While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

1

includes gravity, there are other interesting consequences of this line of argument. One

includes gravity, there are other interesting consequences of this line of argument. One f there is any truth to the adage that `practice makes perfect', we should cer- tainly be near

Murray, Richard

2

Eustatic control of gravity tectonics: Concept, mechanism and limits

Gravity tectonics over a ductile decollement characterizes deformation of the Albian to Recent section in the West African margin, from Gabon to Angola. Largely studied during the past 20 years as a prolific petroleum play, it is now well known that three mains factors will control gravity driven deformation: the ductile layer, the slope as a response to the crustal activity and the overlying sedimentary loading. For the West African passive margin, the slope effect at the first glance can be considered as constant and gravity driven deformation as a result of salt layer distribution (in time and space) and sedimentary loading. If previous papers have already shown that the type and distribution of the deposits control the development of the classical structural domains : updip extensional to downdip contractional, this study will focused on the factor which control the sedimentary loading. Based on several natural examples combining seismic stratigraphy, sequential stratigraphy and structural studies and also analogical modelling, it is demonstrated that: (1) as sediment distribution and then sedimentary loading is controlled by relative sea level changes, thus sea level changes can be directly related to gravity driven deformation : large sea level fall will provide an important increase of clastics supply which will enhanced gravity gliding. On the contrary, relative sea level high will stop the deformation because of the decreasing amount of detritics and their homogeneous distribution. (2) the salt downdip withdrawal during extension will enhance the eustatic effect. (3) episodic crustal activity, materialized by westward tilting of the margin will interfere on this mechanism.

Raillard, S.; Allix, P.; Guerin, G.; Lecanu, H. [Elf Aquitaine Production, Pau (France)] [and others

1996-12-31T23:59:59.000Z

3

Eustatic control of gravity tectonics: Concept, mechanism and limits

Gravity tectonics over a ductile decollement characterizes deformation of the Albian to Recent section in the West African margin, from Gabon to Angola. Largely studied during the past 20 years as a prolific petroleum play, it is now well known that three mains factors will control gravity driven deformation: the ductile layer, the slope as a response to the crustal activity and the overlying sedimentary loading. For the West African passive margin, the slope effect at the first glance can be considered as constant and gravity driven deformation as a result of salt layer distribution (in time and space) and sedimentary loading. If previous papers have already shown that the type and distribution of the deposits control the development of the classical structural domains : updip extensional to downdip contractional, this study will focused on the factor which control the sedimentary loading. Based on several natural examples combining seismic stratigraphy, sequential stratigraphy and structural studies and also analogical modelling, it is demonstrated that: (1) as sediment distribution and then sedimentary loading is controlled by relative sea level changes, thus sea level changes can be directly related to gravity driven deformation : large sea level fall will provide an important increase of clastics supply which will enhanced gravity gliding. On the contrary, relative sea level high will stop the deformation because of the decreasing amount of detritics and their homogeneous distribution. (2) the salt downdip withdrawal during extension will enhance the eustatic effect. (3) episodic crustal activity, materialized by westward tilting of the margin will interfere on this mechanism.

Raillard, S.; Allix, P.; Guerin, G.; Lecanu, H. (Elf Aquitaine Production, Pau (France)) (and others)

1996-01-01T23:59:59.000Z

4

Calculation of the Limiting CESSAR Steam Line Break Transients

Science Journals Connector (OSTI)

Argonne National Laboratory (ANL), under contract to the Nuclear Regulatory Commission, performed audit calculations of the limiting and Steam Line Break (SLB) [1] transient presented in the CESSAR FSAR. The r...

G. B. Peeler; D. L. Caraher; J. Guttmann

1984-01-01T23:59:59.000Z

5

Newtonian limit of fully nonlinear cosmological perturbations in Einstein's gravity

We prove that in the infinite speed-of-light limit (i.e., non-relativistic and subhorizon limits), the relativistic fully nonlinear cosmological perturbation equations in two gauge conditions, the zero-shear gauge and the uniform-expansion gauge, exactly reproduce the Newtonian hydrodynamic perturbation equations in the cosmological background; as a consequence, in the same two gauge conditions, the Newtonian hydrodynamic equations are exactly recovered in the Minkowsky background.

Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Noh, Hyerim, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

2013-04-01T23:59:59.000Z

6

Einstein gravity as the thermodynamic limit of an underlying quantum statistics

The black hole area theorem suggests that classical general relativity is the thermodynamic limit of a quantum statistics. The degrees of freedom of the statistical theory cannot be the spacetime metric. We argue that the statistical theory should be constructed from a noncommutative gravity, whose classical, and thermodynamic, approximation is Einstein gravity. The noncommutative gravity theory exhibits a duality between quantum fields and macroscopic black holes, which is used to show that the black hole possesses an entropy of the order of its area. The principle on which this work is based also provides a possible explanation for the smallness of the cosmological constant, and for the quantum measurement problem, indicating that this is a promising avenue towards the merger of quantum mechanics and gravity.

T. P. Singh

2009-05-15T23:59:59.000Z

7

Science Journals Connector (OSTI)

Abstract A generation III+ Boiling Water Reactor (BWR) which relies on natural circulation has evolved from earlier BWR designs by incorporating passive safety features to improve safety and performance. Natural circulation allows the elimination of emergency injection pump and no operator action or alternating current (AC) power supply. The generation III+ BWR's passive safety systems include the Automatic Depressurization System (ADS), the Suppression Pool (SP), the Standby Liquid Control System (SLCS), the Gravity Driven Cooling System (GDCS), the Isolation Condenser System (ICS) and the Passive Containment Cooling System (PCCS). The ADS is actuated to rapidly depressurize the reactor leading to the GDCS injection. The large amount of water in the SP condenses steam from the reactor. The SLCS provides makeup water to the reactor. The GDCS injects water into the reactor by gravity head and provides cooling to the core. The ICS and the PCCS are used to remove the decay heat from the reactor. The objective of this paper is to analyze the response of passive safety systems under the Loss of Coolant Accident (LOCA). A GDCS Drain Line Break (GDLB) test has been conducted in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) which is scaled to represent the generation III+ BWR. The main results of PUMA GDLB test were that the reactor coolant level was well above the Top of Active Fuel (TAF) and the reactor containment pressure has remained below the design pressure. In particular, the containment maximum pressure (266 kPa) was 36% lower than the safety limit (414 kPa). The minimum collapsed water level (1.496 m) before the GDCS injection was 8% lower than the TAF (1.623 m) but it was ensured that two-phase water level was higher than the TAF with no core uncovery.

J. Lim; J. Yang; S.W. Choi; D.Y. Lee; S. Rassame; T. Hibiki; M. Ishii

2014-01-01T23:59:59.000Z

8

Gravity-induced electric polarisation near the Schwarzschild limit

Science Journals Connector (OSTI)

... no doubt produces extremely small consequences. But in a collapsed star lying near to its Schwarzschild limit the local value of g may be large enough to produce observable effects, ... in conjunction with a rapid rotation of the star3. Thus if we apply the usual Schwarzschild metric to a condensed object then the local value of the gravitational intensity on the ...

W. DAVIDSON; H. J. EFINGER

1974-05-31T23:59:59.000Z

9

Science Journals Connector (OSTI)

Abstract The increased electricity demands influenced by the recent industrial development make the electric power distribution system more comprehensive, and the risks are high to cause failures to steady state electric line due to the extended range of fault at the time of fault occurrence. Also, the high performance and the high precision electric appliances that sensitive to switching surge and fault current expose vulnerability of reduced life span and increased fault occurrence ratio. Therefore, this thesis analyzed the fault limiting characteristics by the fault types by applying the superconducting fault current limiter to the neutral line of the transformer in order to reduce the fault currents that flow such high performance appliances. A current transformer (CT) that detects the fault current in the simulated power distribution system, a switching control system that is self-developed and a transformer are used in constructing a circuit. When a fault occurs, the initial fault current is restricted by the superconducting fault current limiter and simultaneously detours the fault current by operating the SCR contact of the switching control system through the detection by CT. This thesis analyzed the limiting characteristics of the superconducting fault current limiter that are applied to the neutral line of the transformer by the fault types.

I.G. Im; H.S. Choi; B.I. Jung

2013-01-01T23:59:59.000Z

10

1 Absorption line shape recovery beyond the detection bandwidth limit: application to the Boltzmann of the influence of detection bandwidth properties on observed line shapes in laser absorption spectroscopy the Boltzmann constant (kB) [10, 11]. Based upon laser absorption spectroscopy in the linear regime

11

Science Journals Connector (OSTI)

The interaction between internal gravity waves and a squall line that developed early in the evolution of the 1977 Johnston flood event is studied based on available surface observations and a three-dimensional model simulation of the flood-...

Da-Lin Zhang; J. Michael Fritsch

1988-04-01T23:59:59.000Z

12

Relativeness in Quantum Gravity: Limitations and Frame Dependence of Semiclassical Descriptions

Consistency between quantum mechanical and general relativistic views of the world is a longstanding problem, which becomes particularly prominent in black hole physics. We develop a coherent picture addressing this issue by studying the quantum mechanics of an evolving black hole. After interpreting the Bekenstein-Hawking entropy as the entropy representing the degrees of freedom that are coarse-grained to obtain a semiclassical description from the microscopic theory of quantum gravity, we discuss the properties these degrees of freedom exhibit when viewed from the semiclassical standpoint. We are led to the conclusion that they show features which we call extreme relativeness and spacetime-matter duality---a nontrivial reference frame dependence of their spacetime distribution and the dual roles they play as the "constituents" of spacetime and as thermal radiation. We describe black hole formation and evaporation processes in distant and infalling reference frames, showing that these two properties allow u...

Nomura, Yasunori; Weinberg, Sean J

2014-01-01T23:59:59.000Z

13

Limit Theorems for the Discrete-Time Quantum Walk on a Graph with Joined Half Lines

We consider a discrete-time quantum walk $W_{t,\\kappa}$ at time $t$ on a graph with joined half lines $\\mathbb{J}_\\kappa$, which is composed of $\\kappa$ half lines with the same origin. Our analysis is based on a reduction of the walk on a half line. The idea plays an important role to analyze the walks on some class of graphs with \\textit{symmetric} initial states. In this paper, we introduce a quantum walk with an enlarged basis and show that $W_{t,\\kappa}$ can be reduced to the walk on a half line even if the initial state is \\textit{asymmetric}. For $W_{t,\\kappa}$, we obtain two types of limit theorems. The first one is an asymptotic behavior of $W_{t,\\kappa}$ which corresponds to localization. For some conditions, we find that the asymptotic behavior oscillates. The second one is the weak convergence theorem for $W_{t,\\kappa}$. On each half line, $W_{t,\\kappa}$ converges to a density function like the case of the one-dimensional lattice with a scaling order of $t$. The results contain the cases of quantum walks starting from the general initial state on a half line with the general coin and homogeneous trees with the Grover coin.

Kota Chisaki; Norio Konno; Etsuo Segawa

2010-09-07T23:59:59.000Z

14

Limits to Quantum Gravity Effects from Observations of TeV Flares in Active Galaxies

We have used data from the TeV gamma-ray flare associated with the active galaxy Markarian 421 observed on 15 May 1996 to place bounds on the possible energy-dependence of the speed of light in the context of an effective quantum gravitational energy scale. The possibility of an observable time dispersion in high energy radiation has recently received attention in the literature, with some suggestions that the relevant energy scale could be less than the Planck mass and perhaps as low as 10^16 GeV. The limits derived here indicate this energy scale to be in excess of 4x10^16 GeV at the 95% confidence level. To the best of our knowledge, this constitutes the first convincing limit on such phenomena in this energy regime.

S. D. Biller; A. C. Breslin; J. Buckley; M. Catanese; M. Carson; D. A. Carter-Lewis; M. F. Cawley; D. J. Fegan; J. Finley; J. A. Gaidos; A. M. Hillas; F. Krennrich; R. C. Lamb; R. Lessard; C. Masterson; J. E. McEnery; B. McKernan; P. Moriarty; J. Quinn; H. J. Rose; F. Samuelson; G. Sembroski; P. Skelton; T. C. Weekes

1998-10-13T23:59:59.000Z

15

Science Journals Connector (OSTI)

The coupling between tropical convection and zonally propagating gravity waves is assessed through Fourier analysis of high-resolution (3-hourly, 0.5°) satellite rainfall data. Results show the familiar enhancement in power along the dispersion ...

Stefan N. Tulich; George N. Kiladis

2012-10-01T23:59:59.000Z

16

A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

1984-10-19T23:59:59.000Z

17

A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

Cohen, Samuel A. (Hopewell, NJ); Hosea, Joel C. (Princeton, NJ); Timberlake, John R. (Allentown, NJ)

1986-01-01T23:59:59.000Z

18

The stability properties of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous arched magnetic structures found on the solar surface. The flux ropes studied here are magnetized arc discharges formed between two electrodes in the Magnetic Reconnection Experiment (MRX) [Yamada et al., Phys. Plasmas, 4, 1936 (1997)]. The three dimensional evolution of these flux ropes is monitored by a fast visible light framing camera, while their magnetic structure is measured by a variety of internal magnetic probes. The flux ropes are consistently observed to undergo large-scale oscillations as a result of an external kink instability. Using detailed scans of the plasma current, the guide field strength, and the length of the flux rope, we show that the threshold for kink stability is governed by the Kruskal-Shafranov limit for a flux rope that is held fixed at both ends (i.e., qa = 1).

E. Oz, C.E. Myers, M. Yamada, H. Ji, R.M.. Kulsrud and J. Xie

2011-07-19T23:59:59.000Z

19

Science Journals Connector (OSTI)

n Measure of specific gravity of petroleum and petroleum products, defined by the following equation: $$\\eqalign{{\\rm{API\\,\\,Gravity,\\,\\,degrees }}...

Jan W. Gooch

2011-01-01T23:59:59.000Z

20

Science Journals Connector (OSTI)

The gravity-induced flow of a magnetic fluid film down a vertical thin current-carrying cylindrical conductor is considered. The relative thickness of the film is small. A nonlinear equation is derived from a ...

V. M. Korovin

2009-10-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

21

We develop a topological theory of gravity with torsion where metric has a dynamical rather than a kinematical origin. This approach towards gravity resembles pre-geometrical approaches in which a fundamental metric does not exist, but the affine connection gives place to a local inertial structure. Such feature reminds us of Mach's principle, that assumes the inertial forces should have dynamical origin. Additionally, a Newtonian gravitational force is obtained in the non-relativistic limit of the theory.

Skirzewski, Aureliano

2014-01-01T23:59:59.000Z

22

We develop a topological theory of gravity with torsion where metric has a dynamical rather than a kinematical origin. This approach towards gravity resembles pre-geometrical approaches in which a fundamental metric does not exist, but the affine connection gives place to a local inertial structure. Such feature reminds us of Mach's principle, that assumes the inertial forces should have dynamical origin. Additionally, a Newtonian gravitational force is obtained in the non-relativistic limit of the theory.

Aureliano Skirzewski; Oscar Castillo-Felisola

2014-10-22T23:59:59.000Z

23

E-Print Network 3.0 - artificial gravity reveals Sample Search...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

line is required. This value is computed from the surface gravity... focuses on different error sources, which influence the gravity ... Source: Schuh, Harald - Institut fr...

24

Resummation of Massive Gravity

We construct four-dimensional covariant nonlinear theories of massive gravity which are ghost-free in the decoupling limit to all orders. These theories resume explicitly all the nonlinear terms of an effective field theory of massive gravity. We show that away from the decoupling limit the Hamiltonian constraint is maintained at least up to and including quartic order in nonlinearities, hence excluding the possibility of the Boulware-Deser ghost up to this order. We also show that the same remains true to all orders in a similar toy model.

Rham, Claudia de [Department de Physique Theorique, Universite de Geneve, 24 Quai E. Ansermet, CH-1211 Geneve (Switzerland); Gabadadze, Gregory [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York 10003 (United States); Tolley, Andrew J. [Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106 (United States)

2011-06-10T23:59:59.000Z

25

E-Print Network 3.0 - artificial gravity hope Sample Search Results

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Elements, 2003 Summary: spectrum, the ionization equilibrium could only be applied to derive upper limits on the gravity. We hope... on a universal gravity...

26

Science Journals Connector (OSTI)

API gravity [The standard American Petroleum Institute method for specifying the density of crude petroleum. The density in degrees API is 141.5/P – 131.5...] ? (Roh)Öldichte f in API-Graden

2014-08-01T23:59:59.000Z

27

The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL Primary Mission

The lunar gravity field and topography provide a way to probe the interior structure of the Moon. Prior to the Gravity Recovery and Interior Laboratory (GRAIL) mission, knowledge of the lunar gravity was limited mostly to ...

Konopliv, Alex S.

28

The recent observational data in cosmology seem to indicate that the universe is currently expanding in an accelerated way. An intriguing interpretation of these data is that they may just be signalling that Einstein's General Relativity is not the correct description of gravity when we consider distances of the order of the present horizon of the universe. In this thesis we consider two models which modify General Relativity at very large distances, the Cascading DGP and the dRGT massive gravity, and investigate their phenomenological viability. We start with a general introduction to standard cosmology and we introduce the late time acceleration problem and the cosmological constant problem. We then provide a pedagogical introduction to the DGP model, of which the Cascading DGP is an extension, and to the dRGT massive gravity. Concerning the Cascading DGP, we show that the thin limit of the 4D brane inside the (already thin) 5D brane is well defined, at least for the class of configurations that we consider, and confirm that gravity is regularized in these set-ups. We give a geometrical interpretation of the presence of the critical tension, and comment on the difference between the results in the literature and our results, which we support with a numerical calculation. Regarding the dRGT massive gravity, we focus on the branch of solutions in which the Vainshtein mechanism can occur. We determine analytically the number and properties of local solutions which exist asymptotically on large scales (but still below the gravitational Compton wavelength), and of local (inner) solutions which exist on small scales. We characterize exactly the properties of global solutions in every point of the phase space, and characterize precisely in which regions the Vainshtein mechanism takes place. We also provide numerical solutions which confirm our analysis.

Fulvio Sbisa'

2014-07-09T23:59:59.000Z

29

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al.,

Lake City Hot Springs Area (Warpinski, Et Al., Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

30

The recent observational data in cosmology seem to indicate that the universe is currently expanding in an accelerated way. An intriguing interpretation of these data is that they may just be signalling that Einstein's General Relativity is not the correct description of gravity when we consider distances of the order of the present horizon of the universe. In this thesis we consider two models which modify General Relativity at very large distances, the Cascading DGP and the dRGT massive gravity, and investigate their phenomenological viability. We start with a general introduction to standard cosmology and we introduce the late time acceleration problem and the cosmological constant problem. We then provide a pedagogical introduction to the DGP model, of which the Cascading DGP is an extension, and to the dRGT massive gravity. Concerning the Cascading DGP, we show that the thin limit of the 4D brane inside the (already thin) 5D brane is well defined, at least for the class of configurations that we consider...

Sbisà, Fulvio

2014-01-01T23:59:59.000Z

31

Quantum Field Theory & Gravity

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Theory & Gravity Quantum Field Theory & Gravity Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email...

32

Limited Lawn & Limited Commercial

Limited Lawn & Ornamental Limited Commercial Landscape Maintenance Review and Exams Limited for Commercial Landscape Maintenance Application: http://www.flaes.org/ pdf/lndspckt.pdf Limited Certification.floridatermitehelp.org or request by phone at 850-921-4177. Limited Lawn & Ornamental/Limited Commercial Landscape Maintenance

Watson, Craig A.

33

Limited Lawn & Limited Commercial

Limited Lawn & Ornamental Limited Commercial Landscape Maintenance Review and Exams Limited-921-4177. Limited Lawn & Ornamental/Limited Commercial Landscape Maintenance: Ornamental and Turf Pest Control (SM 7&O/Structural only). See web locations below for applications. Limited Certification for Commercial Landscape

Jawitz, James W.

34

This paper studies a generic fourth-order theory of gravity with Lagrangian density $f(R,R_c^2,R_m^2, \\mathscr{L}_m)$. By considering explicit $R^2$ dependence and imposing the "coherence condition" $f_{R^2}\\!=\\!f_{R_m^2}\\!=\\! -f_{R_c^2}/4$, the field equations of $f(R,R^2,R_c^2,R_m^2, \\mathscr{L}_m)$ gravity can be smoothly reduced to that of $f(R,\\mathcal{G},\\mathscr{L}_m)$ generalized Gauss-Bonnet gravity. We use Noether's conservation law to study the $f(\\mathcal{R}_1,\\mathcal{R}_2\\ldots,\\mathcal{R}_n,\\mathscr{L}_m)$ model with nonminimal coupling between $\\mathscr{L}_m$ and Riemannian invariants $ \\mathcal{R}_i$, and conjecture that the gradient of nonminimal gravitational coupling strength $\

Tian, David Wenjie

2014-01-01T23:59:59.000Z

35

Investigations in massive 3D gravity

Some interesting gravitational properties of the Bergshoeff-Hohm-Townsend model (massive 3D gravity), such as the presence of a short-range gravitational force in the nonrelativistic limit and the existence of an impact-parameter-dependent gravitational deflection angle, are studied. Interestingly enough, these phenomena have no counterpart in the usual Einstein 3D gravity. In order to better understand the two aforementioned gravitational properties, they are also analyzed in the framework of 3D higher-derivative gravity with the Einstein-Hilbert term with the 'wrong sign'.

Accioly, Antonio [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil); Helayeel-Neto, Jose; Morais, Jefferson; Turcati, Rodrigo [Laboratorio de Fisica Experimental (LAFEX), Centro Brasileiro de Pesquisas Fisicas (CBPF), Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil); Scatena, Eslley [Instituto de Fisica Teorica (IFT), Sao Paulo State University (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, Bloco II-Barra Funda, 01140-070, Sao Paulo, SP (Brazil)

2011-05-15T23:59:59.000Z

36

Solar System experiments do not yet veto modified gravity models

The dynamical equivalence between modified and scalar-tensor gravity theories is revisited and it is concluded that it breaks down in the limit to general relativity. A gauge-independent analysis of cosmological perturbations in both classes of theories lends independent support to this conclusion. As a consequence, the PPN formalism of scalar-tensor gravity and Solar System experiments do not veto modified gravity, as previously thought.

Valerio Faraoni

2006-07-05T23:59:59.000Z

37

The Universe Adventure - Gravity

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gravity: The Main Attraction Gravity: The Main Attraction Gravity Acts on All Matter Gravity's effect is apparent even at the largest scales: just as gravity keeps the Earth orbiting the sun, it holds these two irregular galaxies M32 and M110 in orbit around the larger Andromeda galaxy. In the late 1600s, the English mathematician Sir Isaac Newton gave the first scientific description of gravitation. Gravity is an attractive force existing between any two objects that have mass, causing them to accelerate towards each other. It is the weakest of the four fundamental forces but can act over great distances and is responsible for the formation of planets, stars, galaxies, and even larger scale structures such as groups and superclusters. Gravity is also the force that governs the motion of

38

Recently the Fermi GBM and LAT Collaborations reported their new observational data disfavoring quite a number of the quantum gravity theories, including the one suggesting the nonlinear (logarithmic) modification of a quantum wave equation. We show that the latter is still far from being ruled out: it is not only able to explain the new data but also its phenomenological implications turn out to be more vast (and more interesting) than one expected before.

Konstantin G. Zloshchastiev

2009-11-30T23:59:59.000Z

39

Balanced Atmospheric Response to Squall Lines

Science Journals Connector (OSTI)

When a Squall line propagates through the atmosphere, it not only excite transient gravity–inertia wave motion but also produces more permanent modifications to the large-scale balanced flow. Here we calculate this balanced response using the is ...

Wayne H. Schubert; Scott R. Fulton; Rolf F. A. Herttenstein

1989-08-01T23:59:59.000Z

40

Dec 7, 2013 ... Gravity Train Project. Same page in Romanian, Polish, and in French. Let us drill a straight tunnel from West Lafayette, IN to Paris, France:.

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

41

Particles as Wilson lines of gravitational field

Since the work of Mac-Dowell-Mansouri it is well known that gravity can be written as a gauge theory for the de Sitter group. In this paper we consider the coupling of this theory to the simplest gauge invariant observables that is, Wilson lines. The dynamics of these Wilson lines is shown to reproduce exactly the dynamics of relativistic particles coupled to gravity, the gauge charges carried by Wilson lines being the mass and spin of the particles. Insertion of Wilson lines breaks in a controlled manner the diffeomorphism symmetry of the theory and the gauge degree of freedom are transmuted to particles degree of freedom.

L. Freidel; J. Kowalski--Glikman; A. Starodubtsev

2006-07-04T23:59:59.000Z

42

Next steps in understanding the asymptotics of $3d$ quantum gravity

Based on a combinatorial approach and random matrix theory, we show a central limit theorem that gives important insight into causally triangulated $3d$ quantum gravity.

Maria Simonetta Bernabei; Horst Thaler

2014-12-10T23:59:59.000Z

43

Gravity assist maneuvers of a spacecraft in Jupiter system

Science Journals Connector (OSTI)

Low cost tours in the Jovian system using gravity assist maneuvers near its large bodies are considered. Limited dynamic capabilities of the application of such maneuvers require multiple flybys of these bodies. Clearly, it is important to regularly ...

Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin

2014-05-01T23:59:59.000Z

44

Gravity assist maneuvers of a spacecraft in Jupiter system

Science Journals Connector (OSTI)

Low cost tours in the Jovian system using gravity assist maneuvers near its large bodies are considered. Limited dynamic capabilities of the application of such maneuvers require multiple flybys of these bodie...

Yu. F. Golubev; A. V. Grushevskii…

2014-05-01T23:59:59.000Z

45

The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx}0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

Prost, Lionel Robert

2007-02-14T23:59:59.000Z

46

Counterterms in Lovelock Gravity

In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences in the action of Lovelock gravity can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of the black hole solutions of third order Lovelock gravity. We calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. We, also, find that in contrast to Einstein gravity in which there ex...

Mehdizadeh, M R; Zangeneh, M Kord

2015-01-01T23:59:59.000Z

47

Gravity perturbed Crapper waves

Science Journals Connector (OSTI)

...waves are known to have multi-valued height. Using...gravity-capillary waves with multi-valued height. The...of single-valued and multi-valued travelling waves...absence of gravity, a family of exact solutions is...elliptic functions. Building upon the work by Tanveer...

2014-01-01T23:59:59.000Z

48

Selection Rules for the Nonlinear Interactions of Internal Gravity Waves and Inertia-Gravity Waves

Internal Gravity Waves . . . . . . . . . . . . . . 3.2.1 Twodimensional inertia-gravity wave physics . . . . . . . . .Three dimensional inertia-gravity wave physics . . . . . .

Jiang, Chung-Hsiang

2010-01-01T23:59:59.000Z

49

Quantum gravity effects in the Kerr spacetime

We analyze the impact of the leading quantum gravity effects on the properties of black holes with nonzero angular momentum by performing a suitable renormalization group improvement of the classical Kerr metric within quantum Einstein gravity. In particular, we explore the structure of the horizons, the ergosphere, and the static limit surfaces as well as the phase space available for the Penrose process. The positivity properties of the effective vacuum energy-momentum tensor are also discussed and the 'dressing' of the black hole's mass and angular momentum are investigated by computing the corresponding Komar integrals. The pertinent Smarr formula turns out to retain its classical form. As for their thermodynamical properties, a modified first law of black-hole thermodynamics is found to be satisfied by the improved black holes (to second order in the angular momentum); the corresponding Bekenstein-Hawking temperature is not proportional to the surface gravity.

Reuter, M. [Institute of Physics, University of Mainz, Staudingerweg 7, D-55099 Mainz (Germany); Tuiran, E. [Departamento de Fisica, Universidad del Norte, Km 5 via a Puerto Colombia, AA-1569 Barranquilla (Colombia)

2011-02-15T23:59:59.000Z

50

Science Journals Connector (OSTI)

...requirement of cold dark matter (CDM...gravity|cosmology|dark energy| 1. Introduction...cosmology). The discovery that the expansion...the form of cold dark matter (CDM...and perhaps dark energy (DE) [22-26...

2011-01-01T23:59:59.000Z

51

Effects of 'Limited Product Line Audits'

changes required in piping or storage • Replace failed compressor with new similar unit – 5% gain in efficiency. What Kind of Financial Results Can Be Expected from a Professional Compressed Air System Audit? Compressed air is a very... inefficient transfer of energy. The minimum ratio in the normal 100- psig class air system requires about 8 hp of electrical energy to create 1 hp of work with compressed air. Broad experience has shown us processes that require from 15 hp up to 70 hp...

Van Ormer, H.

2006-01-01T23:59:59.000Z

52

The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described.

Gallegos, F.R.

1996-06-01T23:59:59.000Z

53

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

54

Gravity Effects on Antimatter in the Standard-Model Extension

The gravitational Standard-Model Extension (SME) is the general field-theory based framework for the analysis of CPT and Lorentz violation. In this work we summarize the implications of Lorentz and CPT violation for antimatter gravity in the context of the SME. Implications of various attempts to place indirect limits on anomalous antimatter gravity are considered in the context of SME-based models.

Tasson, Jay D

2015-01-01T23:59:59.000Z

55

Gasoline and Diesel Fuel Update (EIA)

5 60 60 131 5 . . The higher the API gravity, the lighter the compound. Light crudes generally exceed 38 degrees API and heavy crudes are commonly labeled as all crudes with an API gravity of 22 degrees or below. Intermediate crudes fall in the range of 22 degrees to 38 degrees API gravity. ASTM: American Society for Testing and Materials. Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on fin- ished aviation gasoline. Barrel: A volumetric unit of measure for crude oil and petroleum products equivalent to 42 U.S. gallons. Bulk Sales: Wholesale sales of gasoline in individual

56

Gasoline and Diesel Fuel Update (EIA)

60 60 1315 . . The higher the API gravity, the lighter the compound. Light crudes generally exceed 38 degrees API and heavy crudes are commonly labeled as all crudes with an API gravity of 22 degrees or below. Intermediate crudes fall in the range of 22 degrees to 38 degrees API gravity. ASTM: American Society for Testing and Materials. Aviation Gasoline (Finished): A complex mixture of relatively volatile hydrocarbons with or without small quantities of additives, blended to form a fuel suitable for use in aviation reciprocating engines. Fuel specifi- cations are provided in ASTM Specification D 910 and Military Specification MIL-G-5572. Note: Data on blending components are not counted in data on fin- ished aviation gasoline. Barrel: A volumetric unit of measure for crude oil and petroleum products equivalent to 42 U.S. gallons. Bulk Sales: Wholesale sales of gasoline in individual

57

Photon and graviton mass limits

We review past and current studies of possible long-distance, low-frequency deviations from Maxwell electrodynamics and Einstein gravity. Both have passed through three phases: (1) Testing the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, and (3) Considering more degrees of freedom, allowing mass while preserving gauge or general-coordinate invariance. For electrodynamics there continues to be no sign of any deviation. Since our previous review the lower limit on the photon Compton wavelength (associated with weakening of electromagnetic fields in vacuum over large distance scale) has improved by four orders of magnitude, to about one astronomical unit. Rapid current progress in astronomical observations makes it likely that there will be further advances. These ultimately could yield a bound exceeding galactic dimensions, as has long been contemplated. Meanwhile, for gravity there have been strong arguments about even the concept of a graviton rest mass. At the same time there are striking observations, commonly labeled 'dark matter' and 'dark energy' that some argue imply modified gravity. This makes the questions for gravity much more interesting. For dark matter, which involves increased attraction at large distances, any explanation by modified gravity would be qualitatively different from graviton mass. Because dark energy is associated with reduced attraction at large distances, it might be explained by a graviton-mass-like effect.

Nieto, Michael [Los Alamos National Laboratory; Goldhaber Scharff, Alfred [SUNY

2008-01-01T23:59:59.000Z

58

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Line Help Line Ombuds Help Line Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the Laboratory. Contact Ombuds Office (505)665-2837 Email Help Line (505) 667-9370 Fax (505) 667-3119 Map & Hours Help Line: (505) 667-9370 As an option to visiting the Ombuds office, we provide service through a telephone Help Line and email. The telephone Help Line is useful for individuals who have concerns and want advice or referral while preserving confidentiality and anonymity. Callers may remain anonymous and the Help Line does not have caller ID or other methods of identifying callers. The Help Line maintains the same level of confidentiality and neutrality as the other Ombuds services. The Ombuds Help Line is not for reporting emergencies or officially

59

The Newtonian limit at intermediate energies

We study the metric solutions for the gravitational equations in Modified Gravity Models (MGMs). In models with negative powers of the scalar curvature, we show that the Newtonian Limit (NL) is well defined as a limit at intermediate energies, in contrast with the usual low energy interpretation. Indeed, we show that the gravitational interaction is modified at low densities or low curvatures.

J. A. R. Cembranos

2005-07-09T23:59:59.000Z

60

Phenomenological Quantum Gravity

Planck scale physics represents a future challenge, located between particle physics and general relativity. The Planck scale marks a threshold beyond which the old description of spacetime breaks down and conceptually new phenomena must appear. In the last years, increased efforts have been made to examine the phenomenology of quantum gravity, even if the full theory is still unknown.

S. Hossenfelder

2006-11-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

61

CORONAL EMISSION LINES AS THERMOMETERS

Coronal emission-line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

Judge, Philip G., E-mail: judge@ucar.ed [High Altitude Observatory, National Center for Atmospheric Research , P.O. Box 3000, Boulder CO 80307-3000 (United States)

2010-01-10T23:59:59.000Z

62

Coronal emission lines as thermometers

Coronal emission line intensities are commonly used to measure electron temperatures using emission measure and/or line ratio methods. In the presence of systematic errors in atomic excitation calculations and data noise, the information on underlying temperature distributions is fundamentally limited. Increasing the number of emission lines used does not necessarily improve the ability to discriminate between different kinds of temperature distributions.

Judge, Philip G

2009-01-01T23:59:59.000Z

63

Lorentz violation and higher-derivative gravity

In this work, we analyze a gravity model with higher derivatives including a CPT-even Lorentz-violating term. In principle, the model could be a low-energy limit of a Lorentz-invariant theory presenting the violation of Lorentz symmetry as a consequence of a spontaneous symmetry-breaking mechanism if a decoupling between the metric and the Nambu-Goldstone modes is assumed. We have set up a convenient operator basis for the expansion of wave operators for symmetric second-rank tensors in the presence of a background vector. By using this set of operators, the particle content is obtained, and its consistency, regarding the conditions for stability and unitarity, is discussed. We conclude that this extra Lorentz noninvariant contribution is unable to address the problems of stability and unitarity of higher-derivative gravity models.

Hernaski, C

2014-01-01T23:59:59.000Z

64

A bulk viscosity is introduced in the formalism of modified gravity. It is shown that, on the basis of a natural scaling law for the viscosity, a simple solution can be found for quantities such as the Hubble parameter and the energy density. These solutions may incorporate a viscosity-induced Big Rip singularity. By introducing a phase transition in the cosmic fluid, the future singularity can nevertheless in principle be avoided.

Iver Brevik

2012-11-12T23:59:59.000Z

65

Unimodular Gravity and Averaging

The question of the averaging of inhomogeneous spacetimes in cosmology is important for the correct interpretation of cosmological data. In this paper we suggest a conceptually simpler approach to averaging in cosmology based on the averaging of scalars within unimodular gravity. As an illustration, we consider the example of an exact spherically symmetric dust model, and show that within this approach averaging introduces correlations (corrections) to the effective dynamical evolution equation in the form of a spatial curvature term.

A. Coley; J. Brannlund; J. Latta

2011-02-16T23:59:59.000Z

66

Gravity, Dimension, Equilibrium, & Thermodynamics

Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.

Jerome Perez

2006-03-30T23:59:59.000Z

67

Lorentz Invariance Violation in Modified Gravity

We consider an environmentally dependent violation of Lorentz invariance in scalar-tensor models of modified gravity where General Relativity is retrieved locally thanks to a screening mechanism. We find that fermions have a modified dispersion relation and would go faster than light in an anisotropic and space-dependent way along the scalar field lines of force. Phenomenologically, these models are tightly restricted by the amount of Cerenkov radiation emitted by the superluminal particles, a constraint which is only satisfied by chameleons. Measuring the speed of neutrinos emitted radially from the surface of the earth and observed on the other side of the earth would probe the scalar field profile of modified gravity models in dense environments. We argue that the test of the equivalence principle provided by the Lunar ranging experiment implies that a deviation from the speed of light, for natural values of the coupling scale between the scalar field and fermions, would be below detectable levels, unless gravity is modified by camouflaged chameleons where the field normalisation is environmentally dependent.

Philippe Brax

2012-02-03T23:59:59.000Z

68

Test of relativistic gravity for propulsion at the Large Hadron Collider

A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated 'antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s^2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

Franklin Felber

2009-10-06T23:59:59.000Z

69

Perturbations of Nested Branes With Induced Gravity

We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the "ribbon" 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.

Fulvio Sbisa'; Kazuya Koyama

2014-06-06T23:59:59.000Z

70

Gravity Methods | Open Energy Information

Gravity Methods Gravity Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Gravity Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques NVN-084630 CU Vulcan Energy Patua Geothermal Area BLM Nevada State Office BLM Winnemucca District Office BLM Humboldt River Field Office BLM BLM Geothermal/Exploration Gravity Methods

71

Geometric scalar theory of gravity

We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell'Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)

2013-06-01T23:59:59.000Z

72

We consider the equation of motion in the gravity sector that arises from the non-linear realisation of the semi-direct product of E11 and its first fundamental representation, denoted by l1, in four dimensions. This equation is first order in derivatives and at low levels relates the usual field of gravity to a dual gravity field. When the generalised space-time is restricted to be the usual four dimensional space-time we show that this equation does correctly describe Einstein's theory at the linearised level. We also comment on previous discussions of dual gravity.

Peter West

2014-11-04T23:59:59.000Z

73

We consider the equation of motion in the gravity sector that arises from the non-linear realisation of the semi-direct product of E11 and its first fundamental representation, denoted by l1, in four dimensions. This equation is first order in derivatives and at low levels relates the usual field of gravity to a dual gravity field. When the generalised space-time is restricted to be the usual four dimensional space-time we show that this equation does correctly describe Einstein's theory at the linearised level. We also comment on previous discussions of dual gravity.

West, Peter

2014-01-01T23:59:59.000Z

74

Limiting Gravity Waves in Water of Finite Depth

Science Journals Connector (OSTI)

...Consequently the accuracy even of recent solutions on modern computers can be improved upon, except at the deep-water end of the...This term is now supplemented by a second term, proposed by Grant in a study of the flow near the crest. Solutions comprising...

1981-01-01T23:59:59.000Z

75

Differentiating dark energy and modified gravity with galaxy redshift surveys

Science Journals Connector (OSTI)

The observed cosmic acceleration today could be due to an unknown energy component (dark energy), or a modification to general relativity (modified gravity). If dark energy models and modified gravity models are required to predict the same cosmic expansion history H(z), they will predict different growth rates for cosmic large scale structure, fg(z). If gravity is not modified, the measured H(z) leads to a unique prediction for fg(z), fgH(z), if dark energy and dark matter are separate. Comparing fgH(z) with the measured fg(z) provides a transparent and straightforward test of gravity. We show that a simple ?2 test provides a general figure of merit for our ability to distinguish between dark energy and modified gravity given the measured H(z) and fg(z). We find that a magnitude-limited NIR galaxy redshift survey covering >10?000 (deg)2 and a redshift range of 0.5zH(z) to 1–2% accuracy via baryon acoustic oscillation measurements, and fg(z) to the accuracy of a few per cent via the measurement of redshift-space distortions and the bias factor which describes how light traces mass. We show that if the H(z) data are fitted by both a DGP gravity model and an equivalent dark energy model that predict the same H(z), a survey area of 11?931 (deg)2 is required to rule out the DGP gravity model at the 99.99% confidence level. It is feasible for such a galaxy redshift survey to be carried out by the next generation space missions from NASA and ESA, and it will revolutionize our understanding of the universe by differentiating between dark energy and modified gravity.

Yun Wang

2008-01-01T23:59:59.000Z

76

The study of anisotropies in the Cosmic Microwave Background radiation is progressing at a phenomenal rate, both experimentally and theoretically. These anisotropies can teach us an enormous amount about the way that fluctuations were generated and the way they subsequently evolved into the clustered galaxies which are observed today. In particular, on sub-degree scales the rich structure in the anisotropy spectrum is the consequence of gravity-driven acoustic oscillations occurring before the matter in the universe became neutral. The frozen-in phases of these sound waves imprint a dependence on many cosmological parameters, that we may be on the verge of extracting.

Douglas Scott; Martin White

1995-05-22T23:59:59.000Z

77

Fluid Gravity Engineering Rocket motor flow analysis

Fluid Gravity Engineering Capability Â· Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

78

Reduced models for quantum gravity

The preceding talks given at this conference have dealt mainly with general ideas for, main problems of and techniques for the task of quantizing gravity canonically. Since one of the major motivations to arrange for this meeting was that it should serve as a beginner's introduction to canonical quantum gravity, we regard it as important to demonstrate the usefulness of the formalism by means of applying it to simplified models of quantum gravity, here formulated in terms of Ashtekar's new variables. From the various, completely solvable, models that have been discussed in the literature we choose those that we consider as most suitable for our pedagogical reasons, namely 2+1 gravity and the spherically symmetric model. The former model arises from a dimensional, the latter from a Killing reduction of full 3+1 gravity. While 2+1 gravity is usually treated in terms of closed topologies without boundary of the initial data hypersurface, the toplogy for the spherically symmetric system is chosen to be asymptotically flat. Finally, 2+1 gravity is more suitably quantized using the loop representation while spherically symmetric gravity is easier to quantize via the self-dual representation. Accordingly, both types of reductions, both types of topologies and both types of representations that are mainly employed in the literature in the context of the new variables come into practice. What makes the discussion especially clear is the fact that for both models the reduced phase space turns out to be finitely dimensional.

T. Thiemann

1999-10-04T23:59:59.000Z

79

We present numerical simulations of penetrative convection and gravity wave excitation in the Sun. Gravity waves are self-consistently generated by a convective zone overlying a radiative interior. We produce power spectra for gravity waves in the radiative region as well as estimates for the energy flux of gravity waves below the convection zone. We calculate a peak energy flux in waves below the convection zone to be three orders of magnitude smaller than previous estimates for m=1. The simulations show that the linear dispersion relation is a good approximation only deep below the convective-radiative boundary. Both low frequency propagating gravity waves as well as higher frequency standing modes are generated; although we find that convection does not continually drive the standing g-mode frequencies.

Tamara M. Rogers; Gary A. Glatzmaier

2005-08-25T23:59:59.000Z

80

Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity

Here a mathematically rigorous framework is developed for deriving new reduced simplified dynamical equations for geophysical flows with arbitrary potential vorticity interacting with fast gravity waves. The examples include the rotating Boussinesq and rotating shallow water equations in the quasigeostrophic limit with vanishing Rossby number. For the spatial periodic case the theory implies that the quasi-geostrophic equations are valid limiting equations in the weak topology for arbitrary initial data. Furthermore, simplified reduced equations are developed for the fashion in which the vortical waves influence the gravity waves through averaging over specific gravity wave/vortical resonances. 18 refs.

Embid, P.F. [Princeton Univ., NJ (United States); Majda, A.J. [New York Univ., New York, NY (United States)

1996-12-31T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

81

Extended Ho?ava gravity and Einstein-aether theory

Science Journals Connector (OSTI)

Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR limit of the extension of Ho?ava gravity proposed by Blas, Pujolàs and Sibiryakov. Hypersurface orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence numerous results already obtained for Einstein-aether theory carry over.

Ted Jacobson

2010-05-19T23:59:59.000Z

82

Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area.

Barrows, L.J.; Fett, J.D.

1983-04-01T23:59:59.000Z

83

CP violation and gravity as the weakest force

We argue that CP violation has rather dramatic impact on the "gravity as the weakest force" conjecture. Namely we find that new ultraviolet scale must be $\\Lambda \\lesssim \\theta g^3 M_P$, where $\\theta$ is an effective parameter describing CP violation and $g$ is the gauge coupling constant. The bound implies that CP-conserving limit is discontinuous, and possibly indicates that the class of effective theories with strict CP conservation is inconsistent with a fundamental theory incorporating quantum gravity. At the same time, the mass hierarchy problem can be explained due to the smallness of the CP violation, $\\theta \\sim 10^{-15}$ or so.

Archil Kobakhidze

2008-07-03T23:59:59.000Z

84

Mud return line connector apparatus

The preferred and illustrated embodiment is a connector adapted to be joined above a blowout preventer and below the rotary table of a drilling rig. It collects the annular flow of returned drilling mud and directs mud to an incorporated, radially directed connective nipple. It enables the blowout preventer to be adjusted in location relative to the drilling rig and further accommodates a variable level of drilling mud in the annular space. The radial nipple connects with a mud line extending at some radial direction with a slope causing the mud to flow by gravity from the annular space to remote located mud tanks.

Ward, B.N.

1981-07-07T23:59:59.000Z

85

Differentiating dark energy and modified gravity with galaxy redshift surveys

The observed cosmic acceleration today could be due to an unknown energy component (dark energy), or a modification to general relativity (modified gravity). If dark energy models and modified gravity models are required to predict the same cosmic expansion history H(z), they will predict different growth rate for cosmic large scale structure, f_g(z)=d\\ln \\delta/d\\ln a (\\delta=(\\rho_m-\\bar{\\rho_m})/\\bar{\\rho_m}), a is the cosmic scale factor). If gravity is not modified, the measured H(z) leads to a unique prediction for f_g(z), f_g^H(z). Comparing f_g^H(z) with the measured f_g(z) provides a transparent and straightforward test of gravity. We show that a simple \\chi^2 test provides a general figure-of-merit for our ability to distinguish between dark energy and modified gravity given the measured H(z) and f_g(z). We study a magnitude-limited NIR galaxy redshift survey covering >10,000 (deg)^2 and the redshift range of 0.5dark energy model that predict the same expansion history, a survey area of 11,931 (deg)^2 is required to rule out the DGP gravity model at the 99.99% confidence level. It is feasible for such a galaxy redshift survey to be carried out by the next generation space missions from NASA and ESA, and it will revolutionize our understanding of the universe by differentiating between dark energy and modified gravity.

Yun Wang

2007-10-21T23:59:59.000Z

86

Broader source: Energy.gov [DOE]

Dose Limits ERAD (Question Posted to ERAD in May 2012) Who do you define as a member of the public for the onsite MEI? This question implies that there may be more than one maximally exposed individual (MEI), one on-site and one off-site, when demonstrating compliance with the Public Dose Limit of DOE Order 458.1. Although all potential MEIs should be considered and documented, as well as the calculated doses and pathways considered, the intent of DOE Order 458.1 is in fact to ultimately identify only one MEI, a theoretical individual who could be either on-site or off-site.

87

Towards a new approach to quantum gravity phenomenology

The idea that quantum gravity manifestations would be associated with a violation of Lorentz invariance is very strongly bounded and faces serious theoretical challenges. This leads us to consider an alternative line of thought for such phenomenological search. We discuss the underlying viewpoint and briefly mention its possible connections with current theoretical ideas. We also outline the challenges that the experimental search of the effects would seem to entail.

Alejandro Corichi; Daniel Sudarsky

2005-05-17T23:59:59.000Z

88

Unscreening modified gravity in the matter power spectrum

Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k Solar System tests or distance indicators in unscreened dwarf galaxies.

Lucas Lombriser; Fergus Simpson; Alexander Mead

2015-01-20T23:59:59.000Z

89

Unscreening modified gravity in the matter power spectrum

Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k < 0.3 h...

Lombriser, Lucas; Mead, Alexander

2015-01-01T23:59:59.000Z

90

Gravity Techniques | Open Energy Information

Gravity Techniques Gravity Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

91

Science Journals Connector (OSTI)

Figure 1. A 46-year-old woman with metastatic sarcoma who had been treated with five cycles of doxorubicin, ifosfamide, and mesna chemotherapy presented with two symmetrical, horizontal white lines on all of her fingernails but not on her toenails. A diagnosis of ...

Morrison-Bryant M.; Gradon J.D.

2007-08-30T23:59:59.000Z

92

Science Journals Connector (OSTI)

Figure 1. A 62-year-old woman received six cycles of docetaxel chemotherapy during a six-month period for recurrent metastatic breast cancer. She had completed treatment four weeks before this photograph was taken. Six evenly spaced, transverse lines were noted on ...

Mortimer N.J.; Mills J.

2004-10-21T23:59:59.000Z

93

Multiple Ising Spins Coupled to 2d Quantum Gravity

We study a model in which p independent Ising spins are coupled to 2d quantum gravity (in the form of dynamical planar phi-cubed graphs). Consideration is given to the p tends to infinity limit in which the partition function becomes dominated by certain graphs; we identify most of these graphs. A truncated model is solved exactly providing information about the behaviour of the full model in the limit of small beta. Finally, we derive a bound for the critical value of the coupling constant, beta_c and examine the magnetization transition in the limit p tends to zero.

M. G. Harris; J. F. Wheater

1994-04-28T23:59:59.000Z

94

Parametrized Post-Newtonian Limit of Teleparallel Dark Energy Model

We study the post-Newtonian limit in the teleparallel equivalent of General Relativity with a scalar field which non-minimally couples to gravity. The metric perturbation is obtained from the vierbein field expansion with respect to the Minkowski background. Due to the structure of the teleparallel gravity Lagrangian, the potential of the scalar field shows no effect to the parametrized post-Newtonian parameters, and compatible results with Solar System observations are found.

Jung-Tsung Li; Yi-Peng Wu; Chao-Qiang Geng

2013-12-16T23:59:59.000Z

95

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEAM LINE BEAM LINE 45 W ILHELM ROENTGEN'S INITIAL DISCOVERY of X-radiation in 1895 led immediately to practical applications in medicine. Over the next few decades X rays proved to be an invaluable tool for the investigation of the micro-world of the atom and the development of the quantum theory of matter. Almost a century later, telescopes designed to detect X-radiation are indispensable for understanding the structure and evolution of the macro-world of stars, galaxies, and the Universe as a whole. The X-Ray Universe by WALLACE H. TUCKER X-ray images of the Universe are strikingly different from the usual visible-light images. 46 SUMMER 1995 did not think: I investigated." Undeterred by NASA's rejection of a proposal to search for cosmic X-radiation, Giacconi persuaded the

96

Transmission line capital costs

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

97

Broader source: Energy.gov (indexed) [DOE]

Fault Fault Current Limiters Superconducting & Solid-state Power Equipment Office of Electricity Delivery and Energy Reliability www.oe.energy.gov Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power What are FCLs? A fault is an unintentional short circuit, or partial short-circuit, in an electric circuit. A variety of factors such as lightning, downed power lines, or crossed power lines cause faults. During a fault, excessive current-called fault current- flows through the electrical system often resulting in a failure of one section of that system by causing a

98

Perturbations of Nested Branes With Induced Gravity

We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set...

Sbisa', Fulvio

2014-01-01T23:59:59.000Z

99

Analogue model for quantum gravity phenomenology

So called "analogue models" use condensed matter systems (typically hydrodynamic) to set up an "effective metric" and to model curved-space quantum field theory in a physical system where all the microscopic degrees of freedom are well understood. Known analogue models typically lead to massless minimally coupled scalar fields. We present an extended "analogue space-time" programme by investigating a condensed-matter system - in and beyond the hydrodynamic limit - that is in principle capable of simulating the massive Klein-Gordon equation in curved spacetime. Since many elementary particles have mass, this is an essential step in building realistic analogue models, and an essential first step towards simulating quantum gravity phenomenology. Specifically, we consider the class of two-component BECs subject to laser-induced transitions between the components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. Furthermore our model suggests constraints on quantum gravity phenomenology in terms of the "naturalness problem" and "universality issue".

Silke Weinfurtner; Stefano Liberati; Matt Visser

2005-11-18T23:59:59.000Z

100

Observations of gravitational systems agree well with the predictions of general relativity (GR); however, to date we have only tested gravity in the weak-field limit. In the next few years, observational advances may make ...

Vigeland, Sarah Jane

2012-01-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

101

Torsion-Gravity for Dirac fields and their effective phenomenology

We will consider the torsional completion of gravity for a background filled with Dirac matter fields, studying the weak-gravitational non-relativistic approximation, in view of an assessment about their effective phenomenology: we discuss how the torsionally-induced non-linear interactions among fermion fields in this limit are compatible with all experiments, and remarks on the role of torsion to suggest new physics are given.

Luca Fabbri

2014-09-01T23:59:59.000Z

102

Three-graviton vertex function in thermal quantum gravity

Science Journals Connector (OSTI)

The high-temperature limit of the three-graviton vertex function is studied in thermal quantum gravity, to one-loop order. The leading (T4) contributions arising from internal gravitons are calculated and shown to be twice the ones associated with internal scalar particles, in correspondence with the two helicity states of the graviton. The gauge invariance of this result follows as a consequence of the Ward and Weyl identities obeyed by the thermal loops, which are verified explicitly.

F. T. Brandt and J. Frenkel

1993-05-15T23:59:59.000Z

103

Science Journals Connector (OSTI)

We explore the space of static solutions of the recently discovered three-dimensional “new massive gravity” (NMG), allowing for either sign of the Einstein-Hilbert term and a cosmological term parametrized by a dimensionless constant ?. For ?=-1 we find black hole solutions asymptotic (but not isometric) to the unique (anti) de Sitter [(A)dS] vacuum, including extremal black holes that interpolate between this vacuum and (A)dS2×S1. We also investigate unitarity of linearized NMG in (A)dS vacua. We find unitary theories for some dS vacua, but (bulk) unitarity in AdS implies negative central charge of the dual conformal field theories (CFT), except for ?=3 where the central charge vanishes and the bulk gravitons are replaced by “massive photons.” A similar phenomenon is found in the massless limit of NMG, for which the linearized equations become equivalent to Maxwell’s equations.

Eric A. Bergshoeff; Olaf Hohm; Paul K. Townsend

2009-06-26T23:59:59.000Z

104

Designing surveys for tests of gravity

Science Journals Connector (OSTI)

...Bean and Andrew Taylor Designing surveys for tests of gravity Bhuvnesh Jain * * bjain@physics...that the observational programme developed to test dark energy needs to be augmented to capture new tests of gravity on astrophysical scales. Several...

2011-01-01T23:59:59.000Z

105

Null tetrads are shown to be a valuable tool in teleparallel theories of modified gravity. We use them to prove that Kerr geometry remains a solution for a wide family of f(T) theories of gravity.

Cecilia Bejarano; Rafael Ferraro; María José Guzmán

2014-12-01T23:59:59.000Z

106

A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And

Strategy For Geothermal Exploration With Emphasis On Gravity And Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Details Activities (4) Areas (2) Regions (0) Abstract: As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources. The residual

107

Science Journals Connector (OSTI)

We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.

Philippe Brax and Anne-Christine Davis

2012-01-10T23:59:59.000Z

108

Serendipitous discoveries in nonlocal gravity theory

Science Journals Connector (OSTI)

We present a class of generally covariant nonlocal gravity models which have a flat-space general relativistic limit and also possess a stable de Sitter or anti-de Sitter (AdS) background with an arbitrary value of its cosmological constant. The nonlocal action of the theory is formulated in the Euclidean signature spacetime and is understood as an approximation to the quantum effective action (generating functional of one-particle irreducible diagrams) originating from fundamental quantum gravity theory. Using the known relation between the Schwinger-Keldysh technique for quantum expectation values and the Euclidean quantum field theory we derive from this action the causal effective equations of motion for mean value of the metric field in the physical Lorentzian-signature spacetime. Thus we show that the (A)dS background of the theory carries as free propagating modes massless gravitons having two polarizations identical to those of the Einstein theory with a cosmological term. The on-shell action of the theory is vanishing both for the flat-space and (A)dS backgrounds which play the role of stable vacua underlying, respectively, the ultraviolet and infrared phases of the theory. We also obtain linearized gravitational potentials of compact matter sources and show that in the infrared (A)dS phase their effective gravitational coupling Geff can be essentially different from the Newton gravitational constant GN of the short-distance general relativistic phase. When Geff?GN the (A)dS phase can be regarded as a strongly coupled infrared modification of Einstein theory not only describing the dark energy mechanism of cosmic acceleration but also simulating the dark matter phenomenon by enhanced gravitational attraction at long distances.

A. O. Barvinsky

2012-05-09T23:59:59.000Z

109

Gravity monitoring of CO2 movement during sequestration: Model studies

We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.

Gasperikova, E.; Hoversten, G.M.

2008-07-15T23:59:59.000Z

110

Cloud of strings for radiating black holes in Lovelock gravity

We present exact spherically symmetric null dust solutions in the third order Lovelock gravity with a string cloud background in arbitrary $N$ dimensions,. This represents radiating black holes and generalizes the well known Vaidya solution to Lovelock gravity with a string cloud in the background. We also discuss the energy conditions and horizon structures, and explicitly bring out the effect of the string clouds on the horizon structure of black hole solutions for the higher dimensional general relativity and Einstein-Gauss-Bonnet theories. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms and/or background string clouds completely changes the structure of the horizon and this may lead to a naked singularity. We recover known spherically symmetric radiating models as well as static black holes in the appropriate limits.

Sushant G. Ghosh; Sunil D. Maharaj

2014-09-28T23:59:59.000Z

111

Science Journals Connector (OSTI)

We define a simplified version of Regge quantum gravity where the link lengths can take on only two possible values, both always compatible with the triangle inequalities. This is therefore equivalent to a model of Ising spins living on the links of a regular lattice with somewhat complicated, yet local interactions. The measure corresponds to the natural sum over all 2?links configurations, and numerical simulations can be efficiently implemented by means of look-up tables. In three dimensions we find a peak in the ‘‘curvature susceptibility’’ which grows with increasing system size. The value of the corresponding critical exponent appears to vary with the cosmological constant ?, agreeing with Regge gravity for at least one value of ?. However, the curvature does not go to zero at the transition.

Tom Fleming; Mark Gross; Ray Renken

1994-12-15T23:59:59.000Z

112

Dynamical 3-Space: Emergent Gravity

The laws of gravitation devised by Newton, and by Hilbert and Einstein, have failed many experimental and observational tests, namely the bore hole g anomaly, flat rotation curves for spiral galaxies, supermassive black hole mass spectrum, uniformly expanding universe, cosmic filaments, laboratory G measurements, galactic EM bending, precocious galaxy formation,.. The response has been the introduction of the new epicycles: ``dark matter", ``dark energy", and others. To understand gravity we must restart with the experimental discoveries by Galileo, and following a heuristic argument we are led to a uniquely determined theory of a dynamical 3-space. That 3-space exists has been missed from the beginning of physics, although it was 1st directly detected by Michelson and Morley in 1887. Uniquely generalising the quantum theory to include this dynamical 3-space we deduce the response of quantum matter and show that it results in a new account of gravity, and explains the above anomalies and others. The dynamical...

Cahill, Reginald T

2011-01-01T23:59:59.000Z

113

Science Journals Connector (OSTI)

We study a 5d gravity theory with a warped metric and show that two N=2 supersymmetric quantum-mechanical systems are hidden in the 4d spectrum. The supersymmetry can be regarded as a remnant of higher-dimensional general coordinate invariance and turns out to become a powerful tool to determine the physical 4d spectrum and the allowed boundary conditions. Possible extensions of the N=2 supersymmetry are briefly discussed.

C. S. Lim; Tomoaki Nagasawa; Satoshi Ohya; Kazuki Sakamoto; Makoto Sakamoto

2008-02-15T23:59:59.000Z

114

We study a 5d gravity theory with a warped metric and show that two N = 2 supersymmetric quantum-mechanical systems are hidden in the 4d spectrum. The supersymmetry can be regarded as a remnant of higher-dimensional general coordinate invariance and turns out to become a powerful tool to determine the physical 4d spectrum and the allowed boundary conditions. Possible extensions of the N = 2 supersymmetry are briefly discussed.

C. S. Lim; Tomoaki Nagasawa; Satoshi Ohya; Kazuki Sakamoto; Makoto Sakamoto

2007-10-01T23:59:59.000Z

115

We study a 5d gravity theory with a warped metric and show that two N = 2 supersymmetric quantum-mechanical systems are hidden in the 4d spectrum. The supersymmetry can be regarded as a remnant of higher-dimensional general coordinate invariance and turns out to become a powerful tool to determine the physical 4d spectrum and the allowed boundary conditions. Possible extensions of the N = 2 supersymmetry are briefly discussed.

Lim, C S; Ohya, Satoshi; Sakamoto, Kazuki; Sakamoto, Makoto

2007-01-01T23:59:59.000Z

116

Transmission Lines Emulating Moving Media

In this paper, we show how the electromagnetic phenomena in moving magnetodielectric media can be emulated using artificial composite structures at rest. In particular, we introduce nonreciprocal periodically loaded transmission lines which support waves obeying the same rules as plane electromagnetic waves in moving media. Because the actual physical structure is at rest, in these transmission lines there are no fundamental limitations on the velocity values, which may take values larger than the speed of light or even complex values (considering complex amplitudes in the time-harmonic regime). An example circuit of a unit cell of a "moving" transmission line is presented and analyzed both numerically and experimentally. The special case of composite right/left handed host line is also studied numerically. Besides the fundamental interest, the study is relevant for potential applications in realizing engineered materials for various transformations of electromagnetic fields.

Vehmas, Joni; Tretyakov, Sergei

2014-01-01T23:59:59.000Z

117

Non-geodesic motion in $f({\\mathcal G})$ gravity with non-minimal coupling

The dynamics of test particles in $f(\\mathcal G)$ modified Gauss-Bonnet gravity is investigated. It is shown that in $f({\\mathcal G})$ gravity models with non-minimal coupling to matter, particles experience an extra force normal to their four-velocities and as a result move along non- geodesic world-lines. The explicit form of the extra force depends on the function of the Gauss-Bonnet term included in coupling term. The effects of this force on the relative accelerations of particles are studied.

Morteza Mohseni

2009-11-14T23:59:59.000Z

118

Growth histories in bimetric massive gravity

We perform cosmological perturbation theory in Hassan-Rosen bimetric gravity for general homogeneous and isotropic backgrounds. In the de Sitter approximation, we obtain decoupled sets of massless and massive scalar gravitational fluctuations. Matter perturbations then evolve like in Einstein gravity. We perturb the future de Sitter regime by the ratio of matter to dark energy, producing quasi-de Sitter space. In this more general setting the massive and massless fluctuations mix. We argue that in the quasi-de Sitter regime, the growth of structure in bimetric gravity differs from that of Einstein gravity.

Berg, Marcus; Buchberger, Igor [Department of Physics, Karlstad University, 651 88 Karlstad (Sweden); Enander, Jonas; Mörtsell, Edvard; Sjörs, Stefan, E-mail: marcus.berg@kau.se, E-mail: igor.buchberger@kau.se, E-mail: enander@fysik.su.se, E-mail: edvard@fysik.su.se, E-mail: stefans@fysik.su.se [Oskar Klein Center, Stockholm University, Albanova University Center, 106 91 Stockholm (Sweden)

2012-12-01T23:59:59.000Z

119

Cosmological Acceleration: Dark Energy or Modified Gravity?

We review the evidence for recently accelerating cosmological expansion or "dark energy", either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any Dark Energy constituent. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of "dark energy" cannot be derived from the homogeneous expansion alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, with nearly static Dark Energy, or with gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish static "dark energy" from dynamic "dark energy" with equation of state $w(z)$ either changing rapidly or tracking the background matter. But to cosmologically distinguish $\\Lambda$CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati modifications of Einstein gravity may also be detected in refined bservations in the solar system or at the intermediate Vainstein scale. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence ("Why now?") without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity.

Sidney Bludman

2006-05-08T23:59:59.000Z

120

Bouguer gravity map | Open Energy Information

Bouguer gravity map. Map. Denver, Colorado. U.S. Geological Survey. () . Black & White. Scale 1:500,000. Retrieved from "http:en.openei.orgwindex.php?titleBouguergravi...

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

121

Doubly Special Relativity and quantum gravity phenomenology

I review the conceptual, algebraical, and geometrical structure of Doubly Special Relativity. I also speculate about the possible relevance of DSR for quantum gravity phenomenology.

J. Kowalski-Glikman

2003-12-12T23:59:59.000Z

122

Parallel Lines II: Construction of Parallel Lines

Science Journals Connector (OSTI)

Situations are frequently encountered in which two lines, determined by linear regression, are theoretically...m 1 and m 2.

Ronald J. Tallarida Ph. D.; Rodney B. Murray Ph. D.

1987-01-01T23:59:59.000Z

123

Generalized second law in the modified theory of gravity

In the context of modified theory of gravity [f(R) gravity], we try to study the conditions needed for validity of the generalized second law.

Mohseni Sadjadi, H. [Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran 14399-55961 (Iran, Islamic Republic of)

2007-11-15T23:59:59.000Z

124

Characterising Vainshtein Solutions in Massive Gravity

We study static, spherically symmetric solutions in a recently proposed ghost-free model of non-linear massive gravity. We focus on a branch of solutions where the helicity-0 mode can be strongly coupled within certain radial regions, giving rise to the Vainshtein effect. We truncate the analysis to scales below the gravitational Compton wavelength, and consider the weak field limit for the gravitational potentials, while keeping all non-linearities of the helicity-0 mode. We determine analytically the number and properties of local solutions which exist asymptotically on large scales, and of local (inner) solutions which exist on small scales. We find two kinds of asymptotic solutions, one of which is asymptotically flat, while the other one is not, and also two types of inner solutions, one of which displays the Vainshtein mechanism, while the other exhibits a self-shielding behaviour of the gravitational field. We analyse in detail in which cases the solutions match in an intermediate region. The asymptotically flat solutions connect only to inner configurations displaying the Vainshtein mechanism, while the non asymptotically flat solutions can connect with both kinds of inner solutions. We show furthermore that there are some regions in the parameter space where global solutions do not exist, and characterise precisely in which regions of the phase space the Vainshtein mechanism takes place.

Fulvio Sbisa'; Gustavo Niz; Kazuya Koyama; Gianmassimo Tasinato

2014-06-17T23:59:59.000Z

125

Conserved charges in 3D gravity

Science Journals Connector (OSTI)

The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.

M. Blagojevi? and B. Cvetkovi?

2010-06-09T23:59:59.000Z

126

Quantum Gravity Phenomenology and Lorentz Violation

If quantum gravity violates Lorentz symmetry, the prospects for observational guidance in understanding quantum gravity improve considerably. This article briefly reviews previous work on Lorentz violation (LV) and discusses aspects of the effective field theory framework for parametrizing LV effects. Current observational constraints on LV are then summarized, focusing on effects in QED at order E/M_Planck.

Ted Jacobson; Stefano Liberati; David Mattingly

2004-04-15T23:59:59.000Z

127

Conserved charges in 3D gravity

The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.

Blagojevic, M.; Cvetkovic, B. [University of Belgrade, Institute of Physics, P. O. Box 57, 11001 Belgrade (Serbia)

2010-06-15T23:59:59.000Z

128

Quantum Gravity Phenomenology, Lorentz Invariance and Discreteness

Quantum Gravity Phenomenology, Lorentz Invariance and Discreteness Fay Dowker #3; , Joe Henson y invariant, and we recall the reasons why. For illustration, we introduce a phenomenological model of massive { LLI violating phenomenological e#11;ects of quantum gravity { has grown up around this idea

Sorkin, Rafael Dolnick

129

Gravity's Rainbow induces Topology Change

In this work, we explore the possibility that quantum fluctuations induce a topology change, in the context of Gravity's Rainbow. A semi-classical approach is adopted, where the graviton one-loop contribution to a classical energy in a background spacetime is computed through a variational approach with Gaussian trial wave functionals. The energy density of the graviton one-loop contribution, or equivalently the background spacetime, is then let to evolve, and consequently the classical energy is determined. More specifically, the background metric is fixed to be Minkowskian in the equation governing the quantum fluctuations, which behaves essentially as a backreaction equation, and the quantum fluctuations are let to evolve; the classical energy, which depends on the evolved metric functions, is then evaluated. Analysing this procedure, a natural ultraviolet (UV) cutoff is obtained, which forbids the presence of an interior spacetime region, and may result in a multipy-connected spacetime. Thus, in the context of Gravity's Rainbow, this process may be interpreted as a change in topology, and in principle results in the presence of a Planckian wormhole.

Remo Garattini; Francisco S. N. Lobo

2014-08-20T23:59:59.000Z

130

Threat Mitigation: The Gravity Tractor

The Gravity Tractor (GT) is a fully controlled asteroid deflection concept using the mutual gravity between a robotic spacecraft and an asteroid to slowly accelerate the asteroid in the direction of the "hovering" spacecraft. Based on early warning, provided by ground tracking and orbit prediction, it would be deployed a decade or more prior to a potential impact. Ion engines would be utilized for both the rendezvous with the asteroid and the towing phase. Since the GT does not dock with or otherwise physically contact the asteroid during the deflection process there is no requirement for knowledge of the asteroid's shape, composition, rotation state or other "conventional" characteristics. The GT would first reduce the uncertainty in the orbit of the asteroid via Earth tracking of its radio transponder while station keeping with the asteroid. If, after analysis of the more precise asteroid orbit a deflection is indeed indicated, the GT would "hover" above the surface of the asteroid in the direction of the required acceleration vector for a duration adequate to achieve the desired velocity change. The orbit of the asteroid is continuously monitored throughout the deflection process and the end state is known in real time. The performance envelope for the GT includes most NEOs which experience close gravitational encounters prior to impact and those below 150-200 meters in diameter on a direct Earth impact trajectory.

Russell Schweickart; Clark Chapman; Dan Durda; Piet Hut

2006-08-15T23:59:59.000Z

131

Gravity Dual of Superconformal Anomaly

The supergravity dual of superconformal anomaly in a four-dimensional supersymmetric gauge theory is investigated. We consider a well-established dual correspondence between the ${\\cal N}=1$ $SU(N+M)\\times SU(N)$ supersymmetric gauge theory with two flavors of matter fields in the bifundamental representation of gauge group and the type IIB superstring in the space-time background furnished by the Klebanov-Strassler (K-S) solution. The D-brane configuration for these two dual theories consists of N D3 branes and M fractional $D3$ branes in the singular space-time composed of a direct product of M^4 and a six-dimensional conifold ${\\cal C}_6$ with the base $T^{1,1}$. The superconformal anomaly originate from fractional branes frozen at the apex of ${\\cal C}_6$. While on the gravity side, the fractional branes deform the $AdS_5\\times T^{1,1}$ space-time background and partially break local supersymmetry of type IIB supergravity. We find that the deformation on $AdS_5\\times T^{1,1}$ leads to the spontaneous breaking local symmetries in gauged AdS_5 supergravity and consequently a super-Higgs mechanism arises. We thus conclude that the super-Higgs mechanism in gauged supergravity is dual to the superconformal anomaly of supersymmetric gauge theory in terms of gauge/gravity correspondence.

W. F. Chen

2005-08-16T23:59:59.000Z

132

Airborne Gravity Survey | Open Energy Information

Airborne Gravity Survey Airborne Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Gravity Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

133

Definition: Ground Gravity Survey | Open Energy Information

Definition Definition Edit with form History Facebook icon Twitter icon Â» Definition: Ground Gravity Survey Jump to: navigation, search Dictionary.png Ground Gravity Survey The ground gravitational method is the study of the distribution of mass in the subsurface with the observation point at the earth's surface.[1] View on Wikipedia Wikipedia Definition A gravity anomaly is the difference between the observed acceleration of a planet's gravity and a value predicted from a model. A location with a positive anomaly exhibits more gravity than predicted, while a negative anomaly exhibits a lower value than predicted. References â†‘ http://www.amazon.com/Geophysical-Field-Theory-Three-Volume-Gravitational/dp/0124020410 Ret Like Like You like this.Sign Up to see what your friends like.

134

Ground Gravity Survey | Open Energy Information

Ground Gravity Survey Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Gravity Survey Details Activities (48) Areas (34) Regions (2) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and large-scale deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

135

Detailed gravity survey over a known carbonate reef (Devonian) in Williston basin

A detailed gravity study, conducted over the Shell Golden carbonate reef located in the Winnipegosis Formation (Devonian) of the Williston basin in north-central North Dakota, indicates a massive carbonate platform with several interconnected vertical accumulations, perhaps pinnacle in nature, from this platform. This reef is found at a depth of about 2400 m (8000 ft). Because elevations and north-south positions were surveyed to /+-/3 cm (0.1 ft) and /+-/ 1 (3.3 ft), respectively, an accuracy of 0.01 mgal was obtained. Five profiles were made: three lines running east-west and two lines running north-south, forming a grid pattern over the reef. The distance between each line was 1.6 km (1.0 mi) with gravity-station spacing along each line being 0.4 km (0.25 mi). The Golden reef and most reefs of this nature throughout the North Dakota portion of the Williston basin have been interpreted to be isolated pinnacles with physical dimensions about 60-75 m (200-250 ft) thick and 0.8 km (0.5 mi) in basal diameter. However, analysis of the residual Bouguer gravity anomalies (0.2-0.5 mgal) obtained from this study indicates this reef is more complex than previously thought. The maximum thicknesses of the complex are on the order of 120-185 m (400-600 ft) with compaction anticlines also contributing to the total gravity anomaly. The modeled reef complex extends in a northeast-southwest direction and probably extends beyond the study area along that line.

Braun, S.M.

1988-07-01T23:59:59.000Z

136

Ablamp Limited | Open Energy Information

Ablamp Limited Ablamp Limited Jump to: navigation, search Name Ablamp Limited Place Nanhai, Guangdong Province, China Sector Solar Product Manufacturer of energy-saving Compact Fluorescent Light Bulbs, solar-powered lights, LED bulbs, auto lamps and other speciality lamps. Coordinates 23.049681Â°, 113.173737Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.049681,"lon":113.173737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Solfex Limited | Open Energy Information

Solfex Limited Solfex Limited Jump to: navigation, search Name Solfex Limited Address Energy Arena Bannister Hall Works Off Shop Lane, Higher Walton Preston, Lancashire PR5 4DZ Place Preston, United Kingdom Sector Solar Product Solar thermal collectors Phone number 01772 312847 Website http://www.solfex.co.uk/home.h Coordinates 53.743452Â°, -2.64416Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.743452,"lon":-2.64416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Bioethanol Limited | Open Energy Information

Bioethanol Limited Bioethanol Limited Jump to: navigation, search Name Bioethanol Limited Place London, United Kingdom Zip SE1 7TJ Sector Renewable Energy Product Aims to develop a global renewable transport fuel business supplying primarily bioethanol but also biodiesel. Coordinates 51.506325Â°, -0.127144Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Renpro Limited | Open Energy Information

Renpro Limited Renpro Limited Jump to: navigation, search Name Renpro Limited Place London, England, United Kingdom Zip WC2N 4JF Sector Renewable Energy Product String representation "Founded in 2005 ... newable energy." is too long. Coordinates 51.506325Â°, -0.127144Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Testing Relativistic Gravity with Radio Pulsars

Before the 1970s, precision tests for gravity theories were constrained to the weak gravitational fields of the Solar system. Hence, only the weak-field slow-motion aspects of relativistic celestial mechanics could be investigated. Testing gravity beyond the first post-Newtonian contributions was for a long time out of reach. The discovery of the first binary pulsar by Russell Hulse and Joseph Taylor in the summer of 1974 initiated a completely new field for testing the relativistic dynamics of gravitationally interacting bodies. For the first time the back reaction of gravitational wave emission on the binary motion could be studied. Furthermore, the Hulse-Taylor pulsar provided the first test bed for the orbital dynamics of strongly self-gravitating bodies. To date there are a number of pulsars known, which can be utilized for precision test of gravity. Depending on their orbital properties and their companion, these pulsars provide tests for various different aspects of relativistic dynamics. Besides tests of specific gravity theories, like general relativity or scalar-tensor gravity, there are pulsars that allow for generic constraints on potential deviations of gravity from general relativity in the quasi-stationary strong-field and the radiative regime. This article presents a brief overview of this modern field of relativistic celestial mechanics, reviews some of the highlights of gravity tests with radio pulsars, and discusses their implications for gravitational physics and astronomy, including the upcoming gravitational wave astronomy.

Norbert Wex

2014-02-23T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

141

Dimensional Reduction in Quantum Gravity

The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.

G. 't Hooft

2009-03-20T23:59:59.000Z

142

Loop Quantum Gravity 1. Classical framework : Ashtekar-Barbero connection

gravity Why Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large Quantum Gravity ? Gravitation vs. Quantum Physics : the two infinities Gravitation : large scales-perturbative renormalization Gravity is not a fundamental theory but it is effective (law energy) Â· it has to be modified

Sart, Remi

143

Dynamical variables in Gauge-Translational Gravity

Assuming that the natural gauge group of gravity is given by the group of isometries of a given space, for a maximally symmetric space we derive a model in which gravity is essentially a gauge theory of translations. Starting from first principles we verify that a nonlinear realization of the symmetry provides the general structure of this gauge theory, leading to a simple choice of dynamical variables of the gravity field corresponding, at first order, to a diagonal matrix, whereas the non-diagonal elements contribute only to higher orders.

J. Julve; A. Tiemblo

2010-07-02T23:59:59.000Z

144

Solar system constraints on asymptotically flat IR modified Horava gravity through light deflection

In this paper, we study the motion of photons around a Kehagias-Sfetsos (KS) black hole and obtain constraints on IR modified Ho$\\check{r}$ava gravity without cosmological constant ($\\sim \\Lambda_{W}$). An analytic formula for the light deflection angle is obtained. For a propagating photon, the deflection angle $\\delta \\phi$ increases with large values of the Ho$\\check{r}$ava gravity parameter $\\omega$. Under the UV limit $\\omega \\longrightarrow \\infty$, deflection angle reduces to the result of usual Schwarzschild case, $4GM/R$. It is also found that with increasing scale of astronomical observation system the Ho$\\check{r}$ava-Lifshitz gravity should satisfy $|\\omega M^2|>1.1725 \\times10^{-16}$ with 12% precision for Earth system, $|\\omega M^2| > 8.27649 \\times 10^{-17}$ with 17% precision for Jupiter system and $|\\omega M^2| > 8.27650\\times 10^{-15}$ with 0.17% precision for solar system.

Molin Liu; Junwang Lu; Benhai Yu; Jianbo Lu

2010-11-15T23:59:59.000Z

145

Reduced Gravity Education Flight Opportunity for Students at Minority

Broader source: Energy.gov (indexed) [DOE]

Reduced Gravity Education Flight Opportunity for Students at Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions March 21, 2013 - 5:21pm Addthis Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions NASA is offering undergraduate students from Minority Serving Institutions an opportunity to test experiments in microgravity aboard NASA's reduced gravity aircraft. This opportunity is a partnership between the Minority University Research and Education Program and NASA's Reduced Gravity Education Flight Program, which gives aspiring explorers a chance to propose, design and fabricate a reduced-gravity experiment. Selected teams will test and evaluate their

146

Reduced Gravity Education Flight Opportunity for Students at Minority

Broader source: Energy.gov (indexed) [DOE]

Reduced Gravity Education Flight Opportunity for Students at Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions March 21, 2013 - 5:21pm Addthis Reduced Gravity Education Flight Opportunity for Students at Minority Serving Institutions NASA is offering undergraduate students from Minority Serving Institutions an opportunity to test experiments in microgravity aboard NASA's reduced gravity aircraft. This opportunity is a partnership between the Minority University Research and Education Program and NASA's Reduced Gravity Education Flight Program, which gives aspiring explorers a chance to propose, design and fabricate a reduced-gravity experiment. Selected teams will test and evaluate their

147

Classical and Quantum Gravity in 1+1 Dimensions, Part I: A Unifying Approach

We provide a concise approach to generalized dilaton theories with and without torsion and coupling to Yang-Mills fields. Transformations on the space of fields are used to trivialize the field equations locally. In this way their solution becomes accessible within a few lines of calculation only. In this first of a series of papers we set the stage for a thorough global investigation of classical and quantum aspects of more or less all available 2D gravity-Yang-Mills models.

T. Kloesch; T. Strobl

1997-08-11T23:59:59.000Z

148

Online Transmission Line Loadability Assessment Using Synchrophasor Measurements

Online Transmission Line Loadability Assessment Using Synchrophasor Measurements Jiangmeng Zhang}@illinois.edu Abstract--This paper proposes a measurement-based method to assess transmission line loadability a stable operation. Transmission line loading limits are also essential to deter- mine locational marginal

Liberzon, Daniel

149

The Branching of Graphs in 2-d Quantum Gravity

The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.

M. G. Harris

1996-07-16T23:59:59.000Z

150

The Lyman-alpha forest in f(R) modified gravity

In this work, we analyze the Lyman-$\\alpha$ forest in cosmological hydrodynamical simulations of chameleon-type f(R) gravity with the goal to assess whether the impact of such models is detectable in absorption line statistics. We carry out a set of hydrodynamical simulations with the cosmological simulation code MG-GADGET, including star formation and cooling effects, and create synthetic Lyman-$\\alpha$ absorption spectra from the simulation outputs. We statistically compare simulations with f(R) and ordinary general relativity, focusing on flux probability distribution functions (PDFs) and flux power-spectra, an analysis of the column density and line width distributions, as well as the matter power spectrum. We find that the influence of f(R) gravity on the Lyman-$\\alpha$ forest is rather small. Even models with strong modifications of gravity, like $|\\bar{f}_{R0}| = 10^{-4}$, do not change the statistical Lyman-$\\alpha$ properties by more than 10%. The column density and line width distributions are hardl...

Arnold, Christian; Springel, Volker

2014-01-01T23:59:59.000Z

151

Test particle motion in modified gravity theories

We derive the equations of motion of an electrically neutral test particle for modified gravity theories in which the covariant divergence of the ordinary matter energy-momentum tensor dose not vanish (i.e. $\

Mahmood Roshan

2013-02-05T23:59:59.000Z

152

2D gravity and the extended formalism

Science Journals Connector (OSTI)

The role of SL(2,R) symmetry in two-dimensional gravity is investigated in the context of the extended Hamiltonian formalism. Using our results we clarify previous works on the subject.

Fernando P. Devecchi

1998-07-10T23:59:59.000Z

153

Energy conditions in f(R)-gravity

In order to shed some light on the current discussion about f(R)-gravity theories we derive and discuss the bounds imposed by the energy conditions on a general f(R) functional form. The null and strong energy conditions in this framework are derived from the Raychaudhuri's equation along with the requirement that gravity is attractive, whereas the weak and dominant energy conditions are stated from a comparison with the energy conditions that can be obtained in a direct approach via an effective energy-momentum tensor for f(R)-gravity. As a concrete application of the energy conditions to locally homogeneous and isotropic f(R)-cosmology, the recent estimated values of the deceleration and jerk parameters are used to examine the bounds from the weak energy condition on the parameters of two families of f(R)-gravity theories.

J. Santos; J. S. Alcaniz; M. J. Reboucas; F. C. Carvalho

2007-09-06T23:59:59.000Z

154

We report hidden quantum mechanical supersymmetry structure in five-dimensional gravity with the Randall-Sundrum background. We show that two N=2 supersymmetries are hidden in the spectrum.

Ohya, Satoshi

2010-01-01T23:59:59.000Z

155

We report hidden quantum mechanical supersymmetry structure in five-dimensional gravity with the Randall-Sundrum background. We show that two N=2 supersymmetries are hidden in the spectrum.

Satoshi Ohya

2010-12-01T23:59:59.000Z

156

Gravity waves from vortex dipoles and jets

The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...

Wang, Shuguang

2009-05-15T23:59:59.000Z

157

Testing Modified Gravity with Gravitational Wave Astronomy

The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.

Carlos F. Sopuerta; Nicolas Yunes

2010-10-01T23:59:59.000Z

158

Relativistic Gravity With a Dynamical Preferred Frame

While general relativity possesses local Lorentz invariance, both canonical quantum gravity and string theory suggest that Lorentz invariance may be broken at high energies. Broken Lorentz invariance has also been postulated as an explanation for astrophysical anomalies such as the missing GZK cutoff. Therefore, we seek an effective field theory description of gravity where Lorentz invariance is broken. We will construct a candidate theory and then briefly discuss some of the implications.

David Mattingly; Ted Jacobson

2001-12-07T23:59:59.000Z

159

Science Journals Connector (OSTI)

A satellite classification and climatology of propagating mesoscale cloud fines in northern Australia is presented. These cloud fines range from long, narrow lines of shallow convection to extensive deep convective squall lines with mesoscale ...

W. Drosdowsky; G. J. Holland

1987-11-01T23:59:59.000Z

160

Universality of Gravity from Entanglement

The entanglement "first law" in conformal field theories relates the entanglement entropy for a ball-shaped region to an integral over the same region involving the expectation value of the CFT stress-energy tensor, for infinitesimal perturbations to the CFT vacuum state. In recent work, this was exploited at leading order in $N$ in the context of large N holographic CFTs to show that any geometry dual to a perturbed CFT state must satisfy Einstein's equations linearized about pure AdS. In this note, we investigate the implications of the leading 1/N correction to the exact CFT result. We show that these corrections give rise to the source term for the gravitational equations: for semiclassical bulk states, the expectation value of the bulk stress-energy tensor appears as a source in the linearized equations. In particular, the CFT first law leads to Newton's Law of gravitation and the fact that all sources of stress-energy source the gravitational field. In our derivation, this universality of gravity comes directly from the universality of entanglement (the fact that all degrees of freedom in a subsystem contribute to entanglement entropy).

Brian Swingle; Mark Van Raamsdonk

2014-05-12T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

161

Open Wilson lines and group theory of

Science Journals Connector (OSTI)

The correlation functions of open Wilson line operators in two-dimensional Yang-Mills theory on the noncommutative torus are computed exactly. The correlators are expressed in two equivalent forms. An instanton expansion involves only topological numbers of Heisenberg modules and enables extraction of the weak-coupling limit of the gauge theory. A dual algebraic expansion involves only group theoretic quantities, winding numbers and translational zero modes, and enables analysis of the strong-coupling limit of the gauge theory and the high-momentum behaviour of open Wilson lines. The dual expressions can be interpreted physically as exact sums over contributions from virtual electric dipole quanta.

Lori D. Paniak; Richard J. Szabo

2003-01-01T23:59:59.000Z

162

Introduction to Modified Gravity: From the Cosmic Speedup Problem to Quantum Gravity Phenomenology

These notes represent a summary of the introductory part of a course on modified gravity delivered at several Spanish Universities (Granada, Valencia, and Valladolid), at the University of Wisconsin-Milwaukee (WI, USA), and at the Karl-Franzens Universitaet (Graz, Austria) during the period 2008-2011. We begin with a discussion of the classical Newtonian framework and how special relativity boosted the interest on new theories of gravity. Then we focus on Nordstrom's scalar theories of gravity and their influence on Einstein's theory of general relativity. We comment on the meaning of the Einstein equivalence principle and its implications for the construction of alternative theories of gravity. We present the cosmic speedup problem and how $f(R)$ theories can be constrained attending to their weak-field behavior. We conclude by showing that Palatini f(R) and f(R,Q) theories can be used to address different aspects of quantum gravity phenomenology and singularity problems.

Gonzalo J. Olmo

2011-12-09T23:59:59.000Z

163

Assessment of passive safety system performance under main steam line break accident

Science Journals Connector (OSTI)

Abstract A generation III + Boiling Water Reactor (BWR) which relies on natural circulation has evolved from earlier BWR designs by incorporating passive safety features which require no emergency injection pump and no operator action or Alternating Current (AC) power supply. The generation III + BWR’s passive safety systems include the Automatic Depressurization System (ADS), the Suppression Pool (SP), the Standby Liquid Control System (SLCS), the Gravity Driven Cooling System (GDCS), the Isolation Condenser System (ICS), and the Passive Containment Cooling System (PCCS). The ADS is actuated to rapidly depressurize the reactor leading to the GDCS injection. The large amount of water in the SP condenses steam from the reactor. The SLCS provides makeup water to the reactor. The GDCS injects water into the reactor by gravity head and provides cooling to the core. The ICS and the PCCS are used to remove the decay heat from the reactor. The objective of this paper is to analyze the response of passive safety systems under the Loss of Coolant Accident (LOCA). A Main Steam Line Break (MSLB) test has been conducted in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) which is scaled to represent the generation III + BWR. The main results of PUMA MSLB test were that the reactor coolant level was well above the Top of Active Fuel (TAF) and the reactor containment pressure has remained below the design pressure. In particular, the minimum water level (1.706 m) was 5% higher than the TAF (1.623 m) and the containment maximum pressure (271 kPa) was 35% lower than the safety limit (414 kPa), respectively.

J. Lim; S.W. Choi; J. Yang; D.Y. Lee; S. Rassame; T. Hibiki; M. Ishii

2014-01-01T23:59:59.000Z

164

Modified gravity, the Cascading DGP model and its critical tension

We investigate the presence of instabilities in the Cascading DGP model. We start by discussing the problem of the cosmological late time acceleration, and we introduce the modified gravity approach. We then focus on brane induced gravity models and in particular on the Cascading DGP model. We consider configurations of the latter model where the source term is given simply by vacuum energy (pure tension), and we study perturbations at first order around these configurations. We perform a four-dimensional scalar-vector-tensor decomposition of the perturbations, and show that, regarding the scalar sector, the dynamics in a suitable limit can be described by a master equation. This master equation contains an energy scale (critical tension) which is related in a non-trivial way to the parameters of the model. We give a geometrical interpretation of why this scale emerges, and explain its relevance for the presence of ghost instabilities in the theory. We comment on the difference between our result and the one present in the literature, and stress its importance regarding the phenomenological viability of the model. We finally provide a numerical check which confirms the validity of our analysis.

Fulvio Sbisa'

2014-12-17T23:59:59.000Z

165

Are Scalar and Tensor Deviations Related in Modified Gravity?

Modified gravity theories on cosmic scales have three key deviations from general relativity. They can cause cosmic acceleration without a physical, highly negative pressure fluid, can cause a gravitational slip between the two metric potentials, and can cause gravitational waves to propagate differently, e.g. with a speed different from the speed of light. We examine whether the deviations in the metric potentials as observable through modified Poisson equations for scalar density perturbations are related to or independent from deviations in the tensor gravitational waves. We show analytically they are independent instantaneously in covariant Galileon gravity -- e.g. at some time one of them can have the general relativity value while the other deviates -- though related globally -- if one deviates over a finite period, the other at some point shows a deviation. We present expressions for the early time and late time de Sitter limits, and numerically illustrate their full evolution. This in(ter)dependence of the scalar and tensor deviations highlights complementarity between cosmic structure surveys and future gravitational wave measurements.

Eric V. Linder

2014-07-30T23:59:59.000Z

166

Undoing the twist: The Ho?ava limit of Einstein-aether theory

Science Journals Connector (OSTI)

We show that Ho?ava gravity can be obtained from Einstein-aether theory in the limit that the twist coupling constant goes to infinity, while holding fixed the expansion, shear and acceleration couplings. This limit helps to clarify the relation between the two theories, and allows Ho?ava results to be obtained from Einstein-aether ones. The limit is illustrated with several examples, including rotating black hole equations, parametrized post-Newtonian parameters, and radiation rates from binary systems.

Ted Jacobson

2014-04-02T23:59:59.000Z

167

Massive Gravity Wrapped in the Cosmic Web

Science Journals Connector (OSTI)

We study how the filamentary pattern of the cosmic web changes if the true gravity deviates from general relativity (GR) on a large scale. The f(R) gravity, whose strength is controlled to satisfy the current observational constraints on the cluster scale, is adopted as our fiducial model and a large, high-resolution N-body simulation is utilized for this study. By applying the minimal spanning tree algorithm to the halo catalogs from the simulation at various epochs, we identify the main stems of the rich superclusters located in the most prominent filamentary section of the cosmic web and determine their spatial extents per member cluster to be the degree of their straightness. It is found that the f(R) gravity has the effect of significantly bending the superclusters and that the effect becomes stronger as the universe evolves. Even in the case where the deviation from GR is too small to be detectable by any other observables, the degree of the supercluster straightness exhibits a conspicuous difference between the f(R) and the GR models. Our results also imply that the supercluster straightness could be a useful discriminator of f(R) gravity from the coupled dark energy since it is shown to evolve differently between the two models. As a final conclusion, the degree of the straightness of the rich superclusters should provide a powerful cosmological test of large scale gravity.

Junsup Shim; Jounghun Lee; Baojiu Li

2014-01-01T23:59:59.000Z

168

The behavior of $f(R)$ gravity in the solar system, galaxies and clusters

For cosmologically interesting $f(R)$ gravity models, we derive the complete set of the linearized field equations in the Newtonian gauge, under environments of the solar system, galaxies and clusters respectively. Based on these equations, we confirmed previous $\\gamma=1/2$ solution in the solar system. However, $f(R)$ gravity models can be strongly environment-dependent and the high density (comparing to the cosmological mean) solar system environment can excite a viable $\\gamma=1$ solution for some $f(R)$ gravity models. Although for $f(R)\\propto -1/R$, it is not the case; for $f(R)\\propto -\\exp(-R/\\lambda_2H_0^2)$, such $\\gamma=1$ solution does exist. This solution is virtually indistinguishable from that in general relativity (GR) and the value of the associated curvature approaches the GR limit, which is much higher than value in the $\\gamma=1/2$ solution. We show that for some forms of $f(R)$ gravity, this solution is physically stable in the solar system and can smoothly connect to the surface of the Sun. The derived field equations can be applied directly to gravitational lensing of galaxies and clusters. We find that, despite significant difference in the environments of galaxies and clusters comparing to that of the solar system, gravitational lensing of galaxies and clusters can be virtually identical to that in GR, for some forms of $f(R)$ gravity. Fortunately, galaxy rotation curve and intra-cluster gas pressure profile may contain valuable information to distinguish these $f(R)$ gravity models from GR.

Pengjie Zhang

2007-01-23T23:59:59.000Z

169

On white dwarfs and neutron stars in Palatini f(R) gravity

In Palatini $f(R)$ gravity, the parameters of the Schwarzschild - de Sitter solution as well as the whole interior solutions of compact objects are expected to change when compared to general relativity. We solve the Palatini field equations numerically in the case of the models $f(R) = R + \\alpha R^2$ and $f(R) = R - \\mu^4/R$, and using the equation of state of Fermi gas. We show how the density profiles and the prediction for the maximum masses of white dwarfs (the Chandrasekhar limit) and neutron stars (the Tolman-Oppenheimer-Volkoff limit) are altered, and thereby conclude that observations on compact stars may be used to exclude alternative gravity models.

Vappu Reijonen

2009-12-04T23:59:59.000Z

170

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Germ-line Allele Germ-line Allele Name: Rachel Location: N/A Country: N/A Date: N/A Question: Can you please explain a "germ-line allele" to me! It is very important for a research paper I am writing about breast cancer. Replies: Mutations in genes are only able to be passed to the offspring if they are found in gametes (egg, sperm) mutations that occur in body cells other than gametes are usually not important because the cells can be replaced and they die eventually. The only way a characteristic can be passed to the offspring is through the eggs and sperm, so if there is a mutation in one these cells, the offspring can inherit the mutation. So a germ-line cell is a gamete. And a germ line allele is a version of the trait that is passed to the offspring through the germ line cell (or gamete).

171

EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide Free Radicals in Liquids 2 for the EPR spectrum of a nitroxide free radical undergoing spin exchange in the slow exchange limit following

Bales, Barney

172

Science Journals Connector (OSTI)

The Landau–de Gennes model for nematic liquid crystal bulk and interfaces has been extended to nematic triple lines involving the intersection of two isotropic fluids and one nematic liquid crystalline phase. A complete set of bulk, interface, and triple line force and torque balance equations has been formulated. The triple line force and torque balance equations have linear, interfacial, and bulk contributions. The bulk contributions appear as junction integrals, the surface contributions as junctions sums, and the line contributions as gradients of stresses. Reduction of dimensionality from three to one dimensional creates the following effects: (a) bulk terms enter interfacial balances as surface jumps and line balances as junction integrals, and (b) surface terms enter linear balances as junction sums. Line stress and torque equations are derived using classical liquid crystal models. The correspondence between line stress and line torque and their surface and bulk analogs is established. The triple line force and torque balance equations are use to analyze the contact angle in a nematic lens lying at the interface between two isotropic fluids, when the prefered surface orientation is tangential. The effect of anisotropy and long range elasticity on triple line phases is established. Under weak anchoring the contact angle is shown to be a function of the anchoring energy at the nematic-isotropic interface, while under strong anchoring conditions the contact angle is a function of the Peach-Koehler force that originates from bulk long range elasticity and acts on the triple line. The use of the complete set of balance equations removes the classical inconsistency in force balances at a contact line by properly taking into account long range (bulk gradient elasticity) and anisotropic (interfacial anchoring elasticity) effects.

Alejandro D. Rey

2003-01-30T23:59:59.000Z

173

Series Transmission Line Transformer

A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

Buckles, Robert A. (Livermore, CA); Booth, Rex (Livermore, CA); Yen, Boris T. (El Cerrito, CA)

2004-06-29T23:59:59.000Z

174

A Positive-Energy Theorem for Einstein-Aether and Ho?ava Gravity

Science Journals Connector (OSTI)

Energy positivity is established for a class of solutions to Einstein-aether theory and the IR limit of Ho?ava gravity within a certain range of coupling parameters. The class consists of solutions where the aether 4-vector is divergence-free on a spacelike surface to which it is orthogonal (which implies that the surface is maximal). In particular, this result holds for spherically symmetric solutions at a moment of time symmetry.

David Garfinkle and Ted Jacobson

2011-10-31T23:59:59.000Z

175

Cosmological perturbations in f(T) gravity

We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbein, we extract the corresponding dispersion relation, which provides a constraint on the f(T) Ansaetze that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f(T) gravity with f(T) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from {Lambda}CDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f(T) gravity is free of massive gravitons.

Chen, Shih-Hung; Dent, James B. [Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404 (United States); Dutta, Sourish [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Saridakis, Emmanuel N. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

2011-01-15T23:59:59.000Z

176

Emergence in Holographic Scenarios for Gravity

'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightfowardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and ...

Dieks, Dennis; de Haro, Sebastian

2015-01-01T23:59:59.000Z

177

Akhter Solar Limited | Open Energy Information

Akhter Solar Limited Akhter Solar Limited Jump to: navigation, search Name Akhter Solar Limited Place Islamabad, Pakistan Product Owns a 3MW module assembly line in Pakistan, which uses Q-Cells cells. Coordinates 33.709839Â°, 73.075912Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.709839,"lon":73.075912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Data Analysis Methods for Testing Alternative Theories of Gravity with LISA Pathfinder

In this paper we present a data analysis approach applicable to the potential saddle-point fly-by mission extension of LISA Pathfinder (LPF). At the peak of its sensitivity, LPF will sample the gravitational field in our Solar System with a precision of several $\\text{fm/s}^2/\\sqrt{\\text{Hz}}$ at frequencies around $1\\,\\text{mHz}$. Such an accurate accelerometer will allow us to test alternative theories of gravity that predict deviations from Newtonian dynamics in the non-relativistic limit. As an example, we consider the case of the Tensor-Vector-Scalar theory of gravity and calculate, within the non-relativistic limit of this theory, the signals that anomalous tidal stresses generate in LPF. We study the parameter space of these signals and divide it into two subgroups, one related to the mission parameters and the other to the theory parameters that are determined by the gravity model. We investigate how the mission parameters affect the signal detectability concluding that these parameters can be determined with the sufficient precision from the navigation of the spacecraft and fixed during our analysis. Further, we apply Bayesian parameter estimation and determine the accuracy to which the gravity theory parameters may be inferred. We evaluate the portion of parameter space that may be eliminated in case of no signal detection and estimate the detectability of signals as a function of parameter space location. We also perform a first investigation of non-Gaussian "noise-glitches" that may occur in the data. The analysis we develop is universal and may be applied to anomalous tidal stress induced signals predicted by any theory of gravity.

Natalia Korsakova; Chris Messenger; Francesco Pannarale; Martin Hewitson; Michele Armano

2014-08-21T23:59:59.000Z

179

On Geodesic Motion in Horava-Lifshitz Gravity

We propose an action for a free particle in Horava-Lifshitz gravity based on Foliation Preserving Diffeomorphisms. The action reduces to the usual relativistic action in the low energy limit and allows for subluminal and superluminal motions with upper and lower bounds on velocity respectively. We find that deviation from general relativity is governed by a position dependent coupling constant which also depends on the mass of the particle. As a result, light-like geodesics are not affected whereas massive particles follow geodesics that become mass dependent and hence the equivalence principle is violated. We make an exact study for geodesics in flat space and a qualitative analysis for those in a spherically symmetric curved background.

Amir Esmaeil Mosaffa

2010-01-04T23:59:59.000Z

180

Holographic screens in ultraviolet self-complete quantum gravity

In this paper we study the geometry and the thermodynamics of a holographic screen in the framework of the ultraviolet self-complete quantum gravity. To achieve this goal we construct a new static, neutral, non-rotating black hole metric, whose outer (event) horizon coincides with the surface of the screen. The space-time admits an extremal configuration corresponding to the minimal holographic screen and having both mass and radius equalling the Planck units. We identify this object as the space-time fundamental building block, whose interior is physically unaccessible and cannot be probed even during the Hawking evaporation terminal phase. In agreement with the holographic principle, relevant processes take place on the screen surface. The area quantization leads to a discrete mass spectrum. An analysis of the entropy shows that the minimal holographic screen can store only one byte of information while in the thermodynamic limit the area law is corrected by a logarithmic term.

Piero Nicolini; Euro Spallucci

2014-03-04T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

181

Photonic Crystal Beads from Gravity-Driven Microfluidics

Science Journals Connector (OSTI)

Photonic Crystal Beads from Gravity-Driven Microfluidics ... Compared to traditional methods, the droplet templates of the PCBs are generated by using the ultrastable gravity as the driving force for the microfluidics, thus the PCBs are formed with minimal polydispersity. ...

Hongcheng Gu; Fei Rong; Baocheng Tang; Yuanjin Zhao; Degang Fu; Zhongze Gu

2013-05-29T23:59:59.000Z

182

API gravity ranges of EIA-182 crude streams

Gasoline and Diesel Fuel Update (EIA)

API Gravity Ranges of Selected Crude Streams, EIA-182 Gravity 20 or less Alabama Heavy Ca - Coalinga Ca - Cymric Ca - Kern River Ca - Lost Hills Ca - Midway-Sunset Ca OCS - Hondo...

183

The generalized second law of thermodynamics in generalized gravity theories

We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity, (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity, and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In $f(R)$ gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the gravity is always attractive and the effective Newton constant should be approximate constant satisfying the experimental bounds.

Shao-Feng Wu; Bin Wang; Guo-Hong Yang; Peng-Ming Zhang

2008-01-17T23:59:59.000Z

184

Gravity data as a tool for landfill study

Science Journals Connector (OSTI)

This paper shows the potential of gravity data to map a buried landfill bottom topography. To this end, a ... gravity inversion method is presented for estimating the landfill’s bottom depths at discrete points a...

João B. C. Silva; Wlamir A. Teixeira; Valéria C. F. Barbosa

2009-04-01T23:59:59.000Z

185

Definition: Stability Limit | Open Energy Information

Limit Limit Jump to: navigation, search Dictionary.png Stability Limit The maximum power flow possible through some particular point in the system while maintaining stability in the entire system or the part of the system to which the stability limit refers.[1] Related Terms power, system, stability References â†‘ Glossary of Terms Used in Reliability Standards An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Stability_Limit&oldid=480505" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

186

Inertia and gravitation in teleparallel gravity

Using the fact that teleparallel gravity allows a separation between gravitation and inertia, explicit expressions for the gravitational and the inertial energy-momentum densities are obtained. It is shown that, like all other fields of nature, gravitation alone has a tensorial energy-momentum density which in a general frame is conserved in the covariant sense. Together with the inertial energy-momentum density, they form a pseudotensor which is conserved in the ordinary sense. An analysis of the role played by the gravitational and the inertial densities in the computation of the total energy and momentum of gravity is presented.

R. Aldrovandi; Tiago Gribl Lucas; J. G. Pereira

2009-08-14T23:59:59.000Z

187

Geodesic distances in Liouville quantum gravity

In order to study the quantum geometry of random surfaces in Liouville gravity, we propose a definition of geodesic distance associated to a Gaussian free field on a regular lattice. This geodesic distance is used to numerically determine the Hausdorff dimension associated to shortest cycles of 2d quantum gravity on the torus coupled to conformal matter fields, showing agreement with a conjectured formula by Y. Watabiki. Finally, the numerical tools are put to test by quantitatively comparing the distribution of lengths of shortest cycles to the corresponding distribution in large random triangulations.

Jan Ambjorn; Timothy Budd

2014-11-12T23:59:59.000Z

188

Differential geometry, Palatini gravity and reduction

The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LM are used. A generalization of Lagrange-Poincaré reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.

Capriotti, S., E-mail: santiago.capriotti@uns.edu.ar [Departamento de Matemática, Universidad Nacional del Sur, 8000 Bahía Blanca (Argentina)

2014-01-15T23:59:59.000Z

189

A perturbation approach to Translational Gravity

Within a gauge formulation of 3+1 gravity relying on a nonlinear realization of the group of isometries of space-time, a natural expansion of the metric tensor arises and a simple choice of the gravity dynamical variables is possible. We show that the expansion parameter can be identified with the gravitational constant and that the first order depends only on a diagonal matrix in the ensuing perturbation approach. The explicit first order solution is calculated in the static isotropic case, and its general structure is worked out in the harmonic gauge.

J. Julve; A. Tiemblo

2013-01-09T23:59:59.000Z

190

Gravity as a Gauge Theory of Translations

The Poincar\\'e group can be interpreted as the group of isometries of a minkowskian space. This point of view suggests to consider the group of isometries of a given space as the suitable group to construct a gauge theory of gravity. We extend these ideas to the case of maximally symmetric spaces to reach a realistic theory including the presence of a cosmological constant. Introducing the concept of "minimal tetrads" we deduce Einstein gravity in the vacuum as a gauge theory of translations.

J. Martin-Martin; A. Tiemblo

2009-07-16T23:59:59.000Z

191

Standard Model and Gravity from Spinors

We propose to unify the Gravity and Standard Model gauge groups by using algebraic spinors of the standard four-dimensional Clifford algebra, in left-right symmetric fashion. This generates exactly a Standard Model family of fermions, and a Pati-Salam unification group emerges, at the Planck scale, where (chiral) self-dual gravity decouples. As a remnant of the unification, isospin-triplets spin-two particles may naturally appear at the weak scale, providing a striking signal at the LHC.

F. Nesti

2008-06-20T23:59:59.000Z

192

Asymptotic freedom in Horava-Lifshitz gravity

We use the Wetterich equation for foliated spacetimes to study the RG flow of projectable Horava-Lifshitz gravity coupled to n Lifshitz scalars. Using novel results for anisotropic heat kernels, the matter-induced beta functions for the gravitational couplings are computed explicitly. The RG flow exhibits an UV attractive anisotropic Gaussian fixed point where Newton's constant vanishes and the extra scalar mode decouples. This fixed point ensures that the theory is asymptotically free in the large-n expansion, indicating that projectable Horava-Lifshitz gravity is perturbatively renormalizable. Notably, the fundamental fixed point action does not obey detailed balance.

D'Odorico, Giulio; Schutten, Marrit

2014-01-01T23:59:59.000Z

193

Asymptotic freedom in Horava-Lifshitz gravity

We use the Wetterich equation for foliated spacetimes to study the RG flow of projectable Horava-Lifshitz gravity coupled to n Lifshitz scalars. Using novel results for anisotropic heat kernels, the matter-induced beta functions for the gravitational couplings are computed explicitly. The RG flow exhibits an UV attractive anisotropic Gaussian fixed point where Newton's constant vanishes and the extra scalar mode decouples. This fixed point ensures that the theory is asymptotically free in the large-n expansion, indicating that projectable Horava-Lifshitz gravity is perturbatively renormalizable. Notably, the fundamental fixed point action does not obey detailed balance.

Giulio D'Odorico; Frank Saueressig; Marrit Schutten

2014-06-17T23:59:59.000Z

194

Higher curvature gravity at the LHC

Science Journals Connector (OSTI)

We investigate brane-world models in different viable F(R) gravity theories where the Lagrangian is an arbitrary function of the curvature scalar. Deriving the warped metric for this model, resembling Randal-Sundrum (RS)-like solutions, we determine the graviton KK modes. The recent observations at the LHC, which constrain the RS graviton KK modes to a mass range greater than 3 TeV, are incompatible with RS model predictions. It is shown that the models with F(R) gravity in the bulk address the issue, which in turn constrains the F(R) model itself.

Sumanta Chakraborty and Soumitra SenGupta

2014-08-08T23:59:59.000Z

195

Higher curvature gravity at the LHC

We investigate brane-world models in different viable $F(R)$ gravity theories where the Lagrangian is an arbitrary function of the curvature scalar. Deriving the warped metric for this model, resembling Randal-Sundrum (RS) like solutions, we determine the graviton KK modes. The recent observations at the LHC, which constrain the RS graviton KK modes to a mass range greater than 3 TeV, are incompatible to RS model predictions. It is shown that the models with $F(R)$ gravity in the bulk address the issue which in turn constrains the $F(R)$ model itself.

Sumanta Chakraborty; Soumitra SenGupta

2014-03-13T23:59:59.000Z

196

Newton-Cartan Gravity in Noninertial Reference Frames

We study properties of Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. The set of these transformations has the structure of an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. We show that the fictitious forces of noninertial reference frames are naturally encoded in the Cartan connection transformed under the Galilean line group. These noninertial forces, which are coordinate effects, do not contribute to the Ricci tensor which describes the curvature of Newtonian spacetime. We show that only the $00$-component of the Ricci tensor is non-zero and equal to ($4\\pi$ times) the matter density in any inertial or noninetial reference frame and that it leads to what may be called Newtonian ADM mass. While the Ricci field equation and Gauss law are both fulfilled by the same physical matter density in inertial and linearly accelerating reference frames, there appears a discrepancy between the two in rotating reference frames in that Gauss law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field that appears in rotating frames, highlighting a rather striking difference between linearly and rotationally accelerating reference frames. We further show that the dynamical equations that govern the simulated gravitational and magnetic fields have the same form as Maxwell's equations, a surprising conclusion given that these equations are well-known to obey special relativity (and $U(1)$-gauge symmetry), rather than Galilean symmetry.

Leo Rodriguez; James St. Germaine-Fuller; Sujeev Wickramasekara

2014-12-26T23:59:59.000Z

197

Observing ocean heat content using satellite gravity and altimetry

: ocean heat content, altimetry, satellite gravity, steric height, remote sensing Citation: Jayne, S. RObserving ocean heat content using satellite gravity and altimetry Steven R. Jayne1,2 and John M with satellite measurements of the Earth's time-varying gravity to give improved estimates of the ocean's heat

Jayne, Steven

198

Geodesic Lines, . . . Covariant . . .

Geodesic Lines, . . . Covariant . . . Home Page Title Page Page 781 of 818 Go Back Full Screen Close Quit 14.11. Geodesic Lines, Local Gauss-Bonnet Theorem Geodesics play a very important role in surface theory and in dynamics. One of the main reasons why geodesics are so important

Gallier, Jean

199

Transmission Line Security Monitor

The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

None

2011-01-01T23:59:59.000Z

200

Transmission Line Security Monitor

The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

201

Microsoft Word - CX-HotSpringsGravityDrainsFY12_WEB.doc

Broader source: Energy.gov (indexed) [DOE]

REPLY TO ATTN OF: KEPR-Bell-1 SUBJECT: Environmental Clearance Memorandum Todd Nicholson Project Manager - TELF-TPP-3 Proposed Action: Install gravity drain system and oil stop valves, reshape west side perimeter ditch and flush out yard drains at the Hot Springs Substation. PP&A Project No.: 2383 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6, Additions and modifications to transmission facilities Location: T21N, R24W, S14, PM, Sanders County, Montana Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: Using directional drilling equipment, approximately 3,644 linear feet of gravity drain line will be installed under the existing electrical manhole system located in the Hot Springs Substation 230 and 500 Kilovolt (kV) yards. Each manhole

202

National Nuclear Security Administration (NNSA)

Detection System (USNDS), which monitors compliance with the international Limited Test Ban Treaty (LTBT). The LTBT, signed by 108 countries, prohibits nuclear testing in the...

203

The Mars Gravity Biosatellite as an innovative partial gravity research platform

The Mars Gravity Biosatellite is an unprecedented independent spaceflight platform for gravitational biology research. With a projected first launch after 2010, the low Earth orbit satellite will support a cohort of fifteen ...

Fulford-Jones, Thaddeus R. F

2008-01-01T23:59:59.000Z

204

In this paper we investigate the classical non-relativistic limit of the Eddington-inspired Born-Infeld theory of gravity. We show that strong bounds on the value of the only additional parameter of the theory ?, with respect to general relativity, may be obtained by requiring that gravity plays a subdominant role compared to electromagnetic interactions inside atomic nuclei. We also discuss the validity of the continuous fluid approximation used in this and other astrophysical and cosmological studies. We argue that although the continuous fluid approximation is expected to be valid in the case of sufficiently smooth density distributions, its use should eventually be validated at a quantum level.

Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

2012-11-01T23:59:59.000Z

205

Gravity and the Quantum: Are they Reconcilable?

General relativity and quantum mechanics are conflicting theories. The seeds of discord are the fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal in the sense that a particle does not follow one trajectory, but infinitely many trajectories, each one with a different probability. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction, while torsion in teleparallel gravity acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principles. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics.

R. Aldrovandi; J. G. Pereira; K. H. Vu

2005-09-14T23:59:59.000Z

206

MODIFIED GRAVITY SPINS UP GALACTIC HALOS

We investigate the effect of modified gravity on the specific angular momentum of galactic halos by analyzing the halo catalogs at z = 0 from high-resolution N-body simulations for a f(R) gravity model that meets the solar-system constraint. It is shown that the galactic halos in the f(R) gravity model tend to acquire significantly higher specific angular momentum than those in the standard {Lambda}CDM model. The largest difference in the specific angular momentum distribution between these two models occurs for the case of isolated galactic halos with mass less than 10{sup 11} h {sup -1} M {sub Sun }, which are likely least shielded by the chameleon screening mechanism. As the specific angular momentum of galactic halos is rather insensitive to other cosmological parameters, it can in principle be an independent discriminator of modified gravity. We speculate a possibility of using the relative abundance of low surface brightness galaxies (LSBGs) as a test of general relativity given that the formation of the LSBGs occurs in fast spinning dark halos.

Lee, Jounghun [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of)] [Astronomy Program, Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747 (Korea, Republic of); Zhao, Gong-Bo [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China)] [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China); Li, Baojiu [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)] [Institute of Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Koyama, Kazuya, E-mail: jounghun@astro.snu.ac.kr [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)] [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)

2013-01-20T23:59:59.000Z

207

Unified description of screened modified gravity

Science Journals Connector (OSTI)

We consider modified gravity models driven by a scalar field whose effects are screened in high density regions due to the presence of nonlinearities in its interaction potential and/or its coupling to matter. Our approach covers chameleon, f(R) gravity, dilaton and symmetron models and allows a unified description of all these theories. We find that the dynamics of modified gravity are entirely captured by the time variation of the scalar field mass and its coupling to matter evaluated at the cosmological minimum of its effective potential, where the scalar field has sat since an epoch prior to big bang nucleosynthesis. This new parametrization of modified gravity allows one to reconstruct the potential and coupling to matter and therefore to analyze the full dynamics of the models, from the scale dependent growth of structures at the linear level to nonlinear effects requiring N-body simulations. This procedure is illustrated with explicit examples of reconstruction for chameleon, dilaton, f(R) and symmetron models.

Philippe Brax; Anne-Christine Davis; Baojiu Li; Hans A. Winther

2012-08-08T23:59:59.000Z

208

The diffeomorphism algebra approach to quantum gravity

The representation theory of non-centrally extended Lie algebras of Noether symmetries, including spacetime diffeomorphisms and reparametrizations of the observer's trajectory, has recently been developped. It naturally solves some long-standing problems in quantum gravity, e.g. the role of diffeomorphisms and the causal structure, but some new questions also arise.

T. A. Larsson

1999-09-13T23:59:59.000Z

209

Landscape versus Swampland for Higher Derivative Gravity

We survey recent studies of Gauss-Bonnet gravity and its dual conformal field theories, including their relation to the violation of the Kovtun-Starinets-Son viscosity bound. Via holography, we can also study properties such as microcausality and unitarity of boundary field theory duals. Such studies in turn supply constraints on bulk gravitational theories, consigning some of them to the swampland.

Sho Yaida

2009-02-10T23:59:59.000Z

210

Gravitomagnetism and the Speed of Gravity

Experimental discovery of the gravitomagnetic fields generated by translational and/or rotational currents of matter is one of primary goals of modern gravitational physics. The rotational (intrinsic) gravitomagnetic field of the Earth is currently measured by the Gravity Probe B. The present paper makes use of a parametrized post-Newtonian (PN) expansion of the Einstein equations to demonstrate how the extrinsic gravitomagnetic field generated by the translational current of matter can be measured by observing the relativistic time delay caused by a moving gravitational lens. We prove that measuring the extrinsic gravitomagnetic field is equivalent to testing relativistic effect of the aberration of gravity caused by the Lorentz transformation of the gravitational field. We unfold that the recent Jovian deflection experiment is a null-type experiment testing the Lorentz invariance of the gravitational field (aberration of gravity), thus, confirming existence of the extrinsic gravitomagnetic field associated with orbital motion of Jupiter with accuracy 20%. We comment on erroneous interpretations of the Jovian deflection experiment given by a number of researchers who are not familiar with modern VLBI technique and subtleties of JPL ephemeris. We propose to measure the aberration of gravity effect more accurately by observing gravitational deflection of light by the Sun and processing VLBI observations in the geocentric frame with respect to which the Sun is moving with velocity 30 km/s.

Sergei M. Kopeikin

2005-06-30T23:59:59.000Z

211

Adapting the Transmission Reach in Mixed Line Rates WDM Transport Networks

Adapting the Transmission Reach in Mixed Line Rates WDM Transport Networks K. Christodoulopoulos, K to support the transmission at different line rates. Previously proposed planning algorithms, have used a transmission reach limit for each modulation format/line rate, mainly driven by single line rate systems

Varvarigo, Emmanouel "Manos"

212

Gravity modeling of Cenozoic extensional basins, offshore Vietnam

. . . 78 . . . 81 LIST OF FIGURES Figure 1 Southeast Asian study area location map 2 Major tectonic features of Southeast Asia 3 Mekong basin sediment isopach map . 4 Mekong basin generalized stratigraphy . Page . . . . 1 0 5 Mekong basin... gravity model 2 17 Mekong 2D forward gravity model 3 18 Mekong 2D forward gravity model 4 19 Mekong 2D forward gravity model 5 32 34 . . . 35 . . . 36 Page 20 Schematic 3D forward gravity model of Yinggehai basin sediment . . . 21 3D forward...

Mauri, Steven Joseph

2012-06-07T23:59:59.000Z

213

Ground Gravity Survey At Coso Geothermal Area (1990) | Open Energy

Coso Geothermal Area (1990) Coso Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis To identify features related to the heat source and to seek possible evidence for an underlying magma chamber Notes 2D and 3D gravity modeling was done using gridded Bouguer gravity data covering a 45 by 45 km region over the Coso geothermal area. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest

214

Three-Dimensional Evolution of Simulated Long-Lived Squall Lines

Science Journals Connector (OSTI)

Simulations of squall lines, using nonhydrostatic convection-resolving models, have been limited to two dimensions or three dimensions with the assumption of along-line periodicity. The authors present 3D nonhydrostatic convection-resolving ...

William C. Skamarock; Morris L. Weisman; Joseph B. Klemp

1994-09-01T23:59:59.000Z

215

The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency ...

Fontana, Peter R.; Srivastava, Rajendra P.

1973-06-01T23:59:59.000Z

216

Electric Transmission Lines (Iowa)

Broader source: Energy.gov [DOE]

Electric transmission lines capable of operating at 69 kV or greater cannot be constructed along, across, or over any public highways or grounds outside of cities without a franchise from the...

217

Science Journals Connector (OSTI)

The lifting depth of a convergence line in an unstratified boundary layer beneath a stably stratified atmosphere is examined with both analytical and numerical models. Cases are considered with and without flow in the layer above the convergence ...

N. Andrew Crook; Joseph B. Klemp

2000-03-01T23:59:59.000Z

218

Science Journals Connector (OSTI)

Abstract A gravity study was conducted across the northern Oaxaca terrane and its bounding faults: the Caltepec and Oaxaca Faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacán depression. On the west, at depth, the Tehuacán valley is limited by the normal buried Tehuacán Fault. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex). The tectonic depression is filled with Phanerozoic rocks and has a deeper depocenter to the west. The gravity data also indicate that on the west, the Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. A major E–W to NE–SW discontinuity is inferred to exist between profiles 1 and 2.

J.O. Campos-Enríquez; M.A. Alatorre-Zamora; J.D. Keppie; S.I. Belmonte-Jiménez; V.M. Ramón-Márquez

2014-01-01T23:59:59.000Z

219

An alternative quantum field theory for gravity is proposed for low energies based on an attractive effect between contaminants in a Bose-Einstein Condensate rather than on particle exchange. In the ``contaminant in condensate effect," contaminants cause a potential in an otherwise uniform condensate, forcing the condensate between two contaminants to a higher energy state. The energy of the system decreases as the contaminants come closer together, causing an attractive force between contaminants. It is proposed that mass-energy may have a similar effect on Einstein's space-time field, and gravity is quantized by the same method by which the contaminant in condensate effect is quantized. The resulting theory is finite and, if a physical condensate is assumed to underly the system, predictive. However, the proposed theory has several flaws at high energies and is thus limited to low energies. Falsifiable predictions are given for the case that the Higgs condensate is assumed to be the condensate underlying gravity.

Alexander Oshmyansky

2007-03-08T23:59:59.000Z

220

A mycological assessment of highly digestible protein sorghum lines.

inbred lines’ grain physical characteristics across environments .......................................................... 25 Table V Mean squares from ANOVA combined analysis of recombinant inbred lines based on seed hardness index... that limits the practical use of HD sorghums because the soft grain deteriorates more readily. The GMDC is ubiquitously distributed and negatively affects sorghum yield and overall grain quality particularly in warm and humid environments. The grain mold...

Portillo, Ostilio Rolando

2009-05-15T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

221

Optical limiting materials. Methanofullerenes, fulleroids and/or other fullerenes chemically altered for enhanced solubility, in liquid solution, and in solid blends with transparent glass (SiO.sub.2) gels or polymers, or semiconducting (conjugated) polymers, are shown to be useful as optical limiters (optical surge protectors). The nonlinear absorption is tunable such that the energy transmitted through such blends saturates at high input energy per pulse over a wide range of wavelengths from 400-1100 nm by selecting the host material for its absorption wavelength and ability to transfer the absorbed energy into the optical limiting composition dissolved therein. This phenomenon should be generalizable to other compositions than substituted fullerenes.

McBranch, Duncan W. (Santa Fe, NM); Mattes, Benjamin R. (Santa Fe, NM); Koskelo, Aaron C. (Los Alamos, NM); Heeger, Alan J. (Santa Barbara, CA); Robinson, Jeanne M. (Los Alamos, NM); Smilowitz, Laura B. (Los Alamos, NM); Klimov, Victor I. (Los Alamos, NM); Cha, Myoungsik (Goleta, CA); Sariciftci, N. Serdar (Santa Barbara, CA); Hummelen, Jan C. (Groningen, NL)

1998-01-01T23:59:59.000Z

222

Neutral reactors on shunt compensated EHV lines

This paper examines the applications of a neutral reactor in limiting resonance overvoltages induced on deenergized conductors due to parallel energized circuits and stuck breaker conditions. These applications are demonstrated through the planned 243 mile long Mead-Phoenix 500 kV line running on the same right of way as the existing Mead-Liberty 345 kV line. Reducing the secondary arc current during single pole reclosing is also examined. In addition to its applications, a procedure for sizing, rating and protection of the neutral reactor is explained.

Atmuri, S.R. [Teshmont Consultants Inc., Winnipeg, Manitoba (Canada); Thallam, R.S.; Gerlach, D.W.; Lundquist, T.G. [Salt River Project, Phoenix, AZ (United States); Selin, D.A. [Arizona Public Service Co., Phoenix, AZ (United States)

1994-12-31T23:59:59.000Z

223

Line tension vector thermodynamics of anisotropic contact lines

Science Journals Connector (OSTI)

Multiphase materials with intersecting diving surfaces give rise to contact lines. A line tension vector thermodynamics formalism is developed and used to analyze contact line problems in the presence of anisotropy, taking into account two elastic modes: change in contact line length and change in contact line orientation. Using this formalism, the contact line-shape equation is derived, and the renormalization of the line tension due to anisotropy is characterized. The correspondence and analogies between the shape equation for anisotropic surfaces (Herring equation) and the shape equation for contact lines is established. Line energies for nematic liquid crystals, representative of generic anisotropic contact lines, are used to derive a shape equation that takes into account ambient orientation effects. It is found that anisotropic line tension may promote bending and chiral modes to avoid unfavorable orientations of the contact line with respect to the ambient nematic ordering.

Alejandro D. Rey

2004-04-30T23:59:59.000Z

224

Observations on waveforms of capillary and gravity-capillary waves

Science Journals Connector (OSTI)

Due to extreme conditions in the field, there has not been any observational report on three-dimensional waveforms of short ocean surface waves. Three-dimensional waveforms of short wind waves can be found from integrating surface gradient image data (Zhang 1996a). Ocean surface gradient images are captured by an optical surface gradient detector mounted on a raft operating in the water offshore California (Cox and Zhang 1997). Waveforms and spatial structures of short wind waves are compared with early laboratory wind wave data (Zhang 1994, 1995). Although the large-scale wind and wave conditions are quite different, the waveforms are resoundingly similar at the small scale. It is very common, among steep short wind waves, that waves in the capillary range feature sharp troughs and flat crests. The observations show that most short waves are far less steep than the limiting waveform under weak wind conditions. Waveforms that resemble capillary-gravity solitons are observed with a close match to the form theoretically predicted for potential flows (Longuet-Higgins 1989, Vanden-Broeck and Dias 1992). Capillaries are mainly found as parasitic capillaries on the forward face of short gravity waves. The maximum wavelength in a parasitic wave train is less than a centimeter. The profiles of parasitic wave trains and longitudinal variations are shown. The phenomenon of capillary blockage (Phillips 1981) on dispersive freely traveling short waves is observed in the tank but not at sea. The short waves seen at sea propagate in all directions while waves in the tank are much more unidirectional.

Xin Zhang

1999-01-01T23:59:59.000Z

225

Limited Commercial Maintenance (LCLM) Limited Lawn & Ornamental (LLO)

, Limited Commercial Landscape Maintenance, Ornamental & Turf, Private Ag, or General Standards CORE for Limited Commercial Landscape Maintenance (LCLM), you must attend all day to earn the 6 CEUs required. Limited Commercial Maintenance (LCLM) Limited Lawn & Ornamental (LLO) Training & Exams Date

Florida, University of

226

Review of short-range gravity experiments in the LHC era

This document briefly reviews recent short-range gravity experiments that were performed at below laboratory scales to test the Newtonian inverse square law of gravity. To compare sensitivities of these measurements, estimates using the conventional Yukawa parametrization are introduced. Since these experiments were triggered by the prediction of the large extra-dimension model, experiments performed at different length scales are compared with this prediction. In this paper, a direct comparison between laboratory-scale experiments and the LHC results is presented for the first time. A laboratory experiment is shown to determine the best limit at $M_D > 4.6 \\;\\rm{TeV}$ and $\\lambda<23 \\;\\mu \\rm{m}$. In addition, new analysis results are described for atomic systems used as gravitational microlaboratories.

Jiro Murata; Saki Tanaka

2014-08-15T23:59:59.000Z

227

New Construction of Distribution Lines, Service Lines, and Appurtenant

Broader source: Energy.gov (indexed) [DOE]

New Construction of Distribution Lines, Service Lines, and New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Certain Visually Significant Resources Outside Residential Subdivisions (New York) New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Certain Visually Significant Resources Outside Residential Subdivisions (New York) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Environmental Regulations Provider New York State Public Service Commission Any proposed construction of distribution lines, service lines, and appurtenant facilities to electric utilities located near scenic areas of

228

Detecting individual gravity modes in the Sun

Many questions are still open regarding the structure and the dynamics of the solar core. By constraining more this region in the solar evolution models, we can reduce the incertitudes on some physical processes and on momentum transport mechanisms. A first big step was made with the detection of the signature of the dipole-gravity modes in the Sun, giving a hint of a faster rotation rate inside the core. A deeper analysis of the GOLF/SoHO data unveils the presence of a pattern of peaks that could be interpreted as dipole gravity modes. In that case, those modes can be characterized, thus bringing better constraints on the rotation of the core as well as some structural parameters such as the density at these very deep layers of the Sun interior.

Garcia, R A; Eff-Darwich, A; Garrido, R; Jimenez, A; Mathis, S; Moya, A; Palle, P L; Regulo, C; Salabert, D; Suarez, J C; Turck-Chieze, S

2009-01-01T23:59:59.000Z

229

Viscosity bound violation in higher derivative gravity

Motivated by the vast string landscape, we consider the shear viscosity to entropy density ratio in conformal field theories dual to Einstein gravity with curvature square corrections. After field redefinitions these theories reduce to Gauss-Bonnet gravity, which has special properties that allow us to compute the shear viscosity nonperturbatively in the Gauss-Bonnet coupling. By tuning of the coupling, the value of the shear viscosity to entropy density ratio can be adjusted to any positive value from infinity down to zero, thus violating the conjectured viscosity bound. At linear order in the coupling, we also check consistency of four different methods to calculate the shear viscosity, and we find that all of them agree. We search for possible pathologies associated with this class of theories violating the viscosity bound.

Brigante, Mauro; Liu Hong; Myers, Robert C.; Shenker, Stephen; Yaida, Sho [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada) and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics, Stanford University, Stanford, CA 94305 (United States)

2008-06-15T23:59:59.000Z

230

Quantum gravity at a Lifshitz point

We present a candidate quantum field theory of gravity with dynamical critical exponent equal to z=3 in the UV. (As in condensed-matter systems, z measures the degree of anisotropy between space and time.) This theory, which at short distances describes interacting nonrelativistic gravitons, is power-counting renormalizable in 3+1 dimensions. When restricted to satisfy the condition of detailed balance, this theory is intimately related to topologically massive gravity in three dimensions, and the geometry of the Cotton tensor. At long distances, this theory flows naturally to the relativistic value z=1, and could therefore serve as a possible candidate for a UV completion of Einstein's general relativity or an infrared modification thereof. The effective speed of light, the Newton constant and the cosmological constant all emerge from relevant deformations of the deeply nonrelativistic z=3 theory at short distances.

Horava, Petr [Berkeley Center for Theoretical Physics and Department of Physics, University of California, Berkeley, California, 94720-7300 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162 (United States)

2009-04-15T23:59:59.000Z

231

Chaotic inflation in higher derivative gravity theories

In this paper, we investigate chaotic inflation from scalar field subjected to potential in the framework of $f(R^2, P, Q)$-gravity, where we add a correction to Einstein's gravity based on a function of the square of the Ricci scalar $R^2$, the contraction of the Ricci tensor $P$, and the contraction of the Riemann tensor $Q$. The Gauss-Bonnet case is also discussed. We give the general formalism of inflation, deriving the slow-roll parameters, the $e$-folds number, and the spectral indexes. Several explicit examples are furnished, namely we will consider the cases of massive scalar field and scalar field with quartic potential and some power-law function of the curvature invariants under investigation in the gravitational action of the theory. Viable inflation according with observations is analyzed.

Myrzakul, Shynaray; Sebastiani, Lorenzo

2015-01-01T23:59:59.000Z

232

Auxiliary fields representation for modified gravity models

We consider tensor-multiscalar representations for several types of modified gravity actions. The first example is the theory with the action representing an arbitrary smooth function of the scalar curvature R and {open_square}R, the integrand of the Gauss-Bonnet term and the square of the Weyl tensor. We present a simple procedure leading to an equivalent theory of a space-time metric and four auxiliary scalars and especially discuss the calibration of a cosmological constant and the condition of the existence of de Sitter-like solutions in the case of an empty universe. The condition for obtaining a smaller number of independent scalar fields is derived. The second example is the Eddington-like gravity action. In this case we show, in particular, the equivalence of the theory to general relativity with the cosmological constant term, with or without use of the first-order formalism, and also discuss some possible generalizations.

Rodrigues, Davi C.; Salles, Filipe de O; Shapiro, Ilya L.; Starobinsky, Alexei A. [Departamento de Fisica, CCE, Universidade Federal do Espirito Santo, 29075-910, Vitoria, ES (Brazil); Departamento de Fisica, ICE, Universidade Federal de Juiz de Fora, 36036-330, MG (Brazil); Landau Institute for Theoretical Physics, Moscow, 119334 (Russian Federation); RESCEU, Graduate School of Science, University of Tokyo, Tokyo 113-0033 (Japan)

2011-04-15T23:59:59.000Z

233

Hydrogen atom in Palatini theories of gravity

We study the effects that the gravitational interaction of $f(R)$ theories of gravity in Palatini formalism has on the stationary states of the Hydrogen atom. We show that the role of gravity in this system is very important for lagrangians $f(R)$ with terms that grow at low curvatures, which have been proposed to explain the accelerated expansion rate of the universe. We find that new gravitationally induced terms in the atomic Hamiltonian generate a strong backreaction that is incompatible with the very existence of bound states. In fact, in the 1/R model, Hydrogen disintegrates in less than two hours. The universe that we observe is, therefore, incompatible with that kind of gravitational interaction. Lagrangians with high curvature corrections do not lead to such instabilities.

Gonzalo J. Olmo

2008-06-03T23:59:59.000Z

234

Gravitational lensing in metric theories of gravity

Science Journals Connector (OSTI)

Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian contributions and a gravitomagnetic field. Following Fermat’s principle and standard hypotheses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravitomagnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories from each other.

Mauro Sereno

2003-03-24T23:59:59.000Z

235

Non-metric gravity: A status report

We review the status of a certain (infinite) class of four-dimensional generally covariant theories propagating two degrees of freedom that are formulated without any direct mention of the metric. General relativity itself (in its Plebanski formulation) belongs to the class, so these theories are examples of modified gravity. We summarize the current understanding of the nature of the modification, of the renormalizability properties of these theories, of their coupling to matter fields, and describe some of their physical properties.

Kirill Krasnov

2007-11-05T23:59:59.000Z

236

The Hausdorff dimension in polymerized quantum gravity

We calculate the Hausdorff dimension, $d_H$, and the correlation function exponent, $\\eta$, for polymerized two dimensional quantum gravity models. If the non-polymerized model has correlation function exponent $\\eta_0 >3$ then $d_H=\\gamma^{-1}$ where $\\gamma$ is the susceptibility exponent. This suggests that these models may be in the same universality class as certain non-generic branched polymer models.

Martin G. Harris; John F. Wheater

1998-11-24T23:59:59.000Z

237

Apparent ridges for line drawing

Non-photorealistic line drawing depicts 3D shapes through the rendering of feature lines. A number of characterizations of relevant lines have been proposed but none of these definitions alone seem to capture all ...

Judd, Tilke (Tilke M.)

2007-01-01T23:59:59.000Z

238

Powerful evidences for supporting the claim that gamma-ray burst redshifts are gravity-generated

At present, it is widely believed that the phenomenon of the gamma-ray burst redshift is cosmological origin. From a theoretical point of view, this redshift has either a cosmological or a cause that is related to gravity. However, the question of whether the gamma-ray burst redshift has a cosmological origin or not should be answerable in no uncertain terms because both the spectrum characteristics and the count distribution law arising from the two distinct settings are completely different. If the redshift of GRB is generated by gravity, then the afterglow spectrum will certainly contain both the gravitational redshits (containing emission and absorption feature) and Doppler absorption redshift, and hold a definite relation between the two redshifts. In this paper, we present nine direct and decisive evidences to show that the gamma-ray burst redshift is indeed generated by gravity of neutron stars in their merging process; in which, 114 GRBs' redshifts showed that the statistical count distribution law for the two kinds redshift is the same (with errors less than 1.5%), and 74 spectral line redshifts of two GRBs showed that the relation between the two kinds redshift is completely correct (with errors less than 0.0061%).

Fu-Gao Song

2008-05-22T23:59:59.000Z

239

Gravity dual of the Ising model

Science Journals Connector (OSTI)

We evaluate the partition function of three-dimensional theories of gravity in the quantum regime, where the anti–de Sitter (AdS) radius is Planck scale and the central charge is of order one. The contribution from the AdS vacuum sector can—with certain assumptions—be computed and equals the vacuum character of a minimal model conformal field theory. The torus partition function is given by a sum over geometries which is finite and computable. For generic values of Newton’s constant G and the AdS radius ?, the result has no Hilbert space interpretation, but in certain cases it agrees with the partition function of a known conformal field theory. For example, the partition function of pure Einstein gravity with G=3? equals that of the Ising model, providing evidence that these theories are dual. We also present somewhat weaker evidence that the three-state and tricritical Potts models are dual to pure higher spin theories of gravity based on SL(3) and E6, respectively.

Alejandra Castro; Matthias R. Gaberdiel; Thomas Hartman; Alexander Maloney; Roberto Volpato

2012-01-19T23:59:59.000Z

240

Cosmology with Coupled Gravity and Dark Energy

Dark energy is a fundamental constituent of our universe, its status in the cosmological field equation should be equivalent to that of gravity. Here we construct a dark energy and matter gravity coupling (DEMC) model of cosmology in a way that dark energy and gravity are introduced into the cosmological field equation in parallel with each other from the beginning. The DEMC universe possesses a composite symmetry from global Galileo invariance and local Lorentz invariance. The observed evolution of the universe expansion rate at redshift z>1 is in tension with the standard LCDM model, but can be well predicted by the DEMC model from measurements of only nearby epochs. The so far most precise measured expansion rate at high z is quite a bit slower than the expectations from LCDM, but remarkably consistent with that from DEMC. It is hoped that the DEMC scenario can also help to solve other existing challenges to cosmology: large scale anomalies in CMB maps and large structures up to about 10^3 Mpc of a quasar group. The DEMC universe is a well defined mechanical system. From measurements we can quantitatively evaluate its total rest energy, present absolute radius and expanding speed.

Ti-Pei Li

2015-01-13T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

241

Cosmology with Coupled Gravity and Dark Energy

Dark energy is a fundamental constituent of our universe, its status in the cosmological field equation should be equivalent to that of gravity. Here we construct a dark energy and matter gravity coupling (DEMC) model of cosmology in a way that dark energy and gravity are introduced into the cosmological field equation in parallel with each other from the beginning. The DEMC universe possesses a composite symmetry from global Galileo invariance and local Lorentz invariance. The observed evolution of the universe expansion rate at redshift z>1 is in tension with the standard LCDM model, but can be well predicted by the DEMC model from measurements of only nearby epochs. The so far most precise measured expansion rate at high z is quite a bit slower than the expectations from LCDM, but remarkably consistent with that from DEMC. It is hoped that the DEMC scenario can also help to solve other existing challenges to cosmology: large scale anomalies in CMB maps and large structures up to about 10^3 Mpc of a quasar group. The DEMC universe is a well defined mechanical system. From measurements we can quantitatively evaluate its total rest energy, present absolute radius and expanding speed.

Ti-Pei Li

2014-09-01T23:59:59.000Z

242

I 5. ; ..v^-rr>.>-'- j??!*f fefi ( -??;r' ,, ;rl&.i:-??t**rK&d t ? -?, .- 'c-y. ~ :'y$???M .'??. ??.v-'-/i / ' , *? I te / - 5- MAGNUM FORCE: HARRY Between The Lines by Ruth Kurz Seeing Harry, instead of The Callahan... Image. (1973) Special thanks to Teri White for the original "first time"*scene. Further thanks JL MW AW DMc A production of AD NAUSEUM PRESS 3613 West Park Road Cleveland, Ohio 44111 MAGNUM FORCE: HARRY Between The Lines by ruth kurz ' "I...

Kurz, R.; White, T.

1982-01-01T23:59:59.000Z

243

Software Product Line Engineering for Long-lived, Sustainable Systems

Software Product Line Engineering for Long-lived, Sustainable Systems Robyn Lutz1,2, David Weiss1-lived, sustainable systems (LSS) are hampered by limited support for change over time and limited preservation for use in single, critical systems with requirements for sustainability. We describe how four categories

Lutz, Robyn R.

244

Security Clearances; Limitations

Broader source: Energy.gov (indexed) [DOE]

SEC. 1072. SECURITY CLEARANCES; LIMITATIONS. SEC. 1072. SECURITY CLEARANCES; LIMITATIONS. (a) In General.-Title III of the Intelligence Reform and Terrorism Prevention Act of 2004 (50 U.S.C. 435b) is amended by adding at the end the following new section: "SEC. 3002. SECURITY CLEARANCES; LIMITATIONS. "(a) Definitions.-In this section: "(1) Controlled substance.-The term `controlled substance' has the meaning given that term in section 102 of the Controlled Substances Act (21 U.S.C. 802). "(2) Covered person.-The term `covered person' means- "(A) an officer or employee of a Federal agency; "(B) a member of the Army, Navy, Air Force, or Marine Corps who is on active duty or is in an active status; and "(C) an officer or employee of a contractor of a Federal agency.

245

2.5 MHz Line-Width High-Energy, 2µm Coherent Wind Lidar Transmitter

Science Journals Connector (OSTI)

The design of a diode pumped, injection seeded MOPA with a transform limited line width and diffraction limited beam quality is presented. This lidar transmitter produces over 300mJ...

Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N; Reithmaier, Karl

246

Dynamic Line Rating: Research and Policy Evaluation

Dynamic Line Rating (DLR) is a smart grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative rating based on worst case scenarios. We demonstrate that observing the conditions in real time leads to additional capacity and safer operation. This paper provides a report of a pioneering scheme in the United States of America in which DLR has been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Secondly, we discuss limitations involved. In doing so, we arrive at novel insights which will inform and improve future DLR projects. Third, we provide a policy background and discussion to clarify the technology’s potential and identifies barriers to the imminent adoption of dynamic line rating systems. We provide suggestions for regulatory bodies about possible improvements in policy to encourage adoption of this beneficial technology.

Jake P. Gentle; Kurt S. Myers; Michael R. West

2014-07-01T23:59:59.000Z

247

Engineering design of the Z magnetically-insulated transmission lines and insulator stack

A 3.3 m diameter cylindrical insulator stack and a set of 3 m diameter conical magnetically insulated transmission lines (MITLs) were built for the Z accelerator. The 1.7 m tall insulator stack operates at {approx}20 MA and 2.5-3.5 MV, and was instrumented with 12 current and 24 voltage monitors. The insulator stack was concentrically and azimuthally aligned within 1.5 mm. The stack, containing 22 crosslinked polystyrene insulators and 18 grading rings, was designed to provide vertical stability for the MITLs and to resist radial buckling. 2-D and 3-D static finite element analyses (FEA) were used in designing the MITLs to limit gravity deflections to less than .25 mm. 2-D FEA dynamic analyses were done to predict motion and to help design features to restrict damage. Each MITL is divided into four concentric zones which fasten together in a way which facilitates fabrication, limits the extent of possible damage and allows for future changes at minimal cost. The tapered MITLs are supported by feedthrough rings in the insulator stack so that the gaps at small radius are adjustable from 0 to 22 mm. The MITL anodes were instrumented with 24 current monitors and have 48 additional diagnostic locations available. The MITLs were fabricated from 304L stainless steel except the outer anode sections, which were made from 6061-T6 aluminum alloy. Procedures were developed for fabrication of the large and small diameter MITL cones, as well as for the feedthrough rings and grading rings of the stack. The power-flow surfaces were successfully machined to within {+-}.25 mm of the specified contours. A large, multi-trolley MITL handling system was designed to allow for removal, cleaning and replacement of the MITLs for each shot, at a shot rate of 1.5 shots/day. Additional equipment allows for cleaning of the insulators.

Ives, H.C.; Van De Valde, D.M. [EG& G MSI, Albuquerque, NM (United States); Long, F.W.; Smith, J.W. [Sandia National Labs., Albuquerque, NM (United States)] [and others

1997-08-01T23:59:59.000Z

248

Using precision gravity data in geothermal reservoir engineering modeling studies

Precision gravity measurements taken at various times over a geothermal field can be used to derive information about influx into the reservoir. Output from a reservoir simulation program can be used to compute surface gravity fields and time histories. Comparison of such computer results with field-measured gravity data can add confidence to simulation models, and provide insight into reservoir processes. Such a comparison is made for the Bulalo field in the Philippines.

Atkinson, Paul G.; Pederseen, Jens R.

1988-01-01T23:59:59.000Z

249

D0 Silicon Upgrade: Upgrade on Cryogenic Lines at Refrigerator

This is an upgrade to the thermal contraction analysis sound in D0 Engineering Note: 3823.115-EN-426. In this new design, a portion of the transfer lines are consolidated into one 6-inch vacuum jacket. Since all four transfer lines follow the same path and are of equal lengths, the stress analysis is performed on only one transfer line using the design system ALGOR{reg_sign}. The GHe Cooldown Supply line is analyzed for combined pressure, thermal movement, and dead weight and all the stresses were below the allowable stress limit of 25,050 psi.

Kuwazaki, Andrew; /Fermilab

1995-09-26T23:59:59.000Z

250

Fortune New Energy Limited | Open Energy Information

Fortune New Energy Limited Fortune New Energy Limited Jump to: navigation, search Name Fortune New Energy Limited Place Tianjin, Tianjin Municipality, China Sector Wind energy Product Tianjin-based wind project developer Coordinates 39.231831Â°, 117.878502Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.231831,"lon":117.878502,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

EPR Ely Power Limited | Open Energy Information

EPR Ely Power Limited EPR Ely Power Limited Jump to: navigation, search Name EPR Ely Power Limited Place London, Greater London, United Kingdom Zip SW1Y 5AU Sector Biomass Product Owns and operates the Ely biomass power plant. Coordinates 51.506325Â°, -0.127144Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Central Electronics Limited CEL | Open Energy Information

Electronics Limited CEL Electronics Limited CEL Jump to: navigation, search Name Central Electronics Limited (CEL) Place Sahibabad, Uttar Pradesh, India Zip 201010 Sector Solar Product String representation "Sahibabad-based ... nment of India." is too long. Coordinates 28.67127Â°, 77.371002Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.67127,"lon":77.371002,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Acquasol Infrastructure Limited | Open Energy Information

Acquasol Infrastructure Limited Acquasol Infrastructure Limited Jump to: navigation, search Name Acquasol Infrastructure Limited Place Adelaide, South Australia, Australia Zip 5000 Sector Solar Product Adelaide based solar thermal project and technology developer. Coordinates -34.926102Â°, 138.599884Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-34.926102,"lon":138.599884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Biodiesel Energy Trading Limited | Open Energy Information

Limited Limited Jump to: navigation, search Name Biodiesel Energy Trading Limited Place London, United Kingdom Zip W1J 8DY Product London-based company focused on trading of biodiesel. Coordinates 51.506325Â°, -0.127144Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Vihaan Networks Limited VNL | Open Energy Information

Vihaan Networks Limited VNL Vihaan Networks Limited VNL Jump to: navigation, search Name Vihaan Networks Limited (VNL) Place Gurgaon, Haryana, India Zip 122015 Sector Solar Product Developer of solar-powered GSM system for rural areas in India. Coordinates 28.55114Â°, 78.89427Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.55114,"lon":78.89427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Amperex Technology Limited ATL | Open Energy Information

Amperex Technology Limited ATL Amperex Technology Limited ATL Jump to: navigation, search Name Amperex Technology Limited (ATL) Place N.T., Hong Kong Product Designer and manufacturer of Lithium Ion Polymer (LIP) battery cells and batteries for OEM customers making cell phones, PDA, notebook PC, earphone, and smart card applications. Coordinates 44.994023Â°, -72.407693Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.994023,"lon":-72.407693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Armaec Energy Limited | Open Energy Information

Armaec Energy Limited Armaec Energy Limited Jump to: navigation, search Name Armaec Energy Limited Place Uxbridge, Greater London, United Kingdom Zip UB10 9NA Sector Wind energy Product London based wind farm developer with a focus on emerging markets such as Armenia, South Africa and India. Coordinates 42.060711Â°, -71.622467Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.060711,"lon":-71.622467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Symphony Energy Resources Limited | Open Energy Information

Symphony Energy Resources Limited Symphony Energy Resources Limited Jump to: navigation, search Name Symphony Energy Resources Limited Place Borehamwood, United Kingdom Zip WD6 1LE Product String representation "Symphony Energy ... dable plastics." is too long. Coordinates 51.65582Â°, -0.275754Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.65582,"lon":-0.275754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Mistral Invest Limited | Open Energy Information

Mistral Invest Limited Mistral Invest Limited Jump to: navigation, search Name Mistral Invest Limited Place London, United Kingdom Zip W1U 7DW Sector Wind energy Product Private Equity Fund aiming to build a portfolio of wind farms in the UK and France, participating early in the project development phase. Coordinates 51.506325Â°, -0.127144Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Eclectic Energy Limited | Open Energy Information

Eclectic Energy Limited Eclectic Energy Limited Jump to: navigation, search Name Eclectic Energy Limited Place Nottinghamshire, United Kingdom Zip NG21 9PR Sector Wind energy Product Design, manufacture D400, StealthGen micro wind, DuoGen wind and water generators. Coordinates 53.145962Â°, -1.00554Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.145962,"lon":-1.00554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

261

Transmission Capital Limited | Open Energy Information

Capital Limited Capital Limited Jump to: navigation, search Name Transmission Capital Limited Place London, United Kingdom Zip EC2V 7HR Sector Renewable Energy, Services Product String representation "Provides adviso ... y arrangements." is too long. Coordinates 51.506325Â°, -0.127144Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Trina Solar Limited | Open Energy Information

Trina Solar Limited Trina Solar Limited Jump to: navigation, search Name Trina Solar Limited Place Changzhou, Jiangsu Province, China Zip 213031 Sector Solar Product An integrated solar ingot, wafer, solar cell, module and system manufacturer. Coordinates 31.766211Â°, 119.94722Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.766211,"lon":119.94722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Ground Gravity Survey At Dixie Valley Geothermal Area (Schaefer...

Area (Schaefer, 1983) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1983 - 1983 Usefulness...

264

Gravity Survey of the Carson Sink - Data and Maps

A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high?temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG?5 gravimeter and a LaCoste and Romberg (L&R) Model?G gravimeter. The CG?5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill?hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south?central, east?central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step?overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.

Faulds, James E.

2013-12-31T23:59:59.000Z

265

Ground Gravity Survey At Coso Geothermal Area (1980) | Open Energy...

Range, California. Rather, linear gravity contours, which suggest a regional tectonic origin, enclose the location of most of the volcanic activity of the Coso Range. References...

266

Gravity fields of eight north Pacific seamounts: implications for density

121 122 124 126 127 LIST OF FIGURES Figure Location map for seamounts Page 10 2 Structure of a typical seamount. 3a Bathymetry of Kaluakalana seamount (KK) 3b Gravity anomaly oi Kaluakalana seamount (KK) 4a Bathymetry of Finch seamount (FI...). 4b Gravity anomaly of Finch seamount (FI) ~ ~ ~ ~ ~ 5a Bathymetry of Paumakua seamount (PA). . 5b Gravity anomaly of Paumakua seamount (PA) . . 6a Bathymetry of Handel seamount (HA) . 6b Gravity anomaly of Handel seamount (HA). . 7a Bathymetry...

Freitag, Helen Clare

2012-06-07T23:59:59.000Z

267

Ground Gravity Survey At Walker Lake Valley Area (Shoffner, Et...

N. Hinz, A. Sabin, M. Lazaro, S. Alm (2010) Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada...

268

What kind of noncommutative geometry for quantum gravity ?

We give a brief account of the description of the standard model in noncommutative geometry as well as the thermal time hypothesis, questioning their relevance for quantum gravity.

Pierre Martinetti

2005-01-07T23:59:59.000Z

269

Ground Gravity Survey At Long Valley Caldera Geothermal Area...

Battaglia, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Long Valley Caldera Geothermal Area (Battaglia,...

270

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...

Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski,...

271

Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...

Vapor (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...

272

Unification of Gravity and Electromagnetism II A Geometric Theory

It is shown that unification of gravity and electromagnetism can be achieved using an affine non-symmetric connection $\\Gamma^\\lambda_{\\mu\

Partha Ghose

2014-08-05T23:59:59.000Z

273

Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

274

LINE-INTERLOCKING EFFECTS ON POLARIZATION IN SPECTRAL LINES BY RAYLEIGH AND RAMAN SCATTERING

The polarized spectrum of the Sun and stars is formed from the scattering of anisotropic radiation on atoms. Interpretation of this spectrum requires the solution of polarized line transfer in multilevel atomic systems. While sophisticated quantum theories of polarized line formation in multilevel atomic systems exist, they are limited by the approximation of complete frequency redistribution in scattering. The partial frequency redistribution (PRD) in line scattering is a necessary component in modeling the polarized spectra of strong lines. The polarized PRD line scattering theories developed so far confine themselves to a two-level or a two-term atom model. In this paper, we present a heuristic approach to the problem of polarized line formation in multilevel atoms taking into account the effects of PRD and a weak magnetic field. Starting from the unpolarized PRD multilevel atom approach of Hubeny et al., we incorporate the polarization state of the radiation field. However, the lower level polarization is neglected. Two iterative methods of solving the polarized PRD line transfer in multilevel atoms are also presented. Taking the example of a five-level Ca II atom model, we present illustrative results for an isothermal one-dimensional model atmosphere.

Sampoorna, M.; Nagendra, K. N. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

2013-06-20T23:59:59.000Z

275

Printed circuit dispersive transmission line

A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.

Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.

1991-08-27T23:59:59.000Z

276

Printed circuit dispersive transmission line

A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.

Ikezi, Hiroyuki (Rancho Santa Fe, CA); Lin-Liu, Yuh-Ren (San Diego, CA); DeGrassie, John S. (Encinitas, CA)

1991-01-01T23:59:59.000Z

277

Science Journals Connector (OSTI)

......should be added to the ship gravity anomalies to account for the atmospheric effect before comparison with...satellite gravity and ship gravity anomalies resulting...was subtracted from the ship gravity. Table 3 lists...represent the total effect of the different error......

Cheinway Hwang; Barry Parsons

1995-09-01T23:59:59.000Z

278

Gravity Measurements in Panama with the IMGC-02 Transportable Absolute Gravimeter

Science Journals Connector (OSTI)

The work hereafter described was designed to determine the gravity datum at the Centro Nacional de Metrologìa de Panamà CENAMEP AIP through absolute measurement of the gravity acceleration, and settle a gravity n...

G. D’Agostino; A. Germak; D. Quagliotti; O. Pinzon…

2010-01-01T23:59:59.000Z

279

Note on the relationship between the speed of light and gravity in the bi-metric theory of gravity

Relationship between the speed of gravity c_g and the speed of light c_e in the bi-metric theory of gravity is discussed. We reveal that the speed of light is a function of the speed of gravity which is a primary fundamental constant. Thus, experimental measurement of relativistic bending of light propagating in time-dependent gravitational field directly compares the speed of gravity versus the speed of light and tests if there is any aether associated with the gravitational field considered as a transparent `medium' with the constant refraction index.

Sergei Kopeikin

2005-12-30T23:59:59.000Z

280

Scha's Parallel Lines Bernhard Nickel

Scha's Parallel Lines Bernhard Nickel May 10, 2010 1 Introduction Scha (1981) has a famous example) The single lines run parallel to the double lines. 3 Code for Figure 1 \\begin{figure} \\centering \\setlength{\\unitlength}{.5in} \\begin{picture}(6,4) % first square \\put(0,4){\\line(1,0){4}}% \\put(0,1){\\line(1,0){4}}% \\put(0

Nickel, Bernhard

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

281

Drill string transmission line

A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Bradford, Kline (Orem, UT); Fox, Joe (Spanish Fork, UT)

2006-03-28T23:59:59.000Z

282

A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

Harris, William G. (Tampa, FL)

1985-01-01T23:59:59.000Z

283

Absence of cosmological constant problem in special relativistic field theory of gravity

The principles of quantum field theory in flat spacetime suggest that gravity is mediated by a massless particle with helicity $\\pm2$, the so-called graviton. It is regarded as textbook knowledge that, when the self-coupling of a particle with these properties is considered, the long-wavelength structure of such a nonlinear theory is fixed to be that of general relativity. However, here we show that these arguments conceal an implicit assumption which is surreptitiously motivated by the very knowledge of general relativity. This is shown by providing a counterexample: we revisit a nonlinear theory of gravity which is not structurally equivalent to general relativity and that, in the non-interacting limit, describes a free helicity $\\pm2$ graviton. We explicitly prove that this theory can be understood as the result of self-coupling in complete parallelism to the well-known case of general relativity. The assumption which was seen as natural in previous analyses but biased the result is pointed out. This special relativistic field theory of gravity implies the decoupling of vacuum zero-point energies of matter and passes all the known experimental tests in gravitation.

Carlos Barceló; Raúl Carballo-Rubio; Luis J. Garay

2014-06-30T23:59:59.000Z

284

Hall viscosity from gauge/gravity duality

In (2+1)-dimensional systems with broken parity, there exists yet another transport coefficient, appearing at the same order as the shear viscosity in the hydrodynamic derivative expansion. In condensed matter physics, it is referred to as "Hall viscosity". We consider a simple holographic realization of a (2+1)-dimensional isotropic fluid with broken spatial parity. Using techniques of fluid/gravity correspondence, we uncover that the holographic fluid possesses a nonzero Hall viscosity, whose value only depends on the near-horizon region of the background. We also write down a Kubo's formula for the Hall viscosity. We confirm our results by directly computing the Hall viscosity using the formula.

Omid Saremi; Dam Thanh Son

2011-03-24T23:59:59.000Z

285

Gamma Ray Burst Neutrinos Probing Quantum Gravity

Very high energy, short wavelength, neutrinos may interact with the space-time foam predicted by theories of quantum gravity. They would propagate like light through a crystal lattice and be delayed, with the delay depending on the energy. This will appear to the observer as a violation of Lorenz invariance. Back of the envelope calculations imply that observations of neutrinos produced by gamma ray bursts may reach Planck-scale sensitivity. We revisit the problem considering two essential complications: the imprecise timing of the neutrinos associated with their poorly understood production mechanism in the source and the indirect nature of their energy measurement made by high energy neutrino telescopes.

M. C. Gonzalez-Garcia; F. Halzen

2006-11-28T23:59:59.000Z

286

Science Journals Connector (OSTI)

We study gravitational theory in 1+2 spacetime dimensions which is determined by the Lagrangian constructed as a sum of the Einstein-Hilbert term plus the two (translational and rotational) gravitational Chern-Simons terms. When the corresponding coupling constants vanish, we are left with purely Einstein theory of gravity. We obtain new exact solutions for the gravitational field equations with nontrivial material sources. Special attention is paid to plane-fronted gravitational waves (in case of the Maxwell field source) and to the circularly symmetric as well as the anisotropic cosmological solutions which arise for the ideal fluid matter source.

Yuri N. Obukhov

2003-12-19T23:59:59.000Z

287

Dualities of 3D dilaton gravity

Science Journals Connector (OSTI)

We investigate Brans-Dicke dilaton gravity theories in 2+1 dimensions. We show that the reduced field equations for solutions with a diagonal metric and depending only on one spacetime coordinate have a continuous O(2) symmetry. Using this symmetry we derive general static and cosmological solutions of the theory. The action of the discrete group O(2,Z) on the space of the solutions is discussed. Three-dimensional string effective theory and three-dimensional general relativity are discussed in detail. In particular, we find that the previously discovered black string solution is dual to a spacetime with a conical singularity.

Mariano Cadoni

1996-12-15T23:59:59.000Z

288

Cosmological Solutions of Emergent Noncommutative Gravity

Matrix models of the Yang-Mills type lead to an emergent gravity theory, which does not require fine-tuning of a cosmological constant. We find cosmological solutions of the Friedmann-Robertson-Walker type. They generically have a big bounce, and an early inflationlike phase with graceful exit. The mechanism is purely geometrical; no ad hoc scalar fields are introduced. The solutions are stabilized through vacuum fluctuations and are thus compatible with quantum mechanics. This leads to a Milne-like universe after inflation, which appears to be in remarkably good agreement with observation and may provide an alternative to standard cosmology.

Klammer, Daniela; Steinacker, Harold [Fakultaet fuer Physik, Universitaet Wien, A-1090 Wien (Austria)

2009-06-05T23:59:59.000Z

289

Robust approach to f(R) gravity

We consider metric f(R) theories of gravity without mapping them to their scalar-tensor counterpart, but using the Ricci scalar itself as an ''extra'' degree of freedom. This approach avoids then the introduction of a scalar-field potential that might be ill defined (not single valued). In order to explicitly show the usefulness of this method, we focus on static and spherically symmetric spacetimes and deal with the recent controversy about the existence of extended relativistic objects in certain class of f(R) models.

Jaime, Luisa G. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 50-542, Mexico Distrito Federal 04510 (Mexico); Patino, Leonardo [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 50-542, Mexico Distrito Federal 04510 (Mexico); Salgado, Marcelo [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico)

2011-01-15T23:59:59.000Z

290

Loop quantum gravity - a short review

In this article we review the foundations and the present status of loop quantum gravity. It is short and relatively non-technical, the emphasis is on the ideas, and the flavor of the techniques. In particular, we describe the kinematical quantization and the implementation of the Hamilton constraint, as well as the quantum theory of black hole horizons, semiclassical states, and matter propagation. Spin foam models and loop quantum cosmology are mentioned only in passing, as these will be covered in separate reviews to be published alongside this one.

Sahlmann, Hanno

2010-01-01T23:59:59.000Z

291

Gravity with a dynamical preferred frame

We study a generally covariant model in which local Lorentz invariance is broken "spontaneously" by a dynamical unit timelike vector field $u^a$---the "aether". Such a model makes it possible to study the gravitational and cosmological consequences of preferred frame effects, such as ``variable speed of light" or high frequency dispersion, while preserving a generally covariant metric theory of gravity. In this paper we restrict attention to an action for an effective theory of the aether which involves only the antisymmetrized derivative $\

Ted Jacobson; David Mattingly

2001-06-02T23:59:59.000Z

292

Gravity, Cosmic Rays and the LHC

The high energy proton beams expected when the Large Hadron Collider (LHC) comes online should provide a pass/fail test for a gravity-related explanation of ultrahigh energy cosmic rays. The model predicts that particles have two kinds energies, equal for null gravitational potentials and, in the potential at the Earth, differing significantly above one TeV. If correct, a 7 TeV trajectory energy proton at the LHC would deliver a 23.5 TeV particle state energy in a collision.

Richard Shurtleff

2008-01-20T23:59:59.000Z

293

New Construction of Distribution Lines, Service Lines, and Appurtenant

Broader source: Energy.gov (indexed) [DOE]

Construction of Distribution Lines, Service Lines, and Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Residential Subdivisions (New York) New Construction of Distribution Lines, Service Lines, and Appurtenant Facilities in Residential Subdivisions (New York) < Back Eligibility Commercial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Rural Electric Cooperative Schools Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Home Weatherization Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any proposed construction of electricity-related facilities in residential

294

E-Print Network 3.0 - artificial gravity countermeasure Sample...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the benefits of an artificial gravity countermeasure coupled with exercise and vibration Summary: Modeling the benefits of an artificial gravity countermeasure coupled with...

295

Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy...

Ground Gravity Survey At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Glass Buttes Area...

296

Cosmological evolutions of F(R) nonlinear massive gravity

Science Journals Connector (OSTI)

Recently a new extended nonlinear massive gravity model has been proposed which includes the F(R) modifications to the de Rham–Gabadadze–Tolley model. We follow the F(R) nonlinear massive gravity and study its implications on cosmological evolutions. We derive the critical points of the cosmic system and study the corresponding kinetics by performing the phase-plane analysis.

De-Jun Wu

2014-08-25T23:59:59.000Z

297

Inverted gravity, not inverted shape impairs biological motion perception

Inverted gravity, not inverted shape impairs biological motion perception Nikolaus Trojetroje. Scrambling should therefore impair perception even more than inversion. Upright and inverted scrambled motion). Is the cause of the inversion effect inverted gravity? If this is the case upright scrambled motion should

Troje, Nikolaus

298

Solar System tests of Ho?ava–Lifshitz gravity

Science Journals Connector (OSTI)

...research-article Research articles 1000 162 169 138 Solar System tests of Horava-Lifshitz gravity...constraining Horava gravity at the scale of the Solar System, by considering the classical tests...classical tests of general relativity|solar system| 1. Introduction Recently, a...

2011-01-01T23:59:59.000Z

299

Remarks on Pure Spin Connection Formulations of Gravity

In the derivation of a pure spin connection action functional for gravity two methods have been proposed. The first starts from a first order lagrangian formulation, the second from a hamiltonian formulation. In this note we show that they lead to identical results for the specific cases of pure gravity with or without a cosmological constant.

Riccardo Capovilla; Ted Jacobson

1992-07-21T23:59:59.000Z

300

The Gravity of Annual Freight and Logistics Symposium

The Gravity of Logistics 17th Annual Freight and Logistics Symposium A Summary Report | December 6 to those who want them --the "gravity" of logistics--depends on infrastructure that can support and sustainth Annual State of Logistics Report--IsThis the New Normal? Rosalyn Wilson, Senior Business Analyst

Minnesota, University of

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

301

Phenomenological Quantum Gravity: the birth of a new frontier?

In the last years a general consensus has emerged that, contrary to intuition, quantum-gravity effects may have relevant consequences for the propagation and interaction of high energy particles. This has given birth to the field of ``Phenomenological Quantum Gravity'' We review some of the aspects of this new, very exciting frontier of Physics.

R. Aloisio; P. Blasi; A. Galante; P. L. Ghia; A. F. Grillo; F. Mendez

2005-02-01T23:59:59.000Z

302

Disformal Transformations, Veiled General Relativity and Mimetic Gravity

In this Note we show that Einstein's equations for gravity are generically invariant under 'disformations'. We also show that the particular subclass when this is not true yields the equations of motion of 'Mimetic Gravity'. Finally we give the 'mimetic' generalization of the Schwarzschild solution.

Nathalie Deruelle; Josephine Rua

2014-07-03T23:59:59.000Z

303

Nonlinear Energy Transfer in a Narrow Gravity-Wave Spectrum

Science Journals Connector (OSTI)

...research-article Nonlinear Energy Transfer in a Narrow Gravity-Wave Spectrum J. C...calculation of the rate of energy transfer due to...a narrow gravity wave spectrum according...typical narrow wind wave spectrum on the nonlinear energy transfer are very...

1979-01-01T23:59:59.000Z

304

ccsd00000548 COMMENTS ON "MEASURING THE GRAVITY SPEED BY VLBI"

ccsdÂ00000548 (version 1) : 18 Aug 2003 COMMENTS ON "MEASURING THE GRAVITY SPEED BY VLBI" H. ASADA the light speed. Such a di#11;erence may play a vital role in the primordial universe. In recent, Kopeikin and Fomalont claimed the #12;rst measurement of the gravity speed by VLBI. However, the measurement has

305

transmission lines F. Rachidi a, *, S.L. Loyka b , C.A. Nucci c , M. Ianoz a a Swiss Federal Institute The ground impedance matrix elements of a multiconductor overhead transmission line do not have analytical-singular, and which describe, within the limits of transmission line theory, both the early-time and late

Loyka, Sergey

306

Aeromagnetic and gravity surveys in the Coso Range, California | Open

and gravity surveys in the Coso Range, California and gravity surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aeromagnetic and gravity surveys in the Coso Range, California Details Activities (2) Areas (1) Regions (0) Abstract: The effect of an underlying magma reservoir cannot be identified within the complex gravity pattern in the Coso Range, California. Rather, linear gravity contours, which suggest a regional tectonic origin, enclose the location of most of the volcanic activity of the Coso Range. Faults along the edges of northwest trending, magnetic blocks probably provided paths of minimum resistance to the ascending viscous magma that was extruded as rhyolite domes. Dense, magnetic rocks associated with a complex mafic pluton 9 km in diameter form a relatively impermeable north border of

307

We introduce a reduced model for a real sector of complexified Ashtekar gravity that does not correspond to a subset of Einstein's gravity but for which the programme of canonical quantization can be carried out completely, both, via the reduced phase space approach or along the lines of the algebraic quantization programme.\\\\ This model stands in a certain correspondence to the frequently treated cylindrically symmetric waves.\\\\ In contrast to other models that have been looked at up to now in terms of the new variables the reduced phase space is infinite dimensional while the scalar constraint is genuinely bilinear in the momenta.\\\\ The infinite number of Dirac observables can be expressed in compact and explicit form in terms of the original phase space variables.\\\\ They turn out, as expected, to be non-local and form naturally a set of countable cardinality.

T. Thiemann

1993-11-11T23:59:59.000Z

308

Utility Lines and Facilities (Montana)

Broader source: Energy.gov [DOE]

These regulations apply to the construction of utility and power lines and facilities. They address the use of public right-of-ways for such construction, underground power lines, and construction...

309

New Imperial Valley power line

The Imperial Irrigation District placed its new 104-mile, 230kV transmission line in service in the Imperial Valley on September 14, 1988. The power line, with a rated capacity of 600 megawatts, transmits electricity generated at geothermal power plants. The transmission line was financed by 14 geothermal companies, whose participation was based on the amount of line-capacity they expect to use.

Not Available

1988-12-01T23:59:59.000Z

310

a 115-line MATLAB implementation

Apr 15, 2013 ... Alternating active-phase algorithm for multimaterial topology optimization problems -- a 115-line MATLAB implementation. Rouhollah Tavakoli ...

Rouhollah Tavakoli

2013-04-15T23:59:59.000Z

311

Magnetic error analysis of recycler pbar injection transfer line

Detailed study of Fermilab Recycler Ring anti-proton injection line became feasible with its BPM system upgrade, though the beamline has been in existence and operational since year 2000. Previous attempts were not fruitful due to limitations in the BPM system. Among the objectives are the assessment of beamline optics and the presence of error fields. In particular the field region of the permanent Lambertson magnets at both ends of R22 transfer line will be scrutinized.

Yang, M.J.; /Fermilab

2007-06-01T23:59:59.000Z

312

A gravity-anti-gravity (GaG) odd linear dilaton action offers an eternal inflation evolution governed by the unified (cosmological constant plus radiation) equation of state $\\rho-3P=4\\Lambda$. At the mini superspace level, a 'two-particle' variant of the no-boundary proposal, notably 'one-particle' energy dependent, is encountered. While a GaG-odd wave function can only host a weak Big Bang boundary condition, albeit for any $k$, a strong Big Bang boundary condition requires a GaG-even entangled wave function, and singles out $k=0$ flat space. The locally most probable values for the cosmological scale factor and the dilaton field form a grid $\\{a^2,a\\phi\\}\\sim\\sqrt{4n_1+1}\\pm\\sqrt{4n_2+1}$.

Aharon Davidson; Tomer Ygael

2014-10-13T23:59:59.000Z

313

A gravity-anti-gravity (GaG) odd linear dilaton action offers an eternal inflation evolution governed by the unified (cosmological constant plus radiation) equation of state $\\rho-3P=4\\Lambda$. At the mini superspace level, a 'two-particle' variant of the no-boundary proposal, notably 'one-particle' energy dependent, is encountered. While a GaG-odd wave function can only host a weak Big Bang boundary condition, albeit for any $k$, a strong Big Bang boundary condition requires a GaG-even entangled wave function, and singles out $k=0$ flat space. The locally most probable values for the cosmological scale factor and the dilaton field form a grid $\\{a^2,a\\phi\\}\\sim\\sqrt{4n_1+1}\\pm\\sqrt{4n_2+1}$.

Davidson, Aharon

2014-01-01T23:59:59.000Z

314

Transmission Line Circuit Alexander Glasser

Chaos in a Transmission Line Circuit Alexander Glasser Marshal Miller With... Prof. Edward Ott Prof times become shorter, circuit connections behave more and more like transmission lines. Theoretical(t) - Transmission Line (Zo, T) #12;5 Cf/Cr 1000 Vf Capacitance Voltage Cf Cr Model for Nonlinear Capacitor

Anlage, Steven

315

Why Neutrino Lines are Hypersharp

It was recently pointed out that mono-energetic neutrino lines from the 2-body decay of tritium (tau ~ 18-y) can be emitted, a significant fraction, with natural line width (~10-24 eV) for hypersharp resonance transitions 3H--> line broadening in resonances of short lived (tau ~ microsec) states.

R. S. Raghavan

2009-08-20T23:59:59.000Z

316

Tidal Energy Limited | Open Energy Information

Tidal Energy Limited (TEL) Tidal Energy Limited (TEL) Place Cardiff, Wales, United Kingdom Zip CF23 8RS Product Tidal stream device developer. Coordinates 51.48125Â°, -3.180734Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.48125,"lon":-3.180734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Berkeley Off-line Radioisotope Generator (BORG)

Development of chemical separations for the transactinides has traditionally been performed with longer-lived tracer activities purchased commercially. With these long-lived tracers, there is always the potential problem that the tracer atoms are not always in the same chemical form as the short-lived atoms produced in on-line experiments. This problem is especially severe for elements in groups 4 and 5 of the periodic table, where hydrolysis is present. The long-lived tracers usually are stored with a complexing agent to prevent sorption or precipitation. Chemistry experiments performed with these long-lived tracers are therefore not analogous to those chemical experiments performed in on-line experiments. One way to eliminate the differences between off-line and on-line chemistry experiments is through the use of a {sup 252}Cf fission fragment collection device. A {sup 252}Cf fission fragment collection device has already been constructed [1]. This device is limited in its capabilities. A new fission fragment device would allow the study of the chemical properties of the homologues of the heaviest elements. This new device would be capable of producing fission fragments for fast gas chemistry and aqueous chemistry experiments, long-lived tracers for model system development and neutrons for neutron activation. Fission fragment activities produced in this way should have the same chemical form as those produced in Cyclotron irradiations. The simple operation of this source will allow more rapid and reliable development of radiochemical separations with homologues of transactinide elements.

Sudowe, Ralf; Patin, Joshua B.

2001-07-23T23:59:59.000Z

318

Solar system tests of Ho?ava-Lifshitz gravity

Recently, a renormalizable gravity theory with higher spatial derivatives in four dimensions was proposed by Ho\\v{r}ava. The theory reduces to Einstein gravity with a non-vanishing cosmological constant in IR, but it has improved UV behaviors. The spherically symmetric black hole solutions for an arbitrary cosmological constant, which represent the generalization of the standard Schwarzschild-(A)dS solution, has also been obtained for the Ho\\v{r}ava-Lifshitz theory. The exact asymptotically flat Schwarzschild type solution of the gravitational field equations in Ho\\v{r}ava gravity contains a quadratic increasing term, as well as the square root of a fourth order polynomial in the radial coordinate, and it depends on one arbitrary integration constant. The IR modified Ho\\v{r}ava gravity seems to be consistent with the current observational data, but in order to test its viability more observational constraints are necessary. In the present paper we consider the possibility of observationally testing Ho\\v{r}ava gravity at the scale of the Solar System, by considering the classical tests of general relativity (perihelion precession of the planet Mercury, deflection of light by the Sun and the radar echo delay) for the spherically symmetric black hole solution of Ho\\v{r}ava-Lifshitz gravity. All these gravitational effects can be fully explained in the framework of the vacuum solution of the gravity. Moreover, the study of the classical general relativistic tests also constrain the free parameter of the solution.

Tiberiu Harko; Zoltan Kovács; Francisco S. N. Lobo

2010-10-28T23:59:59.000Z

319

From thermodynamics to the solutions in gravity theory

In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the \\sch~solution through thermodynamic laws by the aid of the Misner-Sharp mass in an adiabatic system. In this paper we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner-Sharp mass is the mass for an adiabatic system, we reproduce the Boulware-Deser-Cai solution in Guass-Bonnet gravity. Using this gravi-thermodynamics thought, we obtain a NEW class of solution in $F(R)$ gravity in an $n$-dimensional (n$\\geq$3) spacetime which permits three-type $(n-2)$-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton-Barrow solution in $F(R)$ gravity.

Zhang, Hongsheng

2014-01-01T23:59:59.000Z

320

Semiclassical approximation to supersymmetric quantum gravity

We develop a semiclassical approximation scheme for the constraint equations of supersymmetric canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the functional Schroedinger equation, and quantum gravitational correction terms to this Schroedinger equation. In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the background spacetime must involve the gravitino, (ii) a (many-fingered) local time parameter has to be present on super Riem {sigma} (the space of all possible tetrad and gravitino fields) (iii) quantum supersymmetric gravitational corrections affect the evolution of the very early Universe. The physical meaning of these equations and results, in particular, the similarities to and differences from the pure bosonic case, are discussed.

Kiefer, Claus; Lueck, Tobias; Moniz, Paulo [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Strasse 77, 50937 Cologne (Germany); Astronomy Unit, School of Mathematical Sciences, Queen Mary College, University of London, Mile End Road, London E1 4NS (United Kingdom)

2005-08-15T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

321

CPT Violation and Decoherence in Quantum Gravity

In this brief review I discuss ways and tests of CPT-Violation in the context of quantum gravity theories with space-time foam vacua, which entail quantum decoherence of matter propagating in such backgrounds. I cover a wide variety of sensitive probes, ranging from cosmic neutrinos to meson factories. I pay particular emphasis on associating the latter with specific, probably unique ("smoking-gun"), effects of this type of CPT Violation, related to a modification of Einstein-Podolsky-Rosen (EPR) correlations in the entangled states of the relevant neutral mesons. I also present some semi-microscopic estimates of these latter effects, in the context of a specific string-inspired model of space-time foam ("D-particle foam").

Mavromatos, Nick E

2009-01-01T23:59:59.000Z

322

Gravity with a dynamical preferred frame

Science Journals Connector (OSTI)

We study a generally covariant model in which local Lorentz invariance is broken by a dynamical unit timelike vector field ua—the “aether.” Such a model makes it possible to study the gravitational and cosmological consequences of preferred frame effects, such as “variable speed of light” or high frequency dispersion, while preserving a generally covariant metric theory of gravity. In this paper we restrict attention to an action for an effective theory of the aether which involves only the antisymmetrized derivative ?[aub]. Without matter this theory is equivalent to a sector of the Einstein-Maxwell-charged dust system. The aether has two massless transverse excitations, and the solutions of the model include all vacuum solutions of general relativity (as well as other solutions). However, the aether generally develops gradient singularities which signal a breakdown of this effective theory. Including the symmetrized derivative in the action for the aether field may cure this problem.

Ted Jacobson and David Mattingly

2001-06-26T23:59:59.000Z

323

What is faster -- light or gravity?

General relativity lacks the notion of the speed of gravity. This is inconvenient and the present paper is aimed at filling this gap up. To that end I introduce the concept of the "alternative" and argue that its variety called the "superluminal alternative" describes exactly what one understands by the "superluminal gravitational signal". Another, closely related, object called the "semi-superluminal alternative" corresponds to the situation in which a massive (and therefore gravitating) body reaches its destination sooner than a photon \\emph{would}, be the latter sent \\emph{instead} of the body. I prove that in general relativity constrained by the condition that only globally hyperbolic spacetimes are allowed 1) semi-superluminal alternatives are absent and 2) under some natural conditions and conventions admissible superluminal alternative are absent too.

S. Krasnikov

2014-08-28T23:59:59.000Z

324

Nonsymmetric Gravity Theories: Inconsistencies and a Cure

Motivated by the apparent dependence of string $\\sigma$--models on the sum of spacetime metric and antisymmetric tensor fields, we reconsider gravity theories constructed from a nonsymmetric metric. We first show that all such "geometrical" theories homogeneous in second derivatives violate standard physical requirements: ghost-freedom, absence of algebraic inconsistencies or continuity of degree-of-freedom content. This no-go result applies in particular to the old unified theory of Einstein and its recent avatars. However, we find that the addition of nonderivative, ``cosmological'' terms formally restores consistency by giving a mass to the antisymmetric tensor field, thereby transmuting it into a fifth-force-like massive vector but with novel possible matter couplings. The resulting macroscopic models also exhibit ``van der Waals''-type gravitational effects, and may provide useful phenomenological foils to general relativity.

T. Damour; S. Deser; J. McCarthy

1992-07-22T23:59:59.000Z

325

Gravitational Waves in Ghost Free Bimetric Gravity

We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extension of the theory admits similar solutions but in general is plagued with ghost instabilities.

Morteza Mohseni

2012-11-15T23:59:59.000Z

326

A length operator for canonical quantum gravity

We construct an operator that measures the length of a curve in four-dimensional Lorentzian vacuum quantum gravity. We work in a representation in which a $SU(2)$ connection is diagonal and it is therefore surprising that the operator obtained after regularization is densely defined, does not suffer from factor ordering singularities and does not require any renormalization. We show that the length operator admits self-adjoint extensions and compute part of its spectrum which like its companions, the volume and area operators already constructed in the literature, is purely discrete and roughly is quantized in units of the Planck length. The length operator contains full and direct information about all the components of the metric tensor which faciliates the construction of a new type of weave states which approximate a given classical 3-geometry.

T. Thiemann

1996-06-29T23:59:59.000Z

327

Bi-metric Gravity and "Dark Matter"

We present a bi-metric theory of gravity containing a length scale of galactic size. For distances less than this scale the theory satisfies the standard tests of General Relativity. For distances greater than this scale the theory yields an effective gravitational constant much larger than the locally observed value of Newton's constant. The transition from one regime to the other through the galactic scale can explain the observed rotation curves of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the observed value of Hubble's constant in relation to observed matter.

I. T. Drummond

2000-08-18T23:59:59.000Z

328

Optimising Shewhart charts in parallel production lines

Science Journals Connector (OSTI)

I describe a methodology for optimising n Shewhart x-charts operating on parallel production lines in a factory. The goal is to maximise the factory-wide probability of detecting an out-of-control condition subject to a constraint on the expected number of false signals. I use non-linear programming to appropriately set the x-charts' control limits incorporating information about the probability of each production line going out-of-control. Using this approach, factories can set their quality control systems to optimally detect out-of-control conditions. Given some distributional assumptions, I also present a one-dimensional optimisation methodology that allows for the efficient optimisation of very large factories.

Ronald D. Fricker; Jr."> Jr.

2009-01-01T23:59:59.000Z

329

Which Hydrogen Balmer Lines Are Most Reliable for Determining White Dwarf Atmospheric Parameters?

Our preliminary results from laboratory experiments studying white dwarf (WD) photospheres show a systematic difference between experimental plasma conditions inferred from measured H$\\beta$ absorption line profiles versus those from H$\\gamma$. One hypothesis for this discrepancy is an inaccuracy in the relative theoretical line profiles of these two transitions. This is intriguing because atmospheric parameters inferred from H Balmer lines in observed WD spectra show systematic trends such that inferred surface gravities decrease with increasing principal quantum number, $n$. If conditions inferred from lower-$n$ Balmer lines are indeed more accurate, this suggests that spectroscopically determined DA WD masses may be greater than previously thought and in better agreement with the mean mass determined from gravitational redshifts.

Falcon, Ross E; Bailey, J E; Gomez, T A; Montgomery, M H; Winget, D E; Nagayama, T

2014-01-01T23:59:59.000Z

330

SILICON ABUNDANCES IN NEARBY STARS FROM THE Si I INFRARED LINES

We have used high-resolution, high signal-to-noise ratio infrared spectra from the Subaru Telescope atop Mauna Kea. Line formation calculations of Si I infrared lines in the atmospheres of nearby stars are presented. All abundance results of [Si/Fe] are derived from local thermodynamic equilibrium (LTE) and NLTE statistical equilibrium calculations and spectrum synthesis methods. We found that NLTE effects for Si I infrared lines are important even for metal-rich stars (>0.1 dex), and the NLTE effects may depend on the surface gravities. A good agreement of silicon abundances between the optical and infrared lines is obtained when the NLTE effects are included, while a large difference is found for the LTE results. The derived silicon abundances are overabundant for metal-poor stars.

Shi, J. R.; Tan, K. F.; Zhao, G. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Takada-Hidai, M. [Liberal Arts Education Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Takeda, Y. [National Astronomical Observatory of Japan 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Hu, S. M.; Cao, C., E-mail: sjr@bao.ac.cn [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Shandong University at Weihai 264209 (China)

2012-08-10T23:59:59.000Z

331

Gravity Anomalies Seaward of Deep-Sea Trenches and their Tectonic Implications

Science Journals Connector (OSTI)

......trenches we consider the gravity effect of a downgoing slab is likely...trench. Undoubtedly the gravity effect of the dense downgoing slab...local gravity highs on surface ship measurements. If the gravity effect of the downgoing slab is small......

A. B. Watts; M. Talwani

1974-01-01T23:59:59.000Z

332

PHYSICS OF FLUIDS 25, 086604 (2013) Gravity currents shoaling on a slope

water rivers into the saline ocean form surface gravity currents. The study of gravity currents is also spills in the ocean.6 Gravity currents in a channel have been well studied through lockPHYSICS OF FLUIDS 25, 086604 (2013) Gravity currents shoaling on a slope Bruce R. Sutherland,1,2,a

Sutherland, Bruce

333

ccsd-00000548(version1):18Aug2003 COMMENTS ON "MEASURING THE GRAVITY SPEED BY VLBI"

ccsd-00000548(version1):18Aug2003 COMMENTS ON "MEASURING THE GRAVITY SPEED BY VLBI" H. ASADA or alternative gravity theories might suggest that the gravity propagation speed can be different from the light and Fomalont claimed the first measurement of the gravity speed by VLBI. However, the measurement has

Paris-Sud XI, UniversitÃ© de

334

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22T23:59:59.000Z

335

Energy conditions in f(R, Lm) gravity

Science Journals Connector (OSTI)

In order to constrain f(R, Lm) gravity from theoretical aspects, its energy conditions are derived in this paper. These energy conditions given by us are quite general and can be degenerated to the well-known energy conditions in general relativity and f(R) theories of gravity with arbitrary coupling, non-minimal coupling and non-coupling between matter and geometry, respectively, as special cases. To exemplify how to use these energy conditions to restrict f(R, Lm) gravity, we consider a special model in the FRW cosmology and give some corresponding results by using astronomical observations.

Jun Wang; Kai Liao

2012-01-01T23:59:59.000Z

336

Three-dimensional geologic structures from inversion of gravity anomalies

from an analysis of the sampling interval. 39 100 80 z0= 7km p = 1gm/cra R, /R6= 2 ~ 10 60 mgal . ~ ~ Numerical Integration Parker Method 40 20 64 56 48 40 32 km 10 a) 24 16 8 mgal ! km 10b) 16 8 Figure 10. Gravity profile across.... The input was the gravity profile shown in Figure 5. The model parameters are the same used by Oldenburg (1974, Figure 2, p. 533) for the case Z =6km. . . . . . . . . . . . . . . . 33 Comparison of gravity profiles from the cosine model and from...

Hinson, Charles Alvin

2012-06-07T23:59:59.000Z

337

FED pumped limiter configuration issues

Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma-edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge.

Haines, J.R.; Fuller, G.M.

1983-01-01T23:59:59.000Z

338

The limits of the nuclear landscape

In 2011, 100 new nuclides were discovered1. They joined the approximately 3,000 stable and radioactive nuclides that either occur naturally on Earth or are synthesized in the laboratory2,3. Every atomic nucleus, characterized by a specific number of protons and neutrons, occupies a spot on the chart of nuclides, which is bounded by drip lines indicating the values of neutron and proton number at which nuclear binding ends. The placement of the neutron drip line for the heavier elements is based on theoretical predictions using extreme extrapolations, and so is uncertain. However, it is not known how uncertain it is or how many protons and neutrons can be bound in a nucleus. Here we estimate these limits of the nuclear landscape and provide statistical and systematic uncertainties for our predictions. We use nuclear density functional theory, several Skyrme interactions and high-performance computing, and find that the number of bound nuclides with between 2 and 120 protons is around 7,000. We find that extrapolations for drip-line positions and selected nuclear properties, including neutron separation energies relevant to astrophysical processes, are very consistent between the models used.

Nazarewicz, Witold [ORNL; Erler, J. [Oak Ridge National Laboratory (ORNL); Birge, N. [University of Tennessee, Knoxville (UTK); Kortelainen, E. M. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Olsen, E. [University of Tennessee, Knoxville (UTK); Perhac, A. [University of Tennessee, Knoxville (UTK); Stoitsov, M. [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

339

2005 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE

U.S. Energy Information Administration (EIA) Indexed Site

Page 1 Page 1 2012 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE Kerosene Line No. Sold directly to consumers for: 1 Residential Use (Non-Farm): * Backup generator * Home heating and cooking * Personal lawn equipment * EXCLUDE: Apartment buildings and Farmhouses 2 Commercial Use: * Apartment building * Bank * Casino * Church * College/School/Institution * Department/Retail store * Environmental clean-up service * Flushing fuel lines * Forestry service * Golf course * Government (Federal, State, local, and district; INCLUDE fuel used in vehicles) * Hazardous waste company * Hospital * Hotel/Motel * Landfill site government owned * Landscaping * Laundry company * Lumber yard that sells the lumber * Medical service * Port Authority/publicly owned port or loading dock

340

2013 EIA-821 SURVEY: LINE-BY-LINE REFERENCE GUIDE

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

waste company * Hospital * HotelMotel * Landfill site government owned (exclude private landfill, see Off-highway, as defined on page 3 for Lines 41 through 43) *...

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

341

A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

Rhodes, Mark A. (Pleasanton, CA)

2008-10-21T23:59:59.000Z

342

Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) | Open

Ground Gravity Survey At Mokapu Penninsula Area Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A separate geophysical analysis performed on the Koolau caldera area (Kauahikaua, 1981 a) synthesized existing self-potential, gravity, seismic and aeromagnetic data with recently acquired resistivity soundings. An analysis of the observed remnant magnetization within the caldera complex suggested that subsurface temperatures ranged from less than 300degrees C to no more than 540degrees C. The resistivity data indicated that the electrical basement, to a depth of 900 m, had resistivities ranging from 42 ohm.m to more than 1000 ohm.m, which is considered to be within the

343

Effective temperature and compactivity of a lattice gas under gravity

Science Journals Connector (OSTI)

The notion of longitudinal effective temperature and its relation with the Edwards compactivity are investigated in an abstract lattice gas model of granular material compacting under gravity and weak thermal vibration.

Mauro Sellitto

2002-10-10T23:59:59.000Z

344

Extended Theories of Gravity and their Cosmological and Astrophysical Applications

We review Extended Theories of Gravity in metric and Palatini formalism pointing out their cosmological and astrophysical application. The aim is to propose an alternative approach to solve the puzzles connected to dark components.

Salvatore Capozziello; Mauro Francaviglia

2007-06-08T23:59:59.000Z

345

Geodesic multiplication as a tool for classical and quantum gravity

Algebraic systems called the local geodesic loops and their tangent Akivis algebras are considered. Their possible role in theory of gravity is considered. Quantum conditions for the infinitesimal quantum events are proposed.

Piret Kuusk; Eugen Paal

2008-03-08T23:59:59.000Z

346

Mixed convection and heat management in the Mars gravity biosatellite

The Mars Gravity Biosatellite will house fifteen mice in a low Earth orbit satellite spinning about its longitudinal axis. The satellite's payload thermal control system will reject heat through the base of the payload ...

Marsh, Jesse B. (Jesse Benjamin)

2007-01-01T23:59:59.000Z

347

The evolution of miscible gravity currents in horizontal porous layers

Gravity currents of miscible fluids in porous media are important to understand because they occur in important engineering projects, such as enhanced oil recovery and geologic CO[subscript 2] sequestration. These flows ...

Szulczewski, Michael Lawrence

348

Costs of Imported Crude Oil by API Gravity

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil Acquisition Report," July 1984 to present. 26. F.O.B. Costs of Imported Crude Oil by API Gravity 48 Energy Information Administration Petroleum Marketing Annual 1996...

349

Costs of Imported Crude Oil by API Gravity

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil Acquisition Report," July 1984 to present. 26. F.O.B. Costs of Imported Crude Oil by API Gravity 48 Energy Information Administration Petroleum Marketing Annual 1997...

350

Gravity and its Mysteries: Some Thoughts and Speculations

I gave a rambling talk about gravity and its many mysteries at Chen-Ning Yang's 85th Birthday Celebration held in November 2007. I don't have any answers.

A. Zee

2008-05-14T23:59:59.000Z

351

An alternative derivation of the Minimal massive 3D gravity

By using the algebra of exterior forms and the first order formalism with constraints, an alternative derivation of the field equations for the Minimal massive 3D gravity model is presented.

Ahmet Baykal

2014-08-22T23:59:59.000Z

352

Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...

project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...

353

Alliance fights limits on chlorofluorocarbons

Science Journals Connector (OSTI)

Alliance fights limits on chlorofluorocarbons ... Efforts by the nascent Alliance for Responsible CFC Policy to curb the Environmental Protection Agency's plans to put more limits on chlorofluorocarbons are beginning to have results. ... The 400-member alliance was formed last August to fight EPA's avowed intention to limit production of CFC's in the U.S. to 30% of their present levels. ...

1981-03-02T23:59:59.000Z

354

Constraints and Solutions of Quantum Gravity in Metric Representation

We construct the regularised Wheeler-De Witt operator demanding that the algebra of constraints of quantum gravity is anomaly free. We find that for a subset of all wavefunctions being integrals of scalar densities this condition can be satisfied. We proceed to finding exact solutions of quantum gravity being of the form of functionals of volume and average curvature of compact three-manifold.

A. B?aut; J. Kowalski-Glikman

1997-10-07T23:59:59.000Z

355

Analysis of interconnect microstrip lines

System C. Dyadic Green's Functions 1. TM and TE Decomposition 2. Transmission-Line Green's Functions . NUiVIERICAL PROCEDURES . A. Basis functions and testing procedure . 1. Interconnect of Microstrip Lines 2. Slot-Coupled Microstrip Dipole . 3... data of return loss on the 20 GHz slot-coupled rect- angular patch antenna. . FIG URE Pa. ge 28 Typical transmission line section containing a 1A current source. . . 68 CHAPTER I INTRODUCTION Many studies on slot-coupled microstrip antennas have...

Luong, Giam-Minh

2012-06-07T23:59:59.000Z

356

Loop Quantum Gravity Phenomenology: Linking Loops to Observational Physics

Research during the last decade demonstrates that effects originating on the Planck scale are currently being tested in multiple observational contexts. In this review we discuss quantum gravity phenomenological models and their possible links to loop quantum gravity. Particle frameworks, including kinematic models, broken and deformed Poincar\\'e symmetry, non-commutative geometry, relative locality and generalized uncertainty principle, and field theory frameworks, including Lorentz violating operators in effective field theory and non-commutative field theory, are discussed. The arguments relating loop quantum gravity to models with modified dispersion relations are reviewed, as well as, arguments supporting the preservation of local Lorentz invariance. The phenomenology related to loop quantum cosmology is briefly reviewed, with a focus on possible effects that might be tested in the near future. As the discussion makes clear, there remains much interesting work to do in establishing the connection between the fundamental theory of loop quantum gravity and these specific phenomenological models, in determining observational consequences of the characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted. characteristic aspects of loop quantum gravity, and in further refining current observations. Open problems related to these developments are highlighted.

Florian Girelli; Franz Hinterleitner; Seth A. Major

2012-12-13T23:59:59.000Z

357

Dynamical horizon entropy and equilibrium thermodynamics of generalized gravity theories

We study the relation between the thermodynamics and field equations of generalized gravity theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of a dynamical horizon as the Noether charge associated with the Kodama vector and point out that it satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations to Gauss-Bonnet gravity on any trapping horizon. Based on the quasilocal gravitational energy found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance the energy conservation, is just absorbed into the modified Wald entropy in the Friedmann-Robertson-Walker spacetime with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for generalized gravity theories.

Wu Shaofeng; Ge Xianhui; Yang Guohong [Department of Physics, Shanghai University, Shanghai, 200444 (China); Shanghai Key Lab of Astrophysics, Shanghai, 200234 (China); Zhang Pengming [Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); Institute of Modern Physics, Lanzhou, 730000 (China)

2010-02-15T23:59:59.000Z

358

Testing in Software Product Lines.

??This thesis presents research aimed at investigating different activities involved in software product lines testing process and possible improvements towards achieving developing high quality software… (more)

Odia, Osaretin

2007-01-01T23:59:59.000Z

359

NETL LINES OF DEMARCATION 09282012

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LINES OF DEMARCATION September 28, 2012 Contact: Site Operations Division or ESS&H Division with Questions The oversight, upkeep, and segregation of NETL infrastructure components,...

360

A Two Term Truncation of the Multiple Ising Model Coupled to 2d Gravity

We consider a model of p independent Ising spins on a dynamical planar phi-cubed graph. Truncating the free energy to two terms yields an exactly solvable model that has a third order phase transition from a pure gravity region (gamma=-1/2) to a tree-like region (gamma=1/2), with gamma=1/3 on the critical line. We are able to make an order of magnitude estimate of the value of p above which there exists a branched polymer (ie tree-like) phase in the full model, that is, p is approximately 13-23, which corresponds to a central charge c of about 6-12.

Martin G. Harris

1995-02-06T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

361

Growth factor parametrization and modified gravity

The growth rate of matter perturbation and the expansion rate of the Universe can be used to distinguish modified gravity and dark energy models in explaining the cosmic acceleration. The growth rate is parametrized by the growth index {gamma}. We discuss the dependence of {gamma} on the matter energy density {omega} and its current value {omega}{sub 0} for a more accurate approximation of the growth factor. The observational data, including the data of the growth rate, are used to fit different models. The data strongly disfavor the Dvali-Gabadadze-Porrati model. For the dark energy model with a constant equation of state, we find that {omega}{sub 0}=0.27{+-}0.02 and w=-0.97{+-}0.09. For the {lambda}CDM model, we find that {gamma}=0.64{sub -0.15}{sup +0.17}. For the Dvali-Gabadadze-Porrati model, we find that {gamma}=0.55{sub -0.13}{sup +0.14}.

Gong Yungui [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

2008-12-15T23:59:59.000Z

362

Symmetry and Evolution in Quantum Gravity

We propose an operator constraint equation for the wavefunction of the Universe that admits genuine evolution. While the corresponding classical theory is equivalent to the canonical decomposition of General Relativity, the quantum theory makes predictions that are distinct from Wheeler-DeWitt cosmology. Furthermore, the local symmetry principle - and corresponding observables - of the theory have a direct interpretation in terms of a conventional gauge theory, where the gauge symmetry group is that of spatial conformal diffeomorphisms (that preserve the spatial volume of the Universe). The global evolution is in terms of an arbitrary parameter that serves only as an unobservable label for successive states of the Universe. Our proposal follows unambiguously from a suggestion of York whereby the independently specifiable initial data in the action principle of General Relativity is given by a conformal geometry and the spatial average of the York time on the spacelike hypersurfaces that bound the variation. Remarkably, such a variational principle uniquely selects the form of the constraints of the theory so that we can establish a precise notion of both symmetry and evolution in quantum gravity.

Sean Gryb; Karim Thebault

2014-03-25T23:59:59.000Z

363

Exploring Cartan gravity with dynamical symmetry breaking

It has been known for some time that General Relativity can be regarded as a Yang-Mills-type gauge theory in a symmetry broken phase. In this picture the gravity sector is described by an $SO(1,4)$ or $SO(2,3)$ gauge field $A^{a}_{\\phantom{a}b\\mu}$ and Higgs field $V^{a}$ which acts to break the symmetry down to that of the Lorentz group $SO(1,3)$. This symmetry breaking mirrors that of electroweak theory. However, a notable difference is that while the Higgs field $\\Phi$ of electroweak theory is taken as a genuine dynamical field satisfying a Klein-Gordon equation, the gauge independent norm $V^2\\equiv \\eta_{ab}V^{a}V^{b}$ of the Higgs-type field $V^a$ is typically regarded as non-dynamical. Instead, in many treatments $V^a$ does not appear explicitly in the formalism or is required to satisfy $V^2 = \\mathrm{const.} \

H. F. Westman; T. G. Zlosnik

2014-03-24T23:59:59.000Z

364

12 Voltz Limited | Open Energy Information

Voltz Limited Voltz Limited Jump to: navigation, search Name 12 Voltz Limited Place Cumbria, United Kingdom Zip LA8 9NH Sector Renewable Energy, Solar, Wind energy Product Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines, solar panels, batteries,regulators,and stables, and as well as developing renewable energy technology and related products. Coordinates 54.63044Â°, -2.89984Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.63044,"lon":-2.89984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Energy Systems Limited ESL | Open Energy Information

Limited ESL Limited ESL Jump to: navigation, search Name Energy Systems Limited- ESL Place Kampala, Uganda Zip 25928 Sector Renewable Energy, Solar Product ESL deals with design, supply, installations and maintenance of solar and other renewable energy systems in Uganda. The company has a special focus on the remote rural communitiies within Uganda. Coordinates 0.3228Â°, 32.574841Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":0.3228,"lon":32.574841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

GenDrive Limited | Open Energy Information

GenDrive Limited GenDrive Limited Jump to: navigation, search Name GenDrive Limited Place Cambridge, United Kingdom Zip CB23 3GY Sector Renewable Energy, Solar, Wind energy Product Developing a range of grid-connected inverters, 'Plug & Play', for renewable energy (mostly solar and wind) systems. These are intended to improve ease of installation. Coordinates 43.003745Â°, -89.017499Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Conduit Ventures Limited | Open Energy Information

Conduit Ventures Limited Conduit Ventures Limited Name Conduit Ventures Limited Address 59-61 Hatton Garden, Unit B, 2nd Floor Colonial Buildings Place London, United Kingdom Zip EC1N 8LS Product Venture capital funding for fuel cells and hydrogen. Phone number +44 (0) 20 7831 3131 Website http://www.conduit-ventures.co Coordinates 51.5179133Â°, -0.1097391Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5179133,"lon":-0.1097391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Productivity Improvement of a Manual Assembly Line

or re-configuring an assembly system, which is the key step in improving the overall performance of an assembly line. Following this approach, two manual assembly line configurations (single stage parallel line and five-stage serial line...

Yerasi, Pranavi

2012-10-19T23:59:59.000Z

369

Wood specific gravity and aboveground biomass of Bombacopsis quinata plantations in Costa Rica

Science Journals Connector (OSTI)

Measurements of dry matter production in forest plantations are needed to assess the limits to potential production. There are almost no studies about wood specific gravity, crown composition, and total biomass distribution of Bombacopsis quinata plantations. Wood specific gravity and aboveground biomass distribution were studied in B. quinata plantations growing in two different climatic zones of Costa Rica. Allometric models were developed for individual trees, and total biomass production per hectare was obtained by applying these models to sample plots. Wood specific gravity was found to be higher at the base of the tree (0.330 g cm?3) than at the base of the living crown (0.280 g cm?3); a tendency to increase with diameter at breast height (DBH) could also be observed at both stem sections. Foliage, branch, and stem biomass were highly correlated with DBH (r>0.68, n=17). Branch and foliage dry biomass varied between 25 and 45% of the total tree dry biomass. The stem dry weight represented 55–75% of the total tree dry weight. From easy-measuring variables (DBH and height (H)), difficult-measuring or time-consuming variables (e.g., foliage biomass) can be estimated. Models developed in this study estimate foliage dry biomass from DBH and H from branch dry biomass and from crown diameter. Estimations of foliage dry biomass from branch dry biomass could be useful for studies carried out in the dry season when B. quinata trees do not have foliage. In the regression analyses, variable transformations (log10) improved the results when compared to original values of non-transformed variables.

Luis Diego Pérez Cordero; Markku Kanninen

2002-01-01T23:59:59.000Z

370

A gravity model for the Coso geothermal area, California | Open Energy

gravity model for the Coso geothermal area, California gravity model for the Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A gravity model for the Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 x 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity

371

Broader source: Energy.gov [DOE]

SunLine Transit Agency provides public transit and community services to California's Coachella Valley. The service area is more than 1,100 square miles and includes nine member cities, as well as Riverside County. Over the years, SunLine has pursued an aggressive strategy for implementing clean technologies into its fleet.

372

Alternating Current Loss of Strip Arrays as a Model for Resistive Fault Current Limiters

Science Journals Connector (OSTI)

Hysteretic alternating current (ac) loss P...in arrays of superconducting strip lines are calculated on the bases of the critical state model. For a simplified model of a film-type fault current limiter, we consi...

Yasunori Mawatari; Hirofumi Yamasaki

2000-01-01T23:59:59.000Z

373

Oil gravity segregation in the Monterey formation, California

The Monterey Formation is a fractured siliceous shale that is the principal reservoir and source rock for oil fields in the Santa Maria basin and the western Santa Barbara Channel. Monterey crudes in producing offshore fields are high-sulfur oils that range from 10[degrees] to 35[degrees] API. The oils in Monterey fractured reservoirs display a systematic increase in API gravity with increasing height above the oil-water contact. The rate of change in API gravity with depth in Monterey oil fields generally ranges from 0.5[degrees] to 1.2[degrees] API/100 ft. The oil-water contact usually occurs at an oil gravity of 10[degrees] API (the gravity at which the density of the oil and the water is equal). The maximum API gravity in a Monterey oil field is related to the level of thermal exposure experienced by the formation in the adjacent depocenter. Monterey oils are sourced by high-sulfur kerogens that generate heavy oils at low levels of thermal exposure, but generate progressively higher gravity oils at higher levels of thermal maturity. Comparison of the maximum API gravity found in 33 Monterey-sourced oil fields with the maximum temperature experienced by the Monterey Formation within three miles of the field (the most likely migration distance) suggests that a temperature of 260[degrees]F (127[degrees]C) is required to generate 20[degrees] API oil, and a temperature of 330[degrees]F (166[degrees]C) is required to generate 30[degrees] API oil.

Hornafius, J.S. (Mobil Exploration and Producing, Bakersfield, CA (United States))

1994-04-01T23:59:59.000Z

374

Design of processes with reactive distillation line diagrams

On the basis of the transformation of concentration coordinates, the concept of reactive distillation lines is developed. It is applied to study the feasibility of a reactive distillation with an equilibrium reaction on all trays of a distillation column. The singular points in the distillation line diagrams are characterized in terms of nodes and saddles. Depending on the characterization of the reactive distillation line diagrams, it can be decided whether a column with two feed stages is required. On the basis of the reaction space concept, a procedure for identification of reactive distillation processes is developed, in which the reactive distillation column has to be divided into reactive and nonreactive sections. This can be necessary to overcome the limitations in separation which result from the chemical equilibrium. The concentration profile of this combined reactive/nonreactive distillation column is estimated using combined reactive/nonreactive distillation lines.

Bessling, B. [BASF Ludwigshafen (Germany). Engineering Research and Development] [BASF Ludwigshafen (Germany). Engineering Research and Development; Schembecker, G.; Simmrock, K.H. [Univ. of Dortmund (Germany). Dept. of Chemical Engineering] [Univ. of Dortmund (Germany). Dept. of Chemical Engineering

1997-08-01T23:59:59.000Z

375

RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD-16 Degree-Sign 4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

Williams, S. J.; Gies, D. R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Hillwig, T. C. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); McSwain, M. V. [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Huang, W., E-mail: swilliams@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: todd.hillwig@valpo.edu, E-mail: mcswain@lehigh.edu, E-mail: hwenjin@astro.washington.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States)

2013-02-01T23:59:59.000Z

376

Tropical Limit in Statistical Physics

Tropical limit for macroscopic systems in equilibrium defined as the formal limit of Boltzmann constant k going to 0 is discussed. It is shown that such tropical limit is well-adapted to analyse properties of systems with highly degenerated energy levels, particularly of frustrated systems like spin ice and spin glasses. Tropical free energy is a piecewise linear function of temperature, tropical entropy is a piecewise constant function and the system has energy for which tropical Gibbs' probability has maximum. Properties of systems in the points of jump of entropy are studied. Systems with finite and infinitely many energy levels and phenomena of limiting temperatures are discussed.

M. Angelelli; B. Konopelchenko

2015-02-04T23:59:59.000Z

377

Terahertz Quantum-Cascade Transmission-Line Metamaterials

Terahertz Transmission-Line Metamaterials . . . . . . .CRLH Transmission Lines . . . . . . . . . . . . . . . .Terahertz CRLH Transmission-Line Metamaterials . . . . . . .

Tavallaee, Amir Ali

2012-01-01T23:59:59.000Z

378

Absence of cosmological constant problem in special relativistic field theory of gravity

The principles of quantum field theory in flat spacetime suggest that gravity is mediated by a massless particle with helicity $\\pm2$, the so-called graviton. It is regarded as textbook knowledge that, when the self-coupling of a particle with these properties is considered, the long-wavelength structure of such a nonlinear theory is fixed to be that of general relativity. However, here we show that these arguments conceal an implicit assumption which is surreptitiously motivated by the very knowledge of general relativity. This is shown by providing a counterexample: we revisit a nonlinear theory of gravity which is not structurally equivalent to general relativity and that, in the non-interacting limit, describes a free helicity $\\pm2$ graviton. We explicitly prove that this theory can be understood as the result of self-coupling in complete parallelism to the well-known case of general relativity. The assumption which was seen as natural in previous analyses but biased the result is pointed out. This speci...

Barceló, Carlos; Garay, Luis J

2014-01-01T23:59:59.000Z

379

Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers

Interferometry with massive particles may have the potential to explore the limitations of standard quantum mechanics in particular where it concerns its boundary with general relativity and the yet to be developed theory of quantum gravity. This development is hindered considerably by the lack of experimental evidence and testable predictions. Analyzing effects that appear to be common to many of such theories, such as a modification of the energy dispersion and of the canonical commutation relation within the standard framework of quantum mechanics, has been proposed as a possible way forward. Here we analyze in some detail the impact of a modified energy-momentum dispersion in a Ramsey-Bord\\'e setup and provide achievable bounds of these correcting terms when operating such an interferometer with nanodiamonds. Thus, taking thermal and gravitational disturbances into account will show that without specific prerequisites, quantum gravity modifications may in general be suppressed requiring a revision of previously estimated bounds. As a possible solution we propose a stable setup that is rather insensitive to these effects. Finally, we address the problems of decoherence and pulse errors in such setups and discuss the scalings and advantages with increasing particle mass.

Andreas Albrecht; Alex Retzker; Martin B. Plenio

2014-10-08T23:59:59.000Z

380

Hadronic form factor models and spectroscopy within the gauge/gravity correspondence

We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.

de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC

2012-03-20T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

381

Extension of the weak-line approximation and application to correlated-k methods

Global climate models require accurate and rapid computation of the radiative transfer through the atmosphere. Correlated-k methods are often used. One of the approximations used in correlated-k models is the weakline approximation. We introduce an approximation T/sub g/ which reduces to the weak-line limit when optical depths are small, and captures the deviation from the weak-line limit as the extinction deviates from the weak-line limit. This approximation is constructed to match the first two moments of the gamma distribution to the k-distribution of the transmission. We compare the errors of the weak-line approximation with T/sub g/ in the context of a water vapor spectrum. The extension T/sub g/ is more accurate and converges more rapidly than the weak-line approximation.

Conley, A.J.; Collins, W.D.

2011-03-15T23:59:59.000Z

382

Electric Transmission Line Siting Compact

Broader source: Energy.gov (indexed) [DOE]

Electric Transmission Line Siting Compact Electric Transmission Line Siting Compact 1 ______________________________________________________________________________ 2 ARTICLE I 3 PURPOSE 4 5 Siting electric transmission lines across state borders and federal lands is an issue for states, the 6 federal government, transmission utilities, consumers, environmentalists, and other stakeholders. 7 The current, multi-year application review process by separate and equal jurisdictions constitutes 8 a sometimes inefficient and redundant process for transmission companies and complicates the 9 efforts of state and federal policy-makers and other stakeholders to develop more robust 10 economic opportunities, increase grid reliability and security, and ensure the consumers have the 11 lowest cost electricity possible. 12

383

Electrical transmission line diametrical retainer

The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2004-12-14T23:59:59.000Z

384

Resonance Broadening of Spectral Lines

Science Journals Connector (OSTI)

A formalism introduced previously by the author is used to calculate the shape of an absorption line in a gas, taking account of the "resonance" interaction between like atoms. The most serious approximation is the neglect of the effect of translational motion. An asymmetric line is obtained, with the maximum shifted slightly toward the red. Some simple classical considerations also agree qualitatively with the results. Various properties of the line shape obtained are briefly discussed. The neglect of translational motion makes it impossible to compare the results with experiments performed up to the present time.

C. Alden Mead

1960-11-01T23:59:59.000Z

385

Pulse shaping with transmission lines

A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

Wilcox, Russell B. (Oakland, CA)

1987-01-01T23:59:59.000Z

386

Analytical study of optical pumping for the D1 line of 85Rb atoms

Science Journals Connector (OSTI)

We present analytical solutions for the populations of the D1 transition line of 85Rb atoms. The time evolution of the populations of the magnetic sublevels in the excited state at the weak intensity limit exhibi...

Heung-Ryoul Noh

2014-06-01T23:59:59.000Z

387

Genetic improvement of seedling emergence of low-phytate soybean lines.

??Reduced seedling emergence of low-phytate (LP) soybean [Glycine max (L.) Merr.] lines with the pha1 and pha2 alleles has been a limiting factor in the… (more)

Trimble, Loren Ambrose

2009-01-01T23:59:59.000Z

388

Limitations on entropic Bell inequalities

The derivation of Bell inequalities in terms of quantum statistical (thermodynamic) entropies is considered. Inequalities of the Wigner form are derived but shown to be extremely limiting in their applicability due to the nature of the density matrices involved. This also helps to identify a limitation in the Cerf-Adami inequalities.

Ian T. Durham

2006-08-01T23:59:59.000Z

389

FUEL CASK IMPACT LIMITER VULNERABILITIES

Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.

Leduc, D; Jeffery England, J; Roy Rothermel, R

2009-02-09T23:59:59.000Z

390

Strict Limit on CPT Violation from Polarization of Gamma-Ray Bursts

We report the strictest observational verification of CPT invariance in the photon sector, as a result of gamma-ray polarization measurement of distant gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the universe. We detected the gamma-ray polarization of three GRBs with high significance, and the source distances may be constrained by a well-known luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion relation E_{\\pm}^2=p^2 \\pm 2\\xi p^3/M_{Pl}, where \\pm denotes different circular polarization states of the photon, the parameter \\xi is constrained as |\\xi|

Kenji Toma; Shinji Mukohyama; Daisuke Yonetoku; Toshio Murakami; Shuichi Gunji; Tatehiro Mihara; Yoshiyuki Morihara; Tomonori Sakashita; Takuya Takahashi; Yudai Wakashima; Hajime Yonemochi; Noriyuki Toukairin

2012-11-09T23:59:59.000Z

391

Detailed line profile variability studies of the narrow line Seyfert 1 galaxy Mrk110 are presented. We obtained the spectra in a variability campaign carried out with the 9.2m Hobby-Eberly Telescope at McDonald Observatory. The integrated Balmer and Helium (HeI,II) emission lines are delayed by 3 to 33 light days to the optical continuum variations respectively. The outer wings of the line profiles respond much faster to continuum variations than the central regions. The comparison of the observed profile variations with model calculations of different velocity fields indicates an accretion disk structure of the broad line emitting region in Mrk110. Comparing the velocity-delay maps of the different emission lines among each other a clear radial stratification in the BLR can be recognized. Furthermore, delays of the red line wings are slightly shorter than those of the blue wings. This indicates an accretion disk wind in the BLR of Mrk110. We determine a central black hole mass of M = $1.8\\cdot10^{7} M_{\\odot}$. Because of the poorly known inclination angle of the accretion disk this is a lower limit only.

W. Kollatschny

2003-06-19T23:59:59.000Z

392

A line, the simplest way to express an artist's feelings or interpretation of an object, has its own emotions that an artist can employ for her purpose. Laser light, the most self-concentrated, self-sustained and directed, ...

Kim, Sue-Mie

1993-01-01T23:59:59.000Z

393

Science Journals Connector (OSTI)

We investigated surface patterning of I-Si(100)-(2×1) both experimentally and theoretically. Using scanning tunneling microscopy, we first examined I destabilization of Si(100)-(2×1) at near saturation. Dimer vacancies formed on the terraces at 600 K, and they grew into lines that were perpendicular to the dimer rows, termed vacancy line defects. These patterns were distinctive from those induced by Cl and Br under similar conditions since the latter formed atom and dimer vacancy lines that were parallel to the dimer rows. Using first-principles density functional theory, we determined the steric repulsive interactions associated with iodine and showed how the observed defect patterns were related to these interactions. Concentration-dependent studies showed that the vacancy patterns were sensitive to the I concentration. Dimer and atom vacancy lines that were elongated along the dimer row direction were favored at lower coverage. Atom vacancy lines dominated at ?0.8ML, they coexisted with dimer vacancy lines at ?0.6-0.7ML, and dimer vacancy lines were exclusively observed below ?0.5ML. These surface patterns reflect the mean strength of the adatom repulsive interactions.

G. J. Xu; N. A. Zarkevich; Abhishek Agrawal; A. W. Signor; B. R. Trenhaile; D. D. Johnson; J. H. Weaver

2005-03-30T23:59:59.000Z

394

Ground Gravity Survey At Truckhaven Area (Layman Energy Associates, 2009) |

Truckhaven Area (Layman Energy Associates, 2009) Truckhaven Area (Layman Energy Associates, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Truckhaven Area (Layman Energy Associates, 2009) Exploration Activity Details Location Truckhaven Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The area of coverage for the DOE-funded geophysical surveys is shown in Figure 9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers, centered on the same area covered by the MT soundings. A detailed description of the instrumentation and data acquisition procedures used for both surveys is provided in GSY-USA, Inc.

395

Viscosity bound for anisotropic superfluids in higher derivative gravity

In the present paper, based on the principles of gauge/gravity duality we analytically compute the shear viscosity to entropy ratio corresponding to the superfluid phase in Einstein Gauss-Bonnet gravity. From our analysis we note that the ratio indeed receives a finite temperature correction below certain critical temperature. This proves the non universality of shear viscosity to entropy ratio in higher derivative theories of gravity. We also compute the upper bound for the Gauss-Bonnet coupling corresponding to the symmetry broken phase and note that the upper bound on the coupling does not seem to change as long as we are close to the critical point of the phase diagram. However the corresponding lower bound of the shear viscosity to entropy ratio seems to get modified due to the finite temperature effects.

Bhattacharyya, Arpan

2014-01-01T23:59:59.000Z

396

Viscosity bound for anisotropic superfluids in higher derivative gravity

In the present paper, based on the principles of gauge/gravity duality we analytically compute the shear viscosity to entropy ratio corresponding to the superfluid phase in Einstein Gauss-Bonnet gravity. From our analysis we note that the ratio indeed receives a finite temperature correction below certain critical temperature. This proves the non universality of shear viscosity to entropy ratio in higher derivative theories of gravity. We also compute the upper bound for the Gauss-Bonnet coupling corresponding to the symmetry broken phase and note that the upper bound on the coupling does not seem to change as long as we are close to the critical point of the phase diagram. However the corresponding lower bound of the shear viscosity to entropy ratio seems to get modified due to the finite temperature effects.

Arpan Bhattacharyya; Dibakar Roychowdhury

2014-10-13T23:59:59.000Z

397

Will multiple probes of dark energy find modified gravity?

One of the most pressing issues in cosmology is whether general relativity (GR) plus a dark sector is the underlying physical theory or whether a modified gravity model is needed. Upcoming dark energy experiments designed to probe dark energy with multiple methods can address this question by comparing the results of the different methods in constraining dark energy parameters. Disagreement would signal the breakdown of the assumed model (GR plus dark energy). We study the power of this consistency test by projecting constraints in the w{sub 0}-w{sub a} plane from the four different techniques of the Dark Energy Survey in the event that the underlying true model is modified gravity. We find that the standard technique of looking for overlap has some shortcomings, and we propose an alternative, more powerful Multidimensional Consistency Test. We introduce the methodology for projecting whether a given experiment will be able to use this test to distinguish a modified gravity model from GR.

Shapiro, Charles [Institute of Cosmology and Gravitation, Portsmouth, PO1 3FX (United Kingdom); Dodelson, Scott [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637 (United States); Kavli Institute for Cosmological Physics, Chicago, Illinois 60637 (United States); Hoyle, Ben [Institut de Ciencies del Cosmos, Barcelona (Spain); Samushia, Lado [Institute of Cosmology and Gravitation, Portsmouth, PO1 3FX (United Kingdom); National Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, GE-0160 Tbilisi (Georgia); Flaugher, Brenna [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

2010-08-15T23:59:59.000Z

398

On the UV structure of quantum unimodular gravity

It is a well known result that any formulation of unimodular gravity is classically equivalent to General Relativity (GR), however a debate exists in the literature about this equivalence at the quantum level. In this work, we investigate the UV quantum structure of a diffeomorphism invariant formulation of unimodular gravity using functional renormalisation group methods in a Wilsonian context. We show that the effective action of the unimodular theory acquires essentially the same form with that of GR in the UV, as well as that both theories share similar UV completions within the framework of the asymptotic safety scenario for quantum gravity. Furthermore, we find that in this context the unimodular theory can appear to be non--predictive due to an increasing number of relevant couplings at high energies, and explain how this unwanted feature is in the end avoided.

Ippocratis D. Saltas

2014-12-13T23:59:59.000Z

399

Relativistic Gravity and Non-Relativistic Effective Field Theories

There has been great interest recently in formulating non-relativistic effective field theories in a general coordinate invariant way. We show that relativistic gravity theories can offer such a framework. We focus on the parity violating case in 2+1 dimensions which is particularly appropriate for the study on quantum Hall effects and chiral superfluids. We discuss how the non-relativistic spacetime structure emerges from relativistic gravity. We present covariant maps and constraints that relate the field contents in the two theories, which also serve as holographic dictionary in context of gauge/gravity duality. A low energy effective action for fractional quantum Hall states is constructed and captures universal geometric properties and generates non-universal corrections systematically. We give another holographic example with dyonic black brane background to calculate thermodynamic and transport properties of strongly coupled non-relativistic fluids in magnetic field. Our formalism has a good projection...

Wu, Chaolun

2014-01-01T23:59:59.000Z

400

Rapidly rotating neutron stars in $R$-squared gravity

$f(R)$ theories of gravity are one of the most popular alternative explanations for dark energy and therefore studying the possible astrophysical implications of these theories is an important task. In the present paper we make a substantial advance in this direction by considering rapidly rotating neutron stars in $R^2$ gravity. The results are obtained numerically and the method we use is non-perturbative and self-consistent. The neutron star properties, such as mass, radius and moment of inertia, are studied in detail and the results show that rotation magnifies the deviations from general relativity and the maximum mass and moment of inertia can reach very high values. This observation is similar to previous studies of rapidly rotating neutron stars in other alternative theories of gravity, such as the scalar-tensor theories, and it can potentially lead to strong astrophysical manifestations.

Yazadjiev, Stoytcho S; Kokkotas, Kostas D

2015-01-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

401

Will multiple probes of dark energy find modified gravity?

Science Journals Connector (OSTI)

One of the most pressing issues in cosmology is whether general relativity (GR) plus a dark sector is the underlying physical theory or whether a modified gravity model is needed. Upcoming dark energy experiments designed to probe dark energy with multiple methods can address this question by comparing the results of the different methods in constraining dark energy parameters. Disagreement would signal the breakdown of the assumed model (GR plus dark energy). We study the power of this consistency test by projecting constraints in the w0-wa plane from the four different techniques of the Dark Energy Survey in the event that the underlying true model is modified gravity. We find that the standard technique of looking for overlap has some shortcomings, and we propose an alternative, more powerful Multidimensional Consistency Test. We introduce the methodology for projecting whether a given experiment will be able to use this test to distinguish a modified gravity model from GR.

Charles Shapiro; Scott Dodelson; Ben Hoyle; Lado Samushia; Brenna Flaugher

2010-08-17T23:59:59.000Z

402

fault diagnosis of a high voltage transmission line using waveform ...

Oct 4, 2013 ... FAULT DIAGNOSIS OF A HIGH VOLTAGE TRANSMISSION LINE USING ... Fault types such as single line to ground, line to line, double line to ...

Ripunjoy Phukan

2013-10-04T23:59:59.000Z

403

Magnetized black holes and black rings in the higher dimensional dilaton gravity

In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes and five dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the $D$-dimensional magnetized Schwarzschild-Tangherlini black holes.

Stoytcho S. Yazadjiev

2005-11-21T23:59:59.000Z

404

On higher derivatives in 3D gravity and higher-spin gauge theories

The general second-order massive field equations for arbitrary positive integer spin in three spacetime dimensions, and their 'self-dual' limit to first-order equations, are shown to be equivalent to gauge-invariant higher-derivative field equations. We recover most known equivalences for spins 1 and 2, and find some new ones. In particular, we find a non-unitary massive 3D gravity theory with a 5th order term obtained by contraction of the Ricci and Cotton tensors; this term is part of an N=2 super-invariant that includes the 'extended Chern-Simons' term of 3D electrodynamics. We also find a new unitary 6th order gauge theory for 'self-dual' spin 3.

Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)], E-mail: E.A.Bergshoeff@rug.nl; Hohm, Olaf [Centre for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: ohohm@mit.edu; Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)], E-mail: P.K.Townsend@damtp.cam.ac.uk

2010-05-15T23:59:59.000Z

405

FIRST STUDY OF DARK MATTER PROPERTIES WITH DETECTED SOLAR GRAVITY MODES AND NEUTRINOS

We derive new limits on the cold dark matter properties for weakly interacting massive particles (WIMPs), potentially trapped in the solar core by using for the first time the central temperature constrained by boron neutrinos and the central density constrained by the dipolar gravity modes detected with the Global Oscillations at Low Frequency/Solar Helioseismic Observatory instrument. These detections disfavor the presence of non-annihilating WIMPs for masses {<=}10 GeV and spin dependent cross-sections >5 Multiplication-Sign 10{sup -36} cm{sup 2} in the solar core but cannot constrain WIMP annihilation models. We suggest that in the coming years helio- and asteroseismology will provide complementary probes of dark matter.

Turck-Chieze, S.; Garcia, R. A. [CEA/DSM/IRFU/SAp-AIM, CE Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France); Lopes, I. [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin and Universite de Toulouse, UPS-OMP, IRAP, 31400 Toulouse (France); Couvidat, S. [W.W. Hansen. E. P. L., Stanford University, Stanford, CA 94305 (United States); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Salabert, D. [CNRS, Observatoire de la Cote d'Azur, Universite de Nice Sophia-Antipolis, BP 4229, 06304 Nice Cedex 4 (France); Silk, J., E-mail: Sylvaine.Turck-Chieze@cea.fr [UPMC-CNRS, UMR7095, Institut d'Astrophysique de Paris, F-75014 Paris (France)

2012-02-10T23:59:59.000Z

406

The causal dynamical triangulations approach aims to construct a quantum theory of gravity as the continuum limit of a lattice-regularized model of dynamical geometry. A renormalization group scheme--in concert with finite size scaling analysis--is essential to this aim. Formulating and implementing such a scheme in the present context raises novel and notable conceptual and technical problems. I explored these problems, and, building on standard techniques, suggested potential solutions in the first paper of this two-part series. As an application of these solutions, I now propose a renormalization group scheme for causal dynamical triangulations. This scheme differs significantly from that studied recently by Ambjorn, Gorlich, Jurkiewicz, Kreienbuehl, and Loll.

Joshua H. Cooperman

2014-06-17T23:59:59.000Z

407

Sketcha: A Captcha Based on Line Drawings of 3D Models Steven A. Ross

Sketcha: A Captcha Based on Line Drawings of 3D Models Steven A. Ross Princeton University. INTRODUCTION This paper introduces a captcha [2] called "Sketcha" based on line drawings created from 3D models Com- mittee (IW3C2). Distribution of these papers is limited to classroom use, and personal use

408

E-Print Network 3.0 - assisted gravity drainage Sample Search...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, by gravity drainage in a core sample positioned vertically. The 1 m long core had a permeability of 7000 md... and a porosity of 41%. Pedrera et al. (2002) conducted gravity...

409

Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions

creating unique visual and quantitative data. These data were then analyzed using a resistance type heat transfer model and five different zero gravity flow regime maps. Results from this analysis included: (i) presenting zero gravity data that correlated...

Westheimer, David Thomas

2012-06-07T23:59:59.000Z

410

E-Print Network 3.0 - altered gravity conditions Sample Search...

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ren a, , Su Xu b , Shin-Tson Wu b... 2010 Keywords: Liquid droplet Droplet surface Surface tension Focal length Gravity effect We report... the gravity effects on the shape...

411

Constraints on gravity on cosmic scales with upcoming large-scale structure surveys

Science Journals Connector (OSTI)

...acceleration: large-scale structure surveys, such as Dark Energy Survey, the Large Synoptic Survey Telescope...modified gravity models. We consider the survey's ability to constrain dark energy EoS and modified gravity parameters by...

2011-01-01T23:59:59.000Z

412

Nonlinear subcritical magnetohydrodynamic beta limit

Published gyrokinetic simulations have had difficulty operating beyond about half the ideal magnetohydrodynamic (MHD) critical beta limit with stationary and low transport levels in some well-established reference cases. Here it is demonstrated that this limitation is unlikely due to numerical instability, but rather appears to be a nonlinear subcritical MHD beta limit[R. E. Waltz, Phys. Rev. Lett. 55, 1098 (1985)] induced by the locally enhanced pressure gradients from the diamagnetic component of the nonlinearly driven (zero frequency) zonal flows. Strong evidence that the zonal flow corrugated pressure gradient profiles can act as a MHD-like beta limit unstable secondary equilibrium is provided. It is shown that the addition of sufficient ExB shear or operation closer to drift wave instability threshold, thereby reducing the high-n drift wave turbulence nonlinear pumping of the zonal flows, can allow the normal high-n ideal MHD beta limit to be reached with low transport levels. Example gyrokinetic simulations of experimental discharges are provided: one near the high-n beta limit reasonably matches the low transport levels needed when the high experimental level of ExB shear is applied; a second experimental example at moderately high beta appears to be limited by the subcritical beta.

Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2010-07-15T23:59:59.000Z

413

Geodesic Structure of the Schwarzschild Black Hole in Rainbow Gravity

In this paper we study the geodesic structure of the Schwarzschild black hole in rainbow gravity analyzing the behavior of null and time-like geodesic. We find that the structure of the geodesics essentially does not change when the semi-classical effects are included. However, we can distinguish different scenarios if we take into account the effects of rainbow gravity. Depending on the type of rainbow functions under consideration, inertial and external observers see very different situations in radial and non radial motion of a test particles.

Carlos Leiva; Joel Saavedra; Jose Villanueva

2008-12-09T23:59:59.000Z

414

Gravity Survey of the Carson Sink - Data and Maps

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south?central, east?central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step?overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.

Faulds, James E.

415

Spherically symmetric static spacetimes in vacuum f(T) gravity

We show that Schwarzschild geometry remains as a vacuum solution for those four-dimensional f(T) gravitational theories behaving as ultraviolet deformations of general relativity. In the gentler context of three-dimensional gravity, we also find that the infrared-deformed f(T) gravities, like the ones used to describe the late cosmic speed up of the Universe, have as the circularly symmetric vacuum solution a Deser-de Sitter or a Banados, Teitelboim and Zanelli-like spacetime with an effective cosmological constant depending on the infrared scale present in the function f(T).

Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

2011-10-15T23:59:59.000Z

416

Neutron stars in f(R) gravity with perturbative constraints

We study the structure of neutron stars in f(R) gravity theories with perturbative constraints. We derive the modified Tolman-Oppenheimer-Volkov equations and solve them for a polytropic equation of state. We investigate the resulting modifications to the masses and radii of neutron stars and show that observations of surface phenomena alone cannot break the degeneracy between altering the theory of gravity versus choosing a different equation of state of neutron-star matter. On the other hand, observations of neutron-star cooling, which depends on the density of matter at the stellar interior, can place significant constraints on the parameters of the theory.

Cooney, Alan; DeDeo, Simon; Psaltis, Dimitrios [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Departments of Astronomy and Physics, University of Arizona, Tucson, Arizona 85721 (United States)

2010-09-15T23:59:59.000Z

417

Time machines and traversable wormholes in modified theories of gravity

We review recent work on wormhole geometries in the context of modified theories of gravity, in particular, in f(R) gravity and with a nonminimal curvature-matter coupling, and in the recently proposed hybrid metric-Palatini theory. In principle, the normal matter threading the throat can be shown to satisfy the energy conditions and it is the higher order curvatures terms that sustain these wormhole geometries. We also briefly review the conversion of wormholes into time-machines, explore several of the time travel paradoxes and possible remedies to these intriguing side-effects in wormhole physics.

Francisco S. N. Lobo

2012-12-05T23:59:59.000Z

418

Ising Model Coupled to Three-Dimensional Quantum Gravity

We have performed Monte Carlo simulations of the Ising model coupled to three-dimensional quantum gravity based on a summation over dynamical triangulations. These were done both in the microcanonical ensemble, with the number of points in the triangulation and the number of Ising spins fixed, and in the grand canoncal ensemble. We have investigated the two possible cases of the spins living on the vertices of the triangulation (``diect'' case) and the spins living in the middle of the tetrahedra (``dual'' case). We observed phase transitions which are probably second order, and found that the dual implementation more effectively couples the spins to the quantum gravity.

C. F. Baillie

1992-05-09T23:59:59.000Z

419

Quantum-Gravity Phenomenology and the DSR Ether Theories

Guided primarily by versions of a theoretical framework called Doubly Special Relativity, or DSR, that are supposed to entail speeds of light that vary with energy while preserving the relativity of inertial frames, quantum-gravity phenomenologists have recently been seeking clues to quantum gravity, in hoped-for differing times of arrival, for light of differing energies, from cosmologically distant sources. However, it has long been known that signals, of arbitrarily high speed in opposing directions, could be used to observe the translational state of (absolute) rest, as could signals of a fixed speed different from c. Consequently, the above versions of DSR are nonviable.

Kenneth M. Sasaki

2010-09-20T23:59:59.000Z

420

Geological structures from downward continuation of gravity anomalies

operator and two grid spacings (2 and 4 km), the depth to the upper surface of the source is about 4 km, with the center of' mass located at about 8 km. Comparison of these results with those for a sphere yield a density contrast of 0. 3 g/cc . Both... km 18. Downward-continuation residual gravity map and profile at the depth of 6 km. Contours in mGals. Grid spacing 4 km by 4 km 19. Downward-continuation residual gravity map and profile at the depth of 8 km. Contours in mGals. Grid spacing 4 km...

Yao, Chia-Chi George

2012-06-07T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

421

Power-counting renormalizability of generalized Horava gravity

In an earlier article [arXiv:0902.0590 [hep-th], Phys. Rev D80 (2009) 025011], I discussed the potential benefits of allowing Lorentz symmetry breaking in quantum field theories. In particular I discussed the perturbative power-counting finiteness of the normal-ordered :P(phi)^{z>=d}_{d+1}: scalar quantum field theories, and sketched the implications for Horava's model of quantum gravity. In the current rather brief addendum, I will tidy up some dangling issues and fill out some of the technical details of the argument indicating the power-counting renormalizability of a z>=d variant of Horava gravity in (d+1) dimensions.

Matt Visser

2009-12-24T23:59:59.000Z

422

Generalized Second Law of Thermodynamics in Extended Theories of Gravity

By employing the general expression of temperature $T_{h}=|\\kappa|/2\\pi = \\frac{1}{2\\pi \\tilde{r}_{A}}(1-\\frac{\\dot{\\tilde{r}}_{A}}{2H\\tilde{r}_{A}})$ associated with the apparent horizon of a FRW universe and assuming a region of FRW universe enclosed by the apparent horizon as a thermal system in equilibrium, we are able to show that the generalized second law of thermodynamics holds in Gauss-Bonnet gravity and in more general Lovelock gravity.

M. Akbar

2008-08-25T23:59:59.000Z

423

On Solutions of Minimal Massive 3D Gravity

We look at solutions of Minimal Massive Gravity (MMG), a generalisation of Topologically Massive Gravity (TMG) that improves upon its holographic properties. It is shown that generically (in MMG parameter space) all conformally flat solutions of vacuum MMG are locally isometric to one of the two (A)dS vacua of the theory. We then couple a scalar field, and find that domain wall solutions can only interpolate between these two vacua precisely when the bulk graviton is tachyonic. Finally, we find a non-BTZ AdS black hole solution satisfying Brown-Henneaux boundary conditions, which lies within the "bulk/ boundary unitarity region".

Arvanitakis, Alex S

2015-01-01T23:59:59.000Z

424

Complete Classification of 1+1 Gravity Solutions

A classification of the maximally extended solutions for 1+1 gravity models (comprising e.g. generalized dilaton gravity as well as models with non-trivial torsion) is presented. No restrictions are placed on the topology of the arising solutions, and indeed it is found that for generic models solutions on non-compact surfaces of arbitrary genus with an arbitrary non-zero number of holes can be obtained. The moduli space of classical solutions (solutions of the field equations with fixed topology modulo gauge transformations) is parametrized explicitly.

T. Kloesch; T. Strobl

1997-11-25T23:59:59.000Z

425

Classical and Quantum Aspects of 1+1 Gravity

We present a classification of all global solutions (with Lorentzian signature) for any general 2D dilaton gravity model. For generic choices of potential-like terms in the Lagrangian one obtains maximally extended solutions on arbitrary non-compact two-manifolds, including various black-hole and kink configurations. We determine all physical quantum states in a Dirac approach. In some cases the spectrum of the (black-hole) mass operator is found to be sensitive to the signature of the theory, which may be relevant in view of current attempts to implement a generalized Wick-rotation in 4D quantum gravity.

T. Kloesch; P. Schaller; T. Strobl

1996-08-02T23:59:59.000Z

426

We develop a framework for constraining a certain class of theories of nonminimally coupled (NMC) gravity with Solar System observations.

Orfeu Bertolami; Riccardo March; Jorge Páramos

2014-03-18T23:59:59.000Z

427

Grism-Based Pulse Shaper for Line-by-Line Control of More than 600 Comb Lines

Science Journals Connector (OSTI)

We construct a line-by-line pulse shaper using a grism dispersive element and achieve control of over six hundred 21 GHz comb lines. The 13.4 THz bandwidth is the largest ever...

Kirchner, Matthew S; Diddams, Scott A

428

Limits on Hot Galactic Halo Gas from X-ray Absorption Lines

Although the existence of large-scale hot gaseous halos around massive disk galaxies has been theorized for a long time, there is yet very little observational evidence. We report the Chandra and XMM-Newton grating spectral ...

Yao, Yangsen

429

Cognitive Limitations and Investment "Myopia"

Optimization of investment decisions in an uncertain and dynamically evolving environment is difficult due to the limitations of the decision maker’s cognitive capacity. Thus, actual investment decisions may deviate from ...

Chi, Tailan; Fan, Dashan

1997-01-01T23:59:59.000Z

430

Ecological Exposure Limits and Guidelines

Science Journals Connector (OSTI)

Abstract Ecological exposure limits and guidelines represent the maximum level of a chemical substance that is considered to be safe or acceptable in environmental releases or compartments. The ecological exposure limits are established to protect the ecosystems and environmental resources and may refer to the emissions, e.g., effluents, atmospheric emissions or discharges, or to the final concentration in the receiving body, e.g., water, sediment, or soil. There are two main methods for setting these limits. One focuses on the identification of best available practices for different sectors and processes; the other is a particular case of risk assessment, named by some authors as reverse risk assessment, which establishes the maximum level in the emission or receiving compartment maintaining an acceptable level of risk. The term ‘exposure limit’ is rarely used in the ecological context; the most usual terms are criteria, standards, or objectives.

J.V. Tarazona

2014-01-01T23:59:59.000Z

431

Hudol Limited | Open Energy Information

1TN Sector: Biomass Product: Wales-based firm with a licence that allows cost efficient gas production from biomass and Refuse derived Fuels (RDF). References: Hudol Limited1...

432

Extremal Limits and Kerr Spacetime

The fact that one must evaluate the near-extremal and near-horizon limits of Kerr space-time in a specific order, is shown to a lead to discontinuity in the extremal limit, such that this limiting space-time differs nontrivially from the precisely extremal space-time. This is established by first showing a discontinuity in the extremal limit of the maximal analytic extension of the Kerr geometry, given by Carter. Next, we examine the ISCO of the exactly extremal Kerr geometry and show that on the event horizon of the extremal Kerr black hole, it coincides with the principal null geodesic generator of the horizon, having vanishing energy and angular momentum. We find that there is no such ISCO in the near-extremal geometry, thus garnering additional support for our primary contention. We relate this disparity between the two geometries to the lack of a trapping horizon in the extremal situation.

Parthapratim Pradhan; Parthasarathi Majumdar

2011-08-11T23:59:59.000Z

433

An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model

An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model Zhendong Luoa) for the tropical Pacific Ocean reduced gravity model. Ensembles of data are compiled from transient solutions computed from the discrete equation system derived by FDS for the tropical Pacific Ocean reduced gravity

Aluffi, Paolo

434

Complete Bouguer gravity map of the Nevada Test Site and vicinity, Nevada

About 15,000 gravity stations were used to create the gravity map. Gravity studies at the Nevada Test Site were undertaken to help locate geologically favorable areas for underground nuclear tests and to help characterize potential high-level nuclear waste storage sites. 48 refs. (TEM)

Healey, D.L.; Harris, R.N.; Ponce, D.A.; Oliver, H.W.

1987-12-31T23:59:59.000Z

435

Canonical quantization of a minisuperspace model for gravity using self-dual variables

The present article summarizes the work of the papers \\cite{1} dealing with the quantization of pure gravity and gravity coupled to a Maxwell field and a cosmological constant in presence of spherical symmetry. The class of models presented is intended as an interesting testing ground for the quantization of full 3+1 gravity. We are working in Ashtekar's self-dual representation.

T. Thiemann

1999-10-04T23:59:59.000Z

436

Spitzer White Dwarf Planet Limits

We present preliminary limits on the presence of planets around white dwarf stars using the IRAC photometer on the Spitzer space telescope. Planets emit strongly in the mid-infrared which allows their presence to be detected as an excess at these wavelengths. We place limits of $5 M_J$ for 8 stars assuming ages of $1 Gyr$, and $10 M_J$ for 23 stars.We describe our survey, present our results and comment on approaches to improve our methodology.

F. Mullally; Ted von Hippel; D. E. Winget

2006-10-28T23:59:59.000Z

437

Line-Shape Transition of Collision Broadened Lines

Science Journals Connector (OSTI)

Using the newly developed technique of THz time-domain spectroscopy, we have measured the far-wing absorption line profile of the ensemble of collision broadened ground state rotational lines of methylchloride vapor out to more than 200 linewidths from resonance, corresponding to frequency offsets as much as 5× the resonant frequency. On these far wings the measured absorption is approximately an order of magnitude less than that predicted by the van Vleck–Weisskopf theory. Our observations show that at higher frequencies a transition occurs from the regime of the van Vleck–Weisskopf theory to the regime of the Lorentz theory.

H. Harde; N. Katzenellenbogen; D. Grischkowsky

1995-02-20T23:59:59.000Z

438

Limits on electrophilic Dark Matter from LHC Monojets

Searches for WIMP Dark Matter particle at the LHC are considered from the point of view of the existence of a Dark Matter particle which couples primarily through the heavy gauge boson Z, as suggested by recent tentative evidence for a 130 GeV gamma line in the FermiLAT data. We compare three models in which the WIMP is a neutrino-like particle and consider the limits on such particle and interactions from LHC.

K. G. Savvidy

2014-10-22T23:59:59.000Z

439

Domain lines as fractional strings

Science Journals Connector (OSTI)

We consider N=2 supersymmetric quantum electrodynamics with two flavors, the Fayet-Iliopoulos parameter, and a mass term ? which breaks the extended supersymmetry down to N=1. The bulk theory has two vacua; at ?=0 the Bogomol’nyi-Prasad-Sommerfield (BPS) monopoles-saturated domain wall interpolating between them has a moduli space parameterized by a U(1) phase ? which can be promoted to a scalar field in the effective low-energy theory on the wall world-volume. At small nonvanishing ? this field gets a sine-Gordon potential. As a result, only two discrete degenerate BPS domain walls survive. We find an explicit solitonic solution for domain lines—stringlike objects living on the surface of the domain wall which separate wall I from wall II. The domain line is seen as a BPS kink in the world-volume effective theory. We expect that the wall with the domain line on it saturates both the {1,0} and the {12,12} central charges of the bulk theory. The domain line carries a magnetic flux which is exactly 12 of the flux carried by the flux tube living in the bulk on each side of the wall. Thus, the domain lines on the wall confine charges living on the wall, resembling Polyakov’s three-dimensional confinement.

R. Auzzi; M. Shifman; A. Yung

2006-08-11T23:59:59.000Z

440

Domain Lines as Fractional Strings

We consider N=2 supersymmetric quantum electrodynamics (SQED) with 2 flavors, the Fayet--Iliopoulos parameter, and a mass term $\\beta$ which breaks the extended supersymmetry down to N=1. The bulk theory has two vacua; at $\\beta=0$ the BPS-saturated domain wall interpolating between them has a moduli space parameterized by a U(1) phase $\\sigma$ which can be promoted to a scalar field in the effective low-energy theory on the wall world-volume. At small nonvanishing $\\beta$ this field gets a sine-Gordon potential. As a result, only two discrete degenerate BPS domain walls survive. We find an explicit solitonic solution for domain lines -- string-like objects living on the surface of the domain wall which separate wall I from wall II. The domain line is seen as a BPS kink in the world-volume effective theory. We expect that the wall with the domain line on it saturates both the $\\{1,0\\}$ and the $\\{{1/2},{1/2}\\}$b central charges of the bulk theory. The domain line carries the magnetic flux which is exactly 1/2 of the flux carried by the flux tube living in the bulk on each side of the wall. Thus, the domain lines on the wall confine charges living on the wall, resembling Polyakov's three-dimensional confinement.

R. Auzzi; M. Shifman; A. Yung

2006-06-07T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

441

LINE PROFILES OF CORES WITHIN CLUSTERS. I. THE ANATOMY OF A FILAMENT

Observations are revealing the ubiquity of filamentary structures in molecular clouds. As cores are often embedded in filaments, it is important to understand how line profiles from such systems differ from those of isolated cores. We perform radiative transfer calculations on a hydrodynamic simulation of a molecular cloud in order to model line emission from collapsing cores embedded in filaments. We model two optically thick lines, CS(2-1) and HCN(1-0), and one optically thin line, N{sub 2}H{sup +}(1-0), from three embedded cores. In the hydrodynamic simulation, gas self-gravity, turbulence, and bulk flows create filamentary regions within which cores form. Though the filaments have large dispersions, the N{sub 2}H{sup +}(1-0) lines indicate subsonic velocities within the cores. We find that the observed optically thick line profiles of CS(2-1) and HCN(1-0) vary drastically with viewing angle. In over 50% of viewing angles, there is no sign of a blue asymmetry, an idealized signature of infall motions in an isolated spherical collapsing core. Profiles that primarily trace the cores, with little contribution from the surrounding filament, are characterized by a systematically higher HCN(1-0) peak intensity. The N{sub 2}H{sup +}(1-0) lines do not follow this trend. We demonstrate that red asymmetric profiles are also feasible in the optically thick lines, due to emission from the filament or one-sided accretion flows onto the core. We conclude that embedded cores may frequently undergo collapse without showing a blue asymmetric profile, and that observational surveys including filamentary regions may underestimate the number of collapsing cores if based solely on profile shapes of optically thick lines.

Smith, Rowan J.; Shetty, Rahul; Klessen, Ralf S. [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Stutz, Amelia M., E-mail: rowanjsmith.astro@googlemail.com [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

2012-05-01T23:59:59.000Z

442

Computing Criticality of Lines in Power Systems

Computing Criticality of Lines in Power Systems Ali P?narto identify critical lines, failure of which can causecriticality measure for all lines at a time, as opposed to

Pinar, Ali; Reichert, Adam; Lesieutre, Bernard

2006-01-01T23:59:59.000Z

443

Vortex lines and transitions in superfluid hydrodynamics

Science Journals Connector (OSTI)

...Preface to Vortices, dislocations, and line singularities in partial differential equations...Leslie and J. R. Ockendon. Vortex lines and transitions in superfluid hydrodynamics...nature and the motion of qunatized vortex lines. This paper illustrates the transitions...

1997-01-01T23:59:59.000Z

444

Coordination of Transmission Line Transfer Capabilities

Coordination of Transmission Line Transfer Capabilities Final Project Report Power Systems since 1996 PSERC #12;Power Systems Engineering Research Center Coordination of Transmission Line Summary The maximum power that can be transferred over any transmission line, called the transfer capacity

445

Limits to the radiative decay of the axion

Science Journals Connector (OSTI)

An axion with a mass greater than 1 eV should be detectable through its decay into two photons. In this paper I discuss the astrophysical and cosmological limits which define a small window of allowed axion mass above 3 eV. A firm upper bound to the axion's mass of ma?8 eV is derived by considering the effect of decaying axions upon the diffuse extragalactic background radiation and the brightness of the night sky due to axions in the halo of our Galaxy. The intergalactic light of clusters of galaxies is shown to be an ideal place to search for an emission line arising from the radiative decay of axions. An unsuccessful search for this emission line in three clusters of galaxies is then detailed. Limits to the presence of any intracluster line emission are derived with the result that axions with masses between 3 and 8 eV are excluded by the data, effectively closing this window of axion mass, unless a severe cancellation of axionic decay amplitudes occurs. The intracluster flux limits are then used to constrain the amplitude of any such model dependence.

M. Ted Ressell

1991-11-15T23:59:59.000Z

446

math.QA/0006228 Combinatorial quantisation of Euclidean gravity

MSÂ00Â007 math.QA/0006228 Combinatorial quantisation of Euclidean gravity in three dimensions B the combinatorial quantisation program developed for 1 address after 1.09.2000: Department of Mathematics, Heriot by Alekseev, Grosse and Schomerus, see [1][2] and also [3]. We shall show how to implement the main steps

Schroers, Bernd J.

447

Ionospheric detection of gravity waves induced by tsunamis

Science Journals Connector (OSTI)

......waves in the atmosphere, because...ionospheric plasma through different...hour and larger scales than...and 0.5 mHz, corresponding...couple with atmospheric gravity wave...ionospheric plasma at high altitude...ionosphere over large areas, in particular...description of the atmospheric-ionospheric......

Juliette Artru; Vesna Ducic; Hiroo Kanamori; Philippe Lognonné; Makoto Murakami

2005-03-01T23:59:59.000Z

448

Self-gravity and quasi-stellar object discs

Science Journals Connector (OSTI)

......large radius. Under standard assumptions, the Toomre...been made to modify the standard alpha-disc model so...extended discs. The plan of the paper is as follows. In Section 2 we review self-gravity in steady...these alternatives to the standard alpha disc face severe......

Jeremy Goodman

2003-03-11T23:59:59.000Z

449

Testing Gravity Against Early Time Integrated Sachs-Wolfe Effect

A generic prediction of general relativity is that the cosmological linear density growth factor $D$ is scale independent. But in general, modified gravities do not preserve this signature. A scale dependent $D$ can cause time variation in gravitational potential at high redshifts and provides a new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross correlation. We demonstrate the power of this test for a class of $f(R)$ gravity, with the form $f(R)=-\\lambda_1 H_0^2\\exp(-R/\\lambda_2H_0^2)$. Such $f(R)$ gravity, even with degenerate expansion history to $\\Lambda$CDM, can produce detectable ISW effect at $z\\ga 3$ and $l\\ga 20$. Null-detection of such effect would constrain $\\lambda_2$ to be $\\lambda_2>1000$ at $>95%$ confidence level. On the other hand, robust detection of ISW-LSS cross correlation at high $z$ will severely challenge general relativity.

Pengjie Zhang

2005-11-08T23:59:59.000Z

450

Peeling and Multi-critical Matter Coupled to Quantum Gravity

We show how to determine the unknown functions arising when the peeling decomposition is applied to multi-critical matter coupled to two-dimensional quantum gravity and compute the loop-loop correlation functions. The results that $\\eta=2+2/(2K-3)$ and $\

Martin G. Harris; John F. Wheater

1999-11-24T23:59:59.000Z

451

The quadratic symmetric teleparallel gravity in two dimensions

Science Journals Connector (OSTI)

A 2D symmetric teleparallel gravity model is given by a generic 4-parameter action that is quadratic in the non-metricity tensor. Variational field equations are derived. A class of conformally flat solutions are found. We also give static or cosmological solutions that need not be in this class.

M. Adak; T. Dereli

2008-01-01T23:59:59.000Z

452

No Open or Flat Bouncing Cosmologies in Einstein Gravity

We show that bouncing open or flat Friedmann-Robertson-Walker cosmologies are inconsistent with worldsheet string theory to first approximation. Specifically, the Virasoro constraint translates to the null energy condition in spacetime at leading order in the alpha-prime expansion. Thus one must go beyond minimally-coupled Einstein gravity in order to find bounce solutions.

Parikh, Maulik K

2015-01-01T23:59:59.000Z

453

The relationship between gravity and bathymetry in the Pacific Ocean

Science Journals Connector (OSTI)

......gravity and bathymetry in the Pacific Ocean A. B. Watts D. P. McKenzie...and geoid anomaly maps of the Pacific Ocean basin and its margin. The maps...The resulting maps show the Pacific ocean basin is associated with a number......

A. B. Watts; D. P. McKenzie; B. E. Parsons; M. Roufosse

1985-10-01T23:59:59.000Z

454

Testing gravity with halo density profiles observed through gravitational lensing

We present a new test of the modified gravity endowed with the Vainshtein mechanism with the density profile of a galaxy cluster halo observed through gravitational lensing. A scalar degree of freedom in the galileon modified gravity is screened by the Vainshtein mechanism to recover Newtonian gravity in high-density regions, however it might not be completely hidden on the outer side of a cluster of galaxies. Then the modified gravity might yield an observational signature in a surface mass density of a cluster of galaxies measured through gravitational lensing, since the scalar field could contribute to the lensing potential. We investigate how the transition in the Vainshtein mechanism affects the surface mass density observed through gravitational lensing, assuming that the density profile of a cluster of galaxies follows the original Navarro-Frenk-White (NFW) profile, the generalized NFW profile and the Einasto profile. We compare the theoretical predictions with observational results of the surface mass density reported recently by other researchers. We obtain constraints on the amplitude and the typical scale of the transition in the Vainshtein mechanism in a subclass of the generalized galileon model.

Narikawa, Tatsuya; Yamamoto, Kazuhiro, E-mail: narikawa@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp [Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan)

2012-05-01T23:59:59.000Z

455

Attractor Flows from Defect Lines

Deforming a two dimensional conformal field theory on one side of a trivial defect line gives rise to a defect separating the original theory from its deformation. The Casimir force between these defects and other defect lines or boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns out, that these flows are constant reparametrizations of gradient flows of the g-functions of the chosen defect or boundary condition. The special flows associated to supersymmetric boundary conditions in N=(2,2) superconformal field theories agree with the attractor flows studied in the context of black holes in N=2 supergravity.

Ilka Brunner; Daniel Roggenkamp

2010-02-12T23:59:59.000Z

456

Directed lines in sparse potentials

Science Journals Connector (OSTI)

We present a continuum formulation of a (d+1)-dimensional directed line interacting with sparse potentials (i.e., d-dimensional potentials defined only at discrete longitudinal locations.) An iterative solution for the partition function is derived. The impulsive influence of the potentials induces discontinuities in the evolution of the probability density P(x,t) of the directed line. The effects of these discontinuities are studied in detail for the simple case of a single defect. We then investigate sparse columnar potentials defined as a periodic array of defects in (2+1) dimensions, and solve exactly for P. A nontrivial binding-unbinding transition is found.

T. J. Newman and A. J. McKane

1997-01-01T23:59:59.000Z

457

Objective determination of optimal power line designs.

??Includes abstract. The thesis investigated the possibility of overhead power line designs being decided by using an objective rather thana subjective method. Power lines are… (more)

Stephen, Robert G.

2010-01-01T23:59:59.000Z

458

What can emission lines tell us?

1 Generalities 2 Empirical diagnostics based on emission lines 3 Photoionization modelling 4 Pending questions 5 Appendix: Lists of useful lines and how to deal with them

G. Stasinska

2007-04-03T23:59:59.000Z

459

AUTOMATION IN THE MEAT INDUSTRY | Slaughter Line Operation

Science Journals Connector (OSTI)

Abstract The strongest incentives for the slaughter industry to adopt automation technology relate to the drive for improved productivity through reduced labor. Automation in the pig slaughter industry has mainly been adopted in regions with high labor costs such as Northern Europe. In New Zealand, the lamb slaughter industry has been progressive in developing and using automation to automate the slaughter process. Automation in beef slaughter is limited because of the complexity associated with handling of the biological variation. Barriers for slaughter line automation include the high cost and complexity associated with the development of slaughter automation technology, combined with limited market size.

J.U. Nielsen; N.T. Madsen; R. Clarke

2014-01-01T23:59:59.000Z

460

SLE description of the nodal lines of random wave functions

The nodal lines of random wave functions are investigated. We demonstrate numerically that they are well approximated by the so-called SLE_6 curves which describe the continuum limit of the percolation cluster boundaries. This result gives an additional support to the recent conjecture that the nodal domains of random (and chaotic) wave functions in the semi classical limit are adequately described by the critical percolation theory. It is also shown that using the dipolar variant of SLE reduces significantly finite size effects.

E. Bogomolny; R. Dubertrand; C. Schmit

2006-09-07T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

461

Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey,

Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity Details Location Baltazor Hot Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The gravity map of the Baltazor KGRA (Fig. 2) shows a gravity low within the valley area that presumably is related to low-density Cenozoic sediments. The steep gravity gradient along the east side of the valley suggests a north-trending normal fault. The thickness of low-density fill is estimated to be about 300 m in the southwestern part of the KGRA and

462

Geodesic Deviation Equation in GR equivalent theory of $f(T)$ gravity

In this work, we show that it is possible to study the GR equivalent notion of geodesic deviation in $f(T)$ gravity, in spite of the fact that in teleparallel gravity there is no notion of geodesics, and the torsion is responsible for the appearance of gravitational interaction. In this regard, we obtain the GR equivalent of $f(T)$ gravity whose equations are in the modified gravity form such as $f(R)$ gravity. Then, we obtain the GDE within the context of this modified gravity. In this way, the obtained geodesic deviation equation will correspond to the $f(T)$ gravity. Eventually, we extend the calculations to obtain the modification of Matting relation.

Darabi, F; Atazadeh, K

2015-01-01T23:59:59.000Z

463

Geodesic Deviation Equation in GR equivalent theory of $f(T)$ gravity

In this work, we show that it is possible to study the GR equivalent notion of geodesic deviation in $f(T)$ gravity, in spite of the fact that in teleparallel gravity there is no notion of geodesics, and the torsion is responsible for the appearance of gravitational interaction. In this regard, we obtain the GR equivalent of $f(T)$ gravity whose equations are in the modified gravity form such as $f(R)$ gravity. Then, we obtain the GDE within the context of this modified gravity. In this way, the obtained geodesic deviation equation will correspond to the $f(T)$ gravity. Eventually, we extend the calculations to obtain the modification of Matting relation.

F. Darabi; M. Mousavi; K. Atazadeh

2014-12-31T23:59:59.000Z

464

Multi-gravity separator: an alternate gravity concentrator to process coal fines

The multi-gravity separator (MGS) is a novel piece of equipment for the separation of fine and ultra-fine minerals. However, the published literature does not demonstrate its use in the separation of coal fines. Therefore, an attempt was made to study the effects of different process variables on the performance of an MGS for the beneficiation of coal fines. The results obtained from this study revealed that among the parameters studied, drum rotation and feed solids concentration play dominating roles in controlling the yield and ash content of the clean coal. Mathematical modeling equations that correlate the variables studied and the yield and ash contents of the clean coal were developed to predict the performance of an MGS under different operating and design conditions. The entire exercise revealed that the MGS could produce a clean coal with an ash content of 14.67% and a yield of 71.23% from a feed coal having an ash content of 24.61 %.

Majumder, A.K.; Bhoi, K.S.; Barnwal, J.P. [Regional Research Laboratories, Bhopal (India)

2007-08-15T23:59:59.000Z

465

Magnetic-field-line random walk in turbulence: A two-point correlation function description

Science Journals Connector (OSTI)

The standard theory of field-line random walk is based on the description of turbulence in the wave number space. The latter description takes into account the details of turbulence at small scales. Such details, however, are not important in the theory of random walking magnetic field lines. In the present paper we therefore use simple decorrelation models to estimate the field-line diffusion coefficient. Previous results are recovered as special limits. It is shown that a full analytical description is possible and that the only parameter controlling the field-line diffusion coefficient is the Kubo number.

A. Shalchi; A. Dosch; J. A. le Roux; G. M. Webb; G. P. Zank

2012-02-28T23:59:59.000Z

466

Stark broadening of potassium lines

Science Journals Connector (OSTI)

Recently published Stark broadening data of potassium ns-4p and nd-4p lines have been reexamined. Newly derived data are compared with theoretical results obtained from a simple approximative formula. The experiment agrees with theoretical results, in average, within ±20%.

N. Konjevi?

1985-07-01T23:59:59.000Z

467

Coiled transmission line pulse generators

Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

McDonald, Kenneth Fox (Columbia, MO)

2010-11-09T23:59:59.000Z

468

Black Hole Complementarity in Gravity's Rainbow

We calculate the required energy for duplication of information in the context of black hole complementarity in the rainbow Schwarzschild black hole. The resultant energy can be written as the well-defined limit given by the conventional result for the vanishing rainbow parameter which characterizes the deformation of the relativistic dispersion relation in the freely falling frame. It shows that the duplication of information in quantum mechanics could be not allowed below a certain critical value of the rainbow parameter; however, it could be possible above the critical value of the rainbow parameter, so that the consistent formulation in the rainbow Schwarzschild black hole requires additional constraints or any other resolutions for the latter case.

Gim, Yongwan

2015-01-01T23:59:59.000Z

469

contribution to sea-level rise observed by GRACE withand ice caps to sea level rise, Nature, 482, 514–518. King,ice sheets to sea level rise, Geophys. Res. Lett. , 38,

Velicogna, I.; Wahr, J.

2013-01-01T23:59:59.000Z

470

Severe Limits on Variations of the Speed of Light with Frequency

Explosive astrophysical events at high red shift can be used to place severe limits on the fractional variation in the speed of light ($\\Delta c/c$), the photon mass ($m_{\\gamma}$), and the energy scale of quantum gravity ($E_{QG}$). I find $\\Delta c/c < 6.3 \\times 10^{-21}$ based on the simultaneous arrival of a flare in GRB 930229 with a rise time of $220 \\pm 30 \\mu s$ for photons of 30 keV and 200 keV. The limit on $m_{\\gamma}$ is $4.2 \\times 10^{-44} g$ for GRB 980703 from radio to gamma ray observations. The limit on $E_{QG}$ is $8.3 \\times 10^{16}$ GeV for GRB 930131 from 30 keV to 80 MeV photons.

Bradley E. Schaefer

1998-10-29T23:59:59.000Z

471

Classifying the Isolated Zeros of Asymptotic Gravitational Radiation by Tendex and Vortex Lines

A new method to visualize the curvature of spacetime was recently proposed. This method finds the eigenvectors of the "electric" and "magnetic" components of the Weyl tensor and, in analogy to the field lines of electromagnetism, uses the eigenvectors' integral curves to illustrate the spacetime curvature. Here we use this approach, along with well-known topological properties of fields on closed surfaces, to show that an arbitrary, radiating, asymptotically flat spacetime must have points near null infinity where the gravitational radiation vanishes. At the zeros of the gravitational radiation, the field of integral curves develops singular features analogous to the critical points of a vector field. We can, therefore, apply the topological classification of singular points of unoriented lines as a method to describe the radiation field. We provide examples of the structure of these points using linearized gravity and discuss an application to the extreme-kick black-hole-binary merger.

Aaron Zimmerman; David A. Nichols; Fan Zhang

2011-07-14T23:59:59.000Z

472

Review and Exams Limited Certification

__________________________________ Check which exam you will be taking: Commercial Landscape Maintenance Lawn & Ornamental CEU's ONLY 8 Limited Certification for Commercial Landscape Maintenance A license is necessary for each commercial landscape maintenance person who applies pesticides to ornamental plant beds. Application available at: http

Watson, Craig A.

473

Classical limits of unconstrained QFT

In nonrelativistic limits for states labeled by minimum packets with constrained spatial spreads and over a short term, states of unconstrained quantum field theories evolve on trajectories described by Newton's equations for the $1/r^2$ force. These states include bound solutions in the attractive force case.

Glenn Eric Johnson

2014-12-21T23:59:59.000Z

474

Sri Chamundeswari Sugars Limited SCSL | Open Energy Information

Chamundeswari Sugars Limited SCSL Chamundeswari Sugars Limited SCSL Jump to: navigation, search Name Sri Chamundeswari Sugars Limited (SCSL) Place Bangalore, Karnataka, India Zip 560042 Sector Biomass Product Karnataka-based producer of sugar that has also developed biomass plants including a biogas plant. Coordinates 12.97092Â°, 77.60482Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

China Longyuan Power Group Corporation Limited | Open Energy Information

Limited Limited Jump to: navigation, search Name China Longyuan Power Group Corporation Limited Place Beijing, Beijing Municipality, China Zip 100034 Sector Wind energy Product Subsidiary of large state owned power generator, Guodian, Longyuan is China's leading wind project developer by installed and planned capacity. Coordinates 39.90601Â°, 116.387909Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Reliance Industries Limited Solar Group | Open Energy Information

Reliance Industries Limited Solar Group Reliance Industries Limited Solar Group Jump to: navigation, search Name Reliance Industries Limited Solar Group Place Bangalore, Karnataka, India Zip 560076 Sector Solar Product String representation "Reliance solar, ... n solar energy." is too long. Coordinates 12.97092Â°, 77.60482Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

The Green Renewable Energy Company Limited | Open Energy Information

Limited Limited Jump to: navigation, search Name The Green Renewable Energy Company Limited Place London, United Kingdom Sector Biomass Product Company to establish a portfolio of biomass plants in UK. Coordinates 51.506325Â°, -0.127144Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Ecotality Inc formerly Alchemy Enterprises Limited | Open Energy

Alchemy Enterprises Limited Alchemy Enterprises Limited Jump to: navigation, search Name Ecotality Inc (formerly Alchemy Enterprises Limited) Place Scottsdale, Arizona Zip 85251 Sector Renewable Energy Product US technology company focused on commercializing renewable technologies through acquisition or direct investment of start-ups. Coordinates 33.494Â°, -111.920694Â° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.494,"lon":-111.920694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Recovery time of superconducting non-inductive reactor type fault current limiter

A superconducting fault current limiting device for electric power systems has been investigated to find out its feasibility. Non-inductive reactor type fault current limiter has been constructed using metal superconductor. Two bifilar wound solenoids were connected in antiparallel or antiseries. On each connection, the fault current limiting test was performed by short-circuiting a resistive load suddenly. The recovery (normal-to-superconductive state transition) time after the current limiting mode has been studied using small scale model of fault current limiter for the low voltage distribution line. The results reveal that the current limiter could be operated under repetitive fault current accident which was removed within a few cycle of the limiting mode. The recovery time is a function of the dissipated energy under current limiting mode. Test results are presented.

Hoshino, T.; Muta, I.; Tsukiji, H. [Saga Univ., Honjo, Saga (Japan)] [Saga Univ., Honjo, Saga (Japan); Ohkubo, K.; Etoh, M. [Kyushu Electric Power Co., Kono-Higashi, Saga (Japan)] [Kyushu Electric Power Co., Kono-Higashi, Saga (Japan)

1996-07-01T23:59:59.000Z

480

On the accuracy of line-of-sight velocity measurements using telluric lines as reference lines

Science Journals Connector (OSTI)

It is demonstrated that telluric lines H2O and O2 are displaced as much as 0.2 mÅ as the solar disk is being scanned. The temporal variations of such displacements have a quasi-periodic character.

N. I. Kobanov

1985-09-01T23:59:59.000Z

While these samples are representative of the content of NLE

they are not comprehensive nor are they the most current set.

We encourage you to perform a real-time search of NLE

to obtain the most current and comprehensive results.

481

CONSTRAINTS ON OH MEGAMASER EXCITATION FROM A SURVEY OF OH SATELLITE LINES

We report the results of a full-Stokes survey of all four 18 cm OH lines in 77 OH megamasers (OHMs) using the Arecibo Observatory. This is the first survey of OHMs that included observations of the OH satellite lines; only four of the 77 OHMs have existing satellite line observations in the literature. Satellite line emission is detected in five sources, three of which are redetections of previously published sources. The two sources with new detections of satellite line emission are IRAS F10173+0829, which was detected at 1720 MHz, and IRAS F15107+0724, for which both the 1612 MHz and 1720 MHz lines were detected. In IRAS F15107+0724, the satellite lines are partially conjugate, as 1720 MHz absorption and 1612 MHz emission have the same structure at some velocities within the source, along with additional broader 1612 MHz emission. This is the first observed example of conjugate satellite lines in an OHM. In the remaining sources, no satellite line emission is observed. The detections and upper limits are generally consistent with models of OHM emission in which all of the 18 cm OH lines have the same excitation temperature. There is no evidence for a significant population of strong satellite line emitters among OHMs.

McBride, James; Heiles, Carl [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Elitzur, Moshe, E-mail: jmcbride@astro.berkeley.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States)

2013-09-01T23:59:59.000Z

482

Seismic gravity-gradient noise in interferometric gravitational-wave detectors

When ambient seismic waves pass near an interferometric gravitational-wave detector, they induce density perturbations in the earth which produce fluctuating gravitational forces on the interferometer's test masses. These forces mimic a stochastic background of gravitational waves and thus constitute noise. We compute this noise using the theory of multimode Rayleigh and Love waves propagating in a layered medium that approximates the geological strata at the LIGO sites. We characterize the noise by a transfer function $T(f) \\equiv \\tilde x(f)/\\tilde W(f)$ from the spectrum of direction averaged ground motion $\\tilde W(f)$ to the spectrum of test mass motion $\\tilde x(f) = L\\tilde h(f)$ (where $L$ is the length of the interferometer's arms, and $\\tilde h(f)$ is the spectrum of gravitational-wave noise). This paper's primary foci are (i) a study of how $T(f)$ depends on the various seismic modes; (ii) an attempt to estimate which modes are excited at the LIGO sites at quiet and noisy times; and (iii) a corresponding estimate of the seismic gravity-gradient noise level. At quiet times the noise is below the benchmark noise level of ``advanced LIGO interferometers'' (although not by much near 10 Hz); it may significantly exceed this level at noisy times. The lower edge of our quiet-time noise is a limit beyond which there is little gain from further improvements in vibration isolation and thermal noise, unless one also reduces seismic gravity-gradient noise. Two methods of reduction are discussed: monitoring the earth's density perturbations, computing their gravitational forces, and correcting the data for those forces; and constructing narrow moats around the interferometers' test masses to shield out the fundamental-mode Rayleigh waves, which we suspect dominate at quiet times.

Scott A. Hughes; Kip S. Thorne

1998-06-03T23:59:59.000Z

483

Radio recombination lines from the largest bound atoms in space

In this paper, we report the detection of a series of radio recombination lines (RRLs) in absorption near 26 MHz arising from the largest bound carbon atoms detected in space. These atoms, which are more than a million times larger than the ground state atoms are undergoing delta transitions (n~1009, Delta n=4) in the cool tenuous medium located in the Perseus arm in front of the supernova remnant, Cassiopeia A. Theoretical estimates had shown that atoms which recombined in tenuous media are stable up to quantum levels n~1500. Our data indicates that we have detected radiation from atoms in states very close to this theoretical limit. We also report high signal-to-noise detections of alpha, beta and gamma transitions in carbon atoms arising in the same clouds. In these data, we find that the increase in line widths with quantum number (proportional to n^5) due to pressure and radiation broadening of lines is much gentler than expected from existing models which assume a power law background radiation field. This discrepancy had also been noted earlier. The model line widths had been overestimated since the turnover in radiation field of Cassiopeia A at low frequencies had been ignored. In this paper, we show that, once the spectral turnover is included in the modeling, the slower increase in line width with quantum number is naturally explained.

S. V. Stepkin; A. A. Konovalenko; N. G. Kantharia; N. Udaya Shankar

2006-10-13T23:59:59.000Z

484

Projective Loop Quantum Gravity I. State Space

Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In [Oko{\\l}\\'ow 2013, arXiv:1304.6330] the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.

Suzanne Lanéry; Thomas Thiemann

2014-11-11T23:59:59.000Z

485

Variable Light-Cone Theory of Gravity

We show how to reformulate Variable Speed of Light Theories (VSLT) in a covariant fashion as Variable Light-Cone Theories (VLCT) by introducing two vierbein bundles each associated with a distinct metric. The basic gravitational action relates to one bundle while matter propagates relative to the other in a conventional way. The variability of the speed of light is represented by the variability of the matter light-cone relative to the gravitational light-cone. The two bundles are related locally by an element M, of SL(4,R). The dynamics of the field M is that of a SL(4,R)-sigma model gauged with respect to local (orthochronous) Lorentz transformations on each of the bundles. Only the ``massless'' version of the model with a single new coupling, F, that has the same dimensions as Newton's constant $G_N$, is considered in this paper. When F vanishes the theory reduces to standard General Relativity. We verify that the modified Bianchi identities of the model are consistent with the standard conservation law for the matter energy-momentum tensor in its own background metric. The implications of the model for some simple applications are examined, the Newtonian limit, the flat FRW universe and the spherically symmetric static solution.

I. T. Drummond

1999-08-20T23:59:59.000Z

486

Proposed Project: Plains & Eastern Clean Line

Broader source: Energy.gov [DOE]

On June 10, 2010, the Department of Energy published in the Federal Register a Request for Proposals (RFP) for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act (EPAct) of 2005. In response, Clean Line Energy Partners, LLC submitted an application for its Plains & Eastern Clean Line project. DOE has concluded that Clean Line’s proposal was responsive to the RFP, and it is currently under consideration.

487

The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second-order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of projector-like operators for the degrees of freedom, rather than for the spin modes of the fields. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes becomes more immediate. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a timelike vector of the type v{sup {mu}=}({mu},0-vector). Spectral consistency imposes that the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to ordinary gauge theories whenever conditions for the suppression of tachyons and ghosts are imposed.

Pereira-Dias, B.; Hernaski, C. A.; Helayeel-Neto, J. A. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Brazil, CEP 22290-180 (Brazil)

2011-04-15T23:59:59.000Z

488

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FF33"> FF33"> BOREAS Survey On-Line To improve the BOREAS and BOREAS Follow-On data sets and to meet users' needs, we are conducting a survey. The BOREAS and BOREAS Follow-On data sets continue to be important products at the ORNL DAAC. To date we have provided over 8,000 data products from these projects to nearly 1,500 users. We invite you to fill out this survey, identifying any problems you had with the data and documentation or any difficulties you experienced in finding and acquiring the data sets. Information you provide will enable us to address problems that need attention. It will also help us determine which aspects of the BOREAS and BOREAS Follow-On information need to be expanded. You can complete the survey at the BOREAS Home Page. After you complete the on-line survey, submit your answers to the ORNL

489

I start with an elementary observation about the pressure in the deconfined phase of a SU(3) gauge theory without quarks. This suggests a ``fuzzy'' bag model for the analogous pressure in QCD, with dynamical quarks. I then sketch how the deconfined phase might be described using an effective theory of Wilson lines. To leading order in weak coupling, the effective electric field appears in a form familiar from the lattice theory of Banks and Ukawa.

Robert D. Pisarski

2006-12-15T23:59:59.000Z

490

Dynamic roughening of directed lines

Science Journals Connector (OSTI)

We study the fluctuations of a stretched string, e.g., a vortex line, moving in a random medium. A pair of nonlinear equations are proposed to describe the evolution of longitudinal and transverse coordinates. The dynamic scaling of the fluctuations is studied analytically (by renormalization group) and numerically. In most cases the fluctuations are superdiffusive, governed by a dynamic exponent z=3/2.

Deniz Erta? and Mehran Kardar

1992-08-10T23:59:59.000Z

491

Science Journals Connector (OSTI)

In this paper, the emission of internal gravity waves from a local westerly shear layer is studied. Thermal and/or vorticity forcing of the shear layer with a wide range of frequencies and scales can lead to strong emission of gravity waves in ...

Nikolaos A. Bakas; Petros J. Ioannou

2007-05-01T23:59:59.000Z

492

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

2000-01-01T23:59:59.000Z

493

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

Pento, Robert; Marks, James E.; Staffanson, Clifford D.

1998-07-28T23:59:59.000Z

494

Gravity and magnetic data of Midway Valley, southwest Nevada

Detailed gravity and ground magnetic data collected along five traverses across Midway Valley on the eastern flank of Yucca Mountain in southwest Nevada are described. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley.

Ponce, D.A.; Langenheim, V.E.; Sikora, R.F. [Geological Survey, Menlo Park, CA (United States)

1993-12-31T23:59:59.000Z

495

Relativistic Scalar Gravity: A Laboratory for Numerical Relativity

We present here a relativistic theory of gravity in which the spacetime metric is derived from a single scalar field $\\Phi$. The field equation, derived from a simple variational principle, is a non-linear flat-space four-dimensional wave equation which is particularly suited for numerical evolution. We demonstrate that while this theory does not generate results which are exactly identical quantitatively to those of general relativity (GR), many of the qualitative features of the full GR theory are reproduced to a reasonable approximation. The advantage of this formulation lies in the fact that 3D numerical grids can be numerically evolved in minutes or hours instead of the days and weeks required by GR, thus drastically reducing the development time of new relativistic hydrodynamical codes. Scalar gravity therefore serves as a meaningful testbed for the development of larger routines destined for use under the full theory of general relativity.

Keith Watt; Charles W. Misner

1999-10-10T23:59:59.000Z

496

D-branes in Standard Model building, Gravity and Cosmology

D-branes are by now an integral part of our toolbox towards understanding nature. In this review we will describe recent progress in their use to realize fundamental interactions. The realization of the Standard Model and relevant physics and problems will be detailed. New ideas on realizing 4-dimensional gravity use the brane idea in an important way. Such approaches will be reviewed and compared to the standard paradigm of compactification. Branes can play a pivotal role both in early- and late-universe cosmology mainly via the brane-universe paradigm. Brane realizations of various cosmological ideas (early inflation, sources for dark matter and dark energy, massive gravity etc) will be also reviewed.

Elias Kiritsis

2004-05-14T23:59:59.000Z

497

Symmetric Teleparallel Gravity: Some exact solutions and spinor couplings

In this paper we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian spacetime with nonzero nonmetricity, but zero torsion and zero curvature. Firstly we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry the autoparallel curves coincides with those of the Riemannian spacetimes. Subsequently we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our lagrangian is equivalent to the Einstein-Hilbert lagrangian for certain values of coupling coefficients. Thus we arrive at calculating the field equations via independent variations. Then we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally we discuss a minimal coupling of a spin-1/2 field to STPG.

Muzaffer Adak; Özcan Sert; Mestan Kalay; Murat Sar?

2008-10-14T23:59:59.000Z

498

Stability of AdS in Einstein Gauss Bonnet Gravity

Recently it has been argued that in Einstein gravity Anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass/energy content of the space-time is too small, thereby restoring the stability of AdS spacetime. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.

Deppe, Nils; Frey, Andrew; Kunstatter, Gabor

2014-01-01T23:59:59.000Z

499

Gravity of Accelerations on Quantum Scales and its Consequences

Gravity stands apart from other fundamental interactions in that it is locally equivalent to an accelerated frame and can be transformed away. Again it is indistinguishable from the geometry of space-time (which is an arena for all other basic interactions), its strength being linked with the curvature. This is a major reason why it has so far not been amenable to quantisation like other interactions. It is also evident that new ideas are required to resolve several conundrums in areas like cosmology, black hole physics, and particles at high energies. That gravity can have strong coupling at microscales has also been suggested in several contexts earlier. Here we develop some of these ideas, especially in connection with the high accelerations experienced by particles at microscales, which would be interpreted as strong local gravitational fields. The consequences are developed for various situations and possible experimental manifestations are discussed.

C Sivaram; Kenath Arun; Kiren O V; B N Sreenath

2013-12-18T23:59:59.000Z

500

Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (?g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in ?g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in ?g flames, which reduces the time to gel for nanoparticles by ?10{sup 6}?s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

2014-06-16T23:59:59.000Z

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Website Policies and Important Links

Search capabilities provided by DOE/OSTI