Powered by Deep Web Technologies
Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Linear Accelerator | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

(MeV). At 450 MeV, the electrons are relativistic: they are traveling at >99.999% of the speed of light, which is 299,792,458 meters second (186,000 milessecond). Photo: Linear...

2

Assessing the reliability of linear dynamic transformer thermal modelling  

E-Print Network (OSTI)

Assessing the reliability of linear dynamic transformer thermal modelling X. Mao, D.J. Tylavsky and G.A. McCulla Abstract: Improving the utilisation of transformers requires that the hot-spot and top. An alternative method for assessing transformer model reliability is provided. 1 Introduction The maximally

3

Measurement of Thermal Neutron Flux in Photo-Neutron Source  

Science Journals Connector (OSTI)

The Photo-Neutron Source (PNS) project is a study ... design, simulation and construction an accelerator based neutron source for Boron Neutron Capture Therapy (BNCT). The system uses ... medical linear accelerat...

A. Taheri; A. Torkamani; A. Pazirandeh…

2013-01-01T23:59:59.000Z

4

TIME-VARYING LINEAR MODEL APPROXIMATION: APPLICATION TO THERMAL AND AIRFLOW BUILDING SIMULATION  

E-Print Network (OSTI)

TIME-VARYING LINEAR MODEL APPROXIMATION: APPLICATION TO THERMAL AND AIRFLOW BUILDING SIMULATION the computing time is still an open challenge. After spacial discretisation, the thermal model of a building is demonstrated by its application to the simulation of a multi-zones building. THERMAL AND AIRFLOW MODELS

Paris-Sud XI, Université de

5

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

6

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS  

E-Print Network (OSTI)

A 20-SUN HYBRID PV-THERMAL LINEAR MICRO-CONCENTRATOR SYSTEM FOR URBAN ROOFTOP APPLICATIONS D Walter-mounted system couples the benefits of distributed PV electricity generation with the on-site generation of thermal energy in a temperature range of 60 to 220 ºC. This is ideal for applications ranging from

7

Transient Non-linear Thermal FEM Simulation of Smart Power Switches and Verification by Measurements  

E-Print Network (OSTI)

Thermal FEM (Finite Element Method) simulations can be used to predict the thermal behavior of power semiconductors in application. Most power semiconductors are made of silicon. Silicon thermal material properties are significantly temperature dependent. In this paper, validity of a common non-linear silicon material model is verified by transient non-linear thermal FEM simulations of Smart Power Switches and measurements. For verification, over-temperature protection behavior of Smart Power Switches is employed. This protection turns off the switch at a pre-defined temperature which is used as a temperature reference in the investigation. Power dissipation generated during a thermal overload event of two Smart Power devices is measured and used as an input stimulus to transient thermal FEM simulations. The duration time of the event together with the temperature reference is confronted with simulation results and thus the validity of the silicon model is proved. In addition, the impact of non-linear thermal properties of silicon on the thermal impedance of power semiconductors is shown.

V. Kosel; R. Sleik; M. Glavanovics

2008-01-07T23:59:59.000Z

8

Entropy Production in Non-Linear, Thermally Driven Hamiltonian Systems  

E-Print Network (OSTI)

We consider a finite chain of non-linear oscillators coupled at its ends to two infinite heat baths which are at different temperatures. Using our earlier results about the existence of a stationary state, we show rigorously that for arbitrary temperature differences and arbitrary couplings, such a system has a unique stationary state. (This extends our earlier results for small temperature differences.) In all these cases, any initial state will converge (at an unknown rate) to the stationary state. We show that this stationary state continually produces entropy. The rate of entropy production is strictly negative when the temperatures are unequal and is proportional to the mean energy flux through the system.

Jean-Pierre Eckmann; Claude-Alain Pillet; Luc Rey-Bellet

1998-10-30T23:59:59.000Z

9

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

04: Linac Coherent Light Source II at Stanford Linear 04: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

10

EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Linac Coherent Light Source II at Stanford Linear 4: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California Summary This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. Public Comment Opportunities None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 Electronic mail: dave.osugi@sso.science.doe.gov Documents Available for Download March 7, 2012 EA-1904: Finding of No Significant Impact Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, CA

11

Linear-drifting subpulse sources in radio pulsars  

Science Journals Connector (OSTI)

......accelerated ion-proton plasma. Recent operation...altitude of the 40-MHz emission from several...electron-positron plasma cannot be the source...extremity of the ion atmosphere which we assume to...frequency, 48-MHz, is rather larger...decouples from the plasma over a finite interval......

P. B. Jones

2014-01-01T23:59:59.000Z

12

Ion thermal effects on E-region instabilities: linear Y. S. Dimant , M. M. Oppenheim  

E-Print Network (OSTI)

Ion thermal effects on E-region instabilities: linear theory Y. S. Dimant £, M. M. Oppenheim Boston. Oppenheim). Preprint submitted to Elsevier Science 2 October 2003 #12;to the geomagnetic field. These E recent fully kinetic particle-in-cell (PIC) simulations described in the com- panion paper by Oppenheim

Oppenheim, Meers

13

Advanced Neutron Source Reactor thermal analysis of fuel plate defects  

SciTech Connect

The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

Giles, G.E.

1995-08-01T23:59:59.000Z

14

Comparison of linear optics measurement and correction methods at the Swiss Light Source  

Science Journals Connector (OSTI)

A systematic analysis of linear optics optimization using various independent methods has been performed. Three independent techniques, namely quadrupole variation, linear optics from closed orbits, and turn-by-turn measurement, have been studied at the Swiss Light Source. Furthermore, the performances are compared from various aspects including a direct comparison of the corrected optics. The limitations of the three independent methods are also presented.

M. Aiba; M. Böge; J. Chrin; N. Milas; T. Schilcher; A. Streun

2013-01-29T23:59:59.000Z

15

A low emittance, flat-beam electron source for linear colliders  

Science Journals Connector (OSTI)

We present a method to generate a flat (large horizontal to vertical emittance ratio) electron beam suitable for linear colliders. The concept is based on a round-beam rf photoinjector with finite solenoid field at the cathode together with a special beam optics adapter. Computer simulations of this new type of beam source show that the beam quality required for a linear collider may be obtainable without the need for an electron damping ring.

R. Brinkmann; Y. Derbenev; K. Flöttmann

2001-05-18T23:59:59.000Z

16

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

17

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network (OSTI)

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

18

Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School  

SciTech Connect

We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

2012-06-26T23:59:59.000Z

19

Linear optics schemes for entanglement distribution with realistic single-photon sources  

E-Print Network (OSTI)

We study the operation of linear optics schemes for entanglement distribution based on nonlocal photon subtraction when input states, produced by imperfect single-photon sources, exhibit both vacuum and multiphoton contributions. Two models for realistic photon statistics with radically different properties of the multiphoton "tail" are considered. The first model assumes occasional emission of double photons and linear attenuation, while the second one is motivated by heralded sources utilizing spontaneous parametric down-conversion. We find conditions for the photon statistics that guarantee generation of entanglement in the relevant qubit subspaces and compare it with classicality criteria. We also quantify the amount of entanglement that can be produced with imperfect single-photon sources, optimized over setup parameters, using as a measure entanglement of formation. Finally, we discuss verification of the generated entanglement by testing Bell's inequalities. The analysis is carried out for two schemes. The first one is the well-established one-photon scheme, which produces a photon in a delocalized superposition state between two nodes, each of them fed with one single photon at the input. As the second scheme, we introduce and analyze a linear-optics analog of the robust scheme based on interfering two Stokes photons emitted by atomic ensembles, which does not require phase stability between the nodes.

Miko?aj Lasota; Czes?aw Radzewicz; Konrad Banaszek; Rob Thew

2014-05-15T23:59:59.000Z

20

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network (OSTI)

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS...

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Linear permittivity tapering in a Cerenkov microwave source with a pre-bunched beam  

SciTech Connect

Cerenkov microwave sources use a dielectric-lined waveguide to reduce the velocity of the electromagnetic wave and provide efficient energy transfer between the wave and the driving electron beam. Tapering the permittivity of the dielectric to maintain synchronism between the beam and the wave as the beam loses energy can increase the efficiency of these devices. Here, we consider such a structure driven by an electron beam with a harmonic density perturbation. Particle-In-Cell (PIC) simulations and a macro-particle model based on the slowly varying envelope approximation are first used to examine an un-tapered baseline case. PIC simulations of the source with linear tapers over the entire amplifier length as well as over only a section of the amplifier where the beam executes synchrotron oscillations are examined. The efficiency for the baseline un-tapered source is 18%, while efficiencies up to approximately 48% are found using a taper in dielectric permittivity. Results of the best performing cases are presented. Detailed examination of longitudinal phase space, particle energy distributions, evolution of longitudinal wavenumber, and phase dynamics are presented from the PIC simulations.

Poole, B. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Harris, J. R. [Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)

2013-04-15T23:59:59.000Z

22

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray Source  

E-Print Network (OSTI)

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray of an intense, tunable, polarized, and quasi-monochromatic X-ray source has been ongoing at Rensselaer Polytechnic Institute since 2001 [1, 2, 3, 4, 5, 6]. This X-ray source, known as Parametric X-rays (PXR

Danon, Yaron

23

Measurements of thermal properties of insulation materials by using transient plane source technique  

Science Journals Connector (OSTI)

The paper reports on the measuring technique and values of the measured thermal properties of some commonly used insulation materials produced by local manufacturers in Saudi Arabia. Among the thermal properties of insulation materials, the thermal conductivity (k) is regarded to be the most important since it affects directly the resistance to transmission of heat (R-value) that the insulation material must offer. Other thermal properties, like the specific heat capacity (c) and density (?), are also important only under transient conditions. A well-suited and accurate method for measuring the thermal conductivity and diffusivity of materials is the transient plane source (TPS) technique, which is also called the hot disk (HD). This new technique is used in the present study to measure the thermal conductivity of some insulation materials at room temperature as well as at different elevated temperature levels expected to be reached in practice when these insulations are used in air-conditioned buildings in hot climates. Besides, thermal conductivity values of the same type of insulation material are measured for samples with different densities; generally, higher density insulations are used in building roofs than in walls. The results show that the thermal conductivity increases with increasing temperature and decreases with increasing density over the temperature and density ranges considered in the present investigation.

Saleh A. Al-Ajlan

2006-01-01T23:59:59.000Z

24

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network (OSTI)

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

25

Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions  

Science Journals Connector (OSTI)

The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo Ulysses and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources such as the Stirling Radioisotope Generator (SRG110) and the Multi?Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1?inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition the Step 2 thermal model is investigated under typical SRG110 boundary conditions with cover gas and gravity environments included where applicable to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.

David R. Pantano; Dennis H. Hill

2005-01-01T23:59:59.000Z

26

Effect of dual frequency on the plasma characteristics in an internal linear inductively coupled plasma source  

SciTech Connect

An internal-type linear inductive antenna, referred to as a ''double comb-type antenna,'' was used as a large area plasma source with a substrate size of 880x660 mm{sup 2} (fourth generation glass size). The effects of the dual frequency (2 and 13.56 MHz) radio frequency (rf) power to the antenna as well as the power ratio on the plasma characteristics were investigated. High-density plasma on the order of 1.7x10{sup 11} cm{sup -3} could be obtained with a dual frequency power of 5 kW (13.56 MHz) and 1 kW (2 MHz) at a pressure of 15 mTorr Ar. This plasma density was lower than that obtained for the double comb-type antenna using a single frequency alone (5 kW, 13.56 MHz). However, the use of the dual frequency with a rf power ratio of approximately 1(2 MHz):5(13.56 MHz) showed better plasma uniformity than that obtained using the single frequency. Plasma uniformity of 6.1% could be obtained over the substrate area. Simulations using FL2L code confirmed the improvement in the plasma uniformity using the dual frequency to the double comb-type antenna.

Kim, K. N.; Lim, J. H.; Yeom, G. Y.; Lee, S. H.; Lee, J. K. [Department of Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 440-746 (Korea, Republic of); Department of Electronic and Electrical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

2006-12-18T23:59:59.000Z

27

Thermal regimes in a primary fluid heated by solar energy in a linear collector  

Science Journals Connector (OSTI)

The steady-state heat transfer equation has been solved for the determination of temperature profiles in a diathermic oil flowing through a linear boiler placed on the focal line of cylindrical parabolic solar...

O. Barra; M. Conti; L. Correra; R. Visentin; E. Pugliese Caratelli

28

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81 m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64 m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%–7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

29

Thermal-hydraulic criteria for the APT tungsten neutron source design  

SciTech Connect

This report presents the thermal-hydraulic design criteria (THDC) developed for the tungsten neutron source (TNS). The THDC are developed for the normal operations, operational transients, and design-basis accidents. The requirements of the safety analyses are incorporated into the design criteria, consistent with the integrated safety management and the safety-by-design philosophy implemented throughout the APT design process. The phenomenology limiting the thermal-hydraulic design and the confidence level requirements for each limit are discussed. The overall philosophy of the uncertainty analyses and the confidence level requirements also are presented. Different sets of criteria are developed for normal operations, operational transients, anticipated accidents, unlikely accidents, extremely unlikely accidents, and accidents during TNS replacement. In general, the philosophy is to use the strictest criteria for the high-frequency events. The criteria is relaxed as the event frequencies become smaller. The THDC must be considered as a guide for the design philosophy and not as a hard limit. When achievable, design margins greater than those required by the THDC must be used. However, if a specific event sequence cannot meet the THDC, expensive design changes are not necessary if the single event sequence results in sufficient margin to safety criteria and does not challenge the plant availability or investment protection considerations.

Pasamehmetoglu, K.

1998-03-01T23:59:59.000Z

30

ADC non-linear errors correction in thermal diagnostics for the LISA mission  

E-Print Network (OSTI)

Low-noise temperature measurements at frequencies in the milli-Hertz range are needed in the LISA and LISA PathFinder (LPF). The required temperature stability for LISA is around 10 uK/sqrt(Hz) at frequencies down to 0.1 mHz. In this paper we focus on the identification and reduction of a source of excess noise detected when measuring time-varying temperature signals. This is shown to be due to non-idealities in the ADC transfer curve, and degrades the measurement by about one order of magnitude in the measurement bandwidth when the measured temperature exhibits drifts of uK/s. In a suitable measuring system for the LISA mission, this noise needs to be reduced. Two different methods based on the same technique have been implemented, both consisting in the addition of dither signals out of band to mitigate the ADC non-ideality errors. Excess noise of this nature has been satisfactorily reduced by using these methods when measuring temperature ramps up to 10 uK/s .

J. Sanjuan; A. Lobo; J. Ramos-Castro

2009-05-19T23:59:59.000Z

31

Neutron source, linear-accelerator fuel enricher and regenerator and associated methods  

DOE Patents (OSTI)

A device for producing fissile material inside of fabricated nuclear elements so that they can be used to produce power in nuclear power reactors. Fuel elements, for example, of a LWR are placed in pressure tubes in a vessel surrounding a liquid lead-bismuth flowing columnar target. A linear-accelerator proton beam enters the side of the vessel and impinges on the dispersed liquid lead-bismuth columns and produces neutrons which radiate through the surrounding pressure tube assembly or blanket containing the nuclear fuel elements. These neutrons are absorbed by the natural fertile uranium-238 elements and are transformed to fissile plutonium-239. The fertile fuel is thus enriched in fissile material to a concentration whereby they can be used in power reactors. After use in the power reactors, dispensed depleted fuel elements can be reinserted into the pressure tubes surrounding the target and the nuclear fuel regenerated for further burning in the power reactor.

Steinberg, Meyer (Huntington Station, NY); Powell, James R. (Shoreham, NY); Takahashi, Hiroshi (Setauket, NY); Grand, Pierre (Blue Point, NY); Kouts, Herbert (Brookhaven, NY)

1982-01-01T23:59:59.000Z

32

The Biopsychology—Nonlinear Analysis Toolbox: A Free, Open-Source Matlab-Toolbox for the Non-linear Analysis of Time Series Data  

Science Journals Connector (OSTI)

We provide a free, open-source toolbox for non-linear time series analyses. The major goal of this project was to provide a toolbox for nonlinear ... . The toolbox can be run within the Matlab environment, but al...

Christian Beste; Tobias Otto; Sven Hoffmann

2010-10-01T23:59:59.000Z

33

Minor ion heating in spectra of linearly and circularly polarized Alfvén waves: Thermal and non-thermal motions associated with perpendicular heating  

SciTech Connect

Minor ion (such as He{sup 2+}) heating via nonresonant interaction with spectra of linearly and circularly polarized Alfvén waves (LPAWs and CPAWs hereafter) is studied. The obtained analytic solutions are in good agreement with the simulation results, indicating that newborn ions are heated by low-frequency Alfvén waves with finite amplitude in low-beta plasmas such as the solar corona. The analytic solutions also reproduce the preferential heating of heavy ions in the solar wind. In the presence of parallel propagating Alfvén waves, turbulence-induced particle motion is clearly observed in the wave (magnetic field) polarized directions. After the waves diminish, the newborn ions are heated, which is caused by the phase difference (randomization) between ions due to their different parallel thermal motions. The heating is dominant in the direction perpendicular to the ambient magnetic field. The perpendicular heating, ?=(T{sub i?}{sup R}?T{sub i0?}{sup R})/T{sub i0?}{sup R} (where T{sub i0?}{sup R} and T{sub i?}{sup R} are the perpendicular temperature of species i before and after genuine heating, respectively), in the spectrum of CPAWs is a factor of two stronger than that of LPAWs. Moreover, we also study the effect of field-aligned differential flow speed of species i relative to H{sup +}, ?v{sub ip}=(v{sub i}?v{sub p})·B/|B| (where v{sub i} and v{sub p} denote vector velocities of the H{sup +} and species i, respectively), on the perpendicular heating. It reveals that large drift speed, v{sub d}=?v{sub ip}, has an effect on reducing the efficiency of perpendicular heating, which is consistent with observations.

Dong, Chuanfei, E-mail: dcfy@umich.edu [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States) [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

2014-02-15T23:59:59.000Z

34

Novel AC and DC Non-Thermal Plasma Sources for Cold Surface Treatment of Polymer Films and Fabrics at Atmospheric Pressure  

Science Journals Connector (OSTI)

Novel types of non-thermal plasma sources at atmospheric pressure based on multi-pin DC (direct ... ofdischarges mentioned and output energy characteristics of new plasma sources as well as data on after-...

Yuri Akishev; Michail Grushin; Anatoly Napartovich…

2002-09-01T23:59:59.000Z

35

Contamination of Cluster Radio Sources in the Measurement of the Thermal Sunyaev-Zel'dovich Angular Power Spectrum  

E-Print Network (OSTI)

We present a quantitative estimate of the confusion of cluster radio halos and galaxies in the measurement of the angular power spectrum of the thermal Sunyaev-Zel'dovich (SZ) effect. To achieve the goal, we use a purely analytic approach to both radio sources and dark matter of clusters by incorporating empirical models and observational facts together with some theoretical considerations. It is shown that the correction of cluster radio halos and galaxies to the measurement of the thermal SZ angular power spectrum is no more than 20% at $l>2000$ for observing frequencies $\

Wei Zhou; Xiang-Ping Wu

2003-09-26T23:59:59.000Z

36

E-Print Network 3.0 - argonne thermal source reactor Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging HardwareARGONNE 12;DETECTION... OF POROSITY BY NDE METHODS:: Thermal imaging, water and air-coupled ultrasonics ARGONNE 12;Correlation of NDE... Turbines Argonne...

37

Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area  

E-Print Network (OSTI)

The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

2006-01-01T23:59:59.000Z

38

Thermal-hydraulic performance of a water-cooled tungsten-rod target for a spallation neutron source  

SciTech Connect

A thermal-hydraulic (T-H) analysis is conducted to determine the feasibility and limitations of a water-cooled tungsten-rod target at powers of 1 MW and above. The target evaluated has a 10-cm x 10-cm cross section perpendicular to the beam axis, which is typical of an experimental spallation neutron source - both for a short-pulse spallation source and long-pulse spallation source. This report describes the T-H model and assumptions that are used to evaluate the target. A 1-MW baseline target is examined, and the results indicate that this target should easily handle the T-H requirements. The possibility of operating at powers >1 MW is also examined. The T-H design is limited by the condition that the coolant does not boil (actual limits are on surface subcooling and wall heat flux); material temperature limits are not approached. Three possible methods of enhancing the target power capability are presented: reducing peak power density, altering pin dimensions, and improving coolant conditions (pressure and temperature). Based on simple calculations, it appears that this target concept should have little trouble reaching the 2-MW range (from a purely T-H standpoint), and possibly much higher powers. However, one must keep in mind that these conclusions are based solely on thermal-hydraulics. It is possible, and perhaps likely, that target performance could be limited by structural issues at higher powers, particularly for a short-pulse spallation source because of thermal shock issues.

Poston, D.I.

1997-08-01T23:59:59.000Z

39

Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application  

Science Journals Connector (OSTI)

This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat

Yinping Zhang; Xianxu Hu; Qing Hao; Xin Wang

2003-04-01T23:59:59.000Z

40

"Sythesis of metal sulfide nanomaerials via thermal decomposition of single-source percursors"  

E-Print Network (OSTI)

bisdiethyldithiocarbamate (Cu(II)[S 2 CNC 4 H 10 ] 2 ). Thisreported that Cu(II)[S 2 CNC 4 H 10 ] 2 thermally decomposesof this molecule, Cu(II)[S 2 CNC 4 H 10 ] 2 , to solid Cu 2

Ilan, Jen-La Plante

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Inclusion of Building Envelope Thermal Lag Effects in Linear Regression Models of Daily Basis Building Energy Use Data  

E-Print Network (OSTI)

?across?the?outside?air?temperature. Different?weather Toa data College?Station,?TX San?Francisco,?CA Phoenix,?AZ Chicago,?IL Wall?construction 4?in.?concrete?and?2?in.?insulation U?=?0.124?[Btu/hr?ft2??F] (=?0.707?[W/(m2?K)]) ?40 ?30 ?20 ?10 0 10 20 ?40 ?20 0 20 40 60 D a i...??F] (=?0.678?[W/(m2?K)]) Different thermal?mass?with?constant?U 0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 MC=3 MC=8 MC=10 MC=20 U ? [ W / ( m 2 ? K ) ] Model?1 Model?2 True?value Model?1:?????? ? ?? ? ????? ? ? Model?2...

Masuda, H.; Claridge, D. E.

2012-01-01T23:59:59.000Z

42

Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider  

SciTech Connect

A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

1995-02-22T23:59:59.000Z

43

8-22E The thermal efficiency and the second-law efficiency of a heat engine are given. The source temperature is to be determined.  

E-Print Network (OSTI)

8 8-22E The thermal efficiency and the second-law efficiency of a heat engine are given. The source, for the maximum work, the turbine must be adiabatic. #12;8-62 Steam is throttled from a specified state to a specified pressure. The decrease in the exergy of the steam during this throttling process

Kostic, Milivoje M.

44

Impacts of Soil and Pipe Thermal Conductivity on Performance of Horizontal Pipe in a Ground-source Heat Pump  

E-Print Network (OSTI)

In this paper the composition and thermal property of soil are discussed. The main factors that impact the soil thermal conductivity and several commonly-used pipe materials are studied. A model of heat exchanger with horizontal pipes of ground...

Song, Y.; Yao, Y.; Na, W.

2006-01-01T23:59:59.000Z

45

NUMERICAL, EXPERIMENTAL AND ANALYTICAL STUDY OF THERMAL HEATING OF SPHERE AND DISK SHAPED BIOCRYSTALS EXPOSED TO 3 RDGENERATION SYNCHROTON SOURCES.  

E-Print Network (OSTI)

??The thesis is broadly divided into three major parts. In the first part, thermal imaging is used to experimentally measure temperature and a numerical model… (more)

SAMPATH KUMAR, RAGHAV

2006-01-01T23:59:59.000Z

46

Conversion of the energy-subtracted CT number to electron density based on a single linear relationship: an experimental verification using a clinical dual-source CT scanner  

Science Journals Connector (OSTI)

In radiotherapy treatment planning, the conversion of the computed tomography (CT) number to electron density is one of the main processes that determine the accuracy of patient dose calculations. However, in general, the CT number and electron density of tissues cannot be interrelated using a simple one-to-one correspondence. This study aims to experimentally verify the clinical feasibility of an existing novel conversion method proposed by the author of this note, which converts the energy-subtracted CT number (?HU) to the relative electron density (?e) via a single linear relationship by using a dual-energy CT (DECT). The ?HU–?e conversion was performed using a clinical second-generation dual-source CT scanner operated in the dual-energy mode with tube potentials of 80 kV and 140 kV with and without an additional tin filter. The ?HU–?e calibration line was obtained from the DECT image acquisition for tissue substitutes in an electron density phantom. In addition, the effect of object size on ?HU–?e conversion was also experimentally investigated. The plot of the measured ?HU versus nominal ?e values exhibited a single linear relationship over a wide ?e range from 0.00 (air) to 2.35 (aluminum). The ?HU–?e conversion performed with the tin filter yielded a lower dose and more reliable ?e values that were less affected by the object-size variation when compared to the corresponding values obtained for the case without the tin filter.

Masayoshi Tsukihara; Yoshiyuki Noto; Takahide Hayakawa; Masatoshi Saito

2013-01-01T23:59:59.000Z

47

Thermal neutron detection system  

DOE Patents (OSTI)

According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

2000-01-01T23:59:59.000Z

48

Graphene Synthesis by Thermal Cracker Enhanced Gas Source Molecular Beam Epitaxy and Its Applications in Flash Memory  

E-Print Network (OSTI)

windows at the source/drain areas, where the insulator filmof as-grown films. A narrow growth time window was found forthe HfO 2 thin film. However the small memory window of the

Zhan, Ning

2011-01-01T23:59:59.000Z

49

Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri  

SciTech Connect

Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

Broekman, J. D. [University of Missouri, Research Reactor Center, 1513 Research Park Drive, Columbia, MO 65211-3400 (United States); Nigg, D. W. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Hawthorne, M. F. [University of Missouri, International Institute of Nano and Molecular Medicine, 1514 Research Park Dr., Columbia, MO 65211-3450 (United States)

2013-07-01T23:59:59.000Z

50

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

heat source can be solar thermal energy, biological thermaland concentrated solar thermal energy farms. They demandsources include solar thermal energy, geo-thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

51

Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery  

E-Print Network (OSTI)

-ion battery; Electrochemical modeling; Hybrid-electric vehicles; Transient; Solid-state diffusion; Heat, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell-1 maximum limit, meant to protect where batteries are used as a transient pulse power source, cycled about a relatively fixed state

52

Multiwavelength Thermal Emission  

E-Print Network (OSTI)

Multiwavelength Astronomy NASA #12;Thermal Emission #12;Thermal Emission Non-thermal p-p collisions Optical IR Radio/ Microwave sources of emission massive stars, WHIM, Ly many dust, cool objects-ray ~GeV Gamma-ray ~TeV sources of emission AGN, clusters, SNR, binaries, stars AGN (obscured), shocks

California at Santa Cruz, University of

53

Finding of No Significant Impact for the Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California (DOE/EA-1426) (2/28/03)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) Finding of No Significant Impact Construction and Operation of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC), California. AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1426, evaluating the proposed action to construct and operate the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC). Based upon the information and analyses in the EA, the DOE has determined that the proposed federal action does not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969.

54

Development of a compact thermal lithium atom beam source for measurements of electron velocity distribution function anisotropy in electron cyclotron resonance plasmas  

SciTech Connect

The anisotropy of the electron velocity distribution function (EVDF) in plasmas can be deduced from the polarization of emissions induced by anisotropic electron-impact excitation. In this paper, we develop a compact thermal lithium atom beam source for spatially resolved measurements of the EVDF anisotropy in electron cyclotron resonance (ECR) plasmas. The beam system is designed such that the ejected beam has a slab shape, and the beam direction is variable. The divergence and flux of the beam are evaluated by experiments and calculations. The developed beam system is installed in an ECR plasma device with a cusp magnetic field, and the LiI 2s–2p emission (670.8 nm) is observed in low-pressure helium plasma. The two-dimensional distributions of the degree and direction of the polarization in the LiI emission are measured by a polarization imaging system. The evaluated polarization distribution suggests the spatial variation of the EVDF anisotropy.

Nishioka, T.; Shikama, T.; Nagamizo, S.; Fujii, K.; Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan)] [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan); Zushi, H. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan)] [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Uchida, M.; Tanaka, H.; Maekawa, T. [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto 606-8502 (Japan)] [Department of Fundamental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto 606-8502 (Japan); Iwamae, A. [Research Center for Development of Far-Infrared Region, Fukui University, Fukui 910-8507 (Japan)] [Research Center for Development of Far-Infrared Region, Fukui University, Fukui 910-8507 (Japan)

2013-07-15T23:59:59.000Z

55

Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since...

56

Variable pressure thermal insulating jacket  

DOE Patents (OSTI)

A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

1994-09-20T23:59:59.000Z

57

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Other LGH sources include solar thermal energy, geo-thermalThe heat source can be solar thermal energy, biologicalsources include the coolants in coal and nuclear power plants, solar thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

58

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

the discharge of thermal energy storage without releasingto low-energy cooling sources. Large thermal storage devices

Feustel, H.E.

2011-01-01T23:59:59.000Z

59

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network (OSTI)

automotive industry optics biomedical technology environmental technology Plasma Technology Quote from: Pla-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer

Greifswald, Ernst-Moritz-Arndt-Universität

60

Photon collimator system for the ILC Positron Source  

E-Print Network (OSTI)

High energy e+e- linear colliders are the next large scale project in particle physics. They need intense sources to achieve the required luminosity. In particular, the positron source must provide about 10E+14 positrons per second. The positron source for the International Linear Collider (ILC) is based on a helical undulator passed by the electron beam to create an intense circularly polarized photon beam. With these photons a longitudinally polarized positron beam is generated; the degree of polarization can be enhanced by collimating the photon beam. However, the high photon beam intensity causes huge thermal load in the collimator material. In this paper the thermal load in the photon collimator is discussed and a flexible design solution is presented.

Riemann, S; Moortgat-Pick, G; Ushakov, A

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Linear induction accelerator  

DOE Patents (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

Buttram, M.T.; Ginn, J.W.

1988-06-21T23:59:59.000Z

62

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

power plants, solar thermal energy, geothermal energy, oceanpower plants, distributed solar thermal energy, geo/ocean-power plants [59]. Other LGH sources include solar thermal energy, geo-thermal energy, ocean

Lim, Hyuck

2011-01-01T23:59:59.000Z

63

E-Print Network 3.0 - automated thermal cycling Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

, thermal modeling and management methods have been developed. One of the first automated thermal models... thermal modeling can be accomplished using an ... Source:...

64

Integrated EM & Thermal Simulations with Upgraded VORPAL Software  

SciTech Connect

Nuclear physics accelerators are powered by microwaves which must travel in waveguides between room-temperature sources and the cryogenic accelerator structures. The ohmic heat load from the microwaves is affected by the temperature-dependent surface resistance and in turn affects the cryogenic thermal conduction problem. Integrated EM & thermal analysis of this difficult non-linear problem is now possible with the VORPAL finite-difference time-domain simulation tool. We highlight thermal benchmarking work with a complex HOM feed-through geometry, done in collaboration with researchers at the Thomas Jefferson National Accelerator Laboratory, and discuss upcoming design studies with this emerging tool. This work is part of an effort to generalize the VORPAL framework to include generalized PDE capabilities, for wider multi-physics capabilities in the accelerator, vacuum electronics, plasma processing and fusion R&D fields, and we will also discuss user interface and algorithmic upgrades which facilitate this emerging multiphysics capability.

D.N. Smithe, D. Karipides, P. Stoltz, G. Cheng, H. Wang

2011-03-01T23:59:59.000Z

65

Ultra-high vacuum photoelectron linear accelerator  

DOE Patents (OSTI)

An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

Yu, David U.L.; Luo, Yan

2013-07-16T23:59:59.000Z

66

Optimum utilization of site energy sources for all-season thermal comfort in new residential construction for single-family attached (rowhouse/townhouse) designs  

SciTech Connect

A proposed design analysis is presented of a passive solar energy efficient system for a typical three-level, three bedroom, two story, garage-under townhouse. The design incorporates the best, most performance-proven and cost effective products, materials, processes, technologies, and sub-systems which are available today. Seven distinct categories recognized for analysis are identified as: the exterior environment; the interior environment; conservation of energy; natural energy utilization; auxiliary energy utilization; control and distribution systems; and occupant adaptation. Preliminary design features, fenestration sysems, the plenum-supply system, the thermal-storage party-fire walls, direct gain storage, the radiant comfort system, and direct passive cooling systems are briefly described. Features of the design under analysis and on which conclusions have not yet been formulated are: the energy reclamation system, auxiliary energy back-up systems, the distribution system and operating modes, the control systems, and non-comfort energy systems and inputs. (MCW)

Not Available

1981-02-26T23:59:59.000Z

67

Tunable thermal link  

DOE Patents (OSTI)

Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

2014-07-15T23:59:59.000Z

68

Quantitative analysis of damage in an octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based composite explosive subjected to a linear thermal gradient  

Science Journals Connector (OSTI)

The microstructure within a slowly heated consolidated explosive will be influenced by both physical changes and chemical reactions prior to thermal ignition. Thermal expansion exothermic decomposition endothermic phase change and increased binder viscosity play significant roles in the cook-off to detonation. To further explore the details of this intricate cook-off process we have conducted a series of experiments in which a carefully controlled temperature gradient has been applied along a cylinder of PBX 9501 [94.9/2.5/2.5/0.1-wt % octahydro-1 3 5 7-tetranitro-1 3 5 7-tetrazocine (HMX)/Estane 5703/a eutectic mixture of bis(2 2 dinitropropyl) acetal and bis(2 2-dinitropropyl) formal [abbreviated BDNPA-F]/Irganox] and maintained for a specified amount of time. After heating and subsequent cooling of the PBX 9501 the sample morphology has been probed with polarized light microscopy and small-angle x-ray scattering. Using these techniques we have quantitatively characterized the particle morphology porosity and chemical state of the explosive as a function of position and therefore thermal treatment. Results of the analyses clearly show that thermal damage in PBX 9501 can be classified into two separate temperature regimes—an initial low-temperature regime ( 155 – 174 ° C ) dominated by the endothermic ? - ? crystalline phase change thermal expansion and Ostwald ripening and a high-temperature regime ( 175 – 210 ° C ) dominated by exothermic chemical decomposition. The results further show the complex interplay between the evolving sample morphology and the chemical reactions leading to a potential thermal self-ignition in the explosive.

Paul D. Peterson; Joseph T. Mang; Blaine W. Asay

2005-01-01T23:59:59.000Z

69

Quantitative analysis of damage in an octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based composite explosive subjected to a linear thermal gradient  

SciTech Connect

The microstructure within a slowly heated, consolidated explosive will be influenced by both physical changes and chemical reactions prior to thermal ignition. Thermal expansion, exothermic decomposition, endothermic phase change, and increased binder viscosity play significant roles in the cook-off to detonation. To further explore the details of this intricate cook-off process, we have conducted a series of experiments in which a carefully controlled temperature gradient has been applied along a cylinder of PBX 9501 [94.9/2.5/2.5/0.1-wt % octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)/Estane 5703/a eutectic mixture of bis(2,2 dinitropropyl) acetal and bis(2,2-dinitropropyl) formal [abbreviated BDNPA-F]/Irganox] and maintained for a specified amount of time. After heating and subsequent cooling of the PBX 9501, the sample morphology has been probed with polarized light microscopy and small-angle x-ray scattering. Using these techniques we have quantitatively characterized the particle morphology, porosity, and chemical state of the explosive as a function of position, and therefore thermal treatment. Results of the analyses clearly show that thermal damage in PBX 9501 can be classified into two separate temperature regimes--an initial low-temperature regime (155-174 deg. C) dominated by the endothermic {beta}-{delta} crystalline phase change, thermal expansion, and Ostwald ripening, and a high-temperature regime (175-210 deg. C) dominated by exothermic chemical decomposition. The results further show the complex interplay between the evolving sample morphology and the chemical reactions leading to a potential thermal self-ignition in the explosive.

Peterson, Paul D.; Mang, Joseph T.; Asay, Blaine W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2005-05-01T23:59:59.000Z

70

lgebra Linear Mauro Rincon  

E-Print Network (OSTI)

8.1 Álgebra Linear Mauro Rincon Márcia Fampa Aula 8: Soluções de Sistemas de Equações Lineares #12

Cabral, Marco

71

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system

Potter, J. M., Schwellenbach, D., Meidinger, A.

2012-08-07T23:59:59.000Z

72

Thermal Reactor Safety  

SciTech Connect

Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

Not Available

1980-06-01T23:59:59.000Z

73

Neutron stars - thermal emitters  

E-Print Network (OSTI)

Confronting theoretical models with observations of thermal radiation emitted by neutron stars is one of the most important ways to understand the properties of both, superdense matter in the interiors of the neutron stars and dense magnetized plasmas in their outer layers. Here we review the theory of thermal emission from the surface layers of strongly magnetized neutron stars, and the main properties of the observational data. In particular, we focus on the nearby sources for which a clear thermal component has been detected, without being contaminated by other emission processes (magnetosphere, accretion, nebulae). We also discuss the applications of the modern theoretical models of the formation of spectra of strongly magnetized neutron stars to the observed thermally emitting objects.

Potekhin, A Y; Pons, J A

2014-01-01T23:59:59.000Z

74

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

1996-01-01T23:59:59.000Z

75

Segmented rail linear induction motor  

DOE Patents (OSTI)

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

Cowan, M. Jr.; Marder, B.M.

1996-09-03T23:59:59.000Z

76

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

of Thermal Energy Energy Sources o Solar Heat o Winter Coldusual Solar Energy System which uses only a heat source andsources and heat sinks not found anywhere else. Furthermore even where Solar energy

Authors, Various

2011-01-01T23:59:59.000Z

77

Linear chain magnetism  

Science Journals Connector (OSTI)

Linear chain magnetism ... A brief introduction to this concept, which is also called lower dimensional magnetism. ...

Richard L. Carlin

1991-01-01T23:59:59.000Z

78

Magnetron sputtering source  

DOE Patents (OSTI)

A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

Makowiecki, Daniel M. (Livermore, WA); McKernan, Mark A. (Livermore, CA); Grabner, R. Fred (Brentwood, CA); Ramsey, Philip B. (Livermore, CA)

1994-01-01T23:59:59.000Z

79

Thermal Conductance of Thin Silicon Nanowires  

Science Journals Connector (OSTI)

The thermal conductance of individual single crystalline silicon nanowires with diameters less than 30 nm has been measured from 20 to 100 K. The observed thermal conductance shows unusual linear temperature dependence at low temperatures, as opposed to the T3 dependence predicted by the conventional phonon transport model. In contrast to previous models, the present study suggests that phonon-boundary scattering is highly frequency dependent, and ranges from nearly ballistic to completely diffusive, which can explain the unexpected linear temperature dependence.

Renkun Chen, Allon I. Hochbaum, Padraig Murphy, Joel Moore, Peidong Yang, and Arun Majumdar

2008-09-02T23:59:59.000Z

80

Piecewise Linear Phase Transitions  

E-Print Network (OSTI)

It is shown how simple assumptions lead to piecewise linear behavior, which is observed in certain phase transitions.

Joseph B. Keller

2007-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal plasmonic interconnects in graphene  

Science Journals Connector (OSTI)

As one emerging plasmonic material, graphene can support surface plasmons at infrared and terahertz frequencies with unprecedented properties due to the strong interactions between graphene and low-frequency photons. Since graphene surface plasmons exist in the infrared and terahertz regime, they can be thermally pumped (excited) by the infrared evanescent waves emitted from an object. Here we show that thermal graphene plasmons can be efficiently excited and have monochromatic and tunable spectra, thus paving a way to harness thermal energy for graphene plasmonic devices. We further demonstrate that “thermal information communication” via graphene surface plasmons can be potentially realized by effectively harnessing thermal energy from various heat sources, e.g., the waste heat dissipated from nanoelectronic devices. These findings open up an avenue of thermal plasmonics based on graphene for different applications ranging from infrared emission control, to information processing and communication, to energy harvesting.

Baoan Liu; Yongmin Liu; Sheng Shen

2014-11-10T23:59:59.000Z

82

Linear steady flows in a two-dimensional Boussinesq  

E-Print Network (OSTI)

Linear steady flows in a two-dimensional Boussinesq fluid driven by thermal forcing P.A.J. van Melick De Bilt | 2010 | Stageverslag #12;#12;Linear steady flows in a two-dimensional Boussinesq fluid-rotating, small-amplitude and Boussinesq flow. A step-by-step approach has been used towards a smooth localized

Stoffelen, Ad

83

Introduction to Linear Bialgebra  

E-Print Network (OSTI)

The algebraic structure, linear algebra happens to be one of the subjects which yields itself to applications to several fields like coding or communication theory, Markov chains, representation of groups and graphs, Leontief economic models and so on. This book has for the first time, introduced a new algebraic structure called linear bialgebra, which is also a very powerful algebraic tool that can yield itself to applications. With the recent introduction of bimatrices (2005)we have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these algebraic structures. It is important to mention here it is a matter of simple exercise to extend these to linear n-algebra for any n greater than 2; for n = 2 we get the linear bialgebra. This book has five chapters. In the first chapter we just introduce some basic notions of linear algebra and Slinear algebra and their applications. Chapter two introduces some new algebraic bistructures. In chapter three we introduce the notion of linear bialgebra and discuss several interesting properties about them. Also, application of linear bialgebra to bicodes is given. A remarkable part of our research in this book is the introduction of the notion of birepresentation of bigroups. The fourth chapter introduces several neutrosophic algebraic structures since they help in defining the new concept of neutrosophic linear bialgebra, neutrosophic bivector spaces, Smarandache neutrosophic linear bialgebra and Smarandache neutrosophic bivector spaces. Theirprobable applications to real-world models are discussed.

W. B. Vasantha Kandasamy; Florentin Smarandache; K. Ilanthenral

2005-08-15T23:59:59.000Z

84

E-Print Network 3.0 - acceptance thermal vacuum Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design 38 Nuclear htg and thermal effects Vacuum vessel is subject to two basic heat loads: - Direct... : Vacuum Vessel Design 43 VV thermal deformation and ... Source:...

85

Compact Modeling and Analysis for Electronic and Thermal Effects of Nanometer Integrated and Packaged Systems  

E-Print Network (OSTI)

in terms of equivalent resistances and sources will be addedin terms of equivalent thermal resistance and independentand equivalent thermal capacitance and resistance to its

WANG, HAI

2012-01-01T23:59:59.000Z

86

Effects of in-medium cross sections and optical potential on thermal-source formation in p+{sup 197}Au reactions at 6.2-14.6 GeV/c  

SciTech Connect

Effects of in-medium cross sections and of optical potential on preequilibrium emission and on formation of a thermal source are investigated by comparing the results of transport simulations with experimental results from the p+{sup 197}Au reaction at 6.2-14.6 GeV/c. The employed transport model includes light-composite-particle production and allows for inclusion of in-medium particle-particle cross-section reduction and of momentum dependence in the particle optical potentials. Compared to the past, the model incorporates improved parametrizations of elementary high-energy processes. The simulations indicate that the majority of energy deposition occurs during the first 25 fm/c of a reaction. This is followed by a preequilibrium emission and readjustment of system density and momentum distribution toward an equilibrated system. Within different variants of calculations, the best agreement with data, on the d/p and t/p yield ratios and on the residue mass and charge numbers, is obtained at the time of about 65 fm/c from the start of a reaction, for simulations employing reduced in-medium cross sections and momentum-dependent optical potentials. By that time, the preequilibrium nucleon and cluster emission, as well as mean field readjustments, drive the system to a state of depleted average density, {rho}/{rho}{sub 0}{approx}1/4-1/3 for central collisions, and low-to-moderate excitation, i.e., the region of nuclear liquid-gas phase transition.

Turbide, S. [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, G1K 7P4 (Canada); Department of Physics, McGill University, 3600 University Street, Montreal, H3A 2T8 (Canada); Beaulieu, L.; Roy, R. [Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, G1K 7P4 (Canada); Danielewicz, P.; Huang, R.; Lynch, W.G.; Tsang, M.B.; Xi, H. [Department of Physics and NSCL, Michigan State University, East Lansing, Michigan 48824 (United States); Viola, V.E.; Kwiatkowski, K.; Hsi, W.-C.; Wang, G.; Lefort, T.; Bracken, D.S.; Cornell, E.; Ginger, D.S. [Department of Chemistry and IUCF, Indiana University, Bloomington, Indiana 47405 (United States); Breuer, H. [Department of Physics, University of Maryland, College Park, Maryland 20740 (United States); Gimeno-Nogues, F.; Ramakrishnan, E.; Rowland, D. [Department of Chemistry and Cyclotron Institute, Texas A and M University, College Station, Texas 77843 (United States)] [and others

2004-07-01T23:59:59.000Z

87

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

88

Thermal Processes  

Energy.gov (U.S. Department of Energy (DOE))

Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

89

History of Proton Linear Accelerators  

E-Print Network (OSTI)

much. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,HISTORY OF PROTON LINEAR ACCELERATORS Luis W. Alvarez TWO-

Alvarez, Luis W.

1987-01-01T23:59:59.000Z

90

Reticle stage based linear dosimeter  

DOE Patents (OSTI)

A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

Berger, Kurt W. (Livermore, CA)

2007-03-27T23:59:59.000Z

91

Unit I-2 Linear Maps 1 Linear maps  

E-Print Network (OSTI)

Unit I-2 Linear Maps 1 Unit I-2 Linear maps Unit I-2 Linear Maps 2 Linear map · V & U are vector spaces over the same scalars · a function f: VU is a linear map if it preserves the vector space transformation [particularly when f: RnRm] ­ linear operator when f: V V [same v.s.] ­ linear mapping ­ linear

Birkett, Stephen

92

lgebra Linear Mauro Rincon  

E-Print Network (OSTI)

10.1 Álgebra Linear Mauro Rincon Márcia Fampa Aula 10: Determinantes #12;10.2 8.1 - Definições #12

Cabral, Marco

93

Linear Graphene Plasmons  

Science Journals Connector (OSTI)

The coupling of the plasmon spectra of graphene and a nearby thick plasma is examined here in detail. The coupled modes include linear plasmons. Keywords: Graphene, plasmons, surface

N. J.M. Horing

2010-11-01T23:59:59.000Z

94

Focusing in Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

McMillan, E. M.

1950-08-24T23:59:59.000Z

95

Linear phase compressive filter  

DOE Patents (OSTI)

A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

96

E-Print Network 3.0 - air source heat Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

air andor water is the source of thermal energy. Thermal energy is transferred from the heating... September 2000; accepted 19 December 2000 Abstract Hot air and hot water...

97

Using Linearity Web Copyright 2007  

E-Print Network (OSTI)

Using Linearity Web Rev. 2.0 May 2007 Copyright © 2007 #12;Using Linearity Web i Contents Introduction to Linearity Web.............................................................................1 Features, Benefits, and Value of Linearity Web..............................................1 Before You

Rodriguez, Carlos

98

SLAC linear collider  

SciTech Connect

A brief description of the proposed SLAC Linear Collider is given. This machine would investigate the possibilities and limitations of Linear Colliders while at the same time producing thousands of Z/sup 0/ particles per day for the study of the weak interactions.

Hollebeek, R.

1980-06-01T23:59:59.000Z

99

Phase-change radiative thermal diode  

SciTech Connect

A thermal diode transports heat mainly in one preferential direction rather than in the opposite direction. This behavior is generally due to the non-linear dependence of certain physical properties with respect to the temperature. Here we introduce a radiative thermal diode which rectifies heat transport thanks to the phase transitions of materials. Rectification coefficients greater than 70% and up to 90% are shown, even for small temperature differences. This result could have important applications in the development of future contactless thermal circuits or in the conception of radiative coatings for thermal management.

Ben-Abdallah, Philippe, E-mail: pba@institutoptique.fr [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France)] [Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris-Sud 11, 2, Avenue Augustin Fresnel, 91127 Palaiseau Cedex (France); Biehs, Svend-Age, E-mail: s.age.biehs@uni-oldenburg.de [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)] [Institut für Physik, Carl von Ossietzky Universität, D-26111 Oldenburg (Germany)

2013-11-04T23:59:59.000Z

100

Ceramics in non-thermal plasma discharge for hydrogen generation.  

E-Print Network (OSTI)

??Recent interest in hydrogen as an energy source has resulted in development of new technologies such as non-thermal plasma processing of natural gas. We report… (more)

Vintila, Ramona Roxana

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SciTech Connect: Thermal Hydraulic Characteristics of Fuel Defects...  

Office of Scientific and Technical Information (OSTI)

with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a...

102

North Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

103

Syntactic edges and linearization  

E-Print Network (OSTI)

In this thesis, I investigate the question of how the units of a linguistic expression are linearly ordered in syntax. In particular, I examine interactions between locality conditions on movement and the mapping between ...

Ko, Heejeong

2005-01-01T23:59:59.000Z

104

The Status of Solar Thermal Electric Technology  

Science Journals Connector (OSTI)

Solar thermal electric technology was evaluated as a future source of power for United States utilities. The technology status was developed using an ... configuration was selected for each of the major solar col...

Richard J. Holl; Edgar A. DeMeo

1990-01-01T23:59:59.000Z

105

Degradation of Structural Alloys Under Thermal Insulation  

E-Print Network (OSTI)

Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

McIntyre, D. R.

1984-01-01T23:59:59.000Z

106

NRG Energy, Inc. (BrightSource) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enables BrightSource Energy and its partners-NRG and Google-to build the world's largest solar thermal facility. Innovation The power tower solar thermal technology used in the...

107

Simultaneous Thermal Imaging of Peltier and Joule Effects B. Vermeersch and A. Shakouri  

E-Print Network (OSTI)

Simultaneous Thermal Imaging of Peltier and Joule Effects B. Vermeersch and A. Shakouri Baskin-static Peltier and Joule thermal distributions simultane- ously. In essence, separation of Peltier and Joule effects relies on their respective linear and quadratic current

108

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

109

Lab Trials of an Electricity Transmission Line Voltage Sensor Based on Thermally Poled Silica Fibre  

Science Journals Connector (OSTI)

Voltage sensing using helically coiled lengths of thermally poled twin-hole silica optical fibre is presented. Lab accuracy test results showing good linearity and signal to noise...

Michie, Andrew M; Hambley, Philip; Bassett, Ian M; Haywood, John H; Henry, Peter; Ingram, John

110

Heat Source Lire,  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Lire, Source Lire, (liayrICS-25 ) tooling Tulles (Ai 1,06:1) - 11 (31.118 Module Stack Thermoelectric Module:, (14) ltcal L/Mr r a it i lli tisli Block Mounting Interface MMRTG Design Housing (At 2219) Fin (At Go63) Thermal Insulation (Min-K & Microtherm) Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator January 2008 What is a Multi-Mission Radioisotope Thermoelectric Generator? Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA are developing

111

Thermally induced photon splitting  

E-Print Network (OSTI)

We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

Per Elmfors; Bo-Sture Skagerstam

1998-02-23T23:59:59.000Z

112

Photo-Thermal Effects in Fiber Bragg Gratings  

Science Journals Connector (OSTI)

The photo-thermal effect describes the absorption of light and a change in grating characteristics via dn/dT, which can mask fast non-linear optical effects. The effect is...

Littler, Ian C; Grujic, Thomas; Eggleton, Benjamin J

113

Linear Logic as CSP  

Science Journals Connector (OSTI)

......research-article Original Articles Linear Logic as CSP ERIC MONTEIRO Department of Informatics...translation from such proofs into a corresponding CSP process is offered. It is shown that the...between the cut elimination process and the CSP execution. Generalizations and related......

ERIC MONTEIRO

1994-08-01T23:59:59.000Z

114

Linear Programming Environmental  

E-Print Network (OSTI)

Linear Program to control air pollution was developed in 1968 by Teller, which minimized cost Fall 2006 #12;Topics · Introduction · Background · Air · Land · Water #12;Introduction · "The United States spends more than 2% of its gross domestic product on pollution control, and this is more than any

Nagurney, Anna

115

Homogeneous Charge Compression Ignition Free Piston Linear Alternator  

SciTech Connect

An experimental and theoretical investigation of a homogeneous charge compression ignition (HCCI) free piston powered linear alternator has been conducted to determine if improvements can be made in the thermal and conversion efficiencies of modern electrical generator systems. Performance of a free piston engine was investigated using a rapid compression expansion machine and a full cycle thermodynamic model. Linear alternator performance was investigated with a computer model. In addition linear alternator testing and permanent magnet characterization hardware were developed. The development of the two-stroke cycle scavenging process has begun.

Janson Wu; Nicholas Paradiso; Peter Van Blarigan; Scott Goldsborough

1998-11-01T23:59:59.000Z

116

Contaminant Sources  

Science Journals Connector (OSTI)

Contaminant sources include almost every component in the manufacturing process: people, materials, processing equipment, and manufacturing environments. People can generate contaminating particles, gases, conden...

Alvin Lieberman

1992-01-01T23:59:59.000Z

117

Ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

118

State-of-the-Art Thermal Analysis Methods and  

E-Print Network (OSTI)

step in thermal analysis is to identify the sources of heat incident upon the spacecraft. Solar heatingState-of-the-Art Thermal Analysis Methods and Validation for Small Spacecraft Ae241 Literature Survey Kristina Hogstrom 3/4/2013 #12;Introduction A detailed and accurate thermal analysis is critical

Pellegrino, Sergio

119

Linear-drifting subpulse sources in radio pulsars  

Science Journals Connector (OSTI)

......ion-proton plasma. Recent operation...of the 40-MHz emission from...electron-positron plasma cannot be...limits the area of the active...of the ion atmosphere which we assume...accelerated plasma. Our Green...of the LTE atmosphere and there...formed per unit area in an ion...over a fairly large surface area......

P. B. Jones

2014-01-01T23:59:59.000Z

120

ILC Positron source simualtion  

NLE Websites -- All DOE Office Websites (Extended Search)

(DOE Review 2007) (DOE Review 2007) Wanming Liu, Haitao Wang, Sergey Antipov, Wei Gai, Kwang-Je Kim HEP, ANL 04/27/2007 Where we are making contribution * Undulator radiation modeling * Adiabatic Matching Device modeling * Keep alive source simulation * Thermal dynamic study on windows * Eddy current simulation * Laser compton scheme positron production simulation for KEK/CLIC Where we are making contributions Outline Undulator and e+ yield OMD/AMD modeling and designing Thermal dynamic of target chamber window Energy deposition profile of target Collaboration with KEK/CLIC Comparison of positron yield from different undulators High K Devices Low K Devices BCD UK I UK II UK III Cornell I Cornell II Cornell III Period (mm) 10.0 11.5 11.0 10.5 10.0 12.0 7 0.3 0.46 28 ~0.54 Yield(Low Pol, 500m drift) ~2.13

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, Aaron S. (Broomall, PA)

1985-01-01T23:59:59.000Z

122

Liquid cooled, linear focus solar cell receiver  

DOE Patents (OSTI)

Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

Kirpich, A.S.

1983-12-08T23:59:59.000Z

123

Non-thermal solar wind heating by supra-thermal ions  

Science Journals Connector (OSTI)

The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose ... solution of a tri-fluid model...

H. J. Fahr

1973-05-01T23:59:59.000Z

124

On the non-linear evolution of sand dunes  

Science Journals Connector (OSTI)

......University of Khartoum, Khartoum, Sudan International Centre for Theoretical...University of Khartoum, Khartoum, Sudan. Adopting a multiple scale...A. , 1977. Non-linear thermal convection in an elasticoviscous...University ofKhartoum, Khartoum, Sudan M. H. A. Hassan International......

I. A. Eltayeb; M. H. A. Hassan

1981-04-01T23:59:59.000Z

125

Statistics of Entropy Production in Linearized Stochastic System  

E-Print Network (OSTI)

We consider a wide class of linear stochastic problems driven off the equilibrium by a multiplicative asymmetric force. The force brakes detailed balance, maintained otherwise, thus producing entropy. The large deviation function of the entropy production in the system is calculated explicitly. The general result is illustrated using an example of a polymer immersed in a gradient flow and subject to thermal fluctuations.

K. Turitsyn; M. Chertkov; V. Y. Chernyak; A. Puliafito

2007-02-20T23:59:59.000Z

126

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network (OSTI)

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal… (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

127

Combustion powered linear actuator  

DOE Patents (OSTI)

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

128

Competitive Sourcing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPETITIVE SOURCING COMPETITIVE SOURCING ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Report on Competitive Sourcing Results Fiscal Year 2006 May 2007 Executive Office of the President Office of Management and Budget TABLE OF CONTENTS Executive Summary ...................................................................................... 1 Introduction................................................................................................. 4 I. The big picture ......................................................................................... 4 II. How public-private competition was used in FY 2006 .................................... 6 A. Anticipated benefits from competition in FY 2006

129

solar thermal | OpenEI  

Open Energy Info (EERE)

thermal thermal Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU solar solar PV solar thermal world Data application/vnd.ms-excel icon Excel spreadsheet, summary solar energy data on multiple tabs (xls, 145.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

130

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network (OSTI)

and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

131

Nanoscale thermal transport. II. 2003–2012  

SciTech Connect

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

2014-03-15T23:59:59.000Z

132

Seasonal thermal energy storage  

SciTech Connect

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

133

Thermal unobtainiums? The perfect thermal conductor and  

E-Print Network (OSTI)

contribute to thermal resistance · Isotopically pure diamond has highest thermal conductivity of any material materials: disordered layered crystals Conclude with some thoughts on promising, high-risk, research even in a computer model. #12;Thermal resistance is created by Umklapp scattering (U

Braun, Paul

134

Thermal neutron imaging support with other laboratories BL06-IM-TNI  

SciTech Connect

The goals of this project are: (1) detect and locate a source of thermal neutrons; (2) distinguish a localized source from uniform background; (3) show shape and size of thermalizing material; (4) test thermal neutron imager in active interrogation environment; and (5) distinguish delayed neutrons from prompt neutrons.

Vanier,P.E.

2008-06-17T23:59:59.000Z

135

Linear Fresnel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Linear Fresnel systems, which are a type of linear concentrator, are active in Germany, Spain, Australia, India, and the United States. The SunShot Initiative funds R&D on...

136

History of Proton Linear Accelerators  

E-Print Network (OSTI)

the board to show why the accelerator couldn't work. Then atmuch. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,

Alvarez, Luis W.

1986-01-01T23:59:59.000Z

137

Thermal Control & System Integration  

Energy.gov (U.S. Department of Energy (DOE))

The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

138

Flows and Non-thermal Velocities in Solar Active Regions Observed with the Extreme-ultraviolet Imaging Spectrometer on Hinode: A Tracer of Active Region Sources of Heliospheric Magnetic Fields?  

E-Print Network (OSTI)

From Doppler velocity maps of active regions constructed from spectra obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft we observe large areas of outflow (20-50 km/s) that can persist for at least a day. These outflows occur in areas of active regions that are faint in coronal spectral lines formed at typical quiet Sun and active region temperatures. The outflows are positively correlated with non-thermal velocities in coronal plasmas. The bulk mass motions and non-thermal velocities are derived from spectral line centroids and line widths, mostly from a strong line of Fe XII at 195.12 Angstroms. The electron temperature of the outflow regions estimated from an Fe XIII to Fe XII line intensity ratio is about 1.2-1.4 MK. The electron density of the outflow regions derived from a density sensitive intensity ratio of Fe XII lines is rather low for an active region. Most regions average around 7E10+8 cm(-3), but there are variations on pixel spatial scales of about a factor of 4. We discuss results in detail for two active regions observed by EIS. Images of active regions in line intensity, line width, and line centroid are obtained by rastering the regions. We also discuss data from the active regions obtained from other orbiting spacecraft that support the conclusions obtained from analysis of the EIS spectra. The locations of the flows in the active regions with respect to the longitudinal photospheric magnetic fields suggest that these regions might be tracers of long loops and/or open magnetic fields that extend into the heliosphere, and thus the flows could possibly contribute significantly to the solar wind.

G. A. Doschek; H. P. Warren; J. T. Mariska; K. Muglach; J. L. Culhane; H. Hara; T Watanabe

2008-07-17T23:59:59.000Z

139

History of Proton Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

Alvarez, L. W.

1987-01-00T23:59:59.000Z

140

Competitive Sourcing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Sourcing Competitive Sourcing The Department of Energy's (DOE) Competitive Sourcing program is a management initiative aimed at improving DOE's performance and reducing the Department's operational costs. The program is governed by Office of Management and Budget (OMB) Circular A- 76, Performance of Commercial Activities, dated May 29, 2003. The commercial activities selected for review and competition include functions performed by government employees that are readily available in the private sector, and where the potential for efficiencies, regardless of the winning provider, are highly likely. The candidate functions are chosen from the Department's annual Federal Activities Inventory Reform (FAIR) Act Inventory and subjected to a feasibility review to determine if a prudent business case can be made to enter

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

142

Linear concentrating solar collector  

SciTech Connect

The present invention relates to a segment of a linear concentrating solar collector which includes two plates distanced from each other and extending parallel to each other; a member connects the plates to each other and holes are bored in each of the plates in a parallel manner along a parabolic curve. A member passes through the holes each holding a small strip made of a reflecting material all strips together forming a parabolic surface. The invention relates also to a collector comprising at least two of each segments and an absorber extending along the focus line of the entire collector. The collector is advantageously provided with horizontal and/or vertical members which ascertains that the collector can follow the position of the sun.

Aharon, N. B.

1985-08-06T23:59:59.000Z

143

Advanced Neutron Source (ANS) Project progress report  

SciTech Connect

This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

1990-04-01T23:59:59.000Z

144

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Incentive Program Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: $4,000 per site/meter Non-residential: $25,000 per site/meter Incentive also capped at 80% of calculated existing thermal load Program Info Funding Source RPS surcharge Start Date 12/10/2010 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount $1.50 per kWh displaced annually, for displacement of up to 80% of calculated existing thermal load Provider New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (NYSERDA)

145

Linear plasma-based tritium production facility  

SciTech Connect

The concept presented here is an adaptation of a recently completed conceptual design of a compact high-fluence D-T neutron source for accelerated end-of-life testing of fusion reactor materials. Although this preliminary assessment serves to illustrate the main features of a linear plasma-based tritium breeder, it is not necessarily an optimized design. We believe that proper design choices for the breeder application will certainly reduce costs, perhaps as much as a factor of two. We also point out that Q (the ratio of fusion power produced to power input to the plasma) increases with system length and that the cost per kg of tritium decreases for longer systems with higher output. In earlier studies of linear two-component plasma systems, Q values as high as three were predicted. At this level of performance and with energy recovery, operating power requirements of the breeder could approach zero. 5 refs., 1 fig., 1 tab.

Coensgen, F.H.; Futch, A.H.; Molvik, A.W.

1989-02-15T23:59:59.000Z

146

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

147

Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments  

SciTech Connect

Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 {+-} 0.05 x 10{sup -21} A n{sup -1}{center_dot}cm{sup 2}{center_dot}s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. Conclusions: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.

Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

2011-12-15T23:59:59.000Z

148

Thermal Management of Solar Cells  

E-Print Network (OSTI)

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

149

Microelectromechanical (MEM) thermal actuator  

DOE Patents (OSTI)

Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

Garcia, Ernest J. (Albuquerque, NM); Fulcher, Clay W. G. (Sandia Park, NM)

2012-07-31T23:59:59.000Z

150

Thermal optimization of high power LED arrays with a fin cooling system  

Science Journals Connector (OSTI)

In this paper, we describe an optimization process of thermal design for the light lamp which utilizes the Light Emitting Diode (LED) module as a lighting source. The thermal performance of the LED module was sho...

Sun Ho Jang; Moo Whan Shin

2011-10-01T23:59:59.000Z

151

The Thermal Regime Of The San Juan Basin Since Late Cretaceous...  

Open Energy Info (EERE)

Thermal Sources Details Activities (1) Areas (1) Regions (0) Abstract: Heat-flow and coal-maturation data suggest that the thermal history of the San Juan Basin has been...

152

Physics data base for the beam plasma neutron source (BPNS)  

SciTech Connect

A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 {times} 10{sup 18}/m{sup 2}{center dot}s) of 14-MeV neutrons is produced in a fully ionized high-density (n{sub e} {approx equal} 3 {times} 10{sup 21} m{sup {minus}3}) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system has not been demonstrated. 28 refs., 8 figs., 2 tabs.

Coensgen, F.H.; Casper, T.A.; Correll, D.L.; Damm, C.C.; Futch, A.H.; Molvik, A.W.

1990-10-12T23:59:59.000Z

153

Negative ion source  

DOE Patents (OSTI)

A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

Delmore, James E. (Idaho Falls, ID)

1987-01-01T23:59:59.000Z

154

COMPETITIVE SOURCING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPETITIVE SOURCING COMPETITIVE SOURCING EXECUTIVE STEERING GROUP MEETING PROCEEDINGS June 17, 2002 8:30 am - 11:00 am Room 5E-069 ATTENDEES John Gordon Robert Card Bruce Carnes Kathy Peery Brendan Danaher, AFGE Tony Lane Karen Evans Bill Sylvester Claudia Cross Brian Costlow Laurie Smith Helen Sherman Frank Bessera Rosalie Jordan Dennis O'Brien Mark Hively Robin Mudd Steven Apicella AGENDA 8:30 a.m. - 8:35 a.m. Opening Remarks 8:35a.m. - 8:55 a.m. Executive Steering Group roles and responsibilities, A-76 status, and talking points Team Briefings 8:55 a.m. - 9:20 a.m. Information Technology Study 9:20 a.m. - 9:45 a.m. Financial Services Study

155

Linear and Non Linear Analysis of the Hadley Circulation  

Science Journals Connector (OSTI)

We present a synthesis of results obtained with the linear stability of the one-cell Hadley circulation. This flow is observe in the...

P. Laure; B. Roux

1990-01-01T23:59:59.000Z

156

Berkeley Proton Linear Accelerator  

DOE R&D Accomplishments (OSTI)

A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

1953-10-13T23:59:59.000Z

157

Thermal metastabilities in the solar core  

E-Print Network (OSTI)

Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

Attila Grandpierre; Gabor Agoston

2002-01-18T23:59:59.000Z

158

Underground Coal Thermal Treatment  

SciTech Connect

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

159

Non-thermal radio astronomy  

Science Journals Connector (OSTI)

Abstract This presentation starts with Karl Jansky’s discovery of cosmic radio emission in 1933 and notes the striking similarities to Hess’s discovery of cosmic-rays in 1912. At first it was assumed that this radio emission was thermal but in 1939 Grote Reber discovered that it was stronger at longer wavelengths, requiring a non-thermal emission process. These discoveries had a revolutionary impact on astronomy and radio astronomy was born. The interpretation of this non-thermal radiation as synchrotron emission from high energy particles in the interstellar medium did not occur until the late 1940s but then it provided the link between radio astronomy and cosmic-ray research. Ginzburg, in particular, saw that cosmic-ray astrophysics was now possible using radio waves to trace sources of cosmic-rays. We discuss the discovery of extragalactic active galactic nuclei leading to the discovery of quasars and the first evidence for black holes in the nuclei of galaxies. We summarise the present status and future of some of the main radio telescopes used to image the non-thermal emission from external galaxies. Finally, we include a short description of the use of radio signals for the direct detection of cosmic-rays and UHE neutrinos.

R.D. Ekers

2014-01-01T23:59:59.000Z

160

Terahertz-driven linear electron acceleration  

E-Print Network (OSTI)

The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electron cooling for positron sources  

Science Journals Connector (OSTI)

Electron cooling of positrons should make possible a large increase in the luminosity of future high-energy linear colliders, leading to greatly enhanced event rates at these machines. An evaluation of the electron-cooling-time requirement indicates that a positron-source repetition rate of 100 Hz is possible. Final positron-beam normalized emittances of 10-7 m rad should result, implying a tremendous increase in positron-beam density over that currently obtained.

D. J. Larson

1988-03-28T23:59:59.000Z

162

Unit I-3 Linear Independence & Bases 1 Linear independence & bases  

E-Print Network (OSTI)

} ­ so we can write u1 = c2u2 + c3u3 + ... + crur with not all ci = 0 ­ re-arranging gives a non-zero lc u1 - c2u2 - c3u3 - ... - crur = 0 so the vectors are linearly dependent ! Unit I-3 Linear

Birkett, Stephen

163

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

164

Holographic thermalization patterns  

E-Print Network (OSTI)

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stefan Stricker

2014-03-11T23:59:59.000Z

165

Holographic thermalization patterns  

E-Print Network (OSTI)

We investigate the behaviour of various correlators in N=4 super Yang Mills theory, taking finite coupling corrections into account. In the thermal limit we investigate the flow of the quasinormal modes as a function of the 't Hooft coupling. Then by using a specific model of holographic thermalization we investigate the deviation of the spectral densities from their thermal limit in an out-of-equilibrium situation. The main focus lies on the thermalization pattern with which the various plasma constituents of different energies approach their final thermal distribution as the coupling constant decreases from the infinite coupling limit. All results point towards the weakening of the usual top down thermalization pattern.

Stricker, Stefan

2014-01-01T23:59:59.000Z

166

Solar Thermal Reactor Materials Characterization  

SciTech Connect

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

167

Thermal hypersensitisation and grating evolution in Ge-doped optical fibre  

Science Journals Connector (OSTI)

Low temperature (sub 1000°C) thermal hypersensitisation is reported in germanosilicate optical waveguides. Gratings are written using a CW 266nm laser source. In contrast to laser...

Sørensen, H; Canning, J; Kristensen, M

2005-01-01T23:59:59.000Z

168

E-Print Network 3.0 - advanced thermal interface Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Thermal Attack in Instruction Caches Joonho Kong, Johnsy K. John, Eui-Young Chung, ... Source: Chung, Eui-Young - School of Electrical and Electronics...

169

E-Print Network 3.0 - advanced computational thermal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Management," Proc. Int'l Symp. High-Performance Computer... ... Source: Chung, Eui-Young - School of Electrical and Electronics Engineering, Yonsei University; Hu, Jie -...

170

E-Print Network 3.0 - acceptable thermal conditions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Practice for Conditioning of Thermal Insulating Materials 01V24 ASTM C1488 Standard... : ... Source: National Institute of Standards and Technology...

171

Results of testing a development module of the second-generation E-Systems concentrating photovoltaic-thermal module  

SciTech Connect

An actively-cooled linear Fresnel lens concentrating photovoltaic and thermal module, designed and built by E-Systems, was tested in the Photovoltaic Advanced Systems Test Facility. Physical, electrical, and thermal characteristics of the module are presented. Module performance is characterized through the use of multiple linear regression techniques.

Harrison, T D

1982-04-01T23:59:59.000Z

172

EA-1266: Proposed Decontamination and Disassembly of the Argonne Thermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

266: Proposed Decontamination and Disassembly of the Argonne 266: Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory, Argonne, Illinois EA-1266: Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory, Argonne, Illinois SUMMARY This EA evaluates the environmental impacts for the proposal for the decontamination and disassembly of the U.S. Department of Energy's Argonne Thermal Source Reactor. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 15, 1998 EA-1266: Finding of No Significant Impact Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory July 15, 1998 EA-1266: Final Environmental Assessment

173

Defects, thermal phenomena and design in photonic crystal systems  

E-Print Network (OSTI)

The physics of blackbodies has been an ongoing source of fascination and scientific research for over a hundred years. Kirchhoff's law states that emissivity and absorptivity are equal for an object in thermal equilibrium. ...

Chan, David Lik Chin

2006-01-01T23:59:59.000Z

174

ENERGY EFFICIENT BUILDING DESIGN AND THERMAL ENERGY STORAGE  

Science Journals Connector (OSTI)

This chapter discusses the potential for cost-effectively reducing the energy intensity of office buildings by applying proven technologies, especially the use of ground source systems with thermal energy stor...

Edward Morofsky

2007-01-01T23:59:59.000Z

175

General solutions for thermopiezoelectrics with various holes under thermal loading  

E-Print Network (OSTI)

induced by thermal loads. The loads may be uniform remote heat ¯ow, point heat source and temperature elastic plate with an hole of various shapes subjected to remote uniform mechanical loading. For plane

Qin, Qinghua

176

Thermal contact resistance  

E-Print Network (OSTI)

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

177

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

178

Thermal Neutron Scattering  

Science Journals Connector (OSTI)

... of its title. It is not for the nuclear physicist, nor even for the neutron physicist, but for the student of solids and liquids. "Thermal ... physicist, but for the student of solids and liquids. "Thermal neutron ...

G. E. BACON

1968-11-09T23:59:59.000Z

179

Design, prototyping, and testing of an apparatus for establishing a linear temperature gradient in experimental fish tanks  

E-Print Network (OSTI)

Immunology researchers require a new type of fish tank that provides a linear thermal gradient for experimental zebrafish in order to improve the accuracy and validity of their research. Zebrafish require the ability to ...

Kadri, Romi Sinclair

2014-01-01T23:59:59.000Z

180

COMPETITIVE SOURCING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXECUTIVE STEERING GROUP Meeting Proceedings October 30, 2002 Room 6E-069, 10:30 - 12:00 Agenda Opening Remarks Bruce Carnes Competitive Sourcing Update Denny O'Brien Team Briefings Team Leads ESG Discussion/Wrap up Bruce Carnes Attendees Bruce Carnes, Acting Chair MaryAnn Shebek Robert Card Prentis Cook Ambassador Brooks Tony Lane Kyle McSlarrow Karen Evans Suzanne Brennan, NTEU Claudia Cross Brian Costlow Helen Sherman Frank Bessera Laurie Morman Denny O'Brien Travis McCrory Bill Pearce Jeff Dowl Mark Hively Steven Apicella Robin Mudd Bruce Carnes chaired the meeting and began with welcoming NTEU to the meeting. In regard to the OMB's Balanced Scorecard, the Department has achieved a Green on progress and we are close to achieving a yellow on status.

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

5 MW pulsed spallation neutron source, Preconceptual design study  

SciTech Connect

This report describes a self-consistent base line design for a 5 MW Pulsed Spallation Neutron Source (PSNS). It is intended to establish feasibility of design and as a basis for further expanded and detailed studies. It may also serve as a basis for establishing project cost (30% accuracy) in order to intercompare competing designs for a PSNS not only on the basis of technical feasibility and technical merit but also on the basis of projected total cost. The accelerator design considered here is based on the objective of a pulsed neutron source obtained by means of a pulsed proton beam with average beam power of 5 MW, in {approx} 1 {mu}sec pulses, operating at a repetition rate of 60 Hz. Two target stations are incorporated in the basic facility: one for operation at 10 Hz for long-wavelength instruments, and one operating at 50 Hz for instruments utilizing thermal neutrons. The design approach for the proton accelerator is to use a low energy linear accelerator (at 0.6 GeV), operating at 60 Hz, in tandem with two fast cycling booster synchrotrons (at 3.6 GeV), operating at 30 Hz. It is assumed here that considerations of cost and overall system reliability may favor the present design approach over the alternative approach pursued elsewhere, whereby use is made of a high energy linear accelerator in conjunction with a dc accumulation ring. With the knowledge that this alternative design is under active development, it was deliberately decided to favor here the low energy linac-fast cycling booster approach. Clearly, the present design, as developed here, must be carried to the full conceptual design stage in order to facilitate a meaningful technology and cost comparison with alternative designs.

Not Available

1994-06-01T23:59:59.000Z

182

Fast DOA estimation of incoherently distributed sources by novel propagator  

Science Journals Connector (OSTI)

A low-complexity algorithm is presented for the estimation of the nominal direction-of-arrivals (DOAs) of incoherently distributed (ID) sources. The presented algorithm estimates the nominal DOAs of ID sources by a novel propagator method which makes ... Keywords: DOA estimation, Incoherently distributed sources, Novel propagator, Uniform linear array (ULA)

Zhi Zheng; Guangjun Li

2013-09-01T23:59:59.000Z

183

Thermal Performance Benchmarking (Presentation)  

SciTech Connect

This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

Moreno, G.

2014-11-01T23:59:59.000Z

184

Graphene optical-to-thermal converter  

E-Print Network (OSTI)

Infrared plasmons in doped graphene nanostructures produce large optical absorption that can be used for narrow-band thermal light emission at tunable frequencies that strongly depend on the doping charge. By virtue of Kirchhoff's law, thermal light emission is proportional to the absorption, thus resulting in narrow emission lines associated with the electrically controlled plasmons of heated graphene. Here we show that realistic designs of graphene plasmonic structures can release over 90% of the emission through individual infrared lines with 1% bandwidth. We examine anisotropic graphene structures in which efficient heating can be produced upon optical pumping tuned to a plasmonic absorption resonance situated in the blue region relative to the thermal emission. An incoherent thermal light converter is thus achieved. Our results open a radically different approach for designing tunable nanoscale infrared light sources.

Manjavacas, Alejandro; Greffet, Jean-Jacques; de Abajo, F Javier García

2014-01-01T23:59:59.000Z

185

Linear Electric Field Time-Of-Flight Ion Mass Spectrometers  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber. Available for thumbnail of Feynman Center (505) 665-9090 Email Linear Electric Field Time-Of-Flight Ion Mass Spectrometers Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent

186

Thermal conductance of metal-metal interfaces  

Science Journals Connector (OSTI)

The thermal conductance of interfaces between Al and Cu is measured in the temperature range 78thermal conductance of the as-deposited Al-Cu interface is 4GWm?2K?1 at room temperature, an order-of-magnitude larger than the phonon-mediated thermal conductance of typical metal-dielectric interfaces. The magnitude and the linear temperature dependence of the conductance are described well by a diffuse-mismatch model for electron transport at interfaces.

Bryan C. Gundrum; David G. Cahill; Robert S. Averback

2005-12-30T23:59:59.000Z

187

List of Ocean Thermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Thermal Incentives Thermal Incentives Jump to: navigation, search The following contains the list of 96 Ocean Thermal Incentives. CSV (rows 1 - 96) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Business Energy Investment Tax Credit (ITC) (Federal) Corporate Tax Credit United States Agricultural Commercial Industrial Utility Anaerobic Digestion Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Direct Use Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Ocean Thermal Photovoltaics Small Hydroelectric Small Wind Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Tidal Energy Wave Energy Wind energy Yes CCEF - Project 150 Initiative (Connecticut) State Grant Program Connecticut Commercial Solar Thermal Electric

188

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

189

Radiation source  

DOE Patents (OSTI)

A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

Thode, Lester E. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

190

Exponential cosmological redshift in a linearly expanding universe  

E-Print Network (OSTI)

The first principles analysis of the radiation by an arbitrary source in a flat Friedmann-Robertson-Walker space-time is presented. The obtained analytical solution explicitly shows that the cosmological redshift is not of kinematic origin and that the source and the observer may be regarded as being at rest with respect to eachother at all times. At the same time the effect of the time-variation of the metric on the propagation of light appears to be underestimated in the standard cosmology. The cosmological redshift caused by the linear time-variation of the metric turns out to be an exponential rather than linear function of the well-defined spatial distance and the apparent brightness of the source contains an even stronger exponential decay factor.

Neil V. Budko

2009-07-03T23:59:59.000Z

191

E-Print Network 3.0 - accelerator-driven neutron source Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: - so called Accelerator-Driven System (ADS). An external neutron source and subcritical operation open... about 3 times a year. An alternative, thermal neutron...

192

Neutron sources and transmutation of nuclear waste  

Science Journals Connector (OSTI)

Intense neutron sources with different energy spectra are of interest for a variety of applications. In my presentation, after briefly touching on the situation of radioactive waste in Italy, I will try to give a broad picture of Italian existing or proposed neutron sources based on accelerators, ranging from thermal to fast neutrons. I will also describe a specific project for a low-power ADS, aimed at studying neutron spectra as well as at demonstrating incineration and transmutation of nuclear waste.

M. Ripani

2013-01-01T23:59:59.000Z

193

[New technology for linear colliders  

SciTech Connect

This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

McIntyre, P.M.

1992-08-12T23:59:59.000Z

194

Linear actuator powered flapping wing  

E-Print Network (OSTI)

Small scale unmanned aerial vehicles (UAVs) have proven themselves to be useful, but often too noisy for certain operations due to their rotary motors. This project examined the feasibility of using an almost silent linear ...

Benson, Christopher Lee

2010-01-01T23:59:59.000Z

195

linear-elements-code.scm  

E-Print Network (OSTI)

(o Linear-finite-element-operator)) ;; initialize various fields that depend on the space ;; if coefficients is not defined, we set it to arrays of floating-point ;; zeros ...

196

Highly linear low noise amplifier  

E-Print Network (OSTI)

, the Low Noise Amplifier (LNA) is expected to provide high linearity, thus preventing the intermodulation tones created by the interference signal from corrupting the carrier signal. The research focuses on designing a novel LNA which achieves high...

Ganesan, Sivakumar

2007-09-17T23:59:59.000Z

197

Particle-in-cell simulation studies of the non-linear evolution of ultrarelativistic two-stream instabilities  

Science Journals Connector (OSTI)

......from inverse Compton scattering or thermal emissions (Ryde 2004, 2005) or...relativistic beams, such as those in Thode Sudan (1973). Colliding e + e beams have...growth in cold homogeneous plasma from thermal noise levels to non-linear saturation......

M. E. Dieckmann; P. K. Shukla; L. O. C. Drury

2006-04-11T23:59:59.000Z

198

Design and Performance of Linear Biomechanical Energy Conversion Devices Penglin Niu, Student Member  

E-Print Network (OSTI)

Design and Performance of Linear Biomechanical Energy Conversion Devices Penglin Niu, Student, energy conversion, synchronous rectifier, voltage tripler, energy harvesting, human power. I investigated motions as energy sources for biomechanical energy conversion [1-7]. Until recently, most efforts

Chapman, Patrick

199

Bates GaAs polarized electron source  

SciTech Connect

In order to pursue measurements of parity violating effects of the neutral weak current, we have developed a polarized electron source suitable for installation at the MIT-Bates Linear Accelerator. The source is designed to provide a high peak-current pulsed beam that has a approx. 1% duty factor and that is extremely stable under helicity reversal. 34 references, 6 figures, 1 table.

Schaefer, H.R.; Cates, G.; Michaels, R.; Hughes, V.W.. Lubell, M.S.; Souder, P.A.

1983-05-01T23:59:59.000Z

200

Contributions of Renewable Energy Resources to Re-source Diversity  

E-Print Network (OSTI)

of sources such as wind, solar, photovoltaic, biofuels, geo- thermal and hydro for energy supply analysis, economics and operations, utility regulatory policy, renewable resource integration and industry, Berkeley. Dr. Gross has consulted on electricity issues with utilities, government organizations

Gross, George

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

SunShot Initiative: Linear Fresnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Fresnel to someone by Linear Fresnel to someone by E-mail Share SunShot Initiative: Linear Fresnel on Facebook Tweet about SunShot Initiative: Linear Fresnel on Twitter Bookmark SunShot Initiative: Linear Fresnel on Google Bookmark SunShot Initiative: Linear Fresnel on Delicious Rank SunShot Initiative: Linear Fresnel on Digg Find More places to share SunShot Initiative: Linear Fresnel on AddThis.com... Concentrating Solar Power Systems Parabolic Trough Linear Fresnel Power Tower Dish Engine Components Competitive Awards Staff Photovoltaics Systems Integration Balance of Systems Linear Fresnel DOE funds solar research and development (R&D) in linear Fresnel systems as one of four CSP technologies aiming to meet the goals of the SunShot Initiative. Linear Fresnel systems, which are a type of linear

202

International linear collider reference design report  

E-Print Network (OSTI)

2.1-4 2.2-1 Electron Source SystemConsiderations 2.2 Electron Source . . . . . . . . . . . . .Electron Source . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aarons, G.

2008-01-01T23:59:59.000Z

203

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

204

Development of integral bladed rotor using linear optimisation technique  

Science Journals Connector (OSTI)

Bladed disks are the most flexible elements in high speed rotating machinery. Stress analysis of these elements present some challenges. These challenges stem from high stress gradients due to contact faces, the non-linearities attending conforming contact with friction. Thermal gradients are also encountered across the disc bore and rim due to uneven temperature distribution. The rim of the disc is made heavier to resist the centrifugal pull of the blade, thus making the assembly heavier. Investigations have been carried out to develop and improve 'blisks' which are integrated version of blades and disc, offering significant weight saving. The present paper describes the possible development process of upgrading a general purpose conventional bladed disc of a single stage compressor into blisk, using linear programme, a finite element analysis tool for linear optimisation, as a dedicated 'design-tool' keeping the same operating conditions and the allowable design limits through numerical models. Design methodology, burst-failure criteria of blisk and bladed disc are discussed in full length. This tool developed exploits the quick convergence ability of a linear system for handling large iterations and overcomes the limitation imposed by material non-linearity, over-speed and burst margin for all decision points based on stress, strain and displacement, in the design-flow process.

K. Kumar; S.L. Ajit Prasad; K. Ramachandra

2012-01-01T23:59:59.000Z

205

Rotational remanent magnetization (RRM) and its high temporal and thermal stability  

Science Journals Connector (OSTI)

......and its high temporal and thermal stability S. W. Mahon* and...per cent per decade of time. Thermal demagnetization of thermoremanent...To test the temporal and thermal stability of RRM, a source...Neolithic pot 05 162 Soba (Sudan) Post-Roman pot 07 73 Soba......

S. W. Mahon; A. Stephenson

1997-08-01T23:59:59.000Z

206

Status of the Kharkov Linac Polarized Electron Source  

Science Journals Connector (OSTI)

In this note we briefly describe the GaAs polarized electron source, which is the full-scale injector prototype for the electron linear accelerator of the Kharkov Institute of...

V. L. Agranovich; A. V. Glamazdin; V. G. Gorbenko…

1991-01-01T23:59:59.000Z

207

Water Salination: A Source of Energy  

Science Journals Connector (OSTI)

...temperature releases free energy. Salination power...1010 watts. The energy flux available for...osmotic salination converter could possibly operate...efficiency. This energy source is renewable...of tidal, geo-thermal, wind, and hydroelectric...nonequilibrium state of the oceans (2) have been proposed...

Richard S. Norman

1974-10-25T23:59:59.000Z

208

Property:ThermalInfo | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:ThermalInfo Jump to: navigation, search Property Name ThermalInfo Property Type Text Subproperties This property has the following 93 subproperties: A Acoustic Logs Active Seismic Methods Active Sensors Aeromagnetic Survey Airborne Electromagnetic Survey Analytical Modeling C Caliper Log Cation Geothermometers Cement Bond Log Conceptual Model Controlled Source Frequency-Domain Magnetics Cross-Dipole Acoustic Log Cuttings Analysis D Data Acquisition-Manipulation Data Collection and Mapping Data Techniques Data and Modeling Techniques Density Log Direct-Current Resistivity Survey Drilling Methods E Earth Tidal Analysis Electric Micro Imager Log Electromagnetic Sounding Methods Elemental Analysis with Fluid Inclusion

209

Thermal Conductivity of Composites Under Di erent Heating Scenarios  

E-Print Network (OSTI)

Thermal Conductivity of Composites Under Di#11;erent Heating Scenarios H.T. Banks #3; , J.H. Hogan of composites under three di#11;erent heating scenarios: (i) a laser pulse heat source, (ii) a preheated composite sample, and (iii) a continuous heat source. 1 Introduction Adhesives such as epoxies, gels

210

Conventional power sources for colliders  

SciTech Connect

At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 ..mu..sec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 ..mu..sec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 ..mu..sec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths.

Allen, M.A.

1987-07-01T23:59:59.000Z

211

Thermal comfort during surgery  

E-Print Network (OSTI)

THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Industrial... Engineering THERMAL COMFORT DURING SURGERY A Thesis by DAVID HAROLD MANNING Approved as to style and content by: airman of C it ee Head of Department Member Me er December 1978 ABSTRACT Thermal Comfort During Surgery (December 1978) David Harold...

Manning, David Harold

1978-01-01T23:59:59.000Z

212

Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor  

DOE Patents (OSTI)

A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

Coffey, H.T.

1993-10-19T23:59:59.000Z

213

Linear Collider Collaboration Tech Notes LCC-70  

NLE Websites -- All DOE Office Websites (Extended Search)

70 70 August 2001 Design Studies of Positron Collection for the NLC Yuri K. Batygin, Ninod K. Bharadwaj, David C. Schultz ,John C. Sheppard Stanford Linear Accelerator Center Stanford, CA Abstract: The positron source for the NLC project utilizes a 6.2 GeV electron beam interacting in a high-Z positron production target. The electromagnetic shower in the target results in large energy deposition which can cause damage to the target. Optimization of the collection system is required to insure long-term operation of the target with needed high positron yield into the 6-dimensional acceptance of the subsequent pre-damping ring. Positron tracking through the accelerating system indicates a dilution of the initial positron phase space density. Results of simulations indicate that a

214

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

215

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 27/05/99 6, 27/05/99 Tolerances of Random RF Jitters in X-Band Main Linacs May 27, 1999 Kiyoshi KUBO KEK Tsukuba, Japan Abstract: Tracking simulations have been performed for the main linacs of an X-band linear collider. We discuss the choice of phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. Tolerances of Random RF Jitters in X-Band Main Linacs K. Kubo, KEK Abstract Tracking simulations have been performed for main linacs of X-band linear collider. We discuss about choice of the phase of the accelerating field relative to the bunches. The tolerances of the phase and the amplitude errors are studied. 1 INTRODUCTION In order to preserve the low emittance through the main linacs of future linear colliders, various effects

216

NANO REVIEW Open Access Thermal conductivity and thermal boundary  

E-Print Network (OSTI)

NANO REVIEW Open Access Thermal conductivity and thermal boundary resistance of nanostructures and the thermal transport prop- erties is a key point to design materials with preferred thermal properties with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity

Boyer, Edmond

217

Independent Oversight Inspection, Stanford Linear Accelerator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center This report...

218

Linear operator inequalities for strongly stable weakly regular linear systems  

E-Print Network (OSTI)

that A has compact resolvent and its eigenvectors form a Riesz basis for the state space, we give an explicit to a spectral factorization problem and to a lin- ear quadratic optimal control problem. More concretely R, which implies that R #21; 0. The associated linear matrix inequality in the unknown self

Curtain, Ruth F.

219

Electronic equilibrium as a function of depth in tissue from Cobalt-60 point source exposures  

E-Print Network (OSTI)

the X- Y plane. The scanning system consists of a light source, focusing system, photosensing detector, and precision computer controlled linear translation tables. A light emitting diode (LED) is the light source for the system. The proportion... the X- Y plane. The scanning system consists of a light source, focusing system, photosensing detector, and precision computer controlled linear translation tables. A light emitting diode (LED) is the light source for the system. The proportion...

Myrick, Jo Ann

2012-06-07T23:59:59.000Z

220

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mechanical Engineering & Thermal Group  

E-Print Network (OSTI)

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

222

Acceptability of Four Transformer Top-Oil Thermal Models: Pt. 2: Comparing Metrics  

E-Print Network (OSTI)

1 Acceptability of Four Transformer Top-Oil Thermal Models: Pt. 2: Comparing Metrics Lida Jauregui transformer top-oil thermal models are examined vis-à-vis training with measured data. Acceptability is unacceptable for model identification purposes. The linear top-oil model is acceptable for FOFA transformers

223

The 4th Generation Light Source at Jefferson Lab  

SciTech Connect

A number of "Grand Challenges" in Science have recently been identified in reports from The National Academy of Sciences, and the U.S. Dept. of Energy, Basic Energy Sciences. Many of these require a new generation of linac-based light source to study dynamical and non-linear phenomena in nanoscale samples. In this paper we present a summary of the properties of such light sources, comparing them with existing sources, and then describing in more detail a specific source at Jefferson Lab. Importantly, the JLab light source has developed some novel technology which is a critical enabler for other new light sources.

Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Albert Grippo; Christopher Gould; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; Kevin Jordan; John Klopf; Steven Moore; George Neil; Thomas Powers; Joseph Preble; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Shukui Zhang; Gwyn Williams

2007-04-25T23:59:59.000Z

224

Thermal Recovery Methods  

SciTech Connect

Thermal Recovery Methods describes the basic concepts of thermal recovery and explains the injection patterns used to exploit reservoir conditions. Basic reservoir engineering is reviewed with an emphasis on changes in flow characteristics caused by temperature. The authors discuss an energy balance for steam and combustion drive, and they explain in situ reactions. Heat loss, combustion drive, and steam displacement also are examined in detail, as well as cyclic steam injection, downhole ignition, well heating, and low-temperature oxidation. Contents: Thermal processes; Formation and reservoir evaluations; Well patterns and spacing; Flow and process equations; Laboratory simulation of thermal recovery; Heat loss and transmission; Displacement and production; Equipment; Basic data for field selection; Laboratory evaluation of combustion characteristics; Thermal properties of reservoirs and fluids.

White, P.D.; Moss, J.T.

1983-01-01T23:59:59.000Z

225

Solar thermal aircraft  

DOE Patents (OSTI)

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

226

Standard Test Method for Measuring Dose for Use in Linear Accelerator Pulsed Radiation Effects Tests  

E-Print Network (OSTI)

1.1 This test method covers a calorimetric measurement of the total dose delivered in a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode) used as an ionizing source in radiation-effects testing. The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are“thin” compared to the range of these electrons in the materials of which they are constructed. 1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy (matl) (500 rd (matl)) or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. Matl refers to the material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity...

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

227

Thermal diffusivity measurement system applied to polymers  

Science Journals Connector (OSTI)

In the search for cleaner energy sources the improvement of the efficiency of the actual ones appears as a primary objective. In this way thermoelectric materials which are able to convert wasted heat into electricity are reveal as an interesting way to improve efficiency of car engines for example. Cost-effective energy harvesting from thermoelectric devices requires materials with high electrical conductivities and Seebeck coefficient but low thermal conductivity. Conductive polymers can fulfil these conditions if they are doped appropriately. One of the most promising polymers is Polyaniline. In this work the thermal conductivity of the polyaniline and mixtures of polyaniline with nanoclays has been studied using a new experimental set-up developed in the lab. The novel system is based on the steady-state method and it is used to obtain the thermal diffusivity of the polymers and the nanocomposites.

2012-01-01T23:59:59.000Z

228

Transformations for densities Linear transformations  

E-Print Network (OSTI)

' & $ % Lecture 28 Transformations for densities Linear transformations 1-1 differentiable functions General transformations Expectation of a function 1 #12;' & $ % Transformations for discrete transformation of a U[0, 1] · Take X U[0, 1], so that fX(x) = 1 0 0 and set Y

Adler, Robert J.

229

IMPROVEMENTS IN CODED APERTURE THERMAL NEUTRON IMAGING.  

SciTech Connect

A new thermal neutron imaging system has been constructed, based on a 20-cm x 17-cm He-3 position-sensitive detector with spatial resolution better than 1 mm. New compact custom-designed position-decoding electronics are employed, as well as high-precision cadmium masks with Modified Uniformly Redundant Array patterns. Fast Fourier Transform algorithms are incorporated into the deconvolution software to provide rapid conversion of shadowgrams into real images. The system demonstrates the principles for locating sources of thermal neutrons by a stand-off technique, as well as visualizing the shapes of nearby sources. The data acquisition time could potentially be reduced two orders of magnitude by building larger detectors.

VANIER,P.E.

2003-08-03T23:59:59.000Z

230

A thermoacoustic traveling wave linear amplifier  

Science Journals Connector (OSTI)

This paper describes an experiment to show linear amplification of traveling sound waves in a duct using a thermoacoustic regenerator. As noted by Ceperley [J. Acoust. Soc. Am. 66 1508–1513 (1979)] a Stirling engine?type regenerator should act as an acoustic gain medium for traveling waves in a duct. This principle is used in thermoacoustic traveling wave engines to transfer power from heat reservoirs to acoustic energy. However it is difficult to produce finite gain for pure traveling wave impedance since viscous losses in the channels of the regenerator overcome the gain and previous workers have only been able to show reduced loss in such a system. Optimizing the regenerator design with numerical modeling and using a greater temperature difference suggest that a traveling wave thermal amplifier can produce 2 dB of real gain over two octaves for traveling waves in air. Such a device would amplify a broadband acoustic signal without electrical transducers. Design of the amplifier and experimental results will be shown.

Robert A. Hiller

2000-01-01T23:59:59.000Z

231

Local Thermalization in the d + Au System  

E-Print Network (OSTI)

The extent of a locally equilibrated parton plasma in d + Au collisions at sqrt(s_NN) = 200 GeV is investigated as a function of collision centrality in a nonequilibrium-statistical framework. Based on a three-sources model, analytical solutions of a relativistic diffusion equation are in precise agreement with recent data for charged-particle pseudorapidity distributions. The moving midrapidity source indicates the size of the local thermal equilibrium region after hadronization. In central d + Au collisions it contains about 19% of the produced particles, and its relative importance rises with decreasing centrality.

Georg Wolschin; Minoru Biyajima; Takuya Mizoguchi; Naomichi Suzuki

2005-03-22T23:59:59.000Z

232

Linear Fresnel Collector Receiver: Heat Loss and Temperatures  

Science Journals Connector (OSTI)

Abstract For design and component specification of a Linear Fresnel Collector (LFC) cavity receiver, the prediction of temperature distribution and heat loss is of great importance. In this paper we present a sensitivity analysis for a range of geometry and material parameters. For the LFC receiver analysis we use two models developed at Fraunhofer ISE. One is a detailed model, combining the spatial distribution of reflected radiation via ray tracing with detailed convective simulations through computational fluid dynamics. The second one is a fast algorithm based on a thermal resistance model. It is applying a similar methodology as the well-known model for vacuum absorber, enhancing an absorber tube model by parameters describing the influence of the secondary mirror and cover glass. The thermal resistance model is described in detail. Obtained results indicate a significant effect of the secondary mirror temperature on heat loss for specific geometries.

A. Heimsath; F. Cuevas; A. Hofer; P. Nitz; W.J. Platzer

2014-01-01T23:59:59.000Z

233

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

234

Linear induction accelerator and pulse forming networks therefor  

DOE Patents (OSTI)

A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

235

Exponential cosmological redshift in a linearly expanding universe  

E-Print Network (OSTI)

Analytical solution of the Maxwell equations in a flat expanding Friedmann-Robertson-Walker space-time is presented. The solution is valid for arbitrary sources and for expansion rates described by positive functions of time. The near-, intermediate-, and far-field terms are explicitly identified. It is shown that the cosmological redshift introduced by a linearly expanding space-time is an exponential function of the distance factor.

Budko, Neil V

2009-01-01T23:59:59.000Z

236

NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS.  

SciTech Connect

For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability.

TOMAS,R.FISCHER,W.JAIN,A.LUO,Y.PILAT,F.

2004-07-05T23:59:59.000Z

237

Linear Response Theory for Hard and Soft Glassy Materials  

SciTech Connect

Despite qualitative differences in their underlying physics, both hard and soft glassy materials exhibit almost identical linear rheological behaviors. We show that these nearly universal properties emerge naturally in a shear-transformation-zone (STZ) theory of amorphous plasticity, extended to include a broad distribution of internal thermal-activation barriers. The principal features of this barrier distribution are predicted by nonequilibrium, effective-temperature thermodynamics. Our theoretical loss modulus G{double_prime}({omega}) has a peak at the {alpha} relaxation rate, and a power law decay of the form {omega}{sup -{zeta}} for higher frequencies, in quantitative agreement with experimental data.

Langer, J. [University of California, Santa Barbara; Bouchbinder, Eran [Weizmann Institute of Science, Rehovot, Israel

2011-01-01T23:59:59.000Z

238

Positron Source from Betatron X-rays Emitted in a Plasma Wiggler  

SciTech Connect

In the E-167 plasma wakefield accelerator (PWFA) experiments in the Final Focus Test Beam (FFTB) at the Stanford Linear Accelerator Center (SLAC), an ultra-short, 28.5 GeV electron beam field ionizes a neutral column of Lithium vapor. In the underdense regime, all plasma electrons are expelled creating an ion column. The beam electrons undergo multiple betatron oscillations leading to a large flux of broadband synchrotron radiation. With a plasma density of 3 x 10{sup 17}cm{sup -3}, the effective focusing gradient is near 9 MT/m with critical photon energies exceeding 50 MeV for on-axis radiation. A positron source is the initial application being explored for these X-rays, as photo-production of positrons eliminates many of the thermal stress and shock wave issues associated with traditional Bremsstrahlung sources. Photo-production of positrons has been well-studied; however, the brightness of plasma X-ray sources provides certain advantages. In this paper, we present results of the simulated radiation spectra for the E-167 experiments, and compute the expected positron yield.

Johnson, D.K.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O'Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

2006-04-21T23:59:59.000Z

239

Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint  

SciTech Connect

This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

Wagner, M. J.

2012-04-01T23:59:59.000Z

240

Theory of delayed thermal fluorescence  

Science Journals Connector (OSTI)

A theory of nonradiative thermal activation involved in delayed thermal fluorescence has been developed from the viewpoint of the breakdown of the Born-Oppenheimer adiabatic approximation.

S. H. Lin

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Thermal insulations using vacuum panels  

DOE Patents (OSTI)

Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

Glicksman, Leon R. (Lynnfield, MA); Burke, Melissa S. (Pittsburgh, PA)

1991-07-16T23:59:59.000Z

242

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes LCC - 0018, 15/06/99 Rev B, June 2002 Correct Account of RF Deflections in Linac Acceleration June 15, 1999 G.V. Stupakov Stanford Linear Accelerator Center Stanford, California Abstract: During acceleration in the linac structure, the beam not only increases its longitudinal momentum, but also experiences a transverse kick from the accelerating mode which is linear in accelerating gradient. This effect is neglected in such computer codes as LIAR and TRANSPORT. We derived the Hamiltonian equations that describe the effect of RF deflection into the acceleration process and included it into the computational engine of LIAR. By comparing orbits for the NLC main linac, we found that the difference between the two algorithms is about 10\%. The effect will be more pronounced at smaller

243

Precision linear ramp function generator  

DOE Patents (OSTI)

A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

1984-08-01T23:59:59.000Z

244

Cast dielectric composite linear accelerator  

DOE Patents (OSTI)

A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

2009-11-10T23:59:59.000Z

245

Thermally driven circulation  

E-Print Network (OSTI)

Several problems connected by the theme of thermal forcing are addressed herein. The main topic is the stratification and flow field resulting from imposing a specified heat flux on a fluid that is otherwise confined to a ...

Nelken, Haim

1987-01-01T23:59:59.000Z

246

Manipulation of Thermal Phonons  

E-Print Network (OSTI)

to manipulate the behavior of phonons is crucial for both energy applications and the cooling of integrated circuits. A novel class of artificially periodic structured materials — phononic crystals — might make manipulation of thermal phonons possible. In many...

Hsu, Chung-Hao

2013-03-28T23:59:59.000Z

247

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

248

Contact thermal lithography  

E-Print Network (OSTI)

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

249

Texas Thermal Comfort Report  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal comfort thermal comfort Too often, the systems in our houses are both physically and intellectually inaccessible. In the SNAP House, HVAC components are integrated into the overall structure, and act as an experiential threshold between public and private spaces. They are located in a central, structural chase that supports the clerestory and gives the systems a functional presence within the interior. Each individual component is contained within a single chase

250

Photovoltaic-thermal collectors  

DOE Patents (OSTI)

A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

Cox, III, Charles H. (Carlisle, MA)

1984-04-24T23:59:59.000Z

251

Dynamic modelling for thermal micro-actuators using thermal networks  

E-Print Network (OSTI)

Dynamic modelling for thermal micro-actuators using thermal networks Beatriz L´opez-Wallea,1 and analytical calculations. Key words: Micro-actuators, Thermal modelling, Electrical analogy, Thermal network 1 and MicroMechatronic Systems Department (AS2M), 24 rue Alain Savary, 25000 Besan¸con, France Abstract

Paris-Sud XI, Université de

252

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network (OSTI)

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

253

Recent applications of thermal imagers for security assessment  

SciTech Connect

This paper discusses recent applications by Sandia National Laboratories of cooled and uncooled thermal infrared imagers to wide-area security assessment systems. Thermal imagers can solve many security assessment problems associated with the protection of high-value assets at military bases, secure installations, and commercial facilities. Thermal imagers can provide surveillance video from security areas or perimeters both day and night without expensive security lighting. Until fairly recently, thermal imagers required open-loop cryogenic cooling to operate. The high cost of these systems and associated maintenance requirements restricted their widespread use. However, recent developments in reliable, closed-loop, linear drive cryogenic coolers and uncooled infrared imagers have dramatically reduced maintenance requirements, extended MTBF, and are leading to reduced system cost. These technology developments are resulting in greater availability and practicality for military as well as civilian security applications.

Bisbee, T.L.

1997-06-01T23:59:59.000Z

254

Nanoplasmonics enhanced terahertz sources  

Science Journals Connector (OSTI)

Arrayed hexagonal metal nanostructures are used to maximize the local current density while providing effective thermal management at the nanoscale, thereby allowing for increased...

Jooshesh, Afshin; Smith, Levi; Masnadi-Shirazi, Mostafa; Bahrami-Yekta, Vahid; Tiedje, Thomas; Darcie, Thomas E; Gordon, Reuven

2014-01-01T23:59:59.000Z

255

Renewable energy generation sources  

NLE Websites -- All DOE Office Websites (Extended Search)

directly supports the Department of Energy's SunShot goals by providing lower thermal-energy storage costs and greater collection efficiencies. "It really gives a complete...

256

Energy Partitions and Evolution in a Purely Thermal Solar Flare  

E-Print Network (OSTI)

This paper presents a solely thermal flare, which we detected in the microwave range from the thermal gyro- and free-free emission it produced. An advantage of analyzing thermal gyro emission is its unique ability to precisely yield the magnetic field in the radiating volume. When combined with observationally-deduced plasma density and temperature, these magnetic field measurements offer a straightforward way of tracking evolution of the magnetic and thermal energies in the flare. For the event described here, the magnetic energy density in the radio-emitting volume declines over the flare rise phase, then stays roughly constant during the extended peak phase, but recovers to the original level over the decay phase. At the stage where the magnetic energy density decreases, the thermal energy density increases; however, this increase is insufficient, by roughly an order of magnitude, to compensate for the magnetic energy decrease. When the magnetic energy release is over, the source parameters come back to ne...

Fleishman, Gregory D; Gary, Dale E

2015-01-01T23:59:59.000Z

257

High-yield positron systems for linear colliders  

SciTech Connect

Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for every electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.

Clendenin, J.E.

1989-04-01T23:59:59.000Z

258

Cryogenic hydrogen circulation system of neutron source  

SciTech Connect

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

2014-01-29T23:59:59.000Z

259

Capital Sources and Providers  

Energy.gov (U.S. Department of Energy (DOE))

The most important elements of a clean energy lending program are the capital source and the capital provider. The capital source provides the funding to pay for clean energy projects, and the capital provider manages those funding sources. For example, a bank might use its customers' deposits as a capital source, but as the capital provider, the bank manages the investment of that capital.

260

Dereverberation by linear systems techniques  

E-Print Network (OSTI)

- sentation by a finite number of thin layers and wave propagation normal to these layers. A linear, recursive mathematical model is developed and a method for the identification of parameters in the absence of noise i. , discussed. Appli ations are made...--Final System Configuration 29 16. Water Model--System Flow Diagram 17. The A Matrix 18. The B, C, and D Matrices 31 32 33 I. INTROD&JCTIO22 The removal of deleterious effects which arise in the transmission of waves through layered media is a problem...

Schell, John August

1970-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

262

Unit I-4 More about linear maps 1 More about linear maps  

E-Print Network (OSTI)

Unit I-4 More about linear maps 1 Unit I-4 More about linear maps Unit I-4 More about linear maps 2 Using bases to define linear maps · V, U vector spaces · a unique linear map T: V U is determined · if v = a1v1 + ... + anvn then T(v) = a1T(v1) + ... + anT(vn) Unit I-4 More about linear maps 3 Example

Birkett, Stephen

263

Cryogenic technology boosts linear accelerator capability  

Science Journals Connector (OSTI)

Cryogenic technology boosts linear accelerator capability ... Two critical properties of matter at cryogenic temperatures—superconductivity and superfluidity—should open the way for a major advance in electron linear accelerator capability. ...

1968-05-06T23:59:59.000Z

264

Ultrashort Pulse Propagation in the Linear Regime  

E-Print Network (OSTI)

First, we investigate the Bouguer-Lambert-Beer (BLB) law as applied to the transmission of ultrashort pulses through water in the linear absorption regime. We present a linear theory for propagation of ultrashort laser pulses, and related...

Wang, Jieyu

2010-07-14T23:59:59.000Z

265

New architecture for RF power amplifier linearization  

E-Print Network (OSTI)

Power amplifier linearization has become an important part of the transmitter system as 3G and developing 4G communication standards require higher linearity than ever before. The thesis proposes two power amplifier ...

Boo, Hyun H

2009-01-01T23:59:59.000Z

266

GEOMETRIC SOURCE SEPARATION: MERGING CONVOLUTIVE SOURCE  

E-Print Network (OSTI)

adaptive beamforming algorithms by a cross-power criteria, we gain new geometric source separation with convo- lutive blind source separation. We concentrate on cross-power spectral min- imization which is su to ambiguities in the choice of separating lters. There are in theory multiple lters that invert the room

Parra, Lucas C.

267

Application of dating for searching geothermic sources  

Science Journals Connector (OSTI)

A Geothermical field is usually associated with a volcanic region and, therefore, with an abundance of volcanic glasses such as obsidians. The magmatic chambers constitute an excellent source of heat for a geothermical system. These chambers can be geologically identified from the surface by its recent volcanic products. Therefore, the geological age of the volcanic — units is of great interest for a location of a worthwile thermal energy field. This paper presents some preliminary results of the ages obtained by dating obsidians.

L. Gutiérrez-Negrin; A. López-Martínez; M. Balcázar-García

1984-01-01T23:59:59.000Z

268

Thermal gauge boson masses of the electroweak theory in the broken phase  

Science Journals Connector (OSTI)

Thermal effects in the broken phase of the electroweak theory are studied in the strongly interacting Higgs boson limit. In that limit and at the tree level the bosonic sector of the theory is a gauged non-linear sigma model. The associated one-loop thermal effective action for soft fields is then computed by using the background field method together with the Stueckelberg formalism. This effective action describes thermal corrections to the masses of the gauge bosons W, Z and the photon. It is the proper generalization of the hard thermal effective action of a Yang-Mills theory when there is a Higgs mechanism for a heavy Higgs particle.

Cristina Manuel

1998-05-19T23:59:59.000Z

269

Linac Coherent Light SourCe  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Linac Linac Coherent Light SourCe after the Stanford Linear Accelerator Center (now the SLAC National Accelerator Laboratory) developed its two- mile-long linear accelerator (linac), it received approval from the Department of Energy to construct the Linac Coherent Light Source (LCLS), the first free electron laser (FEL) facility that would be able to produce x-rays short and bright enough that individual molecules could be imaged in their natural states. 40 years Genesis of the idea In 1992, Dr. Claudio Pellegrini, a professor at UCLA, first developed a proposal for a facility that would eventually become LCLS. The idea generated interest within the scientific community, and a design study report conducted by SLAC in the late 1990s led to the first

270

The Next Linear Collider Program  

NLE Websites -- All DOE Office Websites (Extended Search)

To use the left side navigation on this page, you will need to turn on To use the left side navigation on this page, you will need to turn on Javascript. You do not need JavaScript to use the text-based navigation bar at the bottom of the page. The Next Linear Collider at SLAC Navbar MISSION: Scientists expect research at this facility to answer fundamental questions about the behavior of matter and the origins of the Universe. NLC 8-Pack on the Drawing Board What's New In the Next Linear Collider: • NLC Newsletter October, 2001 • NLC Snowmass report 2001 • NLC All Hands Talk, August 2001 Upcoming Events: • Fall 2001 Working Sessions, Oct. 22-23, 2001 • Pulse Compression Workshop, Oct. 22-24, 2001 • Machine Advisory Committee Mtg., Oct. 24-26, 2001 • ISG-7 at KEK, Nov. 12-15, 2001 • LC' 02 at SLAC, Feb. 4-8, 2002 NLC Website Search: Entire SLAC Web | Help |

271

Challenges in future linear colliders  

SciTech Connect

For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e-e+ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e-e+ linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the Future Linear Collider (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomic and political challenges, likely necessitating continued development of international collaboration among parties involved in accelerator-based physics.

Swapan Chattopadhyay; Kaoru Yokoya

2002-09-02T23:59:59.000Z

272

Repair of overheating linear accelerator  

SciTech Connect

Los Alamos Neutron Science Center (LANSCE) is a proton accelerator that produces high energy particle beams for experiments. These beams include neutrons and protons for diverse uses including radiography, isotope production, small feature study, lattice vibrations and material science. The Drift Tube Linear Accelerator (DTL) is the first portion of a half mile long linear section of accelerator that raises the beam energy from 750 keV to 100 MeV. In its 31st year of operation (2003), the DTL experienced serious issues. The first problem was the inability to maintain resonant frequency at full power. The second problem was increased occurrences of over-temperature failure of cooling hoses. These shortcomings led to an investigation during the 2003 yearly preventative maintenance shutdown that showed evidence of excessive heating: discolored interior tank walls and coper oxide deposition in the cooling circuits. Since overheating was suspected to be caused by compromised heat transfer, improving that was the focus of the repair effort. Investigations revealed copper oxide flow inhibition and iron oxide scale build up. Acid cleaning was implemented with careful attention to protection of the base metal, selection of components to clean and minimization of exposure times. The effort has been very successful in bringing the accelerator through a complete eight month run cycle allowing an incredible array of scientific experiments to be completed this year (2003-2004). This paper will describe the systems, investigation analysis, repair, return to production and conclusion.

Barkley, Walter; Baldwin, William; Bennett, Gloria; Bitteker, Leo; Borden, Michael; Casados, Jeff; Fitzgerald, Daniel; Gorman, Fred; Johnson, Kenneth; Kurennoy, Sergey; Martinez, Alberto; O’Hara, James; Perez, Edward; Roller, Brandon; Rybarcyk, Lawrence; Stark, Peter; Stockton, Jerry

2004-01-01T23:59:59.000Z

273

MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY  

SciTech Connect

The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology and water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.

Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E; Cary Tuckfield, C; Malcolm Pendergast, M

2009-01-20T23:59:59.000Z

274

THERMAL NEUTRON BACKSCATTER IMAGING.  

SciTech Connect

Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

2004-10-16T23:59:59.000Z

275

NEAR-INFRARED LINEAR POLARIZATION OF ULTRACOOL DWARFS  

SciTech Connect

We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravity atmospheres. The polarimetric data were acquired with the LIRIS instrument on the William Herschel Telescope. We also provide mid-infrared photometry in the interval 3.4-24 {mu}m for some targets obtained with Spitzer and WISE, which has allowed us to confirm the peculiar red colors of five sources in the sample. We can impose modest upper limits of 0.9% and 1.8% on the linear polarization degree for seven targets with a confidence of 99%. Only one source, 2MASS J02411151-0326587 (L0), appears to be strongly polarized (P {approx} 3%) in the J band with a significance level of P/{sigma}{sub P} {approx} 10. The likely origin of its linearly polarized light and rather red infrared colors may reside in a surrounding disk with an asymmetric distribution of grains. Given its proximity (66 {+-} 8 pc), this object becomes an excellent target for the direct detection of the disk.

Zapatero Osorio, M. R. [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Bejar, V. J. S.; Rebolo, R.; Acosta-Pulido, J. A.; Manchado, A.; Pena Ramirez, K. [Instituto de Astrofisica de Canarias, C/. Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Goldman, B. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Caballero, J. A., E-mail: mosorio@cab.inta-csic.es, E-mail: vbejar@iac.es, E-mail: rrl@iac.es, E-mail: jaa@iac.es, E-mail: amt@iac.es, E-mail: karla@iac.es, E-mail: goldman@mpia.de, E-mail: caballero@cab.inta-csic.es [Centro de Astrobiologia (CSIC-INTA), P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain)

2011-10-10T23:59:59.000Z

276

General linear methods for Volterra integral equations  

Science Journals Connector (OSTI)

We investigate the class of general linear methods of order p and stage order q=p for the numerical solution of Volterra integral equations of the second kind. Construction of highly stable methods based on the Schur criterion is described and examples ... Keywords: Convolution test equation, General linear methods, Linear stability analysis, Order conditions, Volterra integral equations

G. Izzo; Z. Jackiewicz; E. Messina; A. Vecchio

2010-09-01T23:59:59.000Z

277

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

278

Scattering Solar Thermal Concentrators  

Energy.gov (U.S. Department of Energy (DOE))

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

279

Thermal ignition combustion system  

SciTech Connect

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

280

Thermal ignition combustion system  

SciTech Connect

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermal test options  

SciTech Connect

Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

1993-02-01T23:59:59.000Z

282

Modeling Thermal Fatigue in CPV Cell Assemblies: Preprint  

SciTech Connect

A finite element model has been created to quantify the thermal fatigue damage of the CPV die attach. Simulations are used to compare to results of empirical thermal fatigue equations originally developed for accelerated chamber cycling. While the empirical equations show promise when extrapolated to the lower temperature cycles characteristic of weather-induced temperature changes in the CPV die attach, it is demonstrated that their damage does not accumulate linearly: the damage a particular cycle contributes depends on the preceding cycles. Simulations of modeled CPV cell temperature histories provided for direct comparison of the FEM and empirical methods, and for calculation of equivalent times provided by standard accelerated test sequences.

Bosco, N.; Silverman, T. J.; Kurtz, S.

2011-07-01T23:59:59.000Z

283

Energy Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 20, 2011 July 20, 2011 Today's Forecast: Improved Wind Predictions Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. July 8, 2011 Energy Matters Mailbag This edition of the mailbag tackles follow-up questions from our Energy Matters discussion on breaking our reliance on foreign oil. June 30, 2011 Energy Matters: Our Energy Independence June 22, 2011 Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam

284

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

285

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

286

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

287

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 May 2001 Lattice Description for NLC Damping Rings at 120 Hz Andrzej Wolski Lawrence Berkeley National Laboratory Abstract: We present a lattice design for the NLC Main Damping Rings at 120 Hz repe tition rate. A total wiggler length of a little over 46 m is needed to achieve the damping time required for extracted, normalized, vertical emittance below 0.02 mm mrad. The dynamic aperture (using a linear model for the wiggler) is in excess of 15 times the injected beam size. The principal lattice parameters and characteristics are presented in this note; we also outline results of studies of alignment and field quality tolerances. CBP Tech Note-227 LCC-0061 Lattice Description for NLC Main Damping Rings at 120 Hz Andrzej Wolski Lawrence Berkeley National Laboratory

288

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 April 2001 Rev.1 July 2003 Guide to LIBXSIF, a Library for Parsing the Extended Standard Input Format of Accelerated Beamlines Peter G. Tenenbaum Stanford Linear Accelerator Center Stanford University Stanford, CA Abstract: We describe LIBXSIF, a standalone library for parsing the Extended Standard Input Format of accelerator beamlines. Included in the description are: documentation of user commands; full description of permitted accelerator elements and their attributes; the construction of beamline lists; the mechanics of adding LIBXSIF to an existing program; and "under the hood" details for users who wish to modify the library or are merely morbidly curious. Guide to LIBXSIF, a Library for Parsing the Extended Standard Input Format of

289

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

NLC Home Page NLC Technical SLAC The LCC Tech Note series was started in July 1998 to document the JLC/NLC collaborative design effort. The notes are numbered sequentially and may also be given a SLAC, FNAL, LBNL, LLNL and/or KEK publication number. The LCC notes will be distributed through the Web in electronic form as PDF files -- the authors are responsible for keeping the original documents. Other document series are the NLC Notes that were started for the SLAC ZDR, the KEK ATF Notes, and at some future time there should be a series of Technical (NLD) Notes to document work on detector studies for the next-generation linear collider. LCC-0001 "Memorandum of Understanding between KEK and SLAC," 2/98. LCC-0002 "Transparencies and Summaries from the 1st ISG meeting: January 1998," G. Loew, ed., 2/98.

290

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

5 08//00 5 08//00 Study of Beam Energy Spectrum Measurement in the NLC Extraction Line August 2000 Yuri Nosochkov and Tor Raubenheimer Stanford Linear Accelerator Center Stanford, CA Abstract: The NLC extraction line optics includes a secondary focal point with a very small _- function and 2 cm dispersion which can be used for measurement of outgoing beam energy spread. In this study, we performed tracking simulations to transport the NLC disrupted beam from the Interaction Point (IP) to the extraction line secondary focus (the IP image), `measure' the transverse beam pro_le at the IP image and reconstruct the beam energy spectrum. The resultant distribution was compared with the original energy spectrum at the IP. Study of Beam Energy Spectrum Measurement

291

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

2 03/12/99 2 03/12/99 PEP-II RF Cavity Revisited December 3, 1999 R. Rimmer, G. Koehler, D. Li, N. Hartmann, N. Folwell, J. Hodgson, B. McCandless Lawrence Berkeley National Laboratory Stanford Linear Accelerator Center Berkeley, CA, USA Stanford, CA, USA Abstract: This report describes the results of numerical simulations of the PEP-II RF cavity performed after the completion of the construction phase of the project and comparisons are made to previous calculations and measured results. These analyses were performed to evaluate new calculation techniques for the HOM distribution and RF surface heating that were not available at the time of the original design. These include the use of a high frequency electromagnetic element in ANSYS and the new Omega 3P code to study wall

292

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 10/03/00 4, 10/03/00 Luminosity for NLC Design Variations March 10, 1999 K.A. Thompson and T.O. Raubenheimer Stanford Linear Accelerator Center Stanford, CA, USA Abstract: In this note we give Guineapig simulation results for the luminosity and luminosity spectrum of three baseline NLC designs at 0.5~TeV and 1.0~TeV and compare the simulation results with analytic approximations. We examine the effects of varying several design parameters away from the NLC-B-500 and NLC-B-1000 designs, in order to study possible trade-offs of parameters that could ease tolerances, increase luminosity, or help to optimize machine operation for specific physics processes. Luminosity for NLC Design Variations K.A. Thompson and T.O.Raubenheimer INTRODUCTION In this note we give Guineapig [l] simulation results for the luminosity and

293

Linear Collider Collaboration Tech Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

Notes Notes LCC - 0038 29/04/00 CBP Tech Note - 234 Transverse Field Profile of the NLC Damping Rings Electromagnet Wiggler 29 April 2000 17 J. Corlett and S. Marks Lawrence Berkeley National Laboratory M. C. Ross Stanford Linear Accelerator Center Stanford, CA Abstract: The primary effort for damping ring wiggler studies has been to develop a credible radiation hard electromagnet wiggler conceptual design that meets NLC main electron and positron damping ring physics requirements [1]. Based upon an early assessment of requirements, a hybrid magnet similar to existing designs satisfies basic requirements. However, radiation damage is potentially a serious problem for the Nd-Fe-B permanent magnet material, and cost remains an issue for samarium cobalt magnets. Superconducting magnet designs have not been

294

On extreme Bosonic linear channels  

E-Print Network (OSTI)

The set of all channels with fixed input and output is convex. We first give a convenient formulation of necessary and sufficient condition for a channel to be extreme point of this set in terms of complementary channel, a notion of big importance in quantum information theory. This formulation is based on the general approach to extremality of completely positive maps in an operator algebra due to Arveson. We then apply this formulation to prove the main result of this note: under certain nondegeneracy conditions, purity of the environment is necessary and sufficient for extremality of Bosonic linear (quasi-free) channel. It follows that Gaussian channel between finite-mode Bosonic systems is extreme if and only if it has minimal noise.

A. S. Holevo

2011-11-15T23:59:59.000Z

295

Thermal barrier coating  

DOE Patents (OSTI)

A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

Bowker, Jeffrey Charles (Gibsonia, PA); Sabol, Stephen M. (Orlando, FL); Goedjen, John G. (Oviedo, FL)

2001-01-01T23:59:59.000Z

296

Thermal management of nanoelectronics  

E-Print Network (OSTI)

-state thermoelectric on- spot cooling, requiring efficient thermoelectric materials that can be integrated with the IC are further complicated by the fact that the material's ability to conduct heat deteriorates when at the packaging level but also at the nanoscale materials and device levels. THERMAL CHALLENGES AT NANOSCALE One

297

3D gravity and non-linear cosmology  

E-Print Network (OSTI)

By the inclusion of an additional term, non-linear in the scalar curvature $R$, it is tested if dark energy could rise as a geometrical effect in 3D gravitational formulations. We investigate a cosmological fluid obeying a non-polytropic equation of state (the van der Waals equation) that is used to construct the energy-momentum tensor of the sources, representing the hypothetical inflaton in gravitational interaction with a matter contribution. Following the evolution in time of the scale factor, its acceleration, and the energy densities of constituents it is possible to construct the description of an inflationary 3D universe, followed by a matter dominated era. For later times it is verified that, under certain conditions, the non-linear term in $R$ can generate the old 3D universe in accelerated expansion, where the ordinary matter is represented by the barotropic limit of the van der Waals constituent.

F. P. Devecchi; M. L. Froehlich

2005-10-11T23:59:59.000Z

298

Thermal neutron capture gamma-rays  

SciTech Connect

The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

Tuli, J.K.

1983-01-01T23:59:59.000Z

299

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

300

Impact of Ageing on Thermal Efficiency of Solar Thermal Collectors  

Science Journals Connector (OSTI)

Today it is common practice to calculate the performance of solar thermal systems or solar collectors based on the results of a thermal performance test carried out with a new solar collector. However, for an int...

Elke Streicher; Stephan Fischer…

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Linear Transformer Ideal Transformer Consider linear and ideal transformers attached to Circuit 1 and Circuit 2.  

E-Print Network (OSTI)

Linear Transformer Ideal Transformer I1 + V2 _ + V1 _ Consider linear and ideal transformers in linear transformer equations for :MLL ,, 21 ( ) ( ) ( ) ( ) ( ) ( ) 12212212 2 1 112 2 12 2 1 2212 2 PP Now solve the linear transformer equations for the currents: 1 212 2 22 2 1 2 1 212 2 22 12 2 2 2

Kozick, Richard J.

302

High-performance beam-plasma neutron sources for fusion materials development  

SciTech Connect

The design and performance of a relatively low-cost, plasma-based, 14-MeV deuterium-tritium neutron source for accelerated end-of-life testing of fusion reactor materials are described. An intense flux (up to 5 [times] 10[sup 18] n/m[sup 2][center dot]s) of 14-MeV neutrons is produced in a fully ionized high-density tritium target (n[sub e] [approx] 3 [times] 10[sup 21] m[sup [minus]3]) by injecting a current of 150-keV deuterium atoms. The tritium plasma target and the energetic D[sup +] density produced by D[sup 0] injection are confined in a [<=] 0.16-m-diam column by a linear magnet set, which provides magnetic fields up to 12 T. Energy deposited by transverse injection of neutral beams at the midpoint of the column is transported along the plasma column to the end regions. Three variations of the neutron source design are discussed, differing in the method of control of the energy transport. Emphasis is on the design in which the target plasma density is maintained in a region where electron thermal conduction along the column is the controlling energy-loss process.

Coensgen, F.H.; Casper, T.A.; Correll, D.L.; Damm, C.C.; Futch, A.H.; Logan, B.G.; Molvik, A.W. (Lawrence Livermore National Lab., CA (United States))

1990-10-01T23:59:59.000Z

303

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

304

An ideal independent source as an equivalent 1-port  

E-Print Network (OSTI)

We consider a 1-port, not necessarily linear, with a dependent source, appearing at the port. The control of the source is entirely internal for the 1-port. If this source is a parallel voltage source, then the equivalent circuit is an ideal independent voltage source, and if it is a series current source, then the equivalent circuit is an ideal independent current source. (As usual, "ideal" source is defined as a source whose proposed function is independent of the load.) In the simple LTI case, these results can be obtained, respectively, by either taking RTh zero in the Thevenin equivalent, or taking RN infinite in the Norton equivalent; however the very fact that the final circuits do not include any linear elements indicates the possibility of generalization to nonlinear 1-ports. Some limitations on the circuit's structure (functional dependencies in it) are required, and the clearness of these limitations, i.e. clearness of the conditions for the 1-port to be an ideal source for any load, is the aesthetical point.

Emanuel Gluskin; Anatoly Patlakh

2011-08-24T23:59:59.000Z

305

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR AND AN AIR-  

E-Print Network (OSTI)

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR simultaneously equipped with air-source heat pumps and photovoltaic collectors is constantly increasing. In addition to electricity, the photovoltaic collector produces heat which can be used to increase

Boyer, Edmond

306

E-Print Network 3.0 - ale3d thermal predictions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Thermal Attack in Instruction Caches Joonho Kong, Johnsy K. John, Eui-Young Chung, Sung Woo Chung, and Jie... in ... Source: Chung, Eui-Young - School of...

307

A Methodological Framework for Integrating Waste Biomass into a Portfolio of Thermal Energy Production Systems  

Science Journals Connector (OSTI)

The integration of Renewable Energy Sources (RES) within the contextual framework of existing thermal energy production systems has emerged as a promising ... and sustainable policy towards addressing the growing...

Eleftherios Iakovou; Dimitrios Vlachos; Agorasti Toka

2012-01-01T23:59:59.000Z

308

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

309

Thermal Performance of Phase-Change Wallboard for Residential Cooling  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Thermal Performance of Phase-Change Wallboard for Residential Cooling Cooling residential buildings in milder climates contributes significantly to peak demand mainly because of poor load factors. Peak cooling load determines the size of equipment and the cooling source. Several measures reduce cooling-system size and allow the use of lower-energy cooling sources; they include incorporating exterior walls or other elements that effectively shelter interiors from outside heat and cold, and providing thermal mass, to cool interior spaces during the day by absorbing heat and warm them at night as the mass discharges its heat. Thermal mass features may be used for storage only or serve as structural elements. Concrete, steel, adobe, stone, and brick all satisfy requirements

310

Concentrating solar thermal power  

Science Journals Connector (OSTI)

...electricity provision from renewable energies. Drawing on almost 30 years...of European electricity from renewable energy sources in North Africa, while...increasing contribution of renewable energies. To achieve this, research...

2013-01-01T23:59:59.000Z

311

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

312

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation ape030bennion2011o.pdf More Documents & Publications Motor Thermal Control Electric Motor Thermal Management Electric Motor Thermal Management...

313

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management...

314

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

315

Ocean Thermal Extractable Energy Visualization: Final Technical...  

Office of Environmental Management (EM)

Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

316

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

317

Liquid metal thermal electric converter  

DOE Patents (OSTI)

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

318

Channel Specific Rate Constants Relevant to the Thermal Decomposition of Disilane  

Science Journals Connector (OSTI)

Channel Specific Rate Constants Relevant to the Thermal Decomposition of Disilane ... Silane and disilane are routinely used as the source gases for silicon chemical vapor deposition (CVD) processes. ... Each of the reactions relevant to the thermal decomposition of disilane is, of course, pressure dependent. ...

Keiji Matsumoto; Stephen J. Klippenstein; Kenichi Tonokura; Mitsuo Koshi

2005-05-14T23:59:59.000Z

319

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

2012-01-01T23:59:59.000Z

320

Low Conductivity Thermal Barrier Coatings  

E-Print Network (OSTI)

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LSPE Interim Stowage Thermal Constraints  

E-Print Network (OSTI)

-arm and thermal battery timers require operating temperatures at or above +40°F for reliable starting when·, ' LSPE Interim Stowage Thermal Constraints· Nl,;. ATM1080 PAGE 1 OF 13 DATE 15 December l97l constraints required for thermal integrity are defined. Prepared by:.:Z4·:..=..-~31!::..--.::..·~-:·::....-c

Rathbun, Julie A.

322

Ion Sources - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

323

Reactor Thermal-Hydraulics  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Hydraulics Thermal-Hydraulics Dr. Tanju Sofu, Argonne National Laboratory In a power reactor, the energy produced in fission reaction manifests itself as heat to be removed by a coolant and utilized in a thermodynamic energy conversion cycle to produce electricity. A simplified schematic of a typical nuclear power plant is shown in the diagram below. Primary coolant loop Steam Reactor Heat exchanger Primary pump Secondary pump Condenser Turbine Water Although this process is essentially the same as in any other steam plant configuration, the power density in a nuclear reactor core is typically four orders of magnitude higher than a fossil fueled plant and therefore it poses significant heat transfer challenges. Maximum power that can be obtained from a nuclear reactor is often limited by the

324

Thermalization through parton transport  

E-Print Network (OSTI)

A radiative transport model is used to study kinetic equilibration during the early stage of a relativistic heavy ion collision. The parton system is found to be able to overcome expansion and move toward thermalization via parton collisions. Scaling behaviors show up in both the pressure anisotropy and the energy density evolutions. In particular, the pressure anisotropy evolution shows an approximate alpha_s scaling when radiative processes are included. It approaches an asymptotic time evolution on a time scale of 1 to 2 fm/c. The energy density evolution shows an asymptotic time evolution that decreases slower than the ideal hydro evolution. These observations indicate that partial thermalization can be achieved and viscosity is important for the evolution during the early longitudinal expansion stage of a relativistic heavy ion collision.

Bin Zhang

2009-09-03T23:59:59.000Z

325

Plates for vacuum thermal fusion  

DOE Patents (OSTI)

A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

2002-01-01T23:59:59.000Z

326

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

327

Cylindrical thermal contact conductance  

E-Print Network (OSTI)

of the Mahr-Federal, Inc. respectively facilitated and provided the necessary surface metrology data of the test pieces. Mr. Claude Davis of Corning, Inc. obtained the thermophysical properties of the Ultra Low Expansion Titanium Silicate glass used... as thermal expansion standard. The engineers at National Instruments provided some much-needed advice and software for programming the data acquisition system. The TAMU Physics Machine Shop provided design advice and a couple of last...

Ayers, George Harold

2004-09-30T23:59:59.000Z

328

Thermally actuated thermionic switch  

DOE Patents (OSTI)

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

329

Thermally Activated Desiccant Technology for Heat Recovery and Comfort  

SciTech Connect

Desiccant cooling is an important part of the diverse portfolio of Thermally Activated Technologies (TAT) designed for conversion of heat for the purpose of indoor air quality control. Thermally activated desiccant cooling incorporates a desiccant material that undergoes a cyclic process involving direct dehumidification of moist air and thermal regeneration. Desiccants fall into two categories: liquid and solid desiccants. Regardless of the type, solid or liquid, the governing principles of desiccant dehumidification systems are the same. In the dehumidification process, the vapor pressure of the moist air is higher than that of the desiccant, leading to transfer of moisture from the air to the desiccant material. By heating the desiccant, the vapor pressure differential is reversed in the regeneration process that drives the moisture from the desiccant. Figure 1 illustrates a rotary solid-desiccant dehumidifier. A burner or a thermally compatible source of waste heat can provide the required heat for regeneration.

Jalalzadeh, A. A.

2005-11-01T23:59:59.000Z

330

Low temperature thermal transport in partially perforated silicon nitride membranes.  

SciTech Connect

The thermal transport in partially trenched silicon nitride membranes has been studied in the temperature range from 0.3 to 0.6 K, with the transition edge sensor (TES), the sole source of membrane heating. The test configuration consisted of Mo/Au TESs lithographically defined on silicon nitride membranes 1 {micro}m thick and 6 mm{sup 2} in size. Trenches with variable depth were incorporated between the TES and the silicon frame in order to manage the thermal transport. It was shown that sharp features in the membrane surface, such as trenches, significantly impede the modes of phonon transport. A nonlinear dependence of thermal resistance on trench depth was observed. Partial perforation of silicon nitride membranes to control thermal transport could be useful in fabricating mechanically robust detector devices.

Yefremenko, V.; Wang, G.; Novosad, V.; Datesman, A.; Pearson, J.; Divan, R.; Chang, C. L.; Downes, T. P.; Mcmahon, J. J.; Bleem, L. E.; Crites, A. T.; Meyer, S. S.; Carlstrom, J. E.; Univ. of Chicago

2009-05-04T23:59:59.000Z

331

Sandia National Laboratories: Compact Linear Fesnel Reflector  

NLE Websites -- All DOE Office Websites (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

332

Mobile Window Thermal Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Window Thermal Test (MoWiTT) Facility Mobile Window Thermal Test (MoWiTT) Facility winter.jpg (469135 bytes) The window has come a long way since the days when it was a single pane of glass in a wood frame. Low-emissivity windows were designed to help buildings retain some of the energy that would have leaked out of less efficient windows. Designing efficient window-and-frame systems is one strategy for reducing the energy use of buildings. But the net energy flowing through a window is a combination of temperature- driven thermal flows and transmission of incident solar energy, both of which vary with time. U-factor and solar heat gain coefficient (SHGC), the window properties that control these flows, depend partly on ambient conditions. Window energy flows can affect how much energy a building uses, depending on when the window flows are available to help meet other energy demands within the building, and when they are adverse, adding to building energy use. This leads to a second strategy for reducing building energy use: using the beneficial solar gain available through a window, either for winter heating or for daylighting, while minimizing adverse flows.

333

Optimized remedial groundwater extraction using linear programming  

SciTech Connect

Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.

Quinn, J.J.

1995-12-31T23:59:59.000Z

334

International Workshop on Linear Colliders 2010  

ScienceCinema (OSTI)

IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

None

2011-10-06T23:59:59.000Z

335

Linear degeneracy in the semiclassical atom  

Science Journals Connector (OSTI)

If the angular and radial quantum numbers of states with the same binding energy satisfy a linear relation, as is the situation in the Coulomb potential, the spectrum is said to be linearly degenerate. We present a detailed study of the consequences of such linear degeneracy in atomic potentials. One of the results is a new, and more general, derivation of Scott’s correction to the Thomas-Fermi energy.

Berthold-Georg Englert and Julian Schwinger

1985-07-01T23:59:59.000Z

336

Special Application Thermoelectric Micro Isotope Power Sources  

SciTech Connect

Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources.

Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted [Teledyne Energy Systems, Incorporated, 10707 Gilroy Road, Hunt Valley, MD 21031 (United States)

2008-01-21T23:59:59.000Z

337

On the stability of thermonuclear shell sources in stars  

E-Print Network (OSTI)

We present a quantitative criterion for the thermal stability of thermonuclear shell sources. We find the thermal stability of shell sources to depend on exactly three factors: they are more stable when they are geometrically thicker, less degenerate and hotter. This confirms and unifies previously obtained results in terms of the geometry, temperature and density of the shell source, by a simplified but quantitative approach to the physics of shell nuclear burning. We present instability diagrams in the temperature-density plane for hydrogen and helium shell burning, which allow a simple evaluation of the stability conditions of such shell sources in stellar models. The performance of our stability criterion is demonstrated in various numerical models: in a 3 Msun AGB star, in helium accreting CO white dwarfs, in a helium white dwarf which is covered by a thin hydrogen envelope, and in a 1.0 Msun giant.

S. -C. Yoon; N. Langer; M. van der Sluys

2004-06-07T23:59:59.000Z

338

Subcritical Fission Reactor Based on Linear Collider  

E-Print Network (OSTI)

The beams of Linear Collider after main collision can be utilized to build an accelerator--driven sub--critical reactor.

I. F. Ginzburg

2005-07-29T23:59:59.000Z

339

Linear PM Generator for Wave Energy Conversion.  

E-Print Network (OSTI)

??The main objective of this thesis is to design a selected version of linear PM generator and to determine the electromechanical characteristics at variable operating… (more)

Parthasarathy, Rajkumar

2012-01-01T23:59:59.000Z

340

Huge market forecast for linear LDPE  

Science Journals Connector (OSTI)

Huge market forecast for linear LDPE ... It now appears that the success of the new technology, which rests largely on energy and equipment cost savings, could be overwhelming. ...

1980-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

LED Replacements for Linear Fluorescent Lamps Webcast  

Energy.gov (U.S. Department of Energy (DOE))

In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting...

342

Local Linear Learned Image Processing Pipeline  

Science Journals Connector (OSTI)

The local linear learned (L3) algorithm is presented that simultaneously performs the demosaicking, denoising, and color transform calculations of an image processing pipeline for a...

Lansel, Steven; Wandell, Brian

343

Optimization Online - Accelerated Linearized Bregman Method  

E-Print Network (OSTI)

Jun 27, 2011 ... Abstract: In this paper, we propose and analyze an accelerated linearized Bregman (ALB) method for solving the basis pursuit and related ...

Bo Huang

2011-06-27T23:59:59.000Z

344

The Linear Engine Pathway of Transformation  

Energy.gov (U.S. Department of Energy (DOE))

This poster highlights the major milestones in the history of the linear engine in terms of technological advances, novel designs, and economic/social impact.

345

Linear conic optimization for nonlinear optimal control  

E-Print Network (OSTI)

Jul 7, 2014 ... 3Faculty of Electrical Engineering, Czech Technical University in Prague, ..... This linear transport equation is classical in fluid mechanics, ...

2014-07-07T23:59:59.000Z

346

Emissivity Tuned Emitter for RTPV Power Sources  

SciTech Connect

Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.

Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

2012-03-01T23:59:59.000Z

347

Crystal Driven Neutron Source: A New Paradigm for Miniature Neutron Sources  

SciTech Connect

Neutron interrogation techniques have specific advantages for detection of hidden, shielded, or buried threats over other detection modalities in that neutrons readily penetrate most materials providing backscattered gammas indicative of the elemental composition of the potential threat. Such techniques have broad application to military and homeland security needs. Present neutron sources and interrogation systems are expensive and relatively bulky, thereby making widespread use of this technique impractical. Development of a compact, high intensity crystal driven neutron source is described. The crystal driven neutron source approach has been previously demonstrated using pyroelectric crystals that generate extremely high voltages when thermal cycled [1-4]. Placement of a sharpened needle on the positively polarized surface of the pyroelectric crystal results in sufficient field intensification to field ionize background deuterium molecules in a test chamber, and subsequently accelerate the ions to energies in excess of {approx}100 keV, sufficient for either D-D or D-T fusion reactions with appropriate target materials. Further increase in ion beam current can be achieved through optimization of crystal thermal ramping, ion source and crystal accelerator configuration. The advantage of such a system is the compact size along with elimination of large, high voltage power supplies. A novel implementation discussed incorporates an independently controlled ion source in order to provide pulsed neutron operation having microsecond pulse width.

Tang, V; Morse, J; Meyer, G; Falabella, S; Guethlein, G; Kerr, P; Park, H G; Rusnak, B; Sampayan, S; Schmid, G; Spadaccini, C; Wang, L

2008-08-08T23:59:59.000Z

348

Experimental Study of Thermal Performance and the Contribution of Plant-Covered Walls to the Thermal Behavior of Building  

Science Journals Connector (OSTI)

Abstract This paper presented on experimental investigation of the influence of plant-covered wall on the thermal behavior of buildings in the semi-arid regions during the summer period. Thermal performance of a green walls system on facade walls has been experimentally investigated in a test room. The test cell dimensions are 1x1.2x0.8 m. In this study the thermal analysis concerns two test cells that incorporate non-covered and covered with two types of plants (Jasmine and Aristolochia). A Light source is used to simulate solar radiation. The results showed that plant cover improved indoor thermal comfort in both summer, and reduced heat gains and losses through the wall structure. It is verified that a microclimate between the wall of the test cell and the green wall is created, and it is characterized by slightly lower temperatures and higher relative humidity.

Saifi Nadia; Settou Noureddine; Necib Hichem; Damene Djamila

2013-01-01T23:59:59.000Z

349

Photoacoustic generation by a gold nanosphere: from the linear to the nonlinear thermoelastic regime  

E-Print Network (OSTI)

We theoretically investigate the photoacoustic generation by a gold nanosphere in water in the thermoelastic regime. Photoacoustic signals are predicted numerically based on the successive resolution of a thermal diffusion problem and a thermoelastic problem, taking into account the finite size of the gold nanosphere, thermoelastic and elastic properties of both water and gold, and the temperature-dependence of the thermal expansion coefficient of water. For sufficiently high illumination fluences, this temperature dependence yields a nonlinear relationship between the photoacoustic amplitude and the fluence. For nanosecond pulses in the linear regime, we show that more than $90\\ \\%$ of the emitted photoacoustic energy is generated in water, and the thickness of the generating layer around the particle scales close to the square root of the pulse duration. The amplitude of the photoacoustic waves in the linear regime are accurately predicted by the point-absorber model introduced by Calasso and Diebold, but o...

Prost, Amaury

2015-01-01T23:59:59.000Z

350

Cryogen free superconducting splittable quadrupole magnet for linear accelerators  

SciTech Connect

A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

2011-09-01T23:59:59.000Z

351

Linear particle accelerator with seal structure between electrodes and insulators  

DOE Patents (OSTI)

An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

Broadhurst, John H. (Golden Valley, MN)

1989-01-01T23:59:59.000Z

352

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...translucent thermal insulations for solar thermal applications Thomas Stegmaier...Denkendorf73770 Denkendorf, Germany Solar thermal collectors used at present consist...transparent thermal insulation|solar thermal collector| 1. Introduction...

2009-01-01T23:59:59.000Z

353

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program ..........................................................................3 2.1 Participants in the CSI-Thermal Program

354

Thermomechanical measurements on thermal microactuators.  

SciTech Connect

Due to the coupling of thermal and mechanical behaviors at small scales, a Campaign 6 project was created to investigate thermomechanical phenomena in microsystems. This report documents experimental measurements conducted under the auspices of this project. Since thermal and mechanical measurements for thermal microactuators were not available for a single microactuator design, a comprehensive suite of thermal and mechanical experimental data was taken and compiled for model validation purposes. Three thermal microactuator designs were selected and fabricated using the SUMMiT V{sup TM} process at Sandia National Laboratories. Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal microactuators are reported, including displacement, overall actuator electrical resistance, force, temperature profiles along microactuator legs in standard laboratory air pressures and reduced pressures down to 50 mTorr, resonant frequency, out-of-plane displacement, and dynamic displacement response to applied voltages.

Baker, Michael Sean; Epp, David S.; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

2009-01-01T23:59:59.000Z

355

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

356

Spallation Neutron Source, SNS  

NLE Websites -- All DOE Office Websites (Extended Search)

Spallation Neutron Source Spallation Neutron Source Providing the most intense pulsed neutron beams in the world... Accumulator Ring Commissioning Latest Step for Spallation Neutron Source The Spallation Neutron Source, located at Oak Ridge National Laboratory, has passed another milestone on the way to completion this year--the commissioning of the proton accumulator ring. Brookhaven led the design and construction of the accumulator ring, which will allow an order of magnitude more beam power than any other facility in the world. The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built in Oak Ridge, Tennessee, by the U.S. Department of Energy. The figure on the right shows a schematic of the accumulator ring and transport beam lines that are being designed and built by Brookhaven

357

Thermal Expansion Coefficients and the Primary and Secondary Pyroelectric Coefficients of Animal Bone  

Science Journals Connector (OSTI)

... observation of the displacement of mercury from a fused quartz dilatometer (see ref. 2, ASTM D864-52), and the linear thermal expansion coefficients in the axial direction with a ... coefficients in the axial direction with a linear variable differential transformer (see ref. 3, ASTM E228-66a). The temperature variation was restricted to 18-30 C to avoid shrinkage4 ...

SIDNEY B. LANG

1969-11-22T23:59:59.000Z

358

Sources and Electrodynamics  

Science Journals Connector (OSTI)

A new kind of particle theory is being explored, one that is intermediate in concept between the extremes of S matrix and field theory. It employs the methods of neither approach. There are no operators, and there is no appeal to analyticity in momentum space. It is a phenomenological theory, and cognizant that measurements are operations in space and time. Particles are defined realistically by reference to their creation or annihilation in suitable collisions. The source is introduced as an abstraction of the role played by all the other particles involved in such acts. Through the use of sources the production and detection of particles, as well as their interaction, are incorporated into the theoretical description. There is a creative principle that replaces the devices of other formulations. It is an insistence upon the generality of the space-time description of the coupling among sources that is inferred from a specific spatio-temporal arrangement, in which various particles propagate between sources. Standard quantum-mechanical and relativistic requirements, imposed on the source description of noninteracting particles, imply the existence of the two statistics and the connection with spin. In this situation sources are only required to emit and absorb the mass of the corresponding particle. Particle dynamics is introduced by an extension of the source concept. It is considered meaningful for a source to emit several particles with the same total quantum numbers as a single particle, if sufficient mass is available. This is most familiar as the photon radiation that accompanies the emission of charged particles. The new types of sources introduced in this way imply new couplings among sources, which supply still further varieties of sources. This proliferation of interactions spans the full dynamical content of the initial primitive interaction. The ambition of the phenomenological source theory is to represent all dynamical aspects of particles, within a certain context, by a suitable primitive interaction. This paper is devoted to the reconstruction of electrodynamics.

Julian Schwinger

1967-06-25T23:59:59.000Z

359

Integrated Vehicle Thermal Management Systems (VTMS) Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

360

Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide...

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Report on workshop on thermal property measurements  

SciTech Connect

Results of thermogravimetric analysis of basalt is discussed. Heat capacity, thermal conductivity and thermal expansion are specifically addressed. (CBS)

Robertson, E.C.

1987-01-01T23:59:59.000Z

362

A Next Generation Light Source Facility at LBNL  

NLE Websites -- All DOE Office Websites (Extended Search)

A Next Generation Light Source Facility at LBNL A Next Generation Light Source Facility at LBNL Author: Corlett, J.N. Publication Date: 04-12-2011 Publication Info: Lawrence Berkeley National Laboratory Permalink: http://escholarship.org/uc/item/81t3h97w Keywords: NGLS, FEL, 2 GeV superconducting linear accelerator, high-brightness, highrepetition- rate, high- repetition-rate (1 MHz) Local Identifier: LBNL Paper LBNL-4391E Preferred Citation:

363

Welding Isotopic Heat Sources for the Cassini Mission to Saturn (U)  

SciTech Connect

In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by Radioisotope Thermoelectric Generators thermally driven by General Purpose Heat Source modules.

Franco-Ferreira, E.A. [Westinghouse Savannah River Company, SC (United States); George, T.G. [Los Alamos National Laboratory, CA (United States)

1995-02-28T23:59:59.000Z

364

Publications | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

research at the APS. It is the official source for listing APS-related journal articles, conference proceedings and papers, dissertations, books, book chapters, technical reports,...

365

Thermal regenerative injector  

SciTech Connect

This patent describes an apparatus for injecting fuel and oxidizer into the combustion zone of an engine, comprising: a housing; means for receiving the fuel within the housing; means for preheating the fuel within the housing; a heat source external to the apparatus; means for transporting the fuel from the housing to the heat source wherein the fuel is heated; means for receiving the heated fuel within the housing; means for receiving the oxidizer within the housing; and means for injecting the oxidizer and the heated fuel from the housing into the combustion zone, the injection means being integral with the housing.

Wagner, W.R.

1987-11-24T23:59:59.000Z

366

Smoldering combustion hazards of thermal insulation materials  

SciTech Connect

Work on the smolder ignitability in cellulosic insulation and on thermal analytical characterization of the oxidation of this material is presented. Thermal analysis (TGA and DSC) shows that both retarded and unretarded cellulosic insulation oxidizes in two overall stages, both of which are exothermic. The second stage (oxidation of the char left as a residue of the first stage) is much more energetic on a unit mass basis than the first. However, kinetics and a sufficient exothermicity make the first stage responsible for ignition in most realistic circumstances. Existing smolder retardants such as boric acid have their major effect on the kinetics of the second oxidation stage and thus produce only a rather small (20/sup 0/C) increase in smolder ignition temperature. Several simplified analogs of attic insulations have been tested to determine the variability of minimum smolder ignition temperature. These employed planar or tubular constant temperature heat sources in a thermal environment quite similar to a realistic attic application. Go/no-go tests provided the borderline (minimum) ignition temperature for each configuration. The wide range (150/sup 0/C) of minimum ignition temperatures confirmed the predominant dependence of smolder ignition on heat flow geometry. Other factors (bulk density, retardants) produced much less effect on ignitability.

Ohlemiller, T.J.; Rogers, F.E.

1980-07-01T23:59:59.000Z

367

Voltage regulation in linear induction accelerators  

DOE Patents (OSTI)

Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

Parsons, William M. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

368

Voltage regulation in linear induction accelerators  

DOE Patents (OSTI)

Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

Parsons, W.M.

1992-12-29T23:59:59.000Z

369

NONEQUILIBRIUM LINEAR BEHAVIOR OF BIOLOGICAL SYSTEMS  

E-Print Network (OSTI)

-phosphorylation in mitochondria (2, 3), sodium transport in frog skin, toad bladder (4) and toad skin (5), and hydrogen ion transport in turtle bladder (6). Linearity has also been noted in a synthetic membrane exhibiting active transport (7). (Linearity as used in these papers and here implies the flow, J, is related to the force, A1

Stanley, H. Eugene

370

Soft materials for linear electromechanical energy conversion  

E-Print Network (OSTI)

We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

Antal Jakli; Nandor Eber

2014-07-29T23:59:59.000Z

371

Decomposing Linear Programs for Parallel Solution?  

E-Print Network (OSTI)

Decomposing Linear Programs for Parallel Solution? Ali P nar, Umit V. Catalyurek, Cevdet Aykanat in the solution of Linear Programming (LP) problems with block angular constraint matrices has been exploited industrial applications and the advent of powerful computers have in- creased the users' ability to formulate

�atalyürek, �mit V.

372

Decomposing Linear Programs for Parallel Solution ?  

E-Print Network (OSTI)

Decomposing Linear Programs for Parallel Solution ? Ali Pinar, ¨ Umit V. C¸ ataly¨urek, Cevdet in the solution of Linear Programming (LP) problems with block angular constraint matrices has been exploited with successful industrial applications and the advent of powerful computers have in­ creased the users' ability

�atalyürek, �mit V.

373

Non-linear wave equations Hans Ringstrom  

E-Print Network (OSTI)

105 3. Power type non-linearities 108 4. Global existence for small data 109 5. Observations the Maxwell vacuum equations for an electric and magnetic potential also yields wave equations. In order differential equations (PDE:s) is quite big. The linear theory is based on the fact that by adding two

Ringström, Hans

374

Non-linear wave equations Hans Ringstrom  

E-Print Network (OSTI)

105 3. Power type non-linearities 108 4. Global existence for small data 109 5. Observations boundary conditions. Formulating the Maxwell vacuum equations for an electric and magnetic potential also di#11;erential equations (PDE:s) is quite big. The linear theory is based on the fact that by adding

Ringström, Hans

375

Limma: Linear Models for Microarray Data  

E-Print Network (OSTI)

397 23 Limma: Linear Models for Microarray Data Gordon K. Smyth Abstract A survey is given correction and control spots in conjunction with linear modelling is illustrated on the 7 data. 23.1 Introduction Limma1 is a package for differential expression analysis of data arising from microarray

Smyth, Gordon K.

376

Thermally switchable dielectrics  

DOE Patents (OSTI)

Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

Dirk, Shawn M.; Johnson, Ross S.

2013-04-30T23:59:59.000Z

377

DIRECTIONAL DETECTION OF A NEUTRON SOURCE.  

SciTech Connect

Advantages afforded by the development of new directional neutron detectors and imagers are discussed. Thermal neutrons have mean free paths in air of about 20 meters, and can be effectively imaged using coded apertures. Fission spectrum neutrons have ranges greater than 100 meters, and carry enough energy to scatter at least twice in multilayer detectors which can yield both directional and spectral information. Such strategies allow better discrimination between a localized spontaneous fission source and the low, but fluctuating, level of background neutrons generated by cosmic rays. A coded aperture thermal neutron imager will be discussed as well as a proton-recoil double-scatter fast-neutron directional detector with time-of-flight energy discrimination.

VANIER, P.E.; FORMAN, L.

2006-10-23T23:59:59.000Z

378

Independent Oversight Inspection, Stanford Linear Accelerator Center -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Linear Accelerator Stanford Linear Accelerator Center - January 2007 Independent Oversight Inspection, Stanford Linear Accelerator Center - January 2007 January 2007 Inspection of Environment, Safety, and Health Programs at the Stanford Linear Accelerator Center The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security, conducted an inspection of environment, safety, and health (ES&H) programs at the DOE Stanford Linear Accelerator Center (SLAC) during October and November 2006. The inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. Since the 2004 Type A electrical accident, SSO and SLAC have made improvements in many aspects of ES&H programs. However, the deficiencies in

379

Conditional generation of arbitrary multimode entangled states of light with linear optics  

E-Print Network (OSTI)

We propose a universal scheme for the probabilistic generation of an arbitrary multimode entangled state of light with finite expansion in Fock basis. The suggested setup involves passive linear optics, single photon sources, strong coherent laser beams, and photodetectors with single-photon resolution. The efficiency of this setup may be greatly enhanced if, in addition, a quantum memory is available.

J. Fiurasek; S. Massar; N. J. Cerf

2003-04-01T23:59:59.000Z

380

Arrangement, Dopant Source, And Method For Making Solar Cells  

DOE Patents (OSTI)

Disclosed is an arrangement, dopant source and method used in the fabrication of photocells that minimize handling of cell wafers and involve a single furnace step. First, dopant sources are created by depositing selected dopants onto both surfaces of source wafers. The concentration of dopant that is placed on the surface is relatively low so that the sources are starved sources. These sources are stacked with photocell wafers in alternating orientation in a furnace. Next, the temperature is raised and thermal diffusion takes place whereby the dopant leaves the source wafers and becomes diffused in a cell wafer creating the junctions necessary for photocells to operate. The concentration of dopant diffused into a single side of the cell wafer is proportional to the concentration placed on the respective dopant source facing the side of the cell wafer. Then, in the same thermal cycle, a layer of oxide is created by introducing oxygen into the furnace environment after sufficient diffusion has taken place. Finally, the cell wafers receive an anti-reflective coating and electrical contacts for the purpose of gathering electrical charge.

Rohatgi, Ajeet (Marietta, GA); Krygowski, Thomas W. (Smyrna, GA)

1999-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Concentrating solar thermal power  

Science Journals Connector (OSTI)

...formidable challenges for academic...science, energy economy and...electricity grid has the capacity...electricity from renewable sources will...regional integration, -energy feed-in via renewable energy...mechanisms across national and continental...supply of energy, the investment...based on renewable energies...

2013-01-01T23:59:59.000Z

382

Thermal performance of phase change wallboard for residential cooling application  

SciTech Connect

Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two important advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.

Feustel, H.E.; Stetiu, C.

1997-04-01T23:59:59.000Z

383

Electron and positron impact experiments on metallic foils at the giessen positron source TEPOS  

Science Journals Connector (OSTI)

The sources TEPOS for slow positrons were installed at the Giessen 65 MeV electron linear accelerator. Ratios of K- and L-shell ionization cross-sections by electron and positron impact were measured on Au-...?)/...

W. Faust; C. Hahn; M. Rückert; H. Schneider…

1991-01-01T23:59:59.000Z

384

Electron and positron impact experiments on metallic foils at the giessen positron source TEPOS  

Science Journals Connector (OSTI)

The sources TEPOS for slow positrons were installed at the Giessen 65 MeV electron linear accelerator. Ratios of K- and L-shell ionization cross-sections by electron and positron impact were measured on Au-...-)/...

W. Faust; C. Hahn; M. Rückert; H. Schneider…

1991-01-01T23:59:59.000Z

385

Marketing Ground Source Heat Pump Advanced Applications that  

E-Print Network (OSTI)

Solar Thermal n Real World Examples Overview #12;n High First Cost n Incompetent Contractor n Operating Wallace President, Energy Environmental Corporation October 9, 2013 #12;Within the United States, what is the fastest growing market with the available capital and need for the benefits of ground source heat pumps

386

Linear Transformations In this Chapter, we will define the notion of a linear transformation between  

E-Print Network (OSTI)

Chapter 6 Linear Transformations In this Chapter, we will define the notion of a linear transformation between two vector spaces V and W which are defined over the same field and prove the most basic transformations is equivalent to matrix theory. We will also study the geometric properties of linear

Carrell, Jim

387

Thermal and non-thermal energies in solar flares  

E-Print Network (OSTI)

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

388

High Temperature Thermal Array for Next Generation Solar Thermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

389

This paper has been downloaded from the Building and Environmental Thermal Systems Research Group at Oklahoma State University  

E-Print Network (OSTI)

on Outdoor Coils of Air-Source Heat Pumps. Proceedings of ASME-ATI-UIT. Conference on Thermal and Environmental Issues in Energy Systems 16 ­ 19 May, 2010, Sorrento, Italy INTRODUCTION Air source heat pump and have low installation cost. An air source heat pump exchanges heat directly from the indoor environment

390

Radiation Source Replacement Workshop  

SciTech Connect

This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

2010-12-01T23:59:59.000Z

391

INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 12 (2003) 821 PII: S0963-0252(03)55523-2  

E-Print Network (OSTI)

as multi-atmosphere thermal arcs, during their starting phase the lamps are moderate pressure glowINSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 12 (2003) 8­21 PII: S0963-0252(03)55523-2 Breakdown processes in metal halide lamps Brian Lay1

Kushner, Mark

392

Thermal characterisation of a lightweight mortar containing expanded perlite for underground insulation  

Science Journals Connector (OSTI)

This paper aims to investigate the use of expanded perlite in mortar, for further application of shotcrete to thermal insulation of underground mines. Mixes were designed according to the typical proportions of underground shotcrete, with the sand volumetrically substituted by expanded perlite. Tests of samples were conducted at four ages. Transient plane source technique was utilised to measure the thermal properties. The results showed reduced weight, decreased thermal conductivity, deteriorated thermal diffusivity, and sacrificed mechanical strength with perlite addition. Experimental data analysis and explanation in this paper would establish useful fundamentals for further application of expanded perlite to underground shotcrete.

W.V. Liu; D.B. Apel; V. Bindiganavile

2011-01-01T23:59:59.000Z

393

source | OpenEI  

Open Energy Info (EERE)

source source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed Comment

394

Neutron sources and applications  

SciTech Connect

Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-01-01T23:59:59.000Z

395

Thermal And-Or Near Infrared At Lester Meadow Area (Vice, 2010) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal And-Or Near Infrared At Lester Meadow Area (Vice, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Lester Meadow Area (Vice, 2010) Exploration Activity Details Location Lester Meadow Area Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown Notes The first TIR survey BN conducted was over the Lester Hot Springs area to see if it would help outline the area of geothermal activity. These studies found extensive thermal springs and a grassland area caused by the thermal

396

IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA) USING REMOTE SENSING AND FIELD DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA) USING REMOTE SENSING AND FIELD DATA Details Activities (2) Areas (1) Regions (0) Abstract: We attempt to identify thermal anomalies using thermal infrared (TIR) data collected over the Coso Geothermal Power Project with the spaceborne ASTER instrument. Our analysis emphasizes corrections for thermal artifacts in the satellite images caused by topography, albedo, and

397

Lecture Session (LeS): E.4 REMEDIATION Thermal techniques -1 STEAM-AIR-INJECTION FOR IN-SITU GROUNDWATER AND SOIL REMEDIATION: PILOT  

E-Print Network (OSTI)

Lecture Session (LeS): E.4 REMEDIATION Thermal techniques -1 STEAM-AIR-INJECTION FOR IN@iws.uni-stuttgart.de Keywords: Partial Source removal, thermally enhanced soil vapor extraction, steam-air-injection, pilot methods (steam-air injection and thermal wells), developed and verified in several field applications

Cirpka, Olaf Arie

398

Fighting Fire with Fire: Modeling the Datacenter-Scale Effects of Targeted Superlattice Thermal Management  

SciTech Connect

Local thermal hot-spots in microprocessors lead to worst case provisioning of global cooling resources, especially in large-scale systems. However, efficiency of cooling solutions degrade non-linearly with supply temperature, resulting in high power consumption and cost in cooling - 50 {approx} 100% of IT power. Recent advances in active cooling techniques have shown on-chip thermoelectric coolers (TECs) to be very efficient at selectively eliminating small hot-spots, where applying current to a superlattice film deposited between silicon and the heat spreader results in a Peltier effect that spreads the heat and lowers the temperature of the hot-spot significantly to improve chip reliability. In this paper, we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provisioned for a better worst case temperature leading to substantial savings in cooling power. In order to quantify the potential power savings from using TECs in data center servers, we present a detailed power model that integrates on-chip dynamic and leakage power sources, heat diffusion through the entire chip, TEC and global cooler efficiencies, and all their mutual interactions. Our multiscale analysis shows that, for a typical data center, TECs allow global coolers to operate at higher temperatures without degrading chip lifetime, and thus save {approx}27% cooling power on average while providing the same processor reliability as a data center running at 288K.

Biswas, S; Tiwari, M; Theogarajan, L; Sherwood, T P; Chong, F T

2010-11-11T23:59:59.000Z

399

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

400

Thermal Decomposition Mechanism of Disilane  

Science Journals Connector (OSTI)

Thermal Decomposition Mechanism of Disilane ... Thermal decomposition of disilane was investigated using time-of-flight (TOF) mass spectrometry coupled with vacuum ultraviolet single-photon ionization (VUV-SPI) at a temperature range of 675?740 K and total pressure of 20?40 Torr. ... Concentrations of disilane and trisilane during thermal decomposition of disilane were quantitatively measured using the VUV-SPI method. ...

Kazumasa Yoshida; Keiji Matsumoto; Tatsuo Oguchi; Kenichi Tonokura; Mitsuo Koshi

2006-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermal desorption for passive dosimeter  

E-Print Network (OSTI)

~ ~ ~ \\ ~ ~ ~ ~ Flare Tubes for Thermal Desorber . . . . . ~. . . . . . ~ ~ . 27 4. 5 ~ Thermal Desorber Manufactured by Century System Sample Flow from Thermal Desorber to Gas Chromatograph 29 6. Direct Injection Port for Therma1 Desorber . . . . . $2... the gas badges and. providing additional guidance in conducting the study. DEDICATZOil This thesis is cedicated to my parents and my wife, Unice, for their support during the last t', o years AHSTHACT ACKI;ODL DG~~. 'ITS D' DICATICI'. LIST OF TABL...

Liu, Wen-Chen

1981-01-01T23:59:59.000Z

402

Thermal response evaluation of austenitic stainless steels due to random sodium temperature fluctuations using BEMSET and DINUS-3 codes  

SciTech Connect

The BEMSET code was developed for the thermal striping evaluation and was designed to deal with linear elastic strain mechanics in various reactor geometries. Then a combined thermal striping analysis was carried out for the flow guide tube of a Japanese prototype LMFBR using the BEMSET code and a thermohydraulics direct numerical simulation code DINUS-3. Calculational results simulated characteristics of the thermal striping phenomena reported in the past studies. An applicability of the combined method to the thermal striping analysis was assessed based on the discussions and the method can replace conventional experimental approaches using large scale sodium experiments in LMFBR designs.

Muramatsu, Toshiharu [Power Reactor and Nuclear Fuel Development Corp., O-arai, Ibaraki (Japan). O-arai Engineering Center

1996-12-01T23:59:59.000Z

403

Actively driven thermal radiation shield  

DOE Patents (OSTI)

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

404

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

405

Linear Collider Collaboration Tech Notes LCC-0104  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 October 2002 Beamstrahlung Photon Load on the TESLA Extraction Septum Blade Andrei Seryi Stanford Linear Accelerator Center Stanford, CA 94309, USA Abstract: This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade ANDREI SERYI STANFORD LINEAR

406

LED Linear Lamps and Troffer Lighting  

Energy.gov (U.S. Department of Energy (DOE))

The CALiPER program performed a series of investigations on linear LED lamps. Each report in the series covers the performance of up to 31 linear LED lamps, which were purchased in late 2012 or 2013. The first report focuses on bare lamp performance of LED T8 replacement lamps and subsequent reports examine performance in various troffers, as well as cost-effectiveness. There is also a concise guidance document that describes the findings of the Series 21 studies and provides practical advice to manufacturers, specifiers, and consumers (Report 21.4: Summary of Linear (T8) LED Lamp Testing , 5 pages, June 2014).

407

Optically isolated signal coupler with linear response  

DOE Patents (OSTI)

An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.

Kronberg, James W. (Aiken, SC)

1994-01-01T23:59:59.000Z

408

Linear chain tensioning of moored production vessels  

SciTech Connect

Part 1 of this two-part series discussed the worldwide floating production vessel (FPV) market and evolution of the linear puller concept. The three principal types of chain jack systems - hollow ram, single and twin cylinders - were introduced. And advantages of this relatively new form of passive mooring were outlined. This concluding article covers applications of linear chain pullers on various vessels, including use on an example 35,000-t North Sea semi-submersible. Chain wear and how linear pullers avoid wear associated with windlass-type systems are discussed, along with the optimization possible through use of a swiveling chain fair-lead latch (SCFL).

Peters, B. (Bardex Corp., London (United Kingdom))

1993-06-01T23:59:59.000Z

409

Thermal history of Bakken shale in Williston basin  

SciTech Connect

Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. (Univ. of North Dakota, Grand Forks (USA))

1989-12-01T23:59:59.000Z

410

Tunable terahertz radiation source  

SciTech Connect

Terahertz radiation source and method of producing terahertz radiation, said source comprising a junction stack, said junction stack comprising a crystalline material comprising a plurality of self-synchronized intrinsic Josephson junctions; an electrically conductive material in contact with two opposing sides of said crystalline material; and a substrate layer disposed upon at least a portion of both the crystalline material and the electrically-conductive material, wherein the crystalline material has a c-axis which is parallel to the substrate layer, and wherein the source emits at least 1 mW of power.

Boulaevskii, Lev; Feldmann, David M; Jia, Quanxi; Koshelev, Alexei; Moody, Nathan A

2014-01-21T23:59:59.000Z

411

Ultracold Electron Source  

Science Journals Connector (OSTI)

We propose a technique for producing electron bunches that has the potential for advancing the state-of-the-art in brightness of pulsed electron sources by orders of magnitude. In addition, this method leads to femtosecond bunch lengths without the use of ultrafast lasers or magnetic compression. The electron source we propose is an ultracold plasma with electron temperatures down to 10 K, which can be fashioned from a cloud of laser-cooled atoms by photoionization just above threshold. Here we present results of simulations in a realistic setting, showing that an ultracold plasma has an enormous potential as a bright electron source.

B. J. Claessens; S. B. van der Geer; G. Taban; E. J. D. Vredenbregt; O. J. Luiten

2005-10-12T23:59:59.000Z

412

Particles and Sources  

Science Journals Connector (OSTI)

It is proposed that the phenomenological theory of particles be based on the source concept, which is abstracted from the physical possibility of creating or annihilating any particle in a suitable collision. The source representation displays both the momentum and the space-time characteristics of particle behavior. Topics discussed include: spin and statistics, charge and the Euclidean postulate, massless particles, and SU3 and spin. It is emphasized that the source description is logically independent of hypotheses concerning the fundamental nature of particles.

Julian Schwinger

1966-12-23T23:59:59.000Z

413

Thermal barrier coatings  

DOE Patents (OSTI)

This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

Alvin, Mary Anne (Pittsburg, PA)

2010-06-22T23:59:59.000Z

414

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

OF CALIFORNIA RIVERSIDE Phase Change Materials for ThermalOF THE THESIS Phase Change Materials for Thermal Energyto utilize phase change materials (PCM’s) to enhance thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

415

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

416

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

417

Science Highlights 2007 | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Semiconductors for Hardier Electronics and Optoelectronics? Hybrid Semiconductors for Hardier Electronics and Optoelectronics? Hybrid Semiconductors for Hardier Electronics and Optoelectronics? December 21, 2007 New research at the Advanced Photon Source has shed light on a semiconducting material with zero thermal expansion, and may play a role in the design of future generations of electronics and optoelectronics that can withstand a wide range of temperatures. Unveiling the Molecular Structure of the Target of Many Drugs Unveiling the Molecular Structure of the Target of Many Drugs December 3, 2007 More than 40 years after beta blockers were first used clinically, scientists using a beamline at the Advanced Photon Source finally got a close-up look at the drug's molecular target - the ß2-adrenergic receptor - research that promises to speed the discovery

418

Linear Concentrator Systems | Open Energy Information  

Open Energy Info (EERE)

Linear Concentrator Systems Linear Concentrator Systems Jump to: navigation, search Introduction Linear concentrating collector fields consist of a large number of collectors in parallel rows that are typically aligned in a north-south orientation to maximize both annual and summertime energy collection. With a single-axis sun-tracking system, this configuration enables the mirrors to track the sun from east to west during the day, ensuring that the sun reflects continuously onto the receiver tubes. Parabolic Trough Systems The predominant CSP systems currently in operation in the United States are linear concentrators using parabolic trough collectors. In such a system, the receiver tube is positioned along the focal line of each parabola-shaped reflector. The tube is fixed to the mirror structure and

419

Photon emission within the linear sigma model  

E-Print Network (OSTI)

Soft-photon emission rates are calculated within the linear sigma model. The investigation is aimed at answering the question to which extent the emissivities map out the phase structure of this particular effective model of strongly interacting matter.

F. Wunderlich; B. Kampfer

2014-12-22T23:59:59.000Z

420

18.06 Linear Algebra, Spring 2005  

E-Print Network (OSTI)

This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in other disciplines, including systems of equations, vector spaces, determinants, eigenvalues, similarity, and ...

Strang, Gilbert

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Linear Thermodynamics of Rodlike DNA Filtration  

E-Print Network (OSTI)

Linear thermodynamics transportation theory is employed to study filtration of rodlike DNA molecules. Using the repeated nanoarray consisting of alternate deep and shallow regions, it is demonstrated that the complex ...

Li, Zirui

422

Kinematic moment invariants for linear Hamiltonian systems  

Science Journals Connector (OSTI)

Quadratic moments of a particle distribution being transported through a linear Hamiltonian system are considered. A complete set of kinematic invariants made out of these moments are constructed leading to the discovery of new invariants.

Filippo Neri and Govindan Rangarajan

1990-03-05T23:59:59.000Z

423

National Synchrotron Light Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Assessment Environmental Assessment Proposed Upgrade and Improvement of the National Synchrotron Light Source Complex at Brookhaven National Laboratory, Upton, New York This Environmental Assessment addresses the proposed action by the U.S. Department of Energy to upgrade the facilities of the National Synchrotron Light Source Complex, namely the National Synchrotron Light Source (NSLS), the Accelerator Test Facility and the Source Development Laboratory. The environmental effects of a No-Action Alternative as well as a Proposed Action are evaluated in the Environmental Assessment. The “NSLS Environmental Assessment Fact Sheet” link below leads to a one-page summary of the Environmental Assessment. The “NSLS Environmental Assessment” link below leads to the whole 41-page

424

SOURCE SELECTION INFORMATION -  

Office of Environmental Management (EM)

311 of P.L. 112-74 and as continued in P.L. 113-6 in excess of 1,000,000. This information is source selection information related to the conduct of a Federal agency...

425

SOURCE SELECTION INFORMATION -  

Office of Environmental Management (EM)

budget authority that is not fully funded under P.L. 113-76 Section 301(c). This information is source selection information related to the conduct of a Federal agency...

426

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

None

2010-01-08T23:59:59.000Z

427

ION SOURCES FOR CYCLOTRONS  

E-Print Network (OSTI)

These utilize lasers, plasma focus, sparks, and ex­ plodingextractor voltage A plasma focus device has been used byf n a s Fig. 22: The plasma focus high charge state source

Clark, D.J.

2010-01-01T23:59:59.000Z

428

Electron Beam Ion Sources  

E-Print Network (OSTI)

Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

Zschornacka, G; Thorn, A

2013-01-01T23:59:59.000Z

429

Spallation Neutron Source  

NLE Websites -- All DOE Office Websites (Extended Search)

D/gim D/gim Spallation Neutron Source SNS is an accelerator-based neutron source. This one-of-a-kind facility pro- vides the most intense pulsed neutron beams in the world. When ramped up to its full beam power of 1.4 MW, SNS will be eight times more powerful than today's best facility. It will give researchers more detailed snapshots of the smallest samples of physical and biological materials than ever before

430

Field emission electron source  

DOE Patents (OSTI)

A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

Zettl, Alexander Karlwalter (Kensington, CA); Cohen, Marvin Lou (Berkeley, CA)

2000-01-01T23:59:59.000Z

431

National Synchrotron Light Source  

ScienceCinema (OSTI)

A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

BNL

2009-09-01T23:59:59.000Z

432

A Detailed Thermal Analysis of the Binospec Spectrograph  

E-Print Network (OSTI)

Refractive optics in astronomical instruments are potentially sensitive to temperature gradients and temperature transients. This sensitivity arises from thermally dependent refractive indices, lens spacings, and lens dimensions. We have therefore undertaken a detailed thermal analysis of Binospec, a wide-field optical spectrograph under development for the converted MMT. Our goals are to predict the temperature gradients that will be present in the Binospec optics and structure under realistic operating conditions and to determine how design choices affect these gradients. We begin our analysis by deriving thermal time constants for instrument subassemblies. We then generate a low-resolution finite difference model of the entire instrument and high-resolution models of sensitive subassemblies. This approach to thermal analysis is applicable to a variety of other instruments. We use measurements of the ambient temperature in the converted MMT's dome to model Binospec's thermal environment. During moderate conditions we find that the Binospec lens groups develop 0.14 C axial and radial temperature gradients and that lens groups of different mass develop 0.5 C temperature differences; these numbers are doubled for the extreme conditions. Internal heat sources do not significantly affect these results; heat flow from the environment dominates. The instrument must be periodically opened to insert new aperture masks, but we find that the resulting temperature gradients and thermal stresses in the optics are small. Image shifts at the detector caused by thermal deflections of the Binospec optical bench structure are approx 0.1 pixel/hr. We conclude that the proposed Binospec design has acceptable thermal properties, and briefly discuss design changes to further reduce temperature gradients.

Warren R. Brown; Daniel G. Fabricant; David A. Boyd

2002-10-28T23:59:59.000Z

433

16 - Alternative energy sources  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes alternative energy sources. The substantial potential of the world's alternative energy sources are still comparatively little exploited, even in countries with limited conventional energy resources. Although this interest was heightened during the mid-1970s because of the oil price shock, most of the technologies are still at an early stage of development. While much research and development work has been undertaken by governments and industry throughout the world, the technical transfer process is comparatively slow. There are a number of abstracting services available in both the United States and the United Kingdom devoted wholly or in part to alternative energy sources. The most useful of the general abstract journals are the Renewable Energy Bulletin, Energy Review, and Energy Abstracts for Policy Analysis. The principal source of information for all aspects of alternative energy sources is the Energy Data Base, established in 1974 b the U.S. Department of Energy, which is the online version of Energy Research Abstracts. There are very few good comprehensive books covering all the alternative energy sources, perhaps understandably given the scope of the subject.

Alan Heyes

1988-01-01T23:59:59.000Z

434

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

Nowobilski, J.J.; Owens, W.J.

1985-04-30T23:59:59.000Z

435

Peg supported thermal insulation panel  

DOE Patents (OSTI)

A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

Nowobilski, Jeffert J. (Orchard Park, NY); Owens, William J. (Kenmore, NY)

1985-01-01T23:59:59.000Z

436

Thermalization of isolated quantum systems  

E-Print Network (OSTI)

Understanding the evolution towards thermal equilibrium of an isolated quantum system is at the foundation of statistical mechanics and a subject of interest in such diverse areas as cold atom physics or the quantum mechanics of black holes. Since a pure state can never evolve into a thermal density matrix, the Eigenstate Thermalization Hypothesis (ETH) has been put forward by Deutsch and Srednicki as a way to explain this apparent thermalization, similarly to what the ergodic theorem does in classical mechanics. In this paper this hypothesis is tested numerically. First, it is observed that thermalization happens in a subspace of states (the Krylov subspace) with dimension much smaller than that of the total Hilbert space. We check numerically the validity of ETH in such a subspace, for a system of hard core bosons on a two-dimensional lattice. We then discuss how well the eigenstates of the Hamiltonian projected on the Krylov subspace represent the true eigenstates. This discussion is aided by bringing the projected Hamiltonian to the tridiagonal form and interpreting it as an Anderson localization problem for a finite one-dimensional chain. We also consider thermalization of a subsystem and argue that generation of a large entanglement entropy can lead to a thermal density matrix for the subsystem well before the whole system thermalizes. Finally, we comment on possible implications of ETH in quantum gravity.

Sergei Khlebnikov; Martin Kruczenski

2014-03-12T23:59:59.000Z

437

Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source  

Science Journals Connector (OSTI)

......c,e(i0-c2 = 0, (2.14) where c, and c2 are constants. Equation (2.14) has the general solution Q(u) = c2u+c3 or Q(u) = c2/ci + c3 exp (- depending on whether cx = 0 or C\\ T^O, respectively, with the restrictions on B and......

D. J. ARRIGO; J. M. HILL; P. BROADBRIDGE

1994-01-01T23:59:59.000Z

438

Thermal Conductivity and Noise Attenuation in  

E-Print Network (OSTI)

.3.4 Corrosion-resistant and high-temperature filters 9 1.3.5 Acoustic Applications 9 2. THERMAL CONDUCTIVITY 2.1 THERMAL RESISTANCE 2.1.1 Thermal Conductors in Series 12 2.1.2 Thermal conductors in parallel 13 2 difference RTH Thermal resistance of conductor sb Stefan's constant T4 Temperature difference K* Total

Cambridge, University of

439

Nanoscale Thermal Transport andMicrorefrigeratorsonaChip  

E-Print Network (OSTI)

are promising candidates as thermal vias and thermal interface materials due to their inherently high thermal; superlattices; thermal boundary resistance; thermionics; thermotunneling; thermoelectrics I. INTRODUCTIONINVITED P A P E R Nanoscale Thermal Transport andMicrorefrigeratorsonaChip Devices for cooling high

440

Commercial Solar Thermal Incentive Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program (Connecticut) Solar Thermal Incentive Program (Connecticut) Commercial Solar Thermal Incentive Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $150,000 Program Info Funding Source Public Benefits Fund Start Date 03/15/2013 State Connecticut Program Type State Grant Program Provider Clean Energy Finance and Investment Authority '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. ''''' The Clean Energy Finance and Investment Authority is offering grants and loans to non-residential entities for solar hot water installations. Only

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Compact Gamma-ray Source Technology Development Study  

SciTech Connect

This study focuses on the applicability of current accelerator and laser technologies to the construction of compact, narrow bandwidth, gamma-ray sources for DHS missions in illicit materials detection. It also identifies research and development areas in which advancement will directly benefit these light sources. In particular, we review the physics of Compton scattering based light sources and emphasize the source properties most important to Nuclear Resonance Fluorescence (NRF) applications of interest. The influences of laser and electron beam properties on the light source are examined in order to evaluate the utility of different technologies for this application. Applicable bulk and fiber-based laser systems and laser recirculation technologies are discussed and Radio Frequency (RF) Linear Accelerator (linac) technologies are examined to determine the optimal frequency and pulse formats achievable.

Anderson, S G; Gibson, D J; Rusnak, B

2009-09-25T23:59:59.000Z

442

MINIMIZING THE BONDLINE THERMAL RESISTANCE IN THERMAL INTERFACE MATERIALS WITHOUT AFFECTING RELIABILITY  

E-Print Network (OSTI)

MINIMIZING THE BONDLINE THERMAL RESISTANCE IN THERMAL INTERFACE MATERIALS WITHOUT AFFECTING microstructure, and bondline thermal resistance with the tradeoffs between material systems, manufacturability of devices to heat sinks using existing commercial thermal interface materials (TIMs). The present study

Paris-Sud XI, Université de

443

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

5 5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than those with some ductwork. 2) Strong dependence on building type. BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 3-1, p. 3-6. 0.3 - 1.0 0.1 - 0.3 0.1 - 0.4

444

CP: AN INVESTIGATION OF COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO VARIOUS STIMULI  

SciTech Connect

The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

Weese, R K; Burnham, A K; Fontes, A T

2005-03-23T23:59:59.000Z

445

Thermal to electricity conversion using thermal magnetic properties  

DOE Patents (OSTI)

A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

2010-04-27T23:59:59.000Z

446

CFD modeling of buoyancy driven cavities with internal heat source -Application to heated rooms  

E-Print Network (OSTI)

comparisons are given with regard to heat transfer to the walls as well as to heat source behavior and plume. Keywords: CFD - Computational Fluid Dynamics modeling; buoyancy driven cavity; heat source; thermal plume enclosure helps to accurately assess the heat transfer phenomena that take place across the building

447

Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana  

E-Print Network (OSTI)

An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

Braud, H. J.; Klimkowski, H.; Baker, F. E.

1985-01-01T23:59:59.000Z

448

Solar Thermal Energy: Possibilities of its Use in Low-Income Areas of Metro SÃO Paulo, Brazil  

Science Journals Connector (OSTI)

This article calls the attention to the increase of energy consumption world wide and the importance of renewable sources of energy to reduce environmental degradation and fight climate change. Solar thermal energy

Maria-Lucia Borba

2009-01-01T23:59:59.000Z

449

A Gas Chromatography–Thermal Conductivity Detection Method for Helium Detection in Postmortem Blood and Tissue Specimens  

Science Journals Connector (OSTI)

......victim's head, although some internet sources recommend use of...for volatiles and drugs of abuse. The cause of death was...Discussion of the Influence of the Internet. Am. J. Forensic Med...Suicide Thermal Conductivity Young Adult...

Jason E. Schaff; Roman P. Karas; Laureen Marinetti

2012-03-01T23:59:59.000Z

450

Thermal stability of hexagonal OsB2  

SciTech Connect

The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 C and cooling in vacuo down to 225 C. During the heating, the sacrificial reaction 2OsB2+3O2 2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276 426 C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

Xie, Zhilin [University of Central Florida; Blair, Richard G. [University of Central Florida; Orlovskaya, Nina [University of Central Florida; Cullen, David A [ORNL; Payzant, E Andrew [ORNL

2014-01-01T23:59:59.000Z

451

Generating random thermal momenta  

E-Print Network (OSTI)

Generation of random thermal particle momenta is a basic task in many problems, such as microscopic studies of equilibrium and transport properties of systems, or the conversion of a fluid to particles. In heavy-ion physics, the (in)efficiency of the algorithm matters particularly in hybrid hydrodynamics + hadronic transport calculations. With popular software packages, such as UrQMD 3.3p1 or THERMINATOR, it can still take ten hours to generate particles for a single Pb+Pb "event" at the LHC from fluid dynamics output. Below I describe reasonably efficient simple algorithms using the MPC package, which should help speed momentum generation up by at least one order of magnitude. It is likely that this wheel has been reinvented many times instead of reuse, so there may very well exist older and/or better algorithms that I am not aware of (MPC has been around only since 2000). The main goal here is to encourage practitioners to use available efficient routines, and offer a few practical solutions.

Denes Molnar

2012-12-09T23:59:59.000Z

452

Pulsed ion beam source  

DOE Patents (OSTI)

An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

Greenly, J.B.

1997-08-12T23:59:59.000Z

453

The Klynac: An Integrated Klystron and Linear Accelerator  

SciTech Connect

The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

Potter, J. M. [JP Accelerator Works; Schwellenbach, D. [NSTec

2013-04-01T23:59:59.000Z

454

Investigation of Thermal Stability and Delivery of Cobalt Amidinates and Novel Cobalt Formamidinates for Metallic Cobalt by ALD/CVD  

E-Print Network (OSTI)

Investigation of Thermal Stability and Delivery of Cobalt Amidinates and Novel Cobalt Si nanowire devices[2]. The Co precursor selection for CVD and ALD is primarily based on good thermal Liquid Injection process (DLI). ¾ For CVD and ALD of cobalt, various sources such as Co2(CO)8, (tert

455

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

456

Advanced nanofabrication of thermal emission devices  

E-Print Network (OSTI)

Nanofabricated thermal emission devices can be used to modify and modulate blackbody thermal radiation. There are many areas in which altering thermal radiation is extremely useful, especially in static power conversion, ...

Hurley, Fergus (Fergus Gerard)

2008-01-01T23:59:59.000Z

457

Photon Source Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Photon Source Parameters Photon Source Parameters Print Summary Graph of Brightness Curves for All Insertion Devices Insertion Device and Bend Magnet Parameters Bend Magnet Superbend Magnet U30 Undulator U50 Undulator U80 Undulator U100 Undulator W114 Wiggler The ALS has six elliptically polarizing undulators, two in straight 4, two in straight 11, and one each in straights 6 and 7. All are arranged with chicanes so that two such devices can be installed to feed two independent beamlines. They can be used in a variety of polarization modes, including circular, elliptical, horizontal, and vertical. These modes can be chosen by appropriate phasing of the magnet rows. The brightness and flux curves below are shown for horizontal and circular polarization. Curves for elliptical and vertical polarization are similar to the horizontal polarization curve, but the minimum photon energy is higher.

458

Source Emissions and Transport  

NLE Websites -- All DOE Office Websites (Extended Search)

electron micrograph image, Lara Gundel with instrumentation electron micrograph image, Lara Gundel with instrumentation Source Emissions and Transport Investigators conduct research here to characterize and better understand the sources of airborne volatile, semi-volatile and particulate organic pollutants in the indoor environment. This research includes studies of the physical and chemical processes that govern indoor air pollutant concentrations and exposures. The motivation is to contribute to the reduction of potential human health effects. Contacts Randy Maddalena RLMaddalena@lbl.gov (510) 486-4924 Mark Mendell MJMendell@lbl.gov (510) 486-5762 Links Pollutant Sources, Dynamics and Chemistry Group Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy Technologies Environmental Impacts

459

Source Selection Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Selection Source Selection Overview This chapter provides guidance to the acquisition team on conducting source selection in accordance with Part 15 of the Federal Acquisition Regulation (FAR). Background The mid 1990's was a time of significant change in many areas of procurement, particularly in the introduction of new tools and processes that help the procurement professional better meet the needs of demanding customers. The passage of the Federal Acquisition Streamlining Act in 1994 and the Federal Acquisition Reform Act in 1995 , coupled with Government-wide and Department of Energy (DOE) contract reform efforts not only changed traditional procurement processes but also changed the role of the procurement professional. No longer are procurement

460

ISG8-RF Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

RF Sources - (WG3) RF Sources - (WG3) Orange Rm Yong Ho Chin, Christopher Nantista, and Sami G. Tantawi Parallel Sessions: Working Groups: WG1: Parameters, Design, Instrumentation and Tuning WG2: Damping Rings and ATF WG3: RF Sources WG4:Structures WG5: Ground Motion; Site Requirements and Investigations Monday Morning 9:00-10:30 Plenary Coffee Break 11:00-12:00 Planning Session. Monday Afternoon 13:30-15:30 High Gradient Issues (Joint with working group 4) Coffee Break 16:00-16:30 The 8-Pack Project -- D. Atkinson 16:30-17:30 High Gradient Issues and Discussions Continued. Tuesday Morning 9:30-10:30 Klystrons 9:30-10:00 Status of PPM Klystron Development for JLC -- Y. H. Chin 10:00-10:30 Design of 150MW Multi-Beam Klystron -- S. Matsumoto Coffee Break 11:00-11:30 Klystron Development at SLAC -- G. Caryotakis

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sources and Magnetic Charge  

Science Journals Connector (OSTI)

A beginning is made on a phenomenological reconstruction of the theory of magnetic charge. The concept is introduced by reference to a new kind of photon source. It is shown that photon exchange between different source types is relativistically invariant. The space-time generalization of this coupling involves an arbitrary vector. The only way to remove a corresponding arbitrariness of physical predictions is to recognize the localization of charge and impose a charge quantization condition. The consideration of particles that carry both kinds of charge loosens the charge restrictions. The great strength of magnetic attraction indicated by g24?=4(137) suggests that ordinary matter is a magnetically neutral composite of magnetically charged particles that carry fractional electric charge. There is a brief discussion of such a magnetic model of strongly interacting particles, which makes contact with empirical classification schemes. Additional remarks on notation, and on the general nature of the source description, are appended.

Julian Schwinger

1968-09-25T23:59:59.000Z

462

Non-linear Seismic Soil Structure Interaction Method for Developing...  

Office of Environmental Management (EM)

Contact - Sliding and Separation Non-linear springs * Material ElasticPlastic * Non-linear soil behavior * Non-linear behavior between soil and structure (i.e. the...

463

Experimental Analysis of Two Measurement Techniques to Characterize Photodiode Linearity  

E-Print Network (OSTI)

Experimental Analysis of Two Measurement Techniques to Characterize Photodiode Linearity Anand anand@ece.ucsb.edu Abstract--As photodiodes become more linear, accurately characterizing, the limitations of the measurement system in determining the distortion of highly linear photodiodes. I

Coldren, Larry A.

464

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martínez, O. E. [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

465

Ceramic thermal barrier coating for rapid thermal cycling applications  

DOE Patents (OSTI)

A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

Scharman, Alan J. (Hebron, CT); Yonushonis, Thomas M. (Columbus, IN)

1994-01-01T23:59:59.000Z

466

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network (OSTI)

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

467

Optical performance of an azimuth tracking linear Fresnel solar concentrator  

Science Journals Connector (OSTI)

Abstracts In this paper, a linear Fresnel solar concentrator installed on a solar azimuth tracker is studied. Based on the integration of the effective source distribution for a reflection point and the whole reflector area, we develop an analytical model to calculate the intercept factor of the concentrator and analyze its performance over a year. The prediction of our analytical optical model agrees pretty well with that of the ray tracing program SolTRACE. Then we study the effects of the main design parameters on the performance of the system. The results show that annual mean total efficiency of 61% can be obtained in optimized design when the operational temperature of the receiver is 400 °C. The performance of the azimuth tracking linear Fresnel solar concentrator (ATLFSC) is compared with that of the parabolic trough collector. It is found that the cosine factor, intercept factor and total efficiency of the ATLFSC are better than those of parabolic trough collector, showing that the ATLFSC may have great potential for solar energy utilization.

Farong Huang; Longlong Li; Weidong Huang

2014-01-01T23:59:59.000Z

468

OLED area illumination source  

DOE Patents (OSTI)

The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

Foust, Donald Franklin (Scotia, NY); Duggal, Anil Raj (Niskayuna, NY); Shiang, Joseph John (Niskayuna, NY); Nealon, William Francis (Gloversville, NY); Bortscheller, Jacob Charles (Clifton Park, NY)

2008-03-25T23:59:59.000Z

469

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

470

Chapter 4 - Ocean Thermal Energy Converters  

Science Journals Connector (OSTI)

Publisher Summary The most plentiful renewable energy source on the planet is solar radiation. Harvesting this energy is difficult because of its dilute and erratic nature. Large collecting areas and large storage capacities are needed. These two requirements are satisfied by the tropical oceans. Oceans cover 71% of Earth's surface. In the tropics, they absorb sunlight, and the top layers heat up to some 25°C. Warm surface waters from the equatorial belt flow poleward, melting both the Arctic and the Antarctic ice. The resulting cold waters return to the equator at great depth, completing a huge planetary thermosyphon. Two basic configurations have been proposed for ocean thermal energy converters (OTECs)—those using hydraulic turbines and those using vapor turbines. The first uses the temperature difference between the surface and bottom waters to create a hydraulic head that drives a conventional water turbine. The advantages of this proposal include the absence of heat exchangers. It is easier to find warm surface water than sufficiently cool abyssal waters, which are not readily available in continental shelf regions. This limits the possible sitings of ocean thermal energy converters.

Aldo Vieira da Rosa

2009-01-01T23:59:59.000Z

471

Holographic thermal field theory on curved spacetimes  

E-Print Network (OSTI)

The AdS/CFT correspondence relates certain strongly coupled CFTs with large effective central charge $c_\\text{eff}$ to semi-classical gravitational theories with AdS asymptotics. We describe recent progress in understanding gravity duals for CFTs on non-trivial spacetimes at finite temperature, both in and out of equilibrium. Such gravity methods provide powerful new tools to access the physics of these strongly coupled theories, which often differs qualitatively from that found at weak coupling. Our discussion begins with basic aspects of AdS/CFT and progresses through thermal CFTs on the Einstein Static Universe and on periodically identified Minkowski spacetime. In the latter context we focus on states describing so-called plasma balls, which become stable at large $c_\\text{eff}$. We then proceed to out-of-equilibrium situations associated with dynamical bulk black holes. In particular, the non-compact nature of these bulk black holes allows stationary solutions with non-Killing horizons that describe time-independent flows of CFT plasma. As final a topic we consider CFTs on black hole spacetimes. This discussion provides insight into how the CFT transports heat between general heat sources and sinks of finite size. In certain phases the coupling to small sources can be strongly suppressed, resulting in negligible heat transport despite the presence of a deconfined plasma with sizeable thermal conductivity. We also present a new result, explaining how this so-called droplet behaviour is related to confinement via a change of conformal frame.

Donald Marolf; Mukund Rangamani; Toby Wiseman

2014-02-22T23:59:59.000Z

472

REACTOR GROUT THERMAL PROPERTIES  

SciTech Connect

Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

2011-01-28T23:59:59.000Z

473

Work Cost of Thermal Operations in Quantum and Nano Thermodynamics  

E-Print Network (OSTI)

Adopting a resource theory framework of thermodynamics for quantum and nano systems pioneered by Janzing et al. [Int. J. Th. Phys. 39, 2717 (2000)], we formulate the cost in useful work of transforming one resource state into another as a linear program of convex optimization. This approach is based on the characterization of thermal quasiorder given by Janzing et al. and later by Horodecki and Oppenheim [Nat. Comm. 4, 2059 (2013)]. Both characterizations are related to an extended version of majorization studied by Ruch, Schranner, and Seligman under the name mixing distance [J. Chem. Phys. 69, 386 (1978)].

Joseph M. Renes

2014-02-14T23:59:59.000Z

474

Thermal effects on the stability of excited atoms in cavities  

SciTech Connect

An atom, coupled linearly to an environment, is considered in a harmonic approximation in thermal equilibrium inside a cavity. The environment is modeled by an infinite set of harmonic oscillators. We employ the notion of dressed states to investigate the time evolution of the atom initially in the first excited level. In a very large cavity (free space) for a long elapsed time, the atom decays and the value of its occupation number is the physically expected one at a given temperature. For a small cavity the excited atom never completely decays and the stability rate depends on temperature.

Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) and TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Centro Brasileiro de Pesquisas Fisicas/MCT, 22290-180 Rio de Janeiro, Rio de Janeiro (Brazil); Instituto de Fisica, Universidade Federal da Bahia, 40.210-310 Salvador, Bahia (Brazil); Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, Distrito Federal (Brazil) and Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)

2010-03-15T23:59:59.000Z

475

Linear Collider Collaboration Tech Notes LCC-0100  

NLE Websites -- All DOE Office Websites (Extended Search)

100 100 August 2002 Systematic Ground Motion and Macroalignment for Linear Colliders Rainer Pitthan Stanford Linear Accelerator Center Stanford University Stanford, CA 94309, USA Abstract: Future colliders with their µm-range operational tolerances still need to be classically aligned to the 50 - 100 µm range, and kept there, over the km range. This requirement will not be a show-stopper, but not be trivial either. 50 µm movements over a betatron wavelength is a the range where systematic long term motions can prevent efficient operation. Systematic Ground Motion and Macro-Alignment for Linear Colliders Complete talk at: http://www-project.slac.stanford.edu/lc/wkshp/snowmass2001/t6/info/pitthan july

476

On frequency dependence of pulsar linear polarization  

E-Print Network (OSTI)

Frequency dependence of pulsar linear polarization is investigated by simulations of emission and propagation processes. Linearly polarized waves are generated through curvature radiation by relativistic particles streaming along curved magnetic field lines, which have ordinary mode (O-mode) and extra-ordinary mode (X-mode) components. As emitted waves propagate outwards, two mode components are separated due to re- fraction of the O mode, and their polarization states are also modified. According to the radius to frequency mapping, low frequency emission is generated from higher magnetosphere, where significant rotation effect leads the X and O modes to be sepa- rated. Hence, the low frequency radiation has a large fraction of linear polarization. As the frequency increases, emission is generated from lower heights, where the rotation effect becomes weaker and the distribution regions of two modes are more overlapped. Hence, more significant depolarization appears for emission at higher frequencies. In addit...

Wang, P F; Han, J L

2015-01-01T23:59:59.000Z

477

Dual-range linearized transimpedance amplifier system  

DOE Patents (OSTI)

A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

Wessendorf, Kurt O. (Albuquerque, NM)

2010-11-02T23:59:59.000Z

478

Materials Selection Considerations for Thermal Process Equipment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief Materials Selection Considerations for Thermal Process Equipment:...

479

NREL: Energy Systems Integration Facility - Thermal Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal distribution bus consists of a thermal water loop connected to a research boiler and chiller that provide precise and efficient control of the water temperature...

480

Integrated External Aerodynamic and Underhood Thermal Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles Integrated External Aerodynamic and Underhood Thermal Analysis for Heavy Vehicles 2012 DOE Hydrogen and Fuel...

Note: This page contains sample records for the topic "linear source thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Continuous Processing of High Thermal Conductivity Polyethylene...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of...

482

Electric Motor Thermal Management | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Peer Evaluation Meeting ape030bennion2012o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies...

483

Thermal Regenerator Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007,...

484

NREL: Energy Storage - Energy Storage Thermal Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

485

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalProcessHeat&oldid267198" Category: Articles with outstanding TODO tasks...

486

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

487

Laser Texturing for Solar Thermal Systems  

Science Journals Connector (OSTI)

High solar absorptance and low thermal emittance is desired for absorber surface in solar thermal systems. Molybdenum surface was textured by pulsed fiber laser and...

Shah, Ankit; Gupta, Mool

488

Solar Keymark Testing of Solar Thermal Products  

Science Journals Connector (OSTI)

The Solar Keymark is the official CEN certification scheme for thermal solar collectors and factory made thermal solar systems. The Solar Keymark requires that the products fulfil the...

Harald Drück; Stephan Fischer…

2009-01-01T23:59:59.000Z

489

Thermal-Mechanical Technologies | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal-Mechanical Technologies Thermal-Mechanical Technologies Heat management plays a critical role in almost all energy-related applications. Research topics in this area...

490

Power Electronic Thermal System Performance and Integration ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program...

491

Solving Linear Systems of Differential Equations By MATLAB  

E-Print Network (OSTI)

Solving Linear Systems of Differential Equations By MATLAB. Consider X'=AX where A is nxn. Suppose there are n linearly independent eigenvectors for A,.

492

Safe bounds in linear and mixed-integer programming  

E-Print Network (OSTI)

Abstract: Current mixed-integer linear programming solvers are based on linear programming routines that use floating point arithmetic. Occasionally, this leads ...

Arnold Neumaier

493

Manhattan Project: The Navy and Thermal Diffusion, 1944  

Office of Scientific and Technical Information (OSTI)

Diffusion columns, S-50 Thermal Diffusion Plant, Oak Ridge, 1945. THE NAVY AND THERMAL DIFFUSION Diffusion columns, S-50 Thermal Diffusion Plant, Oak Ridge, 1945. THE NAVY AND THERMAL DIFFUSION (Oak Ridge: Clinton, 1944) Events > The Uranium Path to the Bomb, 1942-1944 Y-12: Design, 1942-1943 Y-12: Construction, 1943 Y-12: Operation, 1943-1944 Working K-25 into the Mix, 1943-1944 The Navy and Thermal Diffusion, 1944 As problems with both Y-12 and K-25 reached crisis proportions in spring and summer 1944, the Manhattan Project received help from an unexpected source: the United States Navy. President Roosevelt had instructed that the atomic bomb effort be an Army program and that the Navy be excluded from deliberations. Navy research on atomic power, conducted primarily for submarines, received no direct aid from Leslie Groves, who, in fact, was not up-to-date on the state of Navy efforts when he received a letter on the subject from Robert Oppenheimer late in April 1944.

494

Thermal Shock Resistance (TSR) and Thermal Fatigue Resistance (TFR) of Refractory Materials. Evaluation Method Based on the Dynamic Elastic Modulus  

Science Journals Connector (OSTI)

The importance of the thermal shock resistance (TSR) of refractory material is discussed. Understanding the evolution of thermal ... undergo repeated thermal cycling. The thermal fatigue resistance (TFR) behavior...

Nicolás M. Rendtorff; Esteban F. Aglietti

2014-01-01T23:59:59.000Z

495

Strategic Sourcing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Sourcing Strategic Sourcing Strategic Sourcing Energy Wide Strategic Sourcing (EWSS) DOE leadership has recognized that benefits could be achieved at the federal level through an organized, systematic and collaborative approach to acquiring commonly used goods and services. The DOE strategic sourcing program builds upon historical accomplishments as well as establishes a more cohesive and disciplined program, consistent with OMB's direction, for the conduct of DOE future strategic sourcing efforts. The DOE and NNSA Senior Procurement Executives have created a strategic sourcing capability and organizational components to identify federal strategic sourcing opportunities and coordinate strategic thinking. To date, this program has identified a number of opportunities; particularly in the areas of

496

Energy Sources | Department of Energy  

Energy Savers (EERE)

Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we...

497

The Orsay Polarized Electron Source  

Science Journals Connector (OSTI)

A polarized electron source is developed at Orsay to equip existing ... have chosen to adapt the flowing helium afterglow source working at Rice University: it is able...

S. Essabaa; C. G. Aminoff; J. Arianer; I. Brissaud

1991-01-01T23:59:59.000Z

498

Thermal links for the implementation of an optical refrigerator  

SciTech Connect

Optical refrigeration has been demonstrated by several groups of researchers, but the cooling elements have not been thermally linked to realistic heat loads in ways that achieve the desired temperatures. The ideal thermal link will have minimal surface area, provide complete optical isolation for the load, and possess high thermal conductivity. We have designed thermal links that minimize the absorption of fluoresced photons by the heat load using multiple mirrors and geometric shapes including a hemisphere, a kinked waveguide, and a tapered waveguide. While total link performance is dependent on additional factors, we have observed net transmission of photons with the tapered link as low as 0.04%. Our optical tests have been performed with a surrogate source that operates at 625 nm and mimics the angular distribution of light emitted from the cooling element of the Los Alamos solid state optical refrigerator. We have confirmed the optical performance of our various link geometries with computer simulations using CODE V optical modeling software. In addition we have used the thermal modeling tool in COMSOL MULTIPHYSICS to investigate other heating factors that affect the thermal performance of the optical refrigerator. Assuming an ideal cooling element and a nonabsorptive dielectric trapping mirror, the three dominant heating factors are (1) absorption of fluoresced photons transmitted through the thermal link, (2) blackbody radiation from the surrounding environment, and (3) conductive heat transfer through mechanical supports. Modeling results show that a 1 cm{sup 3} load can be chilled to 107 K with a 100 W pump laser. We have used the simulated steady-state cooling temperatures of the heat load to compare link designs and system configurations.

Epsteiin, Richard I [Los Alamos National Laboratory; Greenfield, Scott R [Los Alamos National Laboratory; Parker, John [HARVEY MUDD COLLEGE; Mar, David [HARVEY MUDD GOLLEGE; Von Der Porten, Steven [HARVEY MUDD COLLEGE; Hankinson, John [HARVEY MUDD COLLEGE; Byram, Kevin [HARVEY MUDD COLLEGE; Lee, Chris [HARVEY MUDD COLLEGE; Mayeda, Kai [HARVEY MUDD COLLEGE; Haskell, Richard [HARVEY MUDD COLLEGE; Yang, Qimin [HARVEY MUDD COLLEGE

2008-01-01T23:59:59.000Z

499

Thermal imaging investigation of modified fused silica at surface damage sites for understanding the underlying mechanisms of damage growth  

SciTech Connect

We use an infrared thermal imaging system in combination with a fluorescence microscope to map the dynamics of the local surface temperature and fluorescence intensity under cw, UV excitation of laser-modified fused silica within a damage site. Based on a thermal diffusion model, we estimate the energy deposited via linear absorption mechanisms and derive the linear absorption coefficient of the modified material. The results indicate that the damage growth mechanism is not entirely based on linear absorption. Specifically, the absorption cross-section derived above would prove insufficient to cause a significant increase in the temperature of the modified material under nanosecond, pulsed excitation (via linear absorption at ICF laser fluences). In addition, irreversible changes in the absorption cross-section following extended cw, UV laser exposure were observed.

Negres, R A; Burke, M W; DeMange, P; Sutton, S B; Feit, M D; Demos, S G

2006-11-01T23:59:59.000Z

500

Linear and angular retroreflecting interferometric alignment target  

DOE Patents (OSTI)

The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.

Maxey, L. Curtis (Powell, TN)

2001-01-01T23:59:59.000Z