithmic behavior. In the context of AdS/CFT correspondence it can be identified as a source for an irrelevant operator in the dual CFT. The presence of the logarithmic falloff may be interpreted as the fact that the dual CFT would be a logarithmic conformal field theory.

  1. Gravity dual of spatially modulated phase

    SciTech Connect (OSTI)

    Nakamura, Shin [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Ooguri, Hirosi [California Institute of Technology, Pasadena, California 91125 (United States); IPMU, University of Tokyo, Kashiwa 277-8586 (Japan); Park, Chang-Soon [California Institute of Technology, Pasadena, California 91125 (United States)

    2010-02-15T23:59:59.000Z

    We show that the five-dimensional Maxwell theory with the Chern-Simons term is tachyonic in the presence of a constant electric field. When coupled to gravity, a sufficiently large Chern-Simons coupling causes instability of the Reissner-Nordstroem black holes in anti-de Sitter space. The instability happens only at nonvanishing momenta, suggesting a spatially modulated phase in the holographically dual quantum field theory in (3+1) dimensions, with spontaneous current generation in a helical configuration. The three-charge extremal black hole in the type IIB superstring theory on AdS{sub 5}xS{sup 5} barely satisfies the stability condition.

  2. Apparent horizon in fluid-gravity duality

    SciTech Connect (OSTI)

    Booth, Ivan; Heller, Michal P.; Plewa, Grzegorz; Spalinski, Michal [Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1C 5S7 (Canada); Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, 1090 GL Amsterdam (Netherlands); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland) and Physics Department, University of Bialystok, 15-424 Bialystok (Poland)

    2011-05-15T23:59:59.000Z

    This article develops a computational framework for determining the location of boundary-covariant apparent horizons in the geometry of conformal fluid-gravity duality in arbitrary dimensions. In particular, it is shown up to second order and conjectured to hold to all orders in the gradient expansion that there is a unique apparent horizon which is covariantly expressible in terms of fluid velocity, temperature, and boundary metric. This leads to the first explicit example of an entropy current defined by an apparent horizon and opens the possibility that in the near-equilibrium regime there is preferred foliation of apparent horizons for black holes in asymptotically anti-de Sitter spacetimes.

  3. Seven-dimensional gravity with topological terms

    SciTech Connect (OSTI)

    Lue, H. [China Economics and Management Academy Central, University of Finance and Economics, Beijing 100081 (China); Institute for Advanced Study, Shenzhen University, Nanhai Ave 3688, Shenzhen 518060 (China); Pang Yi [Key Laboratory of Frontiers in Theoretical Physics Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-04-15T23:59:59.000Z

    We construct new seven-dimensional gravity by adding two topological terms to the Einstein-Hilbert action. For a certain choice of the coupling constants, these terms exist naturally in seven-dimensional gauged supergravity from the S{sup 4} reduction of eleven-dimensional supergravity with the R{sup 4} corrections. We derive the full set of the equations of motion. We find that the static spherically-symmetric black holes are unmodified by the topological terms. We obtain squashed AdS{sub 7}, and also squashed seven spheres and Q{sup 111} spaces in Euclidean signature.

  4. Drag phenomena from holographic massive gravity

    E-Print Network [OSTI]

    Matteo Baggioli; Daniel K. Brattan

    2015-04-28T23:59:59.000Z

    We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.

  5. Drag phenomena from holographic massive gravity

    E-Print Network [OSTI]

    Baggioli, Matteo

    2015-01-01T23:59:59.000Z

    We consider the motion of point particles in a strongly coupled field theory with broken translation invariance. We obtain the energy and momentum loss rates and drag coefficients for a class of such particles by solving for the motion of classical strings in holographic massive gravity. At low temperatures compared to the graviton mass the behaviour of the string is controlled by the appearance of an exotic ground state with non-zero entropy at zero temperature. Additionally we find an upper bound on the diffusion constant for a collection of these particles which is saturated when the mass of the graviton goes to zero.

  6. Category:Gravity Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton GreensVisualizations.inGravity

  7. Gravity waves generated by sounds from Big Bang phase transitions

    E-Print Network [OSTI]

    Kalaydzhyan, Tigran

    2014-01-01T23:59:59.000Z

    Inhomogeneities associated with the cosmological QCD and electroweak phase transitions produce hydrodynamical perturbations, longitudinal sounds and rotations. It has been demonstrated numerically by Hindmarsh et al. that the sounds produce gravity waves (GW), and that this process does continue well after the phase transition is over. We further introduce a long period of the so-called inverse acoustic cascade, between the UV momentum scale at which the sound is originally produced and the IR scale at which GW is generated. It can be described by the Boltzmann equation, possessing stationary power and self-similar time-dependent solutions. If the sound dispersion law allows one-to-two sound decays, the exponent of the power solution is large and a strong amplification of the sound amplitude (limited only by the total energy) takes place. Alternative scenario dominated by sound scattering leads to smaller indices and much smaller IR sound amplitude. We also point out that two on shell phonons can produce a gr...

  8. Two Dimensional Gravity as a modified Yang-Mills Theory

    E-Print Network [OSTI]

    Gegenberg, Jack

    2015-01-01T23:59:59.000Z

    We study a deSitter/Anti-deSitter/Poincare Yang-Mills theory of gravity in d-space-time dimensions in an attempt to retain the best features of both general relativity and Yang-Mills theory: quadratic curvature, dimensionless coupling and background independence. We derive the equations of motion for Lie algebra valued scalars and show that in the geometric optics limit they traverse geodesics with respect to the Lorentzian geometry determined by the frame fields. Mixing between components appears to next to leading order in the WKB approximation. We then restrict to two space-time dimensions for simplicity, complete the Hamiltonian analysis of the vacuum theory and use it to prove a generalized Birkhoff theorem. There are two classes of solutions: with torsion and without torsion. The former are parametrized by two constants of motion, have event horizons for certain ranges of the parameters and a curvature singularity. The latter yield a unique solution, up to diffeomorphisms, that describes a space constan...

  9. Asymptotically flat radiating solutions in third order Lovelock gravity

    SciTech Connect (OSTI)

    Dehghani, M. H. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Farhangkhah, N. [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2008-09-15T23:59:59.000Z

    In this paper, we present an exact spherically symmetric solution of third order Lovelock gravity in n dimensions which describes the gravitational collapse of a null dust fluid. This solution is asymptotically (anti-)de Sitter or flat depending on the choice of the cosmological constant. Using the asymptotically flat solution for n{>=}7 with a power-law form of the mass as a function of the null coordinate, we present a model for a gravitational collapse in which a null dust fluid radially injects into an initially flat and empty region. It is found that a naked singularity is inevitably formed whose strength is different for the n=7 and n{>=}8 cases. In the n=7 case, the limiting focusing condition for the strength of curvature singularity is satisfied. But for n{>=}8, the strength of curvature singularity depends on the rate of increase of mass of the spacetime. These considerations show that the third order Lovelock term weakens the strength of the curvature singularity.

  10. Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data C. Tiberi,1 to Miocene lithospheric instabilities. Key words: boudinage, continental rifts, gravity inversion, Greece

  11. COMMENTARY:Limits to adaptation

    SciTech Connect (OSTI)

    Preston, Benjamin L [ORNL

    2013-01-01T23:59:59.000Z

    An actor-centered, risk-based approach to defining limits to social adaptation provides a useful analytic framing for identifying and anticipating these limits and informing debates over society s responses to climate change.

  12. Gravity waves excited by jets: Propagation versus generation R. Plougonven

    E-Print Network [OSTI]

    Plougonven, Riwal

    Gravity waves excited by jets: Propagation versus generation R. Plougonven School of Mathematics imposed by the generation mechanism. In proceeding so, effects due to the propagation of the waves through simulations demonstrate that the propagation of inertia-gravity waves through horizontal deformation

  13. Gravity Field and Internal Structure of Mercury from MESSENGER

    E-Print Network [OSTI]

    Zuber, Maria

    ,5 Mark E. Perry,11 David D. Rowlands,5 Sander Goossens,12 James W. Head,13 Anthony H. Taylor14 RadioGravity Field and Internal Structure of Mercury from MESSENGER David E. Smith,1 Maria T. Zuber,1 tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern

  14. Wavelet based inversion of gravity data Fabio Boschetti

    E-Print Network [OSTI]

    Boschetti, Fabio

    1 Wavelet based inversion of gravity data Fabio Boschetti CSIRO Exploration & Mining and Australian Running Heading: Wavelet based inversion of gravity data #12;2 ABSTRACT The Green's function of the Poisson equation, and its spatial derivatives, lead to a family of wavelets specifically tailored

  15. Cosmological evolutions of $F(R)$ nonlinear massive gravity

    E-Print Network [OSTI]

    De-Jun Wu

    2014-03-24T23:59:59.000Z

    Recently a new extended nonlinear massive gravity model has been proposed which includes the $F(R)$ modifications to dRGT model.We follow the $F(R)$ nonlinear massive gravity and study its implications on cosmological evolutions. We derive the critical points of the cosmic system and study the corresponding kinetics by performing the phase-plane analysis.

  16. Mapping crustal thickness using marine gravity data: Methods and uncertainties

    E-Print Network [OSTI]

    Müller, Dietmar

    of petroleum systems within passive margins. However, direct measurements of crustal thickness are sparse geophysical data, to estimate crustal thickness. We evaluated alternative gravity inversion methodol- ogies, but economic considerations make gravity modeling a more practical approach for mapping crustal thickness over

  17. On coupling NEC-violating matter to gravity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chatterjee, Saugata; Parikh, Maulik; van der Schaar, Jan Pieter

    2015-05-01T23:59:59.000Z

    We show that effective theories of matter that classically violate the null energy condition cannot be minimally coupled to Einstein gravity without being inconsistent with both string theory and black hole thermodynamics. We argue however that they could still be either non-minimally coupled or coupled to higher-curvature theories of gravity.

  18. Dipole gravity waves from unbound quadrupoles

    E-Print Network [OSTI]

    Felber, Franklin

    2010-01-01T23:59:59.000Z

    Dipole gravitational disturbances from gravitationally unbound mass quadrupoles propagate to the radiation zone with signal strength at least of quadrupole order if the quadrupoles are nonrelativistic, and of dipole order if relativistic. Angular distributions of parallel-polarized and transverse-polarized dipole power in the radiation zone are calculated for simple unbound quadrupoles, like a linear-oscillator/stress-wave pair and a particle storage ring. Laboratory tests of general relativity through measurements of dipole gravity waves in the source region are proposed. A NASA G2 flywheel module with a modified rotor can produce a post-Newtonian dc bias signal at a gradiometer up to 1 mE. At peak luminosity, the repulsive dipole impulses of proton bunches at the LHC can produce an rms velocity of a high-Q detector surface up to 4 micron/s. Far outside the source region, Newtonian lunar dipole gravity waves can produce a 1-cm displacement signal at LISA. Dipole signal strengths of astrophysical events invol...

  19. Dipole gravity waves from unbound quadrupoles

    E-Print Network [OSTI]

    Franklin Felber

    2010-06-10T23:59:59.000Z

    Dipole gravitational disturbances from gravitationally unbound mass quadrupoles propagate to the radiation zone with signal strength at least of quadrupole order if the quadrupoles are nonrelativistic, and of dipole order if relativistic. Angular distributions of parallel-polarized and transverse-polarized dipole power in the radiation zone are calculated for simple unbound quadrupoles, like a linear-oscillator/stress-wave pair and a particle storage ring. Laboratory tests of general relativity through measurements of dipole gravity waves in the source region are proposed. A NASA G2 flywheel module with a modified rotor can produce a post-Newtonian dc bias signal at a gradiometer up to 1 mE. At peak luminosity, the repulsive dipole impulses of proton bunches at the LHC can produce an rms velocity of a high-Q detector surface up to 4 micron/s. Far outside the source region, Newtonian lunar dipole gravity waves can produce a 1-cm displacement signal at LISA. Dipole signal strengths of astrophysical events involving unbound quadrupoles, like near collisions and neutron star kicks in core-collapse supernovae, are estimated.

  20. A dynamical inconsistency of Horava gravity

    SciTech Connect (OSTI)

    Henneaux, Marc [Universite Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, 1050 Brussels (Belgium); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Kleinschmidt, Axel; Lucena Gomez, Gustavo [Universite Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, 1050 Brussels (Belgium)

    2010-03-15T23:59:59.000Z

    The dynamical consistency of the nonprojectable version of Horava gravity is investigated by focusing on the asymptotically flat case. It is argued that for generic solutions of the constraint equations the lapse must vanish asymptotically. We then consider particular values of the coupling constants for which the equations are tractable and in that case we prove that the lapse must vanish everywhere--and not only at infinity. Put differently, the Hamiltonian constraints are generically all second-class. We then argue that the same feature holds for generic values of the couplings, thus revealing a physical inconsistency of the theory. In order to cure this pathology, one might want to introduce further constraints but the resulting theory would then lose much of the appeal of the original proposal by Horava. We also show that there is no contradiction with the time-reparametrization invariance of the action, as this invariance is shown to be a so-called 'trivial gauge symmetry' in Horava gravity, hence with no associated first-class constraints.

  1. Spherically symmetric conformal gravity and "gravitational bubbles"

    E-Print Network [OSTI]

    V. A. Berezin; V. I. Dokuchaev; Yu. N. Eroshenko

    2014-12-09T23:59:59.000Z

    The general structure of the spherically symmetric solutions in the Weyl conformal gravity is described. The corresponding Bach equation are derived for the special type of metrics, which can be considered as the representative of the general class. The complete set of the pure vacuum solutions is found. It consists of two classes. The first one contains the solutions with constant two-dimensional curvature scalar of our specific metrics, and the representatives are the famous Robertson-Walker metrics. One of them we called the "gravitational bubbles", which is compact and with zero Weyl tensor. The second class is more general, with varying curvature scalar. We found its representative as the one-parameter family. It appears that it can be conformally covered by the thee-parameter Mannheim-Kazanas solution. We also investigated the general structure of the energy-momentum tensor in the spherical conformal gravity and constructed the vectorial equation that reveals clearly the same features of non-vacuum solutions. One of them, the metrics a la Vaidya, is explicitly written.

  2. Vacuum energy: quantum hydrodynamics vs quantum gravity

    E-Print Network [OSTI]

    G. E. Volovik

    2005-09-09T23:59:59.000Z

    We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular, both have quadratic divergences, and both lead to the problem of the vacuum energy, which in the quantum gravity transforms to the cosmological constant problem. We show that in quantum liquids the vacuum energy density is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is much smaller and is determined by the classical macroscopic parameters of the liquid including the radius of the liquid droplet. In the same manner the cosmological constant is not determined by the zero-point energy of quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe dynamics: the Hubble radius, the Newton constant and the energy density of matter. The same may hold for the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is also cancelled by the microscopic (trans-Planckian) degrees of freedom due to thermodynamic stability of the whole quantum vacuum.

  3. Bigravity and Lorentz-violating massive gravity

    SciTech Connect (OSTI)

    Blas, D.; Garriga, J. [ICC, Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Deffayet, C. [APC, Batiment Condorcet, 10 rue Alice Domont et Leonie Duquet, 75205 Paris Cedex 13 (France); GReCO/IAP, 98 bis Boulevard Arago, 75014 Paris (France)

    2007-11-15T23:59:59.000Z

    Bigravity is a natural arena where a nonlinear theory of massive gravity can be formulated. If the interaction between the metrics f and g is nonderivative, spherically symmetric exact solutions can be found. At large distances from the origin, these are generically Lorentz-breaking bi-flat solutions (provided that the corresponding vacuum energies are adjusted appropriately). The spectrum of linearized perturbations around such backgrounds contains a massless as well as a massive graviton, with two physical polarizations each. There are no propagating vectors or scalars, and the theory is ghost free (as happens with certain massive gravities with explicit breaking of Lorentz invariance). At the linearized level, corrections to general relativity are proportional to the square of the graviton mass, and so there is no van Dam-Veltam-Zakharov discontinuity. Surprisingly, the solution of linear theory for a static spherically symmetric source does not agree with the linearization of any of the known exact solutions. The latter coincide with the standard Schwarzschild-(anti)-de Sitter solutions of general relativity, with no corrections at all. Another interesting class of solutions is obtained where f and g are proportional to each other. The case of bi-de Sitter solutions is analyzed in some detail.

  4. Canonical Quantum Gravity on Noncommutative Spacetime

    E-Print Network [OSTI]

    Martin Kober

    2014-09-04T23:59:59.000Z

    In this paper canonical quantum gravity on noncommutative space-time is considered. The corresponding generalized classical theory is formulated by using the moyal star product, which enables the representation of the field quantities depending on noncommuting coordinates by generalized quantities depending on usual coordinates. But not only the classical theory has to be generalized in analogy to other field theories. Besides, the necessity arises to replace the commutator between the gravitational field operator and its canonical conjugated quantity by a corresponding generalized expression on noncommutative space-time. Accordingly the transition to the quantum theory has also to be performed in a generalized way and leads to extended representations of the quantum theoretical operators. If the generalized representations of the operators are inserted to the generalized constraints, one obtains the corresponding generalized quantum constraints including the Hamiltonian constraint as dynamical constraint. After considering quantum geometrodynamics under incorporation of a coupling to matter fields, the theory is transferred to the Ashtekar formalism. The holonomy representation of the gravitational field as it is used in loop quantum gravity opens the possibility to calculate the corresponding generalized area operator.

  5. Bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    2008-10-21T23:59:59.000Z

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  6. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S [ORNL

    2012-05-01T23:59:59.000Z

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  7. Vibration damping required for overhead lines

    SciTech Connect (OSTI)

    Richardson, A.S. Jr. [Research Consulting Associates, Lexington, MA (United States)] [Research Consulting Associates, Lexington, MA (United States)

    1995-04-01T23:59:59.000Z

    Transmission line engineers have sought an easy method for evaluating if external dampers are required on any new transmission line. In the past this question has been given to the damper manufacturer who has a vested interest in a affirmative answer. For single conductors (and for bundled conductors) the vibration level of a power line conductor is the result of a complicated aerodynamic process in which energy is taken into the motion from vortex action on the lee side of the conductor. The amount of energy taken in is a non-linear function of vibration amplitude, frequency, conductor diameter, and wind speed. The amount of energy taken out is a non-linear function of vibration amplitude, frequency, conductor mass, conductor tension, and a certain friction constant that varies from conductor to conductor. It is known that a small amount of vibration is allowed without endangering the conductor. This has been called the IEEE limit loop velocity, and is numerically equal to 200 mm/second. This paper explains a simple procedure, applicable to single conductors, which calculates a comparison of energy in vs. energy out. From this process it is shown how to select the initial tension in the conductor so that no external dampers are required.

  8. Means for limiting and ameliorating electrode shorting

    DOE Patents [OSTI]

    Van Konynenburg, Richard A. (Livermore, CA); Farmer, Joseph C. (Tracy, CA)

    1999-01-01T23:59:59.000Z

    A fuse and filter arrangement for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  9. Means for limiting and ameliorating electrode shorting

    SciTech Connect (OSTI)

    Konynenburg, R.A. van; Farmer, J.C.

    1999-11-09T23:59:59.000Z

    A fuse and filter arrangement is described for limiting and ameliorating electrode shorting in capacitive deionization water purification systems utilizing carbon aerogel, for example. This arrangement limits and ameliorates the effects of conducting particles or debonded carbon aerogel in shorting the electrodes of a system such as a capacitive deionization water purification system. This is important because of the small interelectrode spacing and the finite possibility of debonding or fragmentation of carbon aerogel in a large system. The fuse and filter arrangement electrically protect the entire system from shutting down if a single pair of electrodes is shorted and mechanically prevents a conducting particle from migrating through the electrode stack, shorting a series of electrode pairs in sequence. It also limits the amount of energy released in a shorting event. The arrangement consists of a set of circuit breakers or fuses with one fuse or breaker in the power line connected to one electrode of each electrode pair and a set of screens of filters in the water flow channels between each set of electrode pairs.

  10. User Interfaces 1 Command Line Interfaces

    E-Print Network [OSTI]

    Verschelde, Jan

    User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line 2013 1 / 39 #12;User Interfaces 1 Command Line Interfaces getting arguments of the command line a command line interface to store points fitting points with polyfit of numpy 2 Encapsulation by Object

  11. Testing Chern-Simons modified gravity with orbiting superconductive gravity gradiometers --- The non-dynamical formulation

    E-Print Network [OSTI]

    Li-E Qiang; Peng Xu

    2015-02-16T23:59:59.000Z

    High precision Superconductivity Gravity Gradiometers (SGG) are powerful tools for relativistic experiments. In this paper, we work out the tidal signals in non-dynamical Chern-Simons modified gravity, which could be measured by orbiting SGGs around Earth. We find that, with proper orientations of multi-axes SGGs, the tidal signals from the Chern-Simons modification can be isolated in the combined data of different axes. Furthermore, for three-axes SGGs, such combined data is the trace of the total tidal matrix, which is invariant under the rotations of SGG axes and thus free from axis pointing errors. Following nearly circular orbits, the tests of the parity-violating Chern-Simons modification and the measurements of the gravitomagnetic sector in parity-conserving metric theories can be carried out independently in the same time. A first step analysis on noise sources is also included.

  12. Testing Chern-Simons modified gravity with orbiting superconductive gravity gradiometers --- The non-dynamical formulation

    E-Print Network [OSTI]

    Qiang, Li-E

    2015-01-01T23:59:59.000Z

    High precision Superconductivity Gravity Gradiometers (SGG) are powerful tools for relativistic experiments. In this paper, we work out the tidal signals in non-dynamical Chern-Simons modified gravity, which could be measured by orbiting SGGs around Earth. We find that, with proper orientations of multi-axes SGGs, the tidal signals from the Chern-Simons modification can be isolated in the combined data of different axes. Furthermore, for three-axes SGGs, such combined data is the trace of the total tidal matrix, which is invariant under the rotations of SGG axes and thus free from axis pointing errors. Following nearly circular orbits, the tests of the parity-violating Chern-Simons modification and the measurements of the gravitomagnetic sector in parity-conserving metric theories can be carried out independently in the same time. A first step analysis on noise sources is also included.

  13. Gravity-anti-Gravity Symmetric Mini-Superspace: Quantum Entanglement and Cosmological Scale Factor Grid

    E-Print Network [OSTI]

    Aharon Davidson; Tomer Ygael

    2014-10-22T23:59:59.000Z

    A gravity-anti-gravity (GaG) odd linear dilaton action offers an eternal inflation evolution governed by the unified (cosmological constant plus radiation) equation of state $\\rho-3P=4\\Lambda$. At the mini superspace level, a 'two-particle' variant of the no-boundary proposal, notably 'one-particle' energy dependent, is encountered. While a GaG-odd wave function can only host a weak Big Bang boundary condition, albeit for any $k$, a strong Big Bang boundary condition requires a GaG-even entangled wave function, and singles out $k=0$ flat space. The locally most probable values for the cosmological scale factor and the dilaton field form a grid $\\{a^2,a\\phi\\}\\sim\\sqrt{4n_1+1}\\pm\\sqrt{4n_2+1}$.

  14. Energy measurement utilizing on-line chromatograph

    SciTech Connect (OSTI)

    Kizer, P.E. [Applied Automation, Inc./Hartmann and Braun, Houston, TX (United States)

    1995-12-01T23:59:59.000Z

    Most gas contracts today have at least a BTU specification and many use MMBTU (million BTU) rather than gas volume for custody transfer measurement. Gas chromatography is today being chosen more and more because the calculations of the gas volumes in modem electronic flow meters requires not only BTU{sub 5} information, but specific gravity, Mol % CO{sub 2} and Mol % N{sub 2}. The new AGA-8 supercompressibility equations also require a complete hydrocarbon analysis. What then, is a BTU? BTU is the acronym for British Thermal Unit. One BTU is the quantity of heat required to raise the temperature of one pound of water from 58.5{degrees}F to 59.5{degrees}F (about 1055.056 joules (SI))3. The higher the BTU content, the more energy can be obtained from burning the gas. It just doesn`t take as many cubic feet of gas to heat the home hot water tank if the gas is 1090 BTU instead of 940 BTU per SCF. The BTU, then, is a prime indicator of natural gas quality. An MMBTU{sup 2} is calculated by: BTU/CF * MMCF = MMBTU What is it worth to keep track of the natural gas BTU? If we postulate 1000 BTU/CF as fairly average for natural gas, and {+-} 5% error between doing a lab determination of the heating value on a spot sample of the gas and an on- line (nearly continuous) monitor of the heating value, this results in a {+-} 50 BTU difference. On a station that has 50 MMCF per day at $2.50 per MCF or MMBTU, this is $125,000.00 worth of gas per day. Five percent of this is $6,250.00 per day. If a process chromatograph, $50,000 installed cost, is used to determine the energy content a pay out of less than 10 days is obtained on a 50 MMCF/day station. Most major interconnects have on- line BTU measurement of some sort today.

  15. Solar system tests of Ho?ava-Lifshitz gravity

    E-Print Network [OSTI]

    Tiberiu Harko; Zoltan Kovács; Francisco S. N. Lobo

    2010-10-28T23:59:59.000Z

    Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Ho\\v{r}ava. The theory reduces to Einstein gravity with a non-vanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(A)dS solution, has also been obtained for the Ho\\v{r}ava-Lifshitz theory. The exact asymptotically flat Schwarzschild type solution of the gravitational field equations in Ho\\v{r}ava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR modified Ho\\v{r}ava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Ho\\v{r}ava gravity at the scale of the Solar System, by considering the classical tests of general relativity (perihelion precession of the planet Mercury, deflection of light by the Sun and the radar echo delay) for the spherically symmetric black hole solution of Ho\\v{r}ava-Lifshitz gravity. All these gravitational effects can be fully explained in the framework of the vacuum solution of the gravity. Moreover, the study of the classical general relativistic tests also constrain the free parameter of the solution.

  16. Goedel-type universes in f(R) gravity

    SciTech Connect (OSTI)

    Reboucas, M. J. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ (Brazil); Santos, J. [Universidade Federal do Rio G. do Norte, Departamento de Fisica, 59072-970 Natal-RN (Brazil)

    2009-09-15T23:59:59.000Z

    The f(R) gravity theories provide an alternative way to explain the current cosmic acceleration without a dark energy matter component. If gravity is governed by a f(R) theory, a number of issues should be reexamined in this framework, including the violation of causality problem on nonlocal scale. We examine the question as to whether the f(R) gravity theories permit space-times in which the causality is violated. We show that the field equations of these f(R) gravity theories do not exclude solutions with breakdown of causality for a physically well-motivated perfect-fluid matter content. We demonstrate that every perfect-fluid Goedel-type solution of a generic f(R) gravity satisfying the condition df/dR>0 is necessarily isometric to the Goedel geometry, and therefore presents violation of causality. This result extends a theorem on Goedel-type models, which has been established in the context of general relativity. We also derive an expression for the critical radius r{sub c} (beyond which the causality is violated) for an arbitrary f(R) theory, making apparent that the violation of causality depends on both the f(R) gravity theory and the matter content. As an illustration, we concretely take a recent f(R) gravity theory that is free from singularities of the Ricci scalar and is cosmologically viable, and show that this theory accommodates noncausal as well as causal Goedel-type solutions.

  17. On the condensed matter scheme for emergent gravity and interferometry

    E-Print Network [OSTI]

    G. Jannes

    2008-11-10T23:59:59.000Z

    An increasingly popular approach to quantum gravity rests on the idea that gravity (and maybe electromagnetism and the other gauge fields) might be an 'emergent phenomenon', in the sense of representing a collective behaviour resulting from a very different microscopic physics. A prominent example of this approach is the condensed matter scheme for quantum gravity, which considers the possibility that gravity emerges as an effective low-energy phenomenon from the quantum vacuum in a way similar to the emergence of collective excitations in condensed matter systems. This condensed matter view of the quantum vacuum clearly hints that, while the term 'ether' has been discredited for about a century, quantum gravity holds many (if not all) of the characteristics that have led people in the past to label various hypothetical substances with the term 'ether'. Since the last burst of enthusiasm for an ether, at the end of the 19th century, was brought to the grave in part by the performance of a series of important experiments in interferometry, the suggestion then naturally arises that maybe interferometry could also play a role in the current discussion on quantum gravity. We will highlight some aspects of this suggestion in the context of the condensed matter scheme for emergent gravity.

  18. Black Hole Thermodynamics in Modified Gravity

    E-Print Network [OSTI]

    Jonas R. Mureika; John W. Moffat; Mir Faizal

    2015-03-03T23:59:59.000Z

    We analyze the thermodynamics of a non-rotating and rotating black hole in a modified theory of gravity that includes scalar and vector modifications to general relativity, which results in a modified gravitational constant $G = G_N(1+\\alpha)$ and a new gravitational charge $Q = \\sqrt{\\alpha G_N}M$. The influence of the parameter $\\alpha$ alters the non-rotating black hole's lifetime, temperature and entropy profiles from the standard Schwarzschild case. The thermodynamics of a rotating black hole is analyzed and it is shown to possess stable, cold remnants. The thermodynamic properties of a vacuum solution regular at $r=0$ are investigated and the solution without a horizon called a "gray hole" is not expected to possess an information loss problem.

  19. Quantum Mechanics, Gravity, and the Multiverse

    E-Print Network [OSTI]

    Yasunori Nomura

    2012-07-30T23:59:59.000Z

    The discovery of accelerating expansion of the universe has led us to take the dramatic view that our universe may be one of the many universes in which low energy physical laws take different forms: the multiverse. I explain why/how this view is supported both observationally and theoretically, especially by string theory and eternal inflation. I then describe how quantum mechanics plays a crucial role in understanding the multiverse, even at the largest distance scales. The resulting picture leads to a revolutionary change of our view of spacetime and gravity, and completely unifies the paradigm of the eternally inflating multiverse with the many worlds interpretation of quantum mechanics. The picture also provides a solution to a long-standing problem in eternal inflation, called the measure problem, which I briefly describe.

  20. Kinetic Gravity Braiding and axion inflation

    E-Print Network [OSTI]

    Debaprasad Maity

    2013-03-11T23:59:59.000Z

    We constructed a new class of inflationary model with the higher derivative axion field which obeys constant shift symmetry. In the usual axion (natural) inflation, the axion decay constant is predicted to be in the super-Planckian regime which is believed to be incompatible with an effective field theory framework. With a novel mechanism originating from a higher derivative kinetic gravity braiding (KGB) of an axion field we found that there exist a huge parameter regime in our model where axion decay constant could be naturally sub-Planckian. Thanks to the KGB which effectively reduces the Planck constant. This effectively reduced Planck scale provides us the mechanism of further lowering down the speed of an axion field rolling down its potential without introducing super-Planckian axion decay constant. We also find that with that wide range of parameter values, our model induces almost scale invariant power spectrum as observed in CMB experiments.

  1. A length operator for canonical quantum gravity

    E-Print Network [OSTI]

    T. Thiemann

    1996-06-29T23:59:59.000Z

    We construct an operator that measures the length of a curve in four-dimensional Lorentzian vacuum quantum gravity. We work in a representation in which a $SU(2)$ connection is diagonal and it is therefore surprising that the operator obtained after regularization is densely defined, does not suffer from factor ordering singularities and does not require any renormalization. We show that the length operator admits self-adjoint extensions and compute part of its spectrum which like its companions, the volume and area operators already constructed in the literature, is purely discrete and roughly is quantized in units of the Planck length. The length operator contains full and direct information about all the components of the metric tensor which faciliates the construction of a new type of weave states which approximate a given classical 3-geometry.

  2. Bi-metric Gravity and "Dark Matter"

    E-Print Network [OSTI]

    I. T. Drummond

    2000-08-18T23:59:59.000Z

    We present a bi-metric theory of gravity containing a length scale of galactic size. For distances less than this scale the theory satisfies the standard tests of General Relativity. For distances greater than this scale the theory yields an effective gravitational constant much larger than the locally observed value of Newton's constant. The transition from one regime to the other through the galactic scale can explain the observed rotation curves of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the observed value of Hubble's constant in relation to observed matter.

  3. QCD thermodynamics using five-dimensional gravity

    SciTech Connect (OSTI)

    Megias, E.; Veschgini, K. [Institute for Theoretical Physics, University of Heidelberg (Germany); Pirner, H. J. [Institute for Theoretical Physics, University of Heidelberg (Germany); Max Planck Institute for Nuclear Physics, Heidelberg (Germany)

    2011-03-01T23:59:59.000Z

    We calculate the critical temperature and free energy of the gluon plasma using the dilaton potential [B. Galow, E. Megias, J. Nian, and H. J. Pirner, Nucl. Phys. B834, 330 (2010).] in the gravity theory of anti-de Sitter/QCD. The finite temperature observables are calculated in two ways: first, from the Page-Hawking computation of the free energy, and secondly using the Bekenstein-Hawking proportionality of the entropy with the area of the horizon. Renormalization is well defined, because the T=0 theory has asymptotic freedom. We further investigate the change of the critical temperature with the number of flavors induced by the change of the running coupling constant in the quenched theory. The finite temperature behavior of the speed of sound, spatial string tension and vacuum expectation value of the Polyakov loop follow from the corresponding string theory in AdS{sub 5}.

  4. Gravity dual of metastable dynamical supersymmetry breaking

    SciTech Connect (OSTI)

    DeWolfe, Oliver [Department of Physics, 390 UCB, University of Colorado, Boulder, Colorado 80309 (United States); Kachru, Shamit; Mulligan, Michael [Department of Physics and SLAC, Stanford University, Stanford, California 94305/94309 (United States)

    2008-03-15T23:59:59.000Z

    Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to D3-brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU(N+M)xSU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields.

  5. Brane f(R) gravity cosmologies

    SciTech Connect (OSTI)

    Balcerzak, Adam; DaPbrowski, Mariusz P. [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin (Poland)

    2010-06-15T23:59:59.000Z

    By the application of the generalized Israel junction conditions we derive cosmological equations for the fourth-order f(R) brane gravity and study their cosmological solutions. We show that there exists a nonstatic solution which describes a four-dimensional de Sitter (dS{sub 4}) brane embedded in a five-dimensional anti-de Sitter (AdS{sub 5}) bulk for a vanishing Weyl tensor contribution. On the other hand, for the case of a nonvanishing Weyl tensor contribution, there exists a static brane solution only. We claim that in order to get some more general nonstatic f(R) brane configurations, one needs to admit a dynamical matter energy-momentum tensor in the bulk rather than just a bulk cosmological constant.

  6. Bending of light in conformal Weyl gravity

    SciTech Connect (OSTI)

    Sultana, Joseph; Kazanas, Demosthenes [Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States) and Department of Mathematics, University of Malta, Msida (Malta); Astrophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2010-06-15T23:59:59.000Z

    We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term {gamma}r in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.

  7. Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk110

    E-Print Network [OSTI]

    W. Kollatschny

    2003-06-19T23:59:59.000Z

    Detailed line profile variability studies of the narrow line Seyfert 1 galaxy Mrk110 are presented. We obtained the spectra in a variability campaign carried out with the 9.2m Hobby-Eberly Telescope at McDonald Observatory. The integrated Balmer and Helium (HeI,II) emission lines are delayed by 3 to 33 light days to the optical continuum variations respectively. The outer wings of the line profiles respond much faster to continuum variations than the central regions. The comparison of the observed profile variations with model calculations of different velocity fields indicates an accretion disk structure of the broad line emitting region in Mrk110. Comparing the velocity-delay maps of the different emission lines among each other a clear radial stratification in the BLR can be recognized. Furthermore, delays of the red line wings are slightly shorter than those of the blue wings. This indicates an accretion disk wind in the BLR of Mrk110. We determine a central black hole mass of M = $1.8\\cdot10^{7} M_{\\odot}$. Because of the poorly known inclination angle of the accretion disk this is a lower limit only.

  8. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    SciTech Connect (OSTI)

    Williams, S. J.; Gies, D. R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Hillwig, T. C. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); McSwain, M. V. [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Huang, W., E-mail: swilliams@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: todd.hillwig@valpo.edu, E-mail: mcswain@lehigh.edu, E-mail: hwenjin@astro.washington.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States)

    2013-02-01T23:59:59.000Z

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD-16 Degree-Sign 4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  9. Radial Velocities of Galactic O-Type Stars. II. Single-lined Spectroscopic Binaries

    E-Print Network [OSTI]

    Williams, S J; Hillwig, T C; McSwain, M V; Huang, W

    2012-01-01T23:59:59.000Z

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD-16 4826 and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  10. The dynamics of metric-affine gravity

    SciTech Connect (OSTI)

    Vitagliano, Vincenzo, E-mail: vitaglia@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy); Sotiriou, Thomas P., E-mail: T.Sotiriou@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Liberati, Stefano, E-mail: liberati@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy)

    2011-05-15T23:59:59.000Z

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to study the properties of metric-affine gravity.

  11. Search for emission lines in the gaseous halo of edge-on galaxies

    SciTech Connect (OSTI)

    Bixler, J.

    1984-09-01T23:59:59.000Z

    Careful reductions of the short wave prime camera (SWP) spectrum was carried out. A line by line inspection of the spectrum was used to eliminate spurious spikes and a median filter applied to eliminate high frequency noise. Upper limits were obtained for far ultraviolet emission from a hot galactic halo.

  12. The Transition to Experiencing: I. Limited Learning and Limited Experiencing

    E-Print Network [OSTI]

    Indiana University

    The Transition to Experiencing: I. Limited Learning and Limited Experiencing Simona Ginsburg route for the transition from sensory processing to unlimited experiencing, or basic consciousness. We the transition. We believe that the raw mate- rial from which feelings were molded by natural selection

  13. Limit theory for overfit models

    E-Print Network [OSTI]

    Calhoun, Grayson Ford

    2009-01-01T23:59:59.000Z

    theory. . . . . . . . . . . . . . . . . . . . . . . . .1.2 Asymptotic Theory and Main Results . . . . . . . . .Chapter 2 Limit theory for comparing over?t models out-of-

  14. Simulations of Solar System observations in alternative theories of gravity

    E-Print Network [OSTI]

    A. Hees; B. Lamine; S. Reynaud; M. -T. Jaekel; C. Le Poncin-Lafitte; V. Lainey; A. Füzfa; J. -M. Courty; V. Dehant; P. Wolf

    2013-02-27T23:59:59.000Z

    In this communication, we focus on the possibility to test General Relativity (GR) with radioscience experiments. We present simulations of observables performed in alternative theories of gravity using a software that simulates Range/Doppler signals directly from the space time metric. This software allows one to get the order of magnitude and the signature of the modifications induced by an alternative theory of gravity on radioscience signals. As examples, we present some simulations for the Cassini mission in Post-Einsteinian gravity (PEG) and with Standard Model Extension (SME).

  15. Particles on a Circle in Canonical Lineal Gravity

    E-Print Network [OSTI]

    R. B. Mann

    2001-05-02T23:59:59.000Z

    A description of the canonical formulation of lineal gravity minimally coupled to N point particles in a circular topology is given. The Hamiltonian is found to be equal to the time-rate of change of the extrinsic curvature multiplied by the proper circumference of the circle. Exact solutions for pure gravity and for gravity coupled to a single particle are obtained. The presence of a single particle significantly modifies the spacetime evolution by either slowing down or reversing the cosmological expansion of the circle, depending upon the choice of parameters.

  16. Emergent noncommutative gravity from a consistent deformation of gauge theory

    SciTech Connect (OSTI)

    Cortese, Ignacio; Garcia, J Antonio [Departamento de Fisica de Altas Energias, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico D. F. 04510 (Mexico)

    2010-05-15T23:59:59.000Z

    Starting from a standard noncommutative gauge theory and using the Seiberg-Witten map, we propose a new version of a noncommutative gravity. We use consistent deformation theory starting from a free gauge action and gauging a killing symmetry of the background metric to construct a deformation of the gauge theory that we can relate with gravity. The result of this consistent deformation of the gauge theory is nonpolynomial in A{sub {mu}.} From here we can construct a version of noncommutative gravity that is simpler than previous attempts. Our proposal is consistent and is not plagued with the problems of other approaches like twist symmetries or gauging other groups.

  17. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, Russell B. (Oakland, CA)

    1987-01-01T23:59:59.000Z

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  18. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, R.B.

    1985-08-15T23:59:59.000Z

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  19. Electrical transmission line diametrical retainer

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2004-12-14T23:59:59.000Z

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  20. A Proposed Alternative Low Energy Quantum Field Theory of Gravity Based on a Bose-Einstein Condensate Effect

    E-Print Network [OSTI]

    Oshmyansky, A

    2007-01-01T23:59:59.000Z

    An alternative quantum field theory for gravity is proposed for low energies based on an attractive effect between contaminants in a Bose-Einstein Condensate rather than on particle exchange. In the ``contaminant in condensate effect," contaminants cause a potential in an otherwise uniform condensate, forcing the condensate between two contaminants to a higher energy state. The energy of the system decreases as the contaminants come closer together, causing an attractive force between contaminants. It is proposed that mass-energy may have a similar effect on Einstein's space-time field, and gravity is quantized by the same method by which the contaminant in condensate effect is quantized. The resulting theory is finite and, if a physical condensate is assumed to underly the system, predictive. However, the proposed theory has several flaws at high energies and is thus limited to low energies. Falsifiable predictions are given for the case that the Higgs condensate is assumed to be the condensate underlying gr...

  1. FUEL CASK IMPACT LIMITER VULNERABILITIES

    SciTech Connect (OSTI)

    Leduc, D; Jeffery England, J; Roy Rothermel, R

    2009-02-09T23:59:59.000Z

    Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.

  2. Performance Limits for Cherenkov Instruments

    E-Print Network [OSTI]

    W. Hofmann

    2006-03-17T23:59:59.000Z

    The performance of Cherenkov instruments for the detection of very high energy gamma rays is ultimately limited by the fluctuations in the development of air showers. With particular emphasis on the angular resolution, the ultimate performance limits are investigated on the basis of simulations.

  3. Congressional Request Limiting the Magnitude

    E-Print Network [OSTI]

    as goals? Target: limit U.S. GHG emissions (e.g., national emission budget, or percent reduction) What is a reasonable share of U.S. emission reductions relative to the global targets? What is the implied emissions on atmospheric GHG concentrations? Target: limit atmospheric GHG concentrations (e.g., 450, 550 ppm CO2,eq) How

  4. Magnetic branes in Gauss-Bonnet gravity with nonlinear electrodynamics: correction of magnetic branes in Einstein-Maxwell gravity

    E-Print Network [OSTI]

    Hendi, Seyed Hossein; Panah, Behzad Eslam

    2015-01-01T23:59:59.000Z

    In this paper, we are considering two first order corrections to both gravity and gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric which representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as the magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on deficit angle of spacetime near the origin.

  5. DAMPING IMPROVEMENT THROUGH TUNING CONTROLLER LIMITS OF A SERIES FACTS DEVICE

    E-Print Network [OSTI]

    Hiskens, Ian A.

    the capacities of existing power lines. In the last decade, the series flexible ac transmission systems (FACTS of the saturation limiter (with non-smooth nonlinearities) on system dynamics of a power network equipped for saturation limits. The external controller (EC) of a series flexible ac transmission system (FACTS) device

  6. The beauty of laser lines

    E-Print Network [OSTI]

    Kim, Sue-Mie

    1993-01-01T23:59:59.000Z

    A line, the simplest way to express an artist's feelings or interpretation of an object, has its own emotions that an artist can employ for her purpose. Laser light, the most self-concentrated, self-sustained and directed, ...

  7. Authorization of Line Extension (Nebraska)

    Broader source: Energy.gov [DOE]

    Any entity permitted to establish an electric light and power plant, and/or transmission or distribution lines within a city, village, or public electric light and power district, may also extend...

  8. VISAR: Line-imaging interferometer

    SciTech Connect (OSTI)

    Hemsing, W.F.; Mathews, A.R.; Warnes, R.H.; George, M.J.; Whittemore, G.R.

    1991-01-01T23:59:59.000Z

    A line-imaging Velocity Interferometer System for Any Reflector (VISAR) was applied to measure velocity across the diameter of a metal plate explosively accelerated to 5.5 km/s. Amplified, single- frequency laser light was focused to illuminate a line on the metal surface. The line's image was focused through the interferometer to a streak camera that swept in time and recorded directly on film. During the experiment, the Doppler-shift caused motion of the interference fringes. Analysis of the digitized film record yielded a continuum of time-resolved velocity histories. Velocity gradients across the plate that first swept radially inward, then reflected outward, were clearly measured. Increased power provided by the laser amplifier greatly improved the signal-to-noise ratio compared to our previous line VISAR experiments. 5 refs., 8 figs.

  9. The evolution of miscible gravity currents in horizontal porous layers

    E-Print Network [OSTI]

    Szulczewski, Michael Lawrence

    Gravity currents of miscible fluids in porous media are important to understand because they occur in important engineering projects, such as enhanced oil recovery and geologic CO[subscript 2] sequestration. These flows ...

  10. Dust-shell Universe in the modified gravity scenario

    E-Print Network [OSTI]

    Michael Maziashvili

    2005-04-15T23:59:59.000Z

    The dynamics of the dust-shell model of universe is exactly solved for the modified Schwarzschild solution. This solution is used to derive the cosmology corresponding to the modified gravity.

  11. Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Hot Springs. Data from these surveys will be integrated with older data from Chevron Minerals 1979 drill hole. Notes The gravity survey covered an area of approximately 34 km2...

  12. Horava-Lifshitz Gravity From Dynamical Newton-Cartan Geometry

    E-Print Network [OSTI]

    Hartong, Jelle

    2015-01-01T23:59:59.000Z

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Horava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1

  13. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E. Case, R.F. Sikora...

  14. Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...

  15. Mixed convection and heat management in the Mars gravity biosatellite

    E-Print Network [OSTI]

    Marsh, Jesse B. (Jesse Benjamin)

    2007-01-01T23:59:59.000Z

    The Mars Gravity Biosatellite will house fifteen mice in a low Earth orbit satellite spinning about its longitudinal axis. The satellite's payload thermal control system will reject heat through the base of the payload ...

  16. Hyperbolic Equations for Vacuum Gravity Using Special Orthonormal Frames

    E-Print Network [OSTI]

    Frank B. Estabrook; R. Steve Robinson; Hugo D. Wahlquist

    2004-09-29T23:59:59.000Z

    By adopting Nester's higher dimensional special orthonormal frames (HSOF) the tetrad equations for vacuum gravity are put into first order symmetric hyperbolic (FOSH) form with constant coefficients, independent of any time slicing or coordinate specialization.

  17. Regional Gravity Survey of the Northern Great Salt Lake Desert...

    Open Energy Info (EERE)

    Northern Great Salt Lake Desert and Adjacent Areas in Utah, Nevada, and Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional Gravity...

  18. Quantized gauge-affine gravity in the superfiber bundle approach

    SciTech Connect (OSTI)

    Meziane, A.; Tahiri, M. [Laboratoire de Physique Theorique, Universite d'Oran Es-senia, 31100 Oran (Algeria)

    2005-05-15T23:59:59.000Z

    The quantization of gauge-affine gravity within the superfiber bundle formalism is proposed. By introducing an even pseudotensorial 1-superform over a principal superfiber bundle with superconnection, we obtain the geometrical Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST transformations of the fields occurring in such a theory. Reducing the four-dimensional general affine group double-covering GA(4,R) to the Poincare group double-covering ISO(1,3) we also find the BRST and anti-BRST transformations of the fields present in Einstein's gravity. Furthermore, we give a prescription leading to the construction of both BRST-invariant gauge-fixing action for gauge-affine gravity and Einstein's gravity.

  19. axisymmetric viscous gravity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    largely by the coefficient Wesley N. Colley; Linda S. Sparke 1995-12-19 4 Viscous Dark Energy in f(T) Gravity General Relativity & Quantum Cosmology (arXiv) Summary: We...

  20. Constraining gravity using entanglement in AdS/CFT

    E-Print Network [OSTI]

    Shamik Banerjee; Arpan Bhattacharyya; Apratim Kaviraj; Kallol Sen; Aninda Sinha

    2014-07-09T23:59:59.000Z

    We investigate constraints imposed by entanglement on gravity in the context of holography. First, by demanding that relative entropy is positive and using the Ryu-Takayanagi entropy functional, we find certain constraints at a nonlinear level for the dual gravity. Second, by considering Gauss-Bonnet gravity, we show that for a class of small perturbations around the vacuum state, the positivity of the two point function of the field theory stress tensor guarantees the positivity of the relative entropy. Further, if we impose that the entangling surface closes off smoothly in the bulk interior, we find restrictions on the coupling constant in Gauss-Bonnet gravity. We also give an example of an anisotropic excited state in an unstable phase with broken conformal invariance which leads to a negative relative entropy.

  1. Application Of Gravity And Deep Dipole Geoelectrics In The Volcanic...

    Open Energy Info (EERE)

    Of Mt Etna (Sicily) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Gravity And Deep Dipole Geoelectrics In The Volcanic Area Of...

  2. assisted gravity drainage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Enhanced Oil Recovery through Steam Assisted Gravity Drainage January 22, 2014 Geosciences Websites Summary: are water,...

  3. Absence of scalar hair in scalar-tensor gravity

    E-Print Network [OSTI]

    Valerio Faraoni; Thomas P. Sotiriou

    2013-03-04T23:59:59.000Z

    Stationary, asymptotically flat black holes in scalar-tensor theories of gravity are studied. It is shown that such black holes have no scalar hair and are the same as in General Relativity.

  4. Analysis of interconnect microstrip lines

    E-Print Network [OSTI]

    Luong, Giam-Minh

    1992-01-01T23:59:59.000Z

    of the return loss of the slot-coupled microstrip dipole. Section C presents two simulations of the return loss on the slot- coupled rectangular patch antenna. A. Interconnect of Microstrip Lines Several circuits with the geometry of Figure 1 were fabricated.... Experimental and Theoretical Results of the Interconnect Two circuits were designed and fabricated. Each circuit consists of two substrates as shown in Figure 9. One substrate has an open microstrip line etched in one side and an aperture etched...

  5. Fin-line horn antenna

    DOE Patents [OSTI]

    Reindel, John (San Diego, CA)

    1990-01-01T23:59:59.000Z

    A fin line circuit card containing a fin line slot feeds a dipole antenna ich extends a quarterwave outside the waveguide and provides an energy beam focal point at or near the open end of the waveguide. The dipole antenna thus maintains a wide and nearly constant beamwidth, low VSWR and a circular symmetric radiation pattern for use in electronic warfare direction finding and surveillance applications.

  6. Gravity Control Propulsion: Towards a General Relativistic Approach

    E-Print Network [OSTI]

    O. Bertolami; F. G. Pedro

    2006-10-16T23:59:59.000Z

    Evaluation of gravity control concepts should be examined with respect to currently known physical theories. In this work we study the hypothetical conversion of gravitational potential energy into kinetic energy using the formalism of general relativity. We show that the energy involved in the process greatly exceeds the Newtonian estimate, given the nature of general relativity. We conclude that the impact of any gravity manipulation for propulsion greatly depends fundamentally on its exact definition.

  7. A bird's eye view of f(R)-gravity

    E-Print Network [OSTI]

    S. Capozziello; M. De Laurentis; V. Faraoni

    2009-10-02T23:59:59.000Z

    We survey the landscape of $f(R)$ theories of gravity in their various formulations, which have been used to model the cosmic acceleration as alternatives to dark energy and dark matter. Besides, we take into account the problem of gravitational waves in such theories. We discuss some successes of $f(R)$-gravity (where $f(R)$ is a generic function of Ricci scalar $R$), theoretical and experimental challenges that they face in order to satisfy minimal criteria for viability.

  8. Einstein's other gravity and the acceleration of the Universe

    SciTech Connect (OSTI)

    Linder, Eric V. [Berkeley Lab and University of California, Berkeley, California 94720 (United States); Institute for the Early Universe, Ewha Womans University, Seoul 120-750 (Korea, Republic of)

    2010-06-15T23:59:59.000Z

    Spacetime curvature plays the primary role in general relativity but Einstein later considered a theory where torsion was the central quantity. Just as the Einstein-Hilbert action in the Ricci curvature scalar R can be generalized to f(R) gravity, we consider extensions of teleparallel, or torsion scalar T, gravity to f(T) theories. The field equations are naturally second order, avoiding pathologies, and can give rise to cosmic acceleration with unique features.

  9. Gravity-free hydraulic jumps and metal femtocups

    E-Print Network [OSTI]

    Rama Govindarajan; Manikandan Mathur; Ratul DasGupta; N. R. Selvi; Neena Susan John; G. U. Kulkarni

    2006-10-03T23:59:59.000Z

    Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

  10. Entropy and Area of Black Holes in Loop Quantum Gravity

    E-Print Network [OSTI]

    I. B. Khriplovich

    2002-03-31T23:59:59.000Z

    Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

  11. Finite field-dependent symmetries in perturbative quantum gravity

    SciTech Connect (OSTI)

    Upadhyay, Sudhaker, E-mail: sudhaker@boson.bose.res.in

    2014-01-15T23:59:59.000Z

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.

  12. Testing Horava-Lifshitz gravity using thin accretion disk properties

    SciTech Connect (OSTI)

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N. [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Centro de Fisica Teorica e Computacional, Faculdade de Ciencias da Universidade de Lisboa, Avenida Professor Gama Pinto 2, P-1649-003 Lisboa (Portugal)

    2009-08-15T23:59:59.000Z

    Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Horava. The theory reduces to Einstein gravity with a nonvanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(anti) de Sitter solution, have also been obtained for the Horava-Lifshitz theory. The exact asymptotically flat Schwarzschild-type solution of the gravitational field equations in Horava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR-modified Horava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Horava gravity by using the accretion disk properties around black holes. The energy flux, the temperature distribution, the emission spectrum, as well as the energy conversion efficiency are obtained, and compared to the standard general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing Horava gravity models by using astrophysical observations of the emission spectra from accretion disks.

  13. NGC 5548 in a Low-Luminosity State: Implications for the Broad-Line Region

    E-Print Network [OSTI]

    Misty C. Bentz; Kelly D. Denney; Edward M. Cackett; Matthias Dietrich; Jeffrey K. J. Fogel; Himel Ghosh; Keith D. Horne; Charles Kuehn; Takeo Minezaki; Christopher A. Onken; Bradley M. Peterson; Richard W. Pogge; Vladimir I. Pronik; Douglas O. Richstone; Sergey G. Sergeev; Marianne Vestergaard; Matthew G. Walker; Yuzuru Yoshii

    2007-02-23T23:59:59.000Z

    We describe results from a new ground-based monitoring campaign on NGC 5548, the best studied reverberation-mapped AGN. We find that it was in the lowest luminosity state yet recorded during a monitoring program, namely L(5100) = 4.7 x 10^42 ergs s^-1. We determine a rest-frame time lag between flux variations in the continuum and the Hbeta line of 6.3 (+2.6/-2.3) days. Combining our measurements with those of previous campaigns, we determine a weighted black hole mass of M_BH = 6.54 (+0.26/-0.25) x 10^7 M_sun based on all broad emission lines with suitable variability data. We confirm the previously-discovered virial relationship between the time lag of emission lines relative to the continuum and the width of the emission lines in NGC 5548, which is the expected signature of a gravity-dominated broad-line region. Using this lowest luminosity state, we extend the range of the relationship between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive expectation for the broad line region for an assumed form of r ~ L^alpha. This value is also consistent with the slope recently determined by Bentz et al. for the population of reverberation-mapped AGNs as a whole.

  14. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    SciTech Connect (OSTI)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01T23:59:59.000Z

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  15. Dirac spinor fields in the teleparallel gravity: comment on "Metric-affine approach to teleparallel gravity"

    E-Print Network [OSTI]

    J. W. Maluf

    2003-04-01T23:59:59.000Z

    We show that the coupling of a Dirac spinor field with the gravitational field in the teleparallel equivalent of general relativity is consistent. For an arbitrary SO(3,1) connection there are two possibilities for the coupling of the spinor field with the gravitational field. The problems of consistency raised by Y. N. Obukhov and J. G. Pereira in the paper {\\it Metric-affine approach to teleparallel gravity} [gr-qc/0212080] take place only in the framework of one particular coupling. By adopting an alternative coupling the consistency problem disappears.

  16. Anti-gravity and/or dark matter contributions from massive gravity

    E-Print Network [OSTI]

    Bebronne, Michael V

    2009-01-01T23:59:59.000Z

    Recently, the static spherically symmetric solution of the gravitational field equations have been found in theories describing massive graviton with spontaneous breaking of the Lorentz invariance. These solutions, which show off two integration constants instead of one in General Relativity, are discussed. They are candidates for modified black holes provided they are stable against small perturbations. These solutions may have both attractive or repulsive behavior at large distances. Therefore, these modified black holes may mimics the presence of dark matter or be a source of anti-gravity.

  17. Strict Limit on CPT Violation from Polarization of Gamma-Ray Bursts

    E-Print Network [OSTI]

    Kenji Toma; Shinji Mukohyama; Daisuke Yonetoku; Toshio Murakami; Shuichi Gunji; Tatehiro Mihara; Yoshiyuki Morihara; Tomonori Sakashita; Takuya Takahashi; Yudai Wakashima; Hajime Yonemochi; Noriyuki Toukairin

    2012-11-09T23:59:59.000Z

    We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{\\pm}^2=p^2 \\pm 2\\xi p^3/M_{Pl}, where \\pm denotes different circular polarization states of the photon, the parameter \\xi is constrained as |\\xi|gravity effects and dark energy effects, the stringent limit on the CPT-violating effect leads to the expectation that quantum gravity presumably respects the CPT invariance.

  18. Florida Electric Transmission Line Siting Act (Florida)

    Broader source: Energy.gov [DOE]

    The Transmission Line Siting Act (TLSA) is the state’s centralized process for licensing electrical transmission lines which; (a) are 230 kV or larger; (b) cross a county line; and, (c) are 15...

  19. Scalar-tensor gravity and conformal continuations

    E-Print Network [OSTI]

    Kirill A. Bronnikov

    2002-03-30T23:59:59.000Z

    Global properties of vacuum static, spherically symmetric configurations are studied in a general class of scalar-tensor theories (STT) of gravity in various dimensions. The conformal mapping between the Jordan and Einstein frames is used as a tool. Necessary and sufficient conditions are found for the existence of solutions admitting a conformal continuation (CC). The latter means that a singularity in the Einstein-frame manifold maps to a regular surface S_(trans) in the Jordan frame, and the solution is then continued beyond this surface. S_(trans) can be an ordinary regular sphere or a horizon. In the second case, S_(trans) proves to connect two epochs of a Kantowski-Sachs type cosmology. It is shown that, in an arbitrary STT, with arbitrary potential functions $U(\\phi)$, the list of possible types of causal structures of vacuum space-times is the same as in general relativity with a cosmological constant. This is true even for conformally continued solutions. It is found that when S_(trans) is an ordinary sphere, one of the generic structures appearing as a result of CC is a traversable wormhole. Two explicit examples are presented: a known solution illustrating the emergence of singularities and wormholes, and a nonsingular 3-dimensional model with an infinite sequence of CCs.

  20. Gravity stabilized thermal miscible displacement process

    SciTech Connect (OSTI)

    Vogel, J.V.

    1987-10-06T23:59:59.000Z

    A method is described of recovering viscous hydrocarbons from a subterranean reservoir. The reservoir is penetrated by at least one injection well and one production well. The injection well is in fluid communication with the upper portion of the reservoir and the production well is in fluid communication with the lower portion of the reservoir. The injection well and the production well defines a fluid flow path therebetween. The method comprises the steps of: (a) injecting a steam-solvent vapor mixture into the upper portion of the reservoir through the injection well. The steam-solvent vapor mixture is undersaturated in solvent and saturated with steam; (b) reducing the viscosity of the hydrocarbons by heat released upon condensation of the steam-solvent vapor mixture and reducing the viscosity of the hydrocarbons further upon condensation of solvent vapors. The condensed solvent vapors goes into solution with the hydrocarbons; and (c) collecting a mixture of hydrocarbons and solvent accumulated at the bottom of the production well substantially entirely under the force of gravity.

  1. Non-Singular Cosmology in Modified Gravity

    E-Print Network [OSTI]

    J. W. Moffat

    2007-10-24T23:59:59.000Z

    A non-singular cosmology is derived in modified gravity (MOG) with a varying gravitational coupling strength $G(t)=G_N\\xi(t)$. Assuming that the curvature $k$, the cosmological constant $\\Lambda$ and $\\rho$ vanish at $t=0$, we obtain a non-singular universe with a negative pressure, $p_G < 0$. Quantum fluctuations at $t\\sim 0$ produce creation of pairs of particles from the vacuum explaining the origin of matter. The universe expands for $t\\to \\infty$ according to the standard radiation and matter dominated solutions. The arrow of time reverses at $t=0$ always pointing in the direction of increasing entropy ${\\cal S}$ and the entropy is at a minimum value at $t=0$, solving the conundrum of the Second Law of Thermodynamics. The Hubble radius $H^{-1}(t)$ is infinite at $t=0$ removing the curvature and particle horizons. The negative pressure $p_G$ generated by the scalar field $\\xi$ at $t\\sim 0$ can produce quantum spontaneous creation of particles explaining the origin of matter and radiation.

  2. Infrared modified gravity with dynamical torsion

    SciTech Connect (OSTI)

    Nikiforova, V. [Physics Department, Moscow State University, Moscow, 119899 (Russian Federation); Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow, 117312 (Russian Federation); Randjbar-Daemi, S. [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34014, Trieste (Italy); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow, 117312 (Russian Federation)

    2009-12-15T23:59:59.000Z

    We continue the recent study of the possibility of constructing a consistent infrared modification of gravity by treating the vierbein and connection as independent dynamical fields. We present the generalized Fierz-Pauli equation that governs the propagation of a massive spin-2 mode in a model of this sort in the backgrounds of arbitrary torsionless Einstein manifolds. We show explicitly that the number of propagating degrees of freedom in these backgrounds remains the same as in flat space-time. This generalizes the recent result that the Boulware-Deser phenomenon does not occur in de Sitter and anti-de Sitter backgrounds. We find that, at least for weakly curved backgrounds, there are no ghosts in the model. We also discuss the interaction of sources in flat background. It is generally believed that the spinning matter is the only source of torsion. Our flat space study shows that this is not the case. We demonstrate that an ordinary conserved symmetric energy-momentum tensor can also generate torsion fields and thus excite massive spin-2 degrees of freedom.

  3. Quantization of neutron in Earth's gravity

    E-Print Network [OSTI]

    Pulak Ranjan Giri

    2007-08-22T23:59:59.000Z

    Gravity is the weakest of all four known forces in the universe. Quantum states of an elementary particle due to such a weak field is certainly very shallow and would therefore be an experimental challenge to detect. Recently an experimental attempt was made by V. V. Nesvizhevsky et al., Nature 415, 297 (2002), to measure the quantum states of a neutron, which shows that ground state and few excited states are \\sim 10^{-12}eV. We show that the energy of the ground state of a neutron confined above Earth's surface should be \\sim 10^{-37}eV. The experimentally observed energy levels are 10^{25} times deeper than the actual energy levels it should be and thus certainly not due to gravitational effect of Earth. Therefore the correct interpretation for the painstaking experimental results of Ref. \\cite{nes1} is due to the confinement potential of a one dimensional box of length L \\sim 50\\mu m, generated from the experimental setup as commented before \\cite{hansoon}. Our results thus creates a new challenge to the experimentalist to resolve the shallow energy levels of the neutron in Earth's gravitational field in future.

  4. Scale-invariant gravity: Spacetime recovered

    E-Print Network [OSTI]

    Bryan Kelleher

    2004-07-28T23:59:59.000Z

    The configuration space of general relativity is superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms. However, it has been argued that the configuration space for gravity should be conformal superspace - the space of all Riemannian 3-metrics modulo diffeomorphisms and conformal transformations. Recently a manifestly 3-dimensional theory was constructed with conformal superspace as the configuration space. Here a fully 4-dimensional action is constructed so as to be invariant under conformal transformations of the 4-metric using general relativity as a guide. This action is then decomposed to a (3+1)-dimensional form and from this to its Jacobi form. The surprising thing is that the new theory turns out to be precisely the original 3-dimensional theory. The physical data is identified and used to find the physical representation of the theory. In this representation the theory is extremely similar to general relativity. The clarity of the 4-dimensional picture should prove very useful for comparing the theory with those aspects of general relativity which are usually treated in the 4-dimensional framework.

  5. Investigation of conductor swinging by wind and its application for design of compact transmission line

    SciTech Connect (OSTI)

    Tsujimoto, K.; Fujii, K.; Kubokawa, H.; Okomura, T.; Simojima, K.; Yoshioka, V.

    1982-11-01T23:59:59.000Z

    In Japan it has recently become necessary to shorten the interphase spacing in overhead transmission lines because of land limitations and economical considerations. In this connection, the authors have attempted to analyze, in-depth, the possibilities of shortened interphase spacing via conductor swinging caused by wind effects: one of the important factors in the design of more compact overhead lines. This paper describes not only the investigative results of conductor swinging that were obtained both through computer simulation and in 3 years of full scale field line testing, but also design methodology for compact overhead lines based on these results.

  6. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, Daniel J. (Wheeling, IL); Cha, Yung S. (Darien, IL)

    1999-01-01T23:59:59.000Z

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  7. Passive fault current limiting device

    DOE Patents [OSTI]

    Evans, D.J.; Cha, Y.S.

    1999-04-06T23:59:59.000Z

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment. 6 figs.

  8. What can emission lines tell us?

    E-Print Network [OSTI]

    G. Stasinska

    2007-04-03T23:59:59.000Z

    1 Generalities 2 Empirical diagnostics based on emission lines 3 Photoionization modelling 4 Pending questions 5 Appendix: Lists of useful lines and how to deal with them

  9. Lassoing Line Outages in the Smart Power Grid

    E-Print Network [OSTI]

    Zhu, Hao

    2011-01-01T23:59:59.000Z

    Fast and accurate unveiling of power line outages is of paramount importance not only for preventing faults that may lead to blackouts, but also for routine monitoring and control tasks of the smart grid, including state estimation and optimal power flow. Existing approaches are either challenged by the \\emph{combinatorial complexity} issues involved, and are thus limited to identifying single- and double-line outages; or, they invoke less pragmatic assumptions such as \\emph{conditionally independent} phasor angle measurements available across the grid. Using only a subset of voltage phasor angle data, the present paper develops a near real-time algorithm for identifying multiple line outages at the affordable complexity of solving a quadratic program via block coordinate descent iterations. The novel approach relies on reformulating the DC linear power flow model as a \\emph{sparse} overcomplete expansion, and leveraging contemporary advances in compressive sampling and variable selection using the least-abso...

  10. Exact triangles in Seiberg-Witten Floer theory. Part II: geometric limits of ow lines

    E-Print Network [OSTI]

    Marcolli, Matilde

    on compact sets 12 3.1 Asymptotics of #12;nite energy ASD connections . . . . . . . . . 13 3.2 Asymptotics Marcolli, Bai-Ling Wang Contents 1 Introduction 1 2 Energy and curvature estimates 3 3 Convergence on a tubular neighborhood of the knot in Y , such that the moduli spaces of solutions on Y , Y 1 , and Y 0

  11. Limits on Hot Galactic Halo Gas from X-ray Absorption Lines

    E-Print Network [OSTI]

    Yao, Yangsen

    Although the existence of large-scale hot gaseous halos around massive disk galaxies has been theorized for a long time, there is yet very little observational evidence. We report the Chandra and XMM-Newton grating spectral ...

  12. Dumbarton Express Line DB heading to Stanford Oval. AC Transit Line U on Palm Drive.

    E-Print Network [OSTI]

    Dumbarton Express Line DB heading to Stanford Oval. AC Transit Line U on Palm Drive. Photo: Karl Nielsen Photo: Dong Wang Schedules: AC Transit Line U Dumbarton Express Line DB Connections with BART Transit Line U Line U provides express service between Stanford and the Fremont BART station. Other East

  13. Plane wave holonomies in loop quantum gravity II: sine wave solution

    E-Print Network [OSTI]

    Donald E. Neville

    2014-11-10T23:59:59.000Z

    This paper constructs an approximate sinusoidal wave packet solution to the equations of loop quantum gravity (LQG). There is an SU(2) holonomy on each edge of the LQG simplex, and the goal is to study the behavior of these holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine approximation: holonomies are expanded in powers of sines, and terms beyond $\\sin^2$ are dropped; also, fields vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave, estimate the lifetime of the coherent state packet, discuss coarse-graining, and determine the behavior of the spinors used in the U(N) SHO realization of LQG.

  14. The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters

    E-Print Network [OSTI]

    Wilcox, Harry; Nichol, Robert C; Rooney, Philip J; Terukina, Ayumu; Romer, A Kathy; Koyama, Kazuya; Zhao, Gong-Bo; Hood, Ross; Mann, Robert G; Hilton, Matt; Manolopoulou, Maria; Sahlen, Martin; Collins, Chris A; Liddle, Andrew R; Mayers, Julian A; Mehrtens, Nicola; Miller, Christopher J; Stott, John P; Viana, Pedro T P

    2015-01-01T23:59:59.000Z

    The chameleon gravity model postulates the existence of a scalar field that couples with matter to mediate a fifth force. If it exists, this fifth force would influence the hot X-ray emitting gas that fills the potential wells of galaxy clusters. However, it would not influence the weak lensing signal from clusters. Therefore, by comparing X-ray and weak lensing profiles, one can place upper limits on the strength of a fifth force. This technique has been attempted before using a single, nearby cluster (Coma, $z=0.02$, Terukina et al. 2014). In this paper we apply the technique to the stacked profiles of 58 clusters at higher redshifts ($0.1gravity parameters ($\\beta$ and $\\phi_{\\infty}$). Like the Teruk...

  15. Dirac's point electron in the zero-gravity Kerr--Newman world

    E-Print Network [OSTI]

    Kiessling, Michael K -H

    2015-01-01T23:59:59.000Z

    The results of a study of Dirac's Hamiltonian for a point electron in the zero-gravity Kerr--Newman spacetime are reported; here, "zero-gravity" means G to 0, where G is Newton's constant of universal gravitation, and the limit is effected in the Boyer--Lindquist coordinate chart of the maximal analytically extended, topologically nontrivial, Kerr--Newman spacetime. In a nutshell, the results are: the essential self-adjointness of the Dirac Hamiltonian; the reflection symmetry about zero of its spectrum; the location of the essential spectrum, exhibiting a gap about zero; and (under two smallness assumptions on some parameters) the existence of a point spectrum in this gap, corresponding to bound states of Dirac's point electron in the electromagnetic field of the zero-G Kerr--Newman ring singularity. The symmetry result of the spectrum extends to Dirac's Hamiltonian for a point electron in a generalization of the zero-G Kerr--Newman spacetime with different ratio of electric-monopole to magnetic-dipole momen...

  16. Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces

    E-Print Network [OSTI]

    Zeinab Sherkatghanad; Behrouz Mirza; Zahra Mirzaeyan; Seyed Ali Hosseini Mansoori

    2014-12-16T23:59:59.000Z

    We consider the critical behaviors and phase transitions of Gauss Bonnet-Born Infeld-AdS black holes (GB-BI-AdS) for $d=5,6$ and the extended phase space. We assume the cosmological constant, $\\Lambda$, the coupling coefficient $\\alpha$, and the BI parameter $\\beta$ to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find "reentrant and triple point phase transitions" (RPT-TP) and "multiple reentrant phase transitions" (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient $\\alpha$ in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for $d=6$. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third order of Lovelock gravity and in the grand canonical ensemble to find a Van der Waals behavior for $d=7$ and a reentrant phase transition for $d=8$ for specific values of potential $\\phi$ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of $\\beta \\to \\infty$, i.e charged-AdS black holes in the third order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter $\\beta$ in the grand canonical ensemble.

  17. On The Nature of Low Luminosity Narrow Line AGN

    E-Print Network [OSTI]

    Ari Laor

    2003-02-26T23:59:59.000Z

    There is clear observational evidence that some narrow line (type 2) AGN have a hidden broad line region (BLR), and are thus intrinsically broad line (type 1) AGN. Does this AGN unification applies for all type 2 AGN? Indirect arguments suggest that some "true" type 2 AGN, i.e. AGN having no obscured BLR do exist, but it is not clear why the BLR is missing in these AGN. Here we point out a possible natural explanation. The observed radius-luminosity relation for the BLR implies an increasing line width with decreasing luminosity for a given black hole mass (Mbh). In addition, there appears to be an upper limit to the observed width of broad emission lines in AGN of Delta v_max~25,000 km/s, which may reflect a physical limit above which the BLR may not be able to survive. Thus, at a low enough luminosity the BLR radius shrinks below the Delta v_max radius, leaving no region where the BLR can exist, although the AGN may remain otherwise `normal'. The implied minimum bolometric luminosity required to sustain a BLR with Delta v<25,000 km/s is L_min~10^{41.8}(Mbh}/10^8M_sun)^2. All AGN with Lline AGN without a hidden BLR. Predictions for the true nature of low luminosity AGN in two samples of nearby galaxies are provided. These can be used to test the above L_min conjecture, and the predictions of other models for the size and origin of the BLR.

  18. Page 1 of 14 UNSW Foundation Limited

    E-Print Network [OSTI]

    New South Wales, University of

    , Coca-Cola Amatil Limited and Ingeus Limited. David is Chairman of the National E-Health Transition

  19. Horava-Lifshitz Gravity From Dynamical Newton-Cartan Geometry

    E-Print Network [OSTI]

    Jelle Hartong; Niels A. Obers

    2015-04-28T23:59:59.000Z

    Recently it has been established that torsional Newton-Cartan (TNC) geometry is the appropriate geometrical framework to which non-relativistic field theories couple. We show that when these geometries are made dynamical they give rise to Horava-Lifshitz (HL) gravity. Projectable HL gravity corresponds to dynamical Newton-Cartan (NC) geometry without torsion and non-projectable HL gravity corresponds to dynamical NC geometry with twistless torsion (hypersurface orthogonal foliation). We build a precise dictionary relating all fields (including the scalar khronon), their transformations and other properties in both HL gravity and dynamical TNC geometry. We use TNC invariance to construct the effective action for dynamical twistless torsional Newton-Cartan geometries in 2+1 dimensions for dynamical exponent 1Thompson as coming from the Bargmann extension of the local Galilean algebra that acts on the tangent space to TNC geometries. We argue that TNC geometry, which is manifestly diffeomorphism covariant, is a natural geometrical framework underlying HL gravity and discuss some of its implications.

  20. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09T23:59:59.000Z

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  1. Camera Calibration Using Line Correspondences

    E-Print Network [OSTI]

    Hartley, Richard

    Camera Calibration Using Line Correspondences Richard I. Hartley G.E. CRD, Schenectady, NY, 12301. The three cameras may have different unknown calibrations, and the essential matrices corresponding to each, camera calibration and scene reconstruction. In the case where all the three cameras are assumed to have

  2. Stationary Axisymmetric and Slowly Rotating Spacetimes in Ho?ava-Lifshitz Gravity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Anzhong

    2013-02-01T23:59:59.000Z

    Stationary, axisymmetric, and slowly rotating vacuum spacetimes in the Horava-Lifshitz (HL) gravity are studied, and it is shown that, for any given spherical static vacuum solution of the HL theory (of any model, including the ones with an additional U(1) symmetry), there always exists a corresponding slowly rotating, stationary, and axisymmetric vacuum solution, which reduces to the former, when the rotation is switched off. The rotation is universal and only implicitly depends on the models of the HL theory and their coupling constants through the spherical seed solution. As a result, all asymptotically flat slowly rotating vacuum solutions are asymptotically identical to the slowly rotating Kerr solution. This is in contrast to the claim of Barausse and Sotiriou [Phys. Rev. Lett. 109, 181101 (2012)], in which slowly rotating black holes were reported (incorrectly) not to exist in the infrared limit of the nonprojectable HL theory.

  3. Gauge/gravity duality and the interplay of various fractional branes

    SciTech Connect (OSTI)

    Argurio, Riccardo; Closset, Cyril [Physique Theorique et Mathematique and International Solvay Institutes, Universite Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); Benini, Francesco; Bertolini, Matteo; Cremonesi, Stefano [SISSA/ISAS and INFN-Sezione di Trieste, Via Beirut 2, I 34014 Trieste (Italy)

    2008-08-15T23:59:59.000Z

    We consider different types of fractional branes on a Z{sub 2} orbifold of the conifold and analyze in detail the corresponding gauge/gravity duality. The gauge theory possesses a rich and varied dynamics, both in the UV and in the IR. We find the dual supergravity solution, which contains both untwisted and twisted 3-form fluxes, related to what are known as deformation and N=2 fractional branes, respectively. We analyze the resulting renormalization group flow from the supergravity perspective, by developing an algorithm to easily extract it. We find hints of a generalization of the familiar cascade of Seiberg dualities due to a nontrivial interplay between the different types of fractional branes. We finally consider the IR behavior in several limits, where the dominant effective dynamics is either confining in a Coulomb phase or runaway, and discuss the resolution of singularities in the dual geometric background.

  4. FIRST STUDY OF DARK MATTER PROPERTIES WITH DETECTED SOLAR GRAVITY MODES AND NEUTRINOS

    SciTech Connect (OSTI)

    Turck-Chieze, S.; Garcia, R. A. [CEA/DSM/IRFU/SAp-AIM, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France); Lopes, I. [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin and Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Couvidat, S. [W.W. Hansen. E. P. L., Stanford University, Stanford, CA 94305 (United States); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Salabert, D. [CNRS, Observatoire de la Cote d'Azur, Universite de Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Silk, J., E-mail: Sylvaine.Turck-Chieze@cea.fr [UPMC-CNRS, UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris (France)

    2012-02-10T23:59:59.000Z

    We derive new limits on the cold dark matter properties for weakly interacting massive particles (WIMPs), potentially trapped in the solar core by using for the first time the central temperature constrained by boron neutrinos and the central density constrained by the dipolar gravity modes detected with the Global Oscillations at Low Frequency/Solar Helioseismic Observatory instrument. These detections disfavor the presence of non-annihilating WIMPs for masses {<=}10 GeV and spin dependent cross-sections >5 Multiplication-Sign 10{sup -36} cm{sup 2} in the solar core but cannot constrain WIMP annihilation models. We suggest that in the coming years helio- and asteroseismology will provide complementary probes of dark matter.

  5. On power-counting renormalizability of Ho?ava gravity with detailed balance

    E-Print Network [OSTI]

    Daniele Vernieri

    2015-02-23T23:59:59.000Z

    We consider the version of Ho\\v{r}ava gravity where "detailed balance" is consistently implemented, such as to limitate the huge proliferation of couplings in the full theory and to obtain an healthy dynamics at low-energy. Since a superpotential which is third-order in spatial derivatives is not sufficient to guarantee the power-counting renormalizability of the spin-0 graviton, then one needs to go an order beyond in derivatives, building up a superpotential up to fourth-order spatial derivatives. Here, we perturb the action to quadratic order around flat space, and show that power-counting renormalizability of the spin-0 graviton is achieved only by setting to zero a specific coupling of the theory, while the spin-2 graviton is always power-counting renormalizable for any choice of the couplings. This result raises serious doubts about the use of detailed balance.

  6. On power-counting renormalizability of Ho\\v{r}ava gravity with detailed balance

    E-Print Network [OSTI]

    Vernieri, Daniele

    2015-01-01T23:59:59.000Z

    We consider the version of Ho\\v{r}ava gravity where "detailed balance" is consistently implemented, such as to limitate the huge proliferation of couplings in the full theory and to obtain an healthy dynamics at low-energy. Since a superpotential which is third-order in spatial derivatives is not sufficient to guarantee the power-counting renormalizability of the spin-0 graviton, then one needs to go an order beyond in derivatives, building up a superpotential up to fourth-order spatial derivatives. Here, we perturb the action to quadratic order around flat space, and show that power-counting renormalizability of the spin-0 graviton is achieved only by setting to zero a specific coupling of the theory, while the spin-2 graviton is always power-counting renormalizable for any choice of the couplings. This result raises serious doubts about the use of detailed balance.

  7. Hawking radiation as tunneling from a Vaidya black hole in noncommutative gravity

    SciTech Connect (OSTI)

    Mehdipour, S. Hamid [Islamic Azad University, Lahijan Branch, P. O. Box 1616, Lahijan (Iran, Islamic Republic of)

    2010-06-15T23:59:59.000Z

    In the context of a noncommutative model of coordinate coherent states, we present a Schwarzschild-like metric for a Vaidya solution instead of the standard Eddington-Finkelstein metric. This leads to the appearance of an exact (t-r) dependent case of the metric. We analyze the resulting metric in three possible causal structures. In this setup, we find a zero remnant mass in the long-time limit, i.e. an instable black hole remnant. We also study the tunneling process across the quantum horizon of such a Vaidya black hole. The tunneling probability including the time-dependent part is obtained by using the tunneling method proposed by Parikh and Wilczek in terms of the noncommutative parameter {sigma}. After that, we calculate the entropy associated to this noncommutative black hole solution. However, the corrections are fundamentally trifling; one could respect this as a consequence of quantum inspection at the level of semiclassical quantum gravity.

  8. NGC 5548 in a Low-Luminosity State: Implications for the Broad-Line Region

    E-Print Network [OSTI]

    Bentz, M C; Cackett, E M; Dietrich, M; Fogel, J K J; Ghosh, H; Horne, K D; Kuehn, C; Minezaki, T; Onken, C A; Peterson, B M; Pogge, R W; Pronik, V I; Richstone, D O; Sergeev, S G; Vestergaard, M; Walker, M G; Yoshii, Y; Bentz, Misty C.; Denney, Kelly D.; Cackett, Edward M.; Dietrich, Matthias; Fogel, Jeffrey K. J.; Ghosh, Himel; Horne, Keith D.; Kuehn, Charles; Minezaki, Takeo; Onken, Christopher A.; Peterson, Bradley M.; Pogge, Richard W.; Pronik, Vladimir I.; Richstone, Douglas O.; Sergeev, Sergey G.; Vestergaard, Marianne; Walker, Matthew G.; Yoshii, Yuzuru

    2007-01-01T23:59:59.000Z

    We describe results from a new ground-based monitoring campaign on NGC 5548, the best studied reverberation-mapped AGN. We find that it was in the lowest luminosity state yet recorded during a monitoring program, namely L(5100) = 4.7 x 10^42 ergs s^-1. We determine a rest-frame time lag between flux variations in the continuum and the Hbeta line of 6.3 (+2.6/-2.3) days. Combining our measurements with those of previous campaigns, we determine a weighted black hole mass of M_BH = 6.54 (+0.26/-0.25) x 10^7 M_sun based on all broad emission lines with suitable variability data. We confirm the previously-discovered virial relationship between the time lag of emission lines relative to the continuum and the width of the emission lines in NGC 5548, which is the expected signature of a gravity-dominated broad-line region. Using this lowest luminosity state, we extend the range of the relationship between the luminosity and the time lag in NGC 5548 and measure a slope that is consistent with alpha = 0.5, the naive ex...

  9. Scattering resonances as viscosity limits

    E-Print Network [OSTI]

    Maciej Zworski

    2015-05-04T23:59:59.000Z

    Using the method of complex scaling we show that scattering resonances of $ - \\Delta + V $, $ V \\in L^\\infty_{\\rm{c}} ( \\mathbb R^n ) $, are limits of eigenvalues of $ - \\Delta + V - i \\epsilon x^2 $ as $ \\epsilon \\to 0+ $. That justifies a method proposed in computational chemistry and reflects a general principle for resonances in other settings.

  10. On-line Service Scheduling?

    E-Print Network [OSTI]

    2008-04-18T23:59:59.000Z

    §Warwick Business School, University of Warwick, Coventry, CV4 7AL, United ... corresponding service policy in order to use the limited service resource efficiently. ... manner, customer requirements, service efficiency, and system workload, etc. ...... of Scheduling: Algorithms, Models, and Performance Analysis (

  11. Exotic Statistics for Ordinary Particles in Quantum Gravity

    E-Print Network [OSTI]

    John Swain

    2008-05-15T23:59:59.000Z

    Objects exhibiting statistics other than the familiar Bose and Fermi ones are natural in theories with topologically nontrivial objects including geons, strings, and black holes. It is argued here from several viewpoints that the statistics of ordinary particles with which we are already familiar are likely to be modified due to quantum gravity effects. In particular, such modifications are argued to be present in loop quantum gravity and in any theory which represents spacetime in a fundamentally piecewise-linear fashion. The appearance of unusual statistics may be a generic feature (such as the deformed position-momentum uncertainty relations and the appearance of a fundamental length scale) which are to be expected in any theory of quantum gravity, and which could be testable.

  12. Compensational Gravity Fundamentals and an Application: The Cycling Universe

    E-Print Network [OSTI]

    Vladimir S. Mashkevich

    2010-04-16T23:59:59.000Z

    Compensational gravity, which is regarded as a fundamental theory, is an advanced version of semiclassical gravity. It is a construction which extends the Einstein equation. Along with the energy-momentum tensor, the extended Einstein equation includes the compensation tensor, or compenson. The latter compensates for the energy-momentum tensor insufficiency, which consists in the discontinuity in time (due to quantum state reduction) and in space (due to sharp cutoff), as well as in an anomaly (nonrealistic state equation and nonzero divergence). The compenson is a primary object, for which equations are formulated. Specifically, purely dark objects may or may not exist. The dynamics of compensational gravity gives rise naturally to the cosmological constant, or dark energy and to dark matter: The compenson versus particle dark matter. On the basis of the dynamics, a cycling model of the closed universe is constructed.

  13. Constraints on the quantum gravity scale from kappa - Minkowski spacetime

    E-Print Network [OSTI]

    A. Borowiec; Kumar S. Gupta; S. Meljanac; A. Pachol

    2010-11-18T23:59:59.000Z

    We compare two versions of deformed dispersion relations (energy vs momenta and momenta vs energy) and the corresponding time delay up to the second order accuracy in the quantum gravity scale (deformation parameter). A general framework describing modified dispersion relations and time delay with respect to different noncommutative kappa -Minkowski spacetime realizations is firstly proposed here and it covers all the cases introduced in the literature. It is shown that some of the realizations provide certain bounds on quadratic corrections, i.e. on quantum gravity scale, but it is not excluded in our framework that quantum gravity scale is the Planck scale. We also show how the coefficients in the dispersion relations can be obtained through a multiparameter fit of the gamma ray burst (GRB) data.

  14. Direct Detection of Gravity Waves from Neutron Stars

    E-Print Network [OSTI]

    Redouane Al Fakir; William G. Unruh

    2008-05-24T23:59:59.000Z

    In light of the discovery of the first-ever double pulsar system, PSR J0737-3039, we re-examine an earlier proposal to directly detect gravity waves from neutron stars, which was predicated on a hypothetical system almost identical to the later discovered double pulsar. We re-derive the effect in more detail, and confirm the initial estimate--sometimes doubted in the literature--that it includes a 1/b dependence, where b is the impact parameter of a pulsar with respect to its foreground, gravity-wave emitting, neutron star companion. A coherent modulation in pulsar time-of-arrival measurements of 10 nano-sec/sec is possible. A one-year intermittent experiment on an instrument comparable to the SKA could thus detect the exceedingly faint gravity waves from individual neutron stars.

  15. Asymptotic safety of gravity and the Higgs boson mass

    E-Print Network [OSTI]

    Mikhail Shaposhnikov; Christof Wetterich

    2010-01-12T23:59:59.000Z

    There are indications that gravity is asymptotically safe. The Standard Model (SM) plus gravity could be valid up to arbitrarily high energies. Supposing that this is indeed the case and assuming that there are no intermediate energy scales between the Fermi and Planck scales we address the question of whether the mass of the Higgs boson $m_H$ can be predicted. For a positive gravity induced anomalous dimension $A_\\lambda>0$ the running of the quartic scalar self interaction $\\lambda$ at scales beyond the Planck mass is determined by a fixed point at zero. This results in $m_H=m_{\\rm min}=126$ GeV, with only a few GeV uncertainty. This prediction is independent of the details of the short distance running and holds for a wide class of extensions of the SM as well. For $A_\\lambda 0$ is favored by explicit computations existing in the literature.

  16. Rapidly rotating neutron stars in $R$-squared gravity

    E-Print Network [OSTI]

    Yazadjiev, Stoytcho S; Kokkotas, Kostas D

    2015-01-01T23:59:59.000Z

    $f(R)$ theories of gravity are one of the most popular alternative explanations for dark energy and therefore studying the possible astrophysical implications of these theories is an important task. In the present paper we make a substantial advance in this direction by considering rapidly rotating neutron stars in $R^2$ gravity. The results are obtained numerically and the method we use is non-perturbative and self-consistent. The neutron star properties, such as mass, radius and moment of inertia, are studied in detail and the results show that rotation magnifies the deviations from general relativity and the maximum mass and moment of inertia can reach very high values. This observation is similar to previous studies of rapidly rotating neutron stars in other alternative theories of gravity, such as the scalar-tensor theories, and it can potentially lead to strong astrophysical manifestations.

  17. New Massive Gravity and AdS{sub 4} Counterterms

    SciTech Connect (OSTI)

    Jatkar, Dileep P. [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, 211019 (India); Sinha, Aninda [Centre for High Energy Physics, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012 (India)

    2011-04-29T23:59:59.000Z

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS{sub 4}). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS{sub 4} Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS{sub 3} gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.

  18. Analogy between turbulence and quantum gravity: beyond Kolmogorov's 1941 theory

    E-Print Network [OSTI]

    S. Succi

    2011-11-14T23:59:59.000Z

    Simple arguments based on the general properties of quantum fluctuations have been recently shown to imply that quantum fluctuations of spacetime obey the same scaling laws of the velocity fluctuations in a homogeneous incompressible turbulent flow, as described by Kolmogorov 1941 (K41) scaling theory. Less noted, however, is the fact that this analogy rules out the possibility of a fractal quantum spacetime, in contradiction with growing evidence in quantum gravity research. In this Note, we show that the notion of a fractal quantum spacetime can be restored by extending the analogy between turbulence and quantum gravity beyond the realm of K41 theory. In particular, it is shown that compatibility of a fractal quantum-space time with the recent Horava-Lifshitz scenario for quantum gravity, implies singular quantum wavefunctions. Finally, we propose an operational procedure, based on Extended Self-Similarity techniques, to inspect the (multi)-scaling properties of quantum gravitational fluctuations.

  19. A Modified Gravity and its Consequences for the Solar System, Astrophysics and Cosmology

    E-Print Network [OSTI]

    J. W. Moffat

    2006-12-17T23:59:59.000Z

    A relativistic modified gravity (MOG) theory leads to a self-consistent, stable gravity theory that can describe the solar system, galaxy and clusters of galaxies data and cosmology.

  20. Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

    E-Print Network [OSTI]

    Huterer, Dragan

    2009-01-01T23:59:59.000Z

    Modified Gravity vs. Dark Energy Dragan Huterer 1 and EricModi?ed Gravity vs. Dark Energy Dragan Huterer 1 and Eric V.arising from a physical dark energy or a modi?ed Fried- mann

  1. Signatures of fractal clustering of aerosols advected under gravity

    E-Print Network [OSTI]

    Rafael Dias Vilela; Tamás Tél; Alessandro P. S. de Moura; Celso Grebogi

    2007-06-15T23:59:59.000Z

    Aerosols under chaotic advection often approach a strange attractor. They move chaotically on this fractal set but, in the presence of gravity, they have a net vertical motion downwards. In practical situations, observational data may be available only at a given level, for example at the ground level. We uncover two fractal signatures of chaotic advection of aerosols under the action of gravity. Each one enables the computation of the fractal dimension $D_{0}$ of the strange attractor governing the advection dynamics from data obtained solely at a given level. We illustrate our theoretical findings with a numerical experiment and discuss their possible relevance to meteorology.

  2. Evidence for cenozoic rifting in Thailand from gravity modeling

    E-Print Network [OSTI]

    Ohnstad, Tiffany A.

    1990-01-01T23:59:59.000Z

    at the teriiunation of a large NiVW-SSE trending strike-slip fault related to the extrusion of a. portion of Indochina away froni India, as it collided with Eurasia. . Rifting did not continue alotlg the trencl of the strike-slip fault zone; instead... gravity anomalies from the gndderl geoid heights, a two-diuieusional forur of Lap)&ace's equation in cartesian coordinates was?sed: d~g, , 'i3s =- g?(r3, , 'i)z(?~, 'oz) ? 8/c)y(clh/ dy)) wher'e 2 7 is the gravit'y anoulalv to bc dp'terminpcl, Ji? ls...

  3. Viscoelastic Suppression of Gravity-Driven Counterflow Instability

    E-Print Network [OSTI]

    Beiersdorfer, P; Layne, D; Magee, E W

    2010-01-01T23:59:59.000Z

    Attempts to achieve ``top kill'' of actively flowing oil wells by insertion of dense drilling ``muds'', i.e., slurries of dense minerals, from above will fail if the Kelvin-Helmholtz instability in the gravity-driven counterflow produces turbulence that breaks up the denser fluid into small droplets. Here we estimate the droplet size to be sub-mm for fast flows and suggest the addition of a shear-thickening polymer to suppress turbulence. Laboratory experiments show a progression from droplet formation to complete turbulence suppression at the relevant high velocities, illustrating rich new physics accessible by using a shear-thickening liquid in gravity driven counter-streaming flows.

  4. Causality Constraint on Noncritical Einstein-Weyl Gravity

    E-Print Network [OSTI]

    Fu-Wen Shu; Yungui Gong

    2014-10-31T23:59:59.000Z

    We explore, in the context of AdS/CFT correspondence, the causality constraints on the Noncritical Einstein-Weyl (NEW) gravity model in five dimensions. The scalar and shear channels are considered as small metric perturbations around an AdS black brane background. Our results show that causality analysis on the propagation of these two channels imposes a new bound on the coupling of the Weyl-squared terms in the NEW gravity. This new bound imposes more stringent restrictions than those of the tachyon-free condition, improving predictive power of the theory.

  5. Angular momentum extraction by gravity waves in the Sun

    E-Print Network [OSTI]

    Suzanne Talon; Pawan Kumar; Jean-Paul Zahn

    2002-06-27T23:59:59.000Z

    We review the behavior of the oscillating shear layer produced by gravity waves below the surface convection zone of the Sun. We show that, under asymmetric filtering produced by this layer, gravity waves of low spherical order, which are stochastically excited at the base of the convection zone of late type stars, can extract angular momentum from their radiative interior. The time-scale for this momentum extraction in a Sun-like star is of the order of 10^7 years. The process is particularly efficient in the central region, and it could produce there a slowly rotating core.

  6. Gauge Theory of Gravity Requires Massive Torsion Field

    E-Print Network [OSTI]

    Rainer W. Kuhne

    1998-06-04T23:59:59.000Z

    One of the greatest unsolved issues of the physics of this century is to find a quantum field theory of gravity. According to a vast amount of literature unification of quantum field theory and gravitation requires a gauge theory of gravity which includes torsion and an associated spin field. Various models including either massive or massless torsion fields have been suggested. We present arguments for a massive torsion field, where the probable rest mass of the corresponding spin three gauge boson is the Planck mass.

  7. Kolmogorov Algorithmic Complexity and its Probability Interpretation in Quantum Gravity

    E-Print Network [OSTI]

    V. D. Dzhunushaliev

    1997-04-16T23:59:59.000Z

    The quantum gravity has great difficulties with application of the probability notion. In given article this problem is analyzed according to algorithmic viewpoint. According to A.N. Kolmogorov, the probability notion can be connected with algorithmic complexity of given object. The paper proposes an interpretation of quantum gravity, according to which an appearance of something corresponds to its Kolmogorov's algorithmic complexity. By this viewpoint the following questions are considered: the quantum transition with supplementary coordinates splitting off, the algorithmic complexity of the Schwarzschild black hole is estimated, the redefinition of the Feynman path integral, the quantum birth of the Euclidean Universe with the following changing of the metric signature.

  8. Thermodynamics on the apparent horizon in generalized gravity theories

    E-Print Network [OSTI]

    Shao-Feng Wu; Bin Wang; Guo-Hong Yang

    2008-01-17T23:59:59.000Z

    We present a general procedure to construct the first law of thermodynamics on the apparent horizon and illustrate its validity by examining it in some extended gravity theories. Applying this procedure, we can describe the thermodynamics on the apparent horizon in Randall-Sundrum braneworld imbedded in a nontrivial bulk. We discuss the mass-like function which was used to link Friedmann equation to the first law of thermodynamics and obtain its special case which gives the generalized Misner-Sharp mass in Lovelock gravity.

  9. Monte Carlo simulations of 4d simplicial quantum gravity

    E-Print Network [OSTI]

    B. Bruegmann; E. Marinari

    1995-04-08T23:59:59.000Z

    Dynamical triangulations of four-dimensional Euclidean quantum gravity give rise to an interesting, numerically accessible model of quantum gravity. We give a simple introduction to the model and discuss two particularly important issues. One is that contrary to recent claims there is strong analytical and numerical evidence for the existence of an exponential bound that makes the partition function well-defined. The other is that there may be an ambiguity in the choice of the measure of the discrete model which could even lead to the existence of different universality classes.

  10. Baryogenesis in $f(R)$-Theories of Gravity

    E-Print Network [OSTI]

    G. Lambiase; G. Scarpetta

    2006-10-12T23:59:59.000Z

    $f(R)$-theories of gravity are reviewed in the context of the so called gravitational baryogenesis. The latter is a mechanism for generating the baryon asymmetry in the Universe, and relies on the coupling between the Ricci scalar curvature $R$ and the baryon current. Gravity Lagrangians of the form ${\\cal L}(R)\\sim R^n$, where $n$ differs from 1 (the case of the General Relativity) only for tiny deviations of a few percent, are consistent with the current bounds on the observed baryon asymmetry.

  11. Classical and Quantum Aspects of 1+1 Gravity

    E-Print Network [OSTI]

    T. Kloesch; P. Schaller; T. Strobl

    1996-08-02T23:59:59.000Z

    We present a classification of all global solutions (with Lorentzian signature) for any general 2D dilaton gravity model. For generic choices of potential-like terms in the Lagrangian one obtains maximally extended solutions on arbitrary non-compact two-manifolds, including various black-hole and kink configurations. We determine all physical quantum states in a Dirac approach. In some cases the spectrum of the (black-hole) mass operator is found to be sensitive to the signature of the theory, which may be relevant in view of current attempts to implement a generalized Wick-rotation in 4D quantum gravity.

  12. Complete Classification of 1+1 Gravity Solutions

    E-Print Network [OSTI]

    T. Kloesch; T. Strobl

    1997-11-25T23:59:59.000Z

    A classification of the maximally extended solutions for 1+1 gravity models (comprising e.g. generalized dilaton gravity as well as models with non-trivial torsion) is presented. No restrictions are placed on the topology of the arising solutions, and indeed it is found that for generic models solutions on non-compact surfaces of arbitrary genus with an arbitrary non-zero number of holes can be obtained. The moduli space of classical solutions (solutions of the field equations with fixed topology modulo gauge transformations) is parametrized explicitly.

  13. Negative mode problem in false vacuum decay with gravity

    E-Print Network [OSTI]

    George Lavrelashvili

    2000-04-08T23:59:59.000Z

    There is a single negative mode in the spectrum of small perturbations about the tunneling solutions describing a metastable vacuum decay in flat spacetime. This mode is needed for consistent description of decay processes. When gravity is included the situation is more complicated. An approach based on elimination of scalar field perturbations shows no negative mode, whereas the recent approach based on elimination of gravitational perturbations indicates presence of a negative mode. In this contribution we analyse and compare the present approaches to the negative mode problem in false vacuum decay with gravity.

  14. Dynamics of the Cosmological Apparent Horizon: Surface Gravity & Temperature

    E-Print Network [OSTI]

    Alexis Helou

    2015-02-14T23:59:59.000Z

    In the context of thermodynamics applied to our cosmological apparent horizon, we explicit in greater details our previous work which established the Friedmann Equations from projection of Hayward's Unified First Law. In particular, we show that the dynamical Hayward-Kodama surface gravity is perfectly well-defined and is suitable for this derivation. We then relate this surface gravity to a physical notion of temperature, and show this has constant, positive sign for any kind of past-inner trapping horizons. Hopefully this will clarify the choice of temperature in a dynamical Friedmann-Lema\\^itre-Roberston-Walker spacetime.

  15. SL(2,C) gravity on noncommutative space with Poisson structure

    SciTech Connect (OSTI)

    Miao Yangang; Zhang Shaojun [Department of Physics, Nankai University, Tianjin 300071 (China)

    2010-10-15T23:59:59.000Z

    The Einstein's gravity theory can be formulated as an SL(2,C) gauge theory in terms of spinor notations. In this paper, we consider a noncommutative space with the Poisson structure and construct an SL(2,C) formulation of gravity on such a space. Using the covariant coordinate technique, we build a gauge invariant action in which, according to the Seiberg-Witten map, the physical degrees of freedom are expressed in terms of their commutative counterparts up to the first order in noncommutative parameters.

  16. On the new massive gravity and AdS/CFT

    E-Print Network [OSTI]

    Aninda Sinha

    2010-08-11T23:59:59.000Z

    Demanding the existence of a simple holographic $c$-theorem, it is shown that a general (parity preserving) theory of gravity in 2+1 dimensions involving upto four derivative curvature invariants reduces to the new massive gravity theory. We consider extending the theory including upto six derivative curvature invariants. Black hole solutions are presented and consistency with 1+1 CFTs is checked. We present evidence that bulk unitarity is still in conflict with a positive CFT central charge for generic choice of parameters. However, for a special choice of parameters appearing in the four and six derivative terms reduces the linearized equations to be two derivative, thereby ameliorating the unitarity problem.

  17. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south?central, east?central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step?overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.

  18. 3D gravity with dust: classical and quantum theory

    E-Print Network [OSTI]

    Viqar Husain; Jonathan Ziprick

    2015-06-02T23:59:59.000Z

    We study the Einstein gravity and dust system in three spacetime dimensions as an example of a non-perturbative quantum gravity model with local degrees of freedom. We derive the Hamiltonian theory in the dust time gauge and show that it has a rich class of exact solutions. These include the Ba\\~nados-Teitelboim-Zanelli black hole, static solutions with naked singularities and travelling wave solutions with dynamical horizons. We give a complete quantization of the wave sector of the theory, including a definition of a self-adjoint spacetime metric operator. This operator is used to demonstrate the quantization of deficit angle and the fluctuation of dynamical horizons.

  19. A perturbative approach for the study of compatibility between nonminimally coupled gravity and Solar System experiments

    E-Print Network [OSTI]

    Orfeu Bertolami; Riccardo March; Jorge Páramos

    2014-03-18T23:59:59.000Z

    We develop a framework for constraining a certain class of theories of nonminimally coupled (NMC) gravity with Solar System observations.

  20. Modeling the benefits of an artificial gravity countermeasure coupled with exercise and vibration

    E-Print Network [OSTI]

    Newman, Dava J.

    aboard the International Space Station (ISS) have shown that anti-gravity muscle volume and peak power