Precision linear ramp function generator
Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.
1984-08-01
A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.
Precision linear ramp function generator
Jatko, W. Bruce (Knoxville, TN); McNeilly, David R. (Maryville, TN); Thacker, Louis H. (Knoxville, TN)
1986-01-01
A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.
Broader source: Energy.gov [DOE]
Couse Description: This course is designed to stimulate positive thinking toward proper planning for post-retirement years. The course emphasizes advanced pre-retirement planning rather than...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(pdf) Start your retirement benefits Contact the below as applicable: To receive LANS pension packet - AonHewitt at Your Pension Resources (YPR) To receive University of...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The Lab offers employees a 401(k) retirement plan. This plan allows you to save and invest a piece of your paycheck before taxes are taken out. Taxes are not paid until the...
Retirement | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Benefits » Retirement Retirement Retirement Plans Your appointment type determines your eligibility for retirement coverage similar to the eligibility requirements for enrollment in the insurance programs. If your appointment confers eligibility you will automatically be enroll in the applicable retirement plan which is determined by your date of hire. Your servicing HR office is responsible for determining the applicable retirement plan for you. There are various retirement plans and types the
Broader source: Energy.gov [DOE]
Couse Description: This seminar is designed to stimulate positive thinking towards proper planning for post-retirement years. Emphasis will be placed on advanced pre-retirement planning rather than...
Berkeley Lab Retirement Plaques
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
efficiently fulfill your order. The retirement plaque is a benefit paid for by the Lab. Work will begin on the plaque only when your request form is received. Return your request...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
that you do not enroll in Medicare Part D since LANS Health & Welfare coverage includes a drug benefit. 10. Am I able to keep my AD&D and Life Insurance when I retire? Conversion...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
House Retirement Timeline House is retiring December 20,2013 Fix your pipelines, move data and get help now! /house is POWERED OFF. 12/20/2013 Questions? Contact Kjiersten & Doug; consult@nersc.gov Office hours: MWThF 10:00-12:00 400-413 The link to /house will be permanently changed; all pipelines that have not removed /house dependencies will break. 11/15/2013 Your actions: Find anything that is still broken and let the developers know. Check houseHunter Continue data migration. We DO NOT
Update on Franklin retirement plans
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Update on Franklin retirement plans Update on Franklin retirement plans February 21, 2012 by Helen He NERSC is making progress on plans to acquire our next major system. Franklin's...
Update on Franklin retirement plans
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Update on Franklin retirement plans Update on Franklin retirement plans February 21, 2012 by Helen He NERSC is making progress on plans to acquire our next major system. Franklin's retirement is necessary to prepare the machine room for the new system. At this point in our planning we can say that Franklin will retire no sooner than April 30. Additional announcements will be made with more details when a firm date is set. If you are currently only using Franklin you should start migrating to
Determination of linear optics functions from TBT data
Alexahin, Y.; Gianfelice-Wendt, E.; /Fermilab
2006-05-01
A method for evaluation of coupled optics functions, detection of strong perturbing elements, determination of BPM calibration errors and tilts using turn-by-turn (TBT) data is presented as well as the new version of the Hamiltonian perturbation theory of betatron oscillations the method is based upon. An example of application of the considered method to the Tevatron is given.
Cybersecurity Expert Jim Mellander Retiring from NERSC
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Cybersecurity Expert Jim Mellander Retiring from NERSC Cybersecurity Expert Jim Mellander Retiring from NERSC From Detecting Sniffers to Protecting Credentials, He's Left His Mark...
Memorandum, Enhanced Career Longevity and Retirement Options...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Enhanced Career Longevity and Retirement Options - June 30, 2009 Memorandum, Enhanced Career Longevity and Retirement Options - June 30, 2009 June 30, 2009 On March 31, 2009 , the...
Broader source: Energy.gov [DOE]
Couse Description: This course is designed to help the participant develop plans that will improve their retirement outlook and position to ensure a healthy, financially sound and rewarding...
Retired supercomputers enable student research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Retired supercomputers enable student research Retired supercomputers enable student research Decommissioned supercomputers give systems researchers and students a one-of-a-kind, hands-on lab to learn computational science. October 20, 2012 image description Los Alamos National Laboratory Director Charlie McMillan talks with Andree Jacobson of the New Mexico Consortium in the Parallel Reconfigurable Observational Environment (PRObE) machine room. CONTACT Fred deSousa Communications Office (505)
Franklin was Retired on April 30, 2012
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
on April 30, 2012 Franklin was Retired on April 30, 2012 May 9, 2012 by Richard Gerber Franklin was retired on April 30, 2012. Subscribe via RSS Subscribe Browse by Date May...
Towards time-dependent current-density-functional theory in the non-linear regime
Escartn, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Franklin was Retired on April 30, 2012
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
was Retired on April 30, 2012 Franklin was Retired on April 30, 2012 May 9, 2012 by Richard Gerber Franklin was retired on April 30, 2012. Subscribe via RSS Subscribe Browse by Date May 2012 April 2012 March 2012 February 2012 December 2011 July 2011 June 2011 February 2011 January 2011 Last edited: 2012-05-09 10:55:4
POLICY GUIDANCE MEMORANDUM #39 Phased Retirement | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
9 Phased Retirement POLICY GUIDANCE MEMORANDUM #39 Phased Retirement To provide guidance on the implementation of Phased Retirement at the Department of Energy (DOE). Phased Retirement is a human resources tool that allows full-time employees to work part-time schedules while beginning to draw retirement benefits. PDF icon DOE Phased Retirement Implementation Plan 2-20-15.pdf PDF icon DOE Phased Retirement Memo.pdf PDF icon DOE Phased Retirement Service Agreement 2-20-15.pdf Responsible Contacts
Microsoft Word - Retirement Checklist 12.3.15.doc
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Retirement Checklist When you are getting ready to retire: 1. Attend 2016 Retirement Planning for LANS TCP1 (Utrain course 31301) or TCP2 (Utrain course 31304) employees. 2. Decide your LANS retirement/termination date (last day in pay status). 3. Communicate your retirement/termination date to your manager at least 14 calendar days before the retirement/termination date. - Accrued vacation can be used to extend your retirement/termination date only if you are retiring. - Ensure a Termination
retirement | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
retirement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog
MULTIPASS MUON RLA RETURN ARCS BASED ON LINEAR COMBINED-FUNCTION MAGNETS
Vasiliy Morozov, Alex Bogacz, Yves Roblin, Kevin Beard
2011-09-01
Recirculating Linear Accelerators (RLA) are an efficient way of accelerating short-lived muons to the multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In this paper we present a design of a two-pass RLA return arc based on linear combined function magnets, in which both charge muons with momenta different by a factor of two are transported through the same string of magnets. The arc is composed of 60{sup o}-bending symmetric super cells allowing for a simple arc geometry closing. By adjusting the dipole and quadrupole components of the combined-function magnets, each super cell is designed to be achromatic and to have zero initial and final periodic orbit offsets for both muon momenta. Such a design provides a greater compactness than, for instance, an FFAG lattice with its regular alternating bends and is expected to possess a large dynamic aperture characteristic of linear-field lattices.
After 5 Years, NERSC's Franklin Retires
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
After 5 Years, NERSC's Franklin Retires After 5 Years, NERSC's Franklin Retires May 4, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Franklin Cray XT4 supercomputer: Franklin Cray XT4 supercomputer -- a massively parallel processor (MPP) system. Photo: Roy Kaltschmidt/LBNL. This week, the Department of Energy's National Energy Research Scientific Computing Center (NERSC) retired one of its most scientifically prolific supercomputers to date-a Cray XT4 named Franklin, in honor of the United States'
Cybersecurity Expert Jim Mellander Retiring from NERSC
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Cybersecurity Expert Jim Mellander Retiring from NERSC Cybersecurity Expert Jim Mellander Retiring from NERSC From Detecting Sniffers to Protecting Credentials, He's Left His Mark in Cybersecurity October 22, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov mellander NERSC is losing one of its cybersecurity experts, but not to a bug or a virus. Jim Mellander, senior cybersecurity engineer at NERSC, is retiring November 1. He's been with NERSC since 2009 and affiliated with Berkeley
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
employees who were first employed with the federal government after 1983. FERS is a three-part plan: Social Security: You pay a percentage of your salary for Social Security. You...
Appendix F Computer System Retirement Guidelines
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1997-05-21
The guide establishes the process for the orderly retirement of information systems regardless of software platform or size, both classified and unclassified.
Computer System Retirement Guidelines | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
contains DOE headquarters-specific information that may be adapted for use by any site or organization PDF icon Computer System Retirement Guidelines More Documents & Publications...
Franklin retirement date is set: 04/30/2012
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Announcements Franklin retirement date is set: 04302012 Franklin retirement date is set: 04302012 March 6, 2012 by Helen He The Franklin (and its external login node...
Edison moving, Hopper retiring in December. Use your allocations...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
moving, Hopper retiring in December. Use your allocations now Edison moving, Hopper retiring in December. Use your allocations now November 10, 2015 by Katie Antypas Dear NERSC...
Franklin to be Retired April 30, 2012
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Franklin to be Retired April 30, 2012 Franklin to be Retired April 30, 2012 March 6, 2012 by Francesca Verdier Franklin and its external login node Freedom will be retired on April 30, 2012. Batch processing will end on April 26. The schedule of events is: Effective immediately: Software frozen except for critical updates Mon April 2: No new accounts will be createdon Franklin Thurs April 26, 23:59: Batch system is drained, batch queues are stopped (no jobs will be running at this point) Mon
CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES
Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew
2003-02-27
The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.
Dog Earns Retirement with Former Handler
Broader source: Energy.gov [DOE]
AIKEN, S.C. – Dax, a male German shepherd in the Savannah River Site’s (SRS) security canine unit, recently earned retirement by joining the family of one of his former trainers.
Preparation la retraite - Preparing for retirement
None
2011-10-06
Retirement implies an important change from a working environment to a new lifestyle. Every individual copes with this transition in his own way. In this video, registered already a few years ago, Dr. Sartorius from WHO addresses some of his colleagues close to retirement and explains what situations they can expect to encounter. We make this video available to CERN personnel to stimulate their own thinking on the subject.
Preparation à la retraite - Preparing for retirement
None
2011-10-06
Retirement implies an important change from a working environment to a new lifestyle. Every individual copes with this transition in his own way. In this video, registered already a few years ago, Dr. Sartorius from WHO addresses some of his colleagues close to retirement and explains what situations they can expect to encounter. We make this video available to CERN personnel to stimulate their own thinking on the subject.
Attachment 1: DOE Phased Retirement Implementation Plan Purpose:
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
: DOE Phased Retirement Implementation Plan Purpose: Phased retirement is designed to assist agencies with knowledge management and continuity of operations in the short term. Although the main purpose is to enhance the mentoring and training of the employees who will be filling the positions or taking on duties of more experienced retiring employees, phased retirement may also be used to provide employees with the opportunity to share experiences across Departmental elements. Phased retirement
Retiring Procurement Official Reflects on Career | Department of Energy
Retiring Procurement Official Reflects on Career Retiring Procurement Official Reflects on Career August 28, 2014 - 12:00pm Addthis Pamela Thompson is retiring from her 37-year federal career. Pamela Thompson is retiring from her 37-year federal career. LEXINGTON, Ky. - As the retiring supervisory contracting officer for EM's Portsmouth/Paducah Project Office (PPPO), Pamela Thompson exemplifies the wisdom of her own advice. She credits her diverse 37-year federal career to confidently seeking
NREL Director Announces His Retirement | Awards and Honors |...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
NREL Director Announces His Retirement Dan Arvizu to End Tenure at Renewable Energy Lab in September March 19, 2015 Dr. Dan E. Arvizu today announced that he intends to retire at...
Dirac GPU Cluster to be Retired December 12
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dirac GPU Cluster to be Retired December 12 Dirac GPU Cluster to be Retired December 12 November 12, 2014 by Francesca Verdier As previously announced, the Dirac GPU testbed will...
Structure/Function Studies of Proteins Using Linear Scaling Quantum Mechanical Methodologies
Merz, K. M.
2004-07-19
We developed a linear-scaling semiempirical quantum mechanical (QM) program (DivCon). Using DivCon we can now routinely carry out calculations at the fully QM level on systems containing up to about 15 thousand atoms. We also implemented a Poisson-Boltzmann (PM) method into DivCon in order to compute solvation free energies and electrostatic properties of macromolecules in solution. This new suite of programs has allowed us to bring the power of quantum mechanics to bear on important biological problems associated with protein folding, drug design and enzyme catalysis. Hence, we have garnered insights into biological systems that have been heretofore impossible to obtain using classical simulation techniques.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Programming Running jobs Franklin Queues and Policies File storage and I/O Software and Tools Debugging and profiling Cray XT Documentation Franklin is Being Retired Bassi Storage & File Systems Data & Analytics Connecting to NERSC Queues and Scheduling Job Logs & Statistics Application Performance Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours
Retirement Plan | National Nuclear Security Administration
National Nuclear Security Administration (NNSA)
Retirement Plan | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA
Summary Annual Report For LANS 401(k) Retirement Plan
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
LANS 401(k) Retirement Plan This is a summary of the annual report for LANS 401(k) Retirement Plan, Employer Identification Number 20- 3104541, Plan No. 001 for the period January 01, 2014 through December 31, 2014. The annual report has been filed with the Employee Benefits Security Administration, U.S. Department of Labor, as required under the Employee Retirement Income Security Act of 1974 (ERISA). Basic Financial Statement Benefits under the plan are provided through a trust fund. Plan
For Current and Retired Employees Only - Hanford Site
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Organization For Current and Retired Employees Only About Us HERO Home All HDC Discounts (PDF) For Current and Retired Employees Only For Current and Retired Employees Only Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Romantic Dinner Cruise on the Mighty Columbia (pdf) April 15, 2016 HERO Spring Fling Golf Party (pdf) April 22, 2016 Brunch on the Columbia Gorge Sternwheeler (pdf) April 24, 2016 Chinook Winds Casino - Mother's Day Weekend (pdf) May 6 - 8, 2016
Journey Through The 6 Stages Of Retirement | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Journey Through The 6 Stages Of Retirement Most major life-changing events, such as marriage or divorce, involve an ongoing process of emotional adjustment. Retirement is no exception. Marriage, divorce and other family-related issues have been the focus of decades of research and analysis by both clinical therapists and religious institutions. Unfortunately, the emotional and psychological frontier of retirement has remained virtually unexplored until recently. However, while research on this
DOE and Advisory Board Recognize Retiring Members for Service | Department
Office of Environmental Management (EM)
of Energy Recognize Retiring Members for Service DOE and Advisory Board Recognize Retiring Members for Service June 24, 2015 - 5:05pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) and the Department of Energy's (DOE) Oak Ridge Environmental (EM) Program recognized two retiring members at its June meeting. ORSSAB members Jimmy Bell of Kingston and Fay Martin of Oak Ridge served four years on the board. ORSSAB is a federally chartered citizens' panel that provides recommendations
Franklin to retire no sooner than Apr 30
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
to retire no sooner than Apr 30 Franklin to retire no sooner than Apr 30 December 20, 2011 by Helen NERSC is making progress on plans to acquire our next major system. Franklin's retirement is necessary to prepare the machine room for the new system. At this point in our planning we can say that Franklin will retire no sooner than April 30. Additional announcements will be made with more details when a firm date is set. If you are currently only using Franklin you should start migrating to
Energy Efficiency Upgrades Help Retired Military Officers Save Money
Broader source: Energy.gov [DOE]
Learn how a San Antonio retirement community for military officers worked with a local energy efficiency program to improve the comfort and efficiency of its buildings.
NREL Director Announces His Retirement - News Releases | NREL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Director Announces His Retirement Dan Arvizu to End Tenure at Renewable Energy Lab in September March 19, 2015 Photo of Dr. Dan E. Arvizu Dr. Dan E. Arvizu announced that he intends to retire from his role as NREL's Director. Dr. Dan E. Arvizu today announced that he intends to retire at the end of September from his role as the Director and Chief Executive of the Energy Department's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado. Arvizu also expects to retire as President
Generating Unit Retirements in the United States by State, 2010
U.S. Energy Information Administration (EIA) Indexed Site
www.eia.govcneafelectricitypageeia860.html." "Source: U.S. Energy Information ... of Retirement" "AK","Anchorage",599,"Anchorage Municipal Light and ...
Mr. Rare Earth easing into retirement | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
graduate researcher in metallurgy, Dwight Eisenhower was serving his first term in the White House. Now, more than six decades later, Gschneidner is formally retiring effective...
Franklin retirement date is set: 04/30/2012
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Announcements » Franklin retirement date is set: 04/30/2012 Franklin retirement date is set: 04/30/2012 March 6, 2012 by Helen He The Franklin (and its external login node Freedom) retirement date has been set to April 30, 2012. Below are the related schedules: Effective immediately: Software frozen except for critical updates Mon Apr 2: No new accounts will be created Thurs Apr 26, 23:59: Batch system is drained, batch queues are stopped (no jobs will be running at this point) Mon Apr 30: Last
Dirac GPU Cluster to be Retired December 12
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Dirac GPU Cluster to be Retired December 12 Dirac GPU Cluster to be Retired December 12 November 12, 2014 by Francesca Verdier As previously announced, the Dirac GPU testbed will be retired at 17:00 PST on Friday, December 12, 2014. It has served its intended purpose of allowing NESRC staff and users to evaluate GPU technologies. Subscribe via RSS Subscribe Browse by Date January 2016 December 2015 November 2015 October 2015 September 2015 August 2015 July 2015 April 2015 March 2015 January 2015
DOE and Advisory Board Recognizes Retiring Member for Service | Department
Office of Environmental Management (EM)
of Energy Recognizes Retiring Member for Service DOE and Advisory Board Recognizes Retiring Member for Service July 7, 2014 - 9:08am Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) and the Department of Energy's (DOE) Oak Ridge Environmental (EM) Program recognized a retiring member at its June meeting. ORSSAB member Scott McKinney is leaving the board in July after three years of service. "I thank you for your service to the board and want to acknowledge your
SF 4400-RSS;SNL RETIREMENT GIFT SELECTION SHEET
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Gift Selection Sheet Employee Information Name: SNL ID: Retirement Date: Phone: Years of Service: Example: (1979-2010) Ship to Address Street: City: State: Zip Code: OR - If you...
EM’s Lowell Ely Retires from 35-Year Career
Broader source: Energy.gov [DOE]
WASHINGTON, D.C. – Lowell Ely recently retired as director of EM's Office of Project Assessment, ending a federal career that spanned all phases of engineering, including design, construction and oversight of major projects.
Request for Retirement Annuity Estimates | Department of Energy
icon 2013 Request for Retirment Est.pdf Responsible Contacts Ernita Collins SUPERVISORY HUMAN RESOURCES SPECIALIST E-mail ernita.collins@hq.doe.gov Phone 202-586-7020 More...
Personal Property Retirement Work Order, HQ Form 1400.20 | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy Personal Property Retirement Work Order, HQ Form 1400.20 Personal Property Retirement Work Order, HQ Form 1400.20 Retirement Work Order PDF icon Personal Property Retirement Work Order, HQ Form 1400.20 More Documents & Publications DOE F 1400.20 DOE HQ F 580-2 DOE HQ F 580
DOE and Advisory Board Recognize Retiring Members for Service | Department
Office of Environmental Management (EM)
of Energy Members for Service DOE and Advisory Board Recognize Retiring Members for Service February 25, 2016 - 2:51pm Addthis The Oak Ridge Site Specific Advisory Board (ORSSAB) and the Department of Energy's (DOE) Oak Ridge Environmental Management (EM) Program recognized two retiring members at its January meeting. ORSSAB members Lisa Hagy of Alcoa and Corkie Staley of Oak Ridge served four years on the board. ORSSAB is a federally chartered citizens' panel that provides recommendations
NREL Director Richard Truly Announces Retirement Plans - News Releases |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
NREL NREL Director Richard Truly Announces Retirement Plans June 8, 2004 Photo of Richard Truly, Director Golden, Colo. - Vice Admiral Richard H. Truly, director of the Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), today announced that he plans to retire in early November 2004 after more than seven years as NREL's director. Truly became the seventh director of the 27-year-old national laboratory in May 1997. He also serves as executive vice president of Midwest
Jeff Lab director plans retirement (Daily Press) | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
articles/jeff-lab-director-plans-retirement-daily-press Jeff Lab director plans retirement Christoph Leemann, who has managed the federal site since 2001, will work until his successor is announced. By PLYNCH, Daily Press March 16, 2007 NEWPORT NEWS -- The director of the Thomas Jefferson National Accelerator Facility is stepping down as head of the advanced research center on Jefferson Avenue. Christoph Leemann, who has been at the helm at what's commonly called Jefferson Lab for more than six
Tussupbayev, Samat; Govind, Niranjan; Lopata, Kenneth A.; Cramer, Christopher J.
2015-03-10
We assess the performance of real-time time-dependent density functional theory (RT-TDDFT) for the calculation of absorption spectra of 12 organic dye molecules relevant to photovoltaics and dye sensitized solar cells with 8 exchange-correlation functionals (3 traditional, 3 global hybrids, and 2 range-separated hybrids). We compare the calculations with traditional linear-response (LR) TDDFT. In addition, we demonstrate the efficacy of the RT-TDDFT approach to calculate wide absorption spectra of two large chromophores relevant to photovoltaics and molecular switches.
David Turner to Retire from NERSC User Services Group
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
David Turner to Retire from NERSC User Services Group David Turner to Retire from NERSC User Services Group June 17, 2015 davidturnernow2 David Turner in the NERSC machine room, in front of Carver, circa 2015 Long-time User Services Group consultant David Turner is hanging up his headset after 17 years at NERSC. His love of math, science and computers began when he was still in high school, and it has not waned over the years. Here Turner, whose last official day is June 26, talks about how he
At 85, Mr. Rare Earth is Retiring | Department of Energy
At 85, Mr. Rare Earth is Retiring At 85, Mr. Rare Earth is Retiring February 19, 2016 - 11:00am Addthis We first talked to Dr. Gschneider back in 2013 for one of our <a href="/node/609731">"10 Questions with a Scientist"</a> blogs. Today he looks back at over 60 years of studying rare earth metals. We first talked to Dr. Gschneider back in 2013 for one of our "10 Questions with a Scientist" blogs. Today he looks back at over 60 years of studying rare
Memorandum, Enhanced Career Longevity and Retirement Options- June 30, 2009
Broader source: Energy.gov [DOE]
On March 31, 2009 , the Department of Energy (DOE) Chief Health, Safety and Security Officxer commissioned a study to examine "realistic and reasponable options for improving the career opportunities and retirement prospects of protective force members while maintaining, within current and anticipated budgetary constraints, a robust and effective security posture.
Groundbreaking Leader of Computation at LLNL Retires | National Nuclear
National Nuclear Security Administration (NNSA)
Security Administration Leader of Computation at LLNL Retires | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery
Michael Hickman receives NNSA Gold Medal, announces retirement | National
National Nuclear Security Administration (NNSA)
Nuclear Security Administration Hickman receives NNSA Gold Medal, announces retirement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press
Retired lab physicist and computational pioneer, Lawrence Livermore
National Nuclear Security Administration (NNSA)
National Laboratory | National Nuclear Security Administration Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations
Buy Back Needed to Add Military Time for Retirement By Catherine Ferguson
Buy Back Needed to Add Military Time for Retirement By Catherine Ferguson Defense Finance and Accounting Service WASHINGTON, March 3, 1997 - Waiting until the last moment before thinking about retirement might end up costing some civilian federal employees more than stress. Civilian employees with prior military service may not have as many years of federal service for retirement as they thought. Before military time can be applied toward civil service retirement, in most cases the employee has
Dunlap, B.I.; Brenner, D.W.; Mowrey, R.C.; Mintmire, J.W.; White, C.T. )
1990-05-15
Linear combination of Gaussian-type orbitals (LCGTO) --local-density-functional (LDF) cluster calculations give the interaction energy of two deuterium atoms in the interstices of titanium and palladium. Octahedral and tetrahedral interstices of the face-centered-cubic (fcc) lattice are modeled by six and four metal atoms, respectively. No short equilibrium separations, compared to the gas-phase equilibrium separation, are found even when expansion of the lattice and loading with additional deuterium and metal atoms are considered. The deuteron affinities of these clusters are in accord with the experimental site preference.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE
Going Deeper in the Heart of Texas Helps Retired Officers Save | Department
of Energy Going Deeper in the Heart of Texas Helps Retired Officers Save Going Deeper in the Heart of Texas Helps Retired Officers Save In San Antonio, Texas, Better Buildings Neighborhood Program partner CPS Energy Savers worked with the Army Residence Community (ARC) to pull off a nearly-200-unit energy upgrade with military precision. The ARC, a nonprofit community for retired military officers and their spouses, was looking to upgrade the attic insulation in 189 single-family cottages
Minezawa, Noriyuki
2014-10-28
Examining photochemical processes in solution requires understanding the solvent effects on the potential energy profiles near conical intersections (CIs). For that purpose, the CI point in solution is determined as the crossing between nonequilibrium free energy surfaces. In this work, the nonequilibrium free energy is described using the combined method of linear-response free energy and collinear spin-flip time-dependent density functional theory. The proposed approach reveals the solvent effects on the CI geometries of stilbene in an acetonitrile solution and those of thymine in water. Polar acetonitrile decreases the energy difference between the twisted minimum and twisted-pyramidalized CI of stilbene. For thymine in water, the hydrogen bond formation stabilizes significantly the CI puckered at the carbonyl carbon atom. The result is consistent with the recent simulation showing that the reaction path via this geometry is open in water. Therefore, the present method is a promising way of identifying the free-energy crossing points that play an essential role in photochemistry of solvated molecules.
Coles, G.A.; Shultz, M.V.; Taylor, W.E.
1993-09-01
This document provides a risk evaluation of the 100 and 200 Area retired, surplus facilities on the Hanford Site. Also included are the related data that were compiled by the risk evaluation team during investigations performed on the facilities. Results are the product of a major effort performed in fiscal year 1993 to produce qualitative information that characterizes certain risks associated with these facilities. The retired facilities investigated for this evaluation are located in the 100 and 200 Areas of the 1,450-km{sup 2} (570-mi{sup 2}) Hanford Site. The Hanford Site is a semiarid tract of land in southeastern Washington State. The nearest population center is Richland, Washington, (population 32,000) 30-km (20 mi) southeast of the 200 Area. During walkdown investigations of these facilities, data on real and potential hazards that threatened human health or safety or created potential environmental release issues were identified by the risk evaluation team. Using these findings, the team categorized the identified hazards by facility and evaluated the risk associated with each hazard. The factors contributing to each risk, and the consequence and likelihood of harm associated with each hazard also are included in this evaluation.
ALS "Workhorse" Endstation Retires after 22 Years of Service
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
"Workhorse" Endstation Retires after 22 Years of Service ALS "Workhorse" Endstation Retires after 22 Years of Service Print Following a career spanning over two decades, ALS endstation 8.0.1.1 retired last October. The endstation, which specializes in soft x-ray fluorescence, is one of many hosted by Beamline 8.0.1 and has been known as a "workhorse" for the more than 450 peer-reviewed publications to its credit. Endstation 8.0.1.1 during its heyday, pictured (from
Global Scratch (/global/scratch2 aka $GSCRATCH) will be retired...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
aka GSCRATCH) will be retired on October 14 at 12:00 PDT October 9, 2015 by Richard Gerber This is a reminder that the Global Scratch (globalscratch2 aka GSCRATCH) file...
NNSA announces retirement of Dr. Steve Aoki, after 33 years of...
National Nuclear Security Administration (NNSA)
Sheets Newsletters Press Releases Video Gallery Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA announces retirement of Dr. Steve Aoki,...
At science, he's a natural; Retiring J-Lab leader discusses red tape and
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the pursuit of knowledge (Inside Business) | Jefferson Lab hes-natural-retiring-j-lab-leader-discusses-red-tape-and-pursuit-knowledge-in... At science, he's a natural Retiring J-Lab leader discusses red tape and the pursuit of knowledge By Michael Schwartz, Inside Business June 25, 2007 As he prepared to be photographed, Christoph Leemann admitted he's not naturally photogenic as far as posed smiling goes. And as director of the Thomas Jefferson National Accelerator Facility, better known in
Michael Anastasio to retire in June as Director of Los Alamos National
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Laboratory Michael Anastasio to retire in June Michael Anastasio to retire in June as Director of Los Alamos National Laboratory Anastasio has served as LANL director since June 2006. January 5, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory
Bruce Held Announces Retirement After Nearly 40 Years of Public Service |
National Nuclear Security Administration (NNSA)
National Nuclear Security Administration Held Announces Retirement After Nearly 40 Years of Public Service | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact
Linear phase compressive filter
McEwan, T.E.
1995-06-06
A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.
Linear phase compressive filter
McEwan, Thomas E. (Livermore, CA)
1995-01-01
A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.
Fault tolerant linear actuator
Tesar, Delbert
2004-09-14
In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.
Linearly polarized fiber amplifier
Kliner, Dahv A.; Koplow, Jeffery P.
2004-11-30
Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.
Linear and non-linear forced response of a conical, ducted, laminar premixed flame
Karimi, Nader; Brear, Michael J.; Jin, Seong-Ho; Monty, Jason P. [Department of Mechanical Engineering, University of Melbourne, Parkville, 3010 Vic. (Australia)
2009-11-15
This paper presents an experimental study on the dynamics of a ducted, conical, laminar premixed flame subjected to acoustic excitation of varying amplitudes. The flame transfer function is measured over a range of forcing frequencies and equivalence ratios. In keeping with previous works, the measured flame transfer function is in good agreement with that predicted by linear kinematic theory at low amplitudes of acoustic velocity excitation. However, a systematic departure from linear behaviour is observed as the amplitude of the velocity forcing upstream of the flame increases. This non-linearity is mostly in the phase of the transfer function and manifests itself as a roughly constant phase at high forcing amplitude. Nonetheless, as predicted by non-linear kinematic arguments, the response always remains close to linear at low forcing frequencies, regardless of the forcing amplitude. The origin of this phase behaviour is then sought through optical data post-processing. (author)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
1-800-66-NERSC, option 2 or 510-486-8612 Consulting http:help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home For Users ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
participation in the Health Flexible Spending Account (HCRA) ceases, and no further salary redirection contributions is contributed on your behalf. However, you will be able to...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
other NERSC systems, primarily Edison. This page is provided to assist users in that migration. Schedule Carver's final day of operation was Wednesday, September 30, 2015. User...
Optimizing minimum free-energy crossing points in solution: Linear...
Office of Scientific and Technical Information (OSTI)
Optimizing minimum free-energy crossing points in solution: Linear-response free energyspin-flip density functional theory approach Citation Details In-Document Search Title:...
Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report
The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.
2011-06-20
This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.
Bosamykin, V.S.; Pavlovskiy, A.I.
1984-03-01
A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.
Buttram, M.T.; Ginn, J.W.
1988-06-21
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.
Combustion powered linear actuator
Fischer, Gary J. (Albuquerque, NM)
2007-09-04
The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.
Energy Science and Technology Software Center (OSTI)
2006-11-17
Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more »The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less
Positrons for linear colliders
Ecklund, S.
1987-11-01
The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)
History of Proton Linear Accelerators
DOE R&D Accomplishments [OSTI]
Alvarez, L. W.
1987-01-01
Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)
Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.
1985-03-19
Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.
Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)
1989-01-01
A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.
Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.
1989-08-22
A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.
Berkeley Proton Linear Accelerator
DOE R&D Accomplishments [OSTI]
Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.
1953-10-13
A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.
Inpainting with sparse linear combinations of exemplars
Wohlberg, Brendt
2008-01-01
We introduce a new exemplar-based inpainting algorithm based on representing the region to be inpainted as a sparse linear combination of blocks extracted from similar parts of the image being inpainted. This method is conceptually simple, being computed by functional minimization, and avoids the complexity of correctly ordering the filling in of missing regions of other exemplar-based methods. Initial performance comparisons on small inpainting regions indicate that this method provides similar or better performance than other recent methods.
Linear Fresnel | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
DOE funds solar research and development (R&D) in linear Fresnel systems as one of four CSP technologies aiming to meet the goals of the SunShot Initiative. Linear Fresnel systems, which are a type of linear concentrator, are active in Germany, Spain, Australia, India, and the United States. The SunShot Initiative funds R&D on linear Fresnel systems and related aspects within the industry, national laboratories and universities to meet the SunShot goals. An extensive set of core
Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program
Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.
2012-01-03
Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.
Acoustic emission linear pulse holography
Collins, H.D.; Busse, L.J.; Lemon, D.K.
1983-10-25
This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.
Linear Accelerator | Advanced Photon Source
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Linear Accelerator Producing brilliant x-ray beams at the APS begins with electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage...
Micromechanism linear actuator with capillary force sealing
Sniegowski, Jeffry J. (Albuquerque, NM)
1997-01-01
A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.
Belos Block Linear Solvers Package
Energy Science and Technology Software Center (OSTI)
2004-03-01
Belos is an extensible and interoperable framework for large-scale, iterative methods for solving systems of linear equations with multiple right-hand sides. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale linear systems. Belos is interoperable because both the matrix and vectors are considered to be opaque objects--only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Balos is accomplished viamore » the use of interfaces. One of the goals of Belos is to allow the user flexibility in specifying the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based linear solvers, like Block GMRES (Generalized Minimal RESidual) and Block CG (Conjugate-Gradient).« less
Linear electric field mass spectrometry
McComas, David J. (Los Alamos, NM); Nordholt, Jane E. (Los Alamos, NM)
1992-01-01
A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.
Linear electric field mass spectrometry
McComas, D.J.; Nordholt, J.E.
1992-12-01
A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.
Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators
V.S. Morozov, S.A. Bogacz, Y.R. Roblin, K.B. Beard
2012-06-01
Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.
Segmented rail linear induction motor
Cowan, M. Jr.; Marder, B.M.
1996-09-03
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.
Cast dielectric composite linear accelerator
Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)
2009-11-10
A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.
Segmented rail linear induction motor
Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)
1996-01-01
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.
Linear Thermite Charge - Energy Innovation Portal
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Linear Thermite Charge Battelle Memorial Institute Contact BMI About This Technology Publications: PDF Document Publication Linear Thermite Charge Picture (40 KB) PDF Document Publication Linear Thermite Charge Patent (207 KB) Technology Marketing Summary The Linear Thermite Charge (LTC) is designed to rapidly cut through concrete and steel structural components by using extremely high temperature thermite reactions jetted through a linear nozzle. Description Broadly, the invention provides for
Linear dimensions and volumes of human lungs
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hickman, David P.
2012-03-30
TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less
Acoustic emission linear pulse holography
Collins, H. Dale (Richland, WA); Busse, Lawrence J. (Richland, WA); Lemon, Douglas K. (West Richland, WA)
1985-01-01
Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.
Shortcuts to adiabaticity from linear response theory
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less
Shortcuts to adiabaticity from linear response theory
Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian
2015-10-23
A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.
Tunneling control using classical non-linear oscillator
Kar, Susmita; Bhattacharyya, S. P.
2014-04-24
A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.
Translation and integration of numerical atomic orbitals in linear molecules
Heinsmki, Sami
2014-02-14
We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.
PC Basic Linear Algebra Subroutines
Energy Science and Technology Software Center (OSTI)
1992-03-09
PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less
Linear induction accelerator parameter options
Birx, D.L.; Caporaso, G.J.; Reginato, L.L.
1986-04-21
The principal undertaking of the Beam Research Program over the past decade has been the investigation of propagating intense self-focused beams. Recently, the major activity of the program has shifted toward the investigation of converting high quality electron beams directly to laser radiation. During the early years of the program, accelerator development was directed toward the generation of very high current (>10 kA), high energy beams (>50 MeV). In its new mission, the program has shifted the emphasis toward the production of lower current beams (>3 kA) with high brightness (>10/sup 6/ A/(rad-cm)/sup 2/) at very high average power levels. In efforts to produce these intense beams, the state of the art of linear induction accelerators (LIA) has been advanced to the point of satisfying not only the current requirements but also future national needs.
Reticle stage based linear dosimeter
Berger, Kurt W.
2007-03-27
A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.
Reticle stage based linear dosimeter
Berger, Kurt W.
2005-06-14
A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.
High Performance Preconditioners and Linear Solvers
Energy Science and Technology Software Center (OSTI)
2006-07-27
Hypre is a software library focused on the solution of large, sparse linear systems of equations on massively parallel computers.
New non-linear photovoltaic effect in uniform bipolar semiconductor
Volovichev, I.
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
Musson, John C.; Seaton, Chad; Spata, Mike F.; Yan, Jianxun
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an ?activation layer,? is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.
Confirming the Lanchestrian linear-logarithmic model of attrition
Hartley, D.S. III.
1990-12-01
This paper is the fourth in a series of reports on the breakthrough research in historical validation of attrition in conflict. Significant defense policy decisions, including weapons acquisition and arms reduction, are based in part on models of conflict. Most of these models are driven by their attrition algorithms, usually forms of the Lanchester square and linear laws. None of these algorithms have been validated. The results of this paper confirm the results of earlier papers, using a large database of historical results. The homogeneous linear-logarithmic Lanchestrian attrition model is validated to the extent possible with current initial and final force size data and is consistent with the Iwo Jima data. A particular differential linear-logarithmic model is described that fits the data very well. A version of Helmbold's victory predicting parameter is also confirmed, with an associated probability function. 37 refs., 73 figs., 68 tabs.
International Workshop on Linear Colliders 2010
None
2011-10-06
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat IWLC2010 is hosted by CERN
International Workshop on Linear Colliders 2010
None
2011-10-06
IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland)This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop SecretariatIWLC2010 is hostedby CERN
New timing system for the Stanford Linear Collider
Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Ross, M.; Pierce, W.; Wilmunder, A.
1984-11-01
In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail.
Ultra-high vacuum photoelectron linear accelerator
Yu, David U.L.; Luo, Yan
2013-07-16
An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.
International Linear Collider Technical Design Report - Volume...
Office of Scientific and Technical Information (OSTI)
Linear Collider Technical Design Report - Volume 2: Physics Baer, Howard; Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather...
International Linear Collider Technical Design Report - Volume...
Office of Scientific and Technical Information (OSTI)
Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics You are accessing a ...
Non-Linear Seismic Soil Structure Interaction (SSI) Method for...
Office of Environmental Management (EM)
Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear...
None
2011-04-25
A l'occasion de son 65me anniversaire plusieurs orateurs (aussi l'ambassadeur de Norvège) remercient Kjell Johnsen, né en juin 1921 en Norvège, pour ses 34 ans de service au Cern et retracent sa vie et son travail. K.Johnsen a pris part aux premières études sur les accélérateurs du futur centre de physique et fut aussi le père et le premier directeur de l'Ecole du Cern sur les accélérateurs (CAS)
REQUESTS FOR RETIREMENT ESTIMATE
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Date Service Computation Date (SCD) ... ... Sick Leave Balance Pay Period Ending (PPE) SECTION B (have you served in the following ...
Voltage regulation in linear induction accelerators
Parsons, William M. (Santa Fe, NM)
1992-01-01
Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.
Voltage regulation in linear induction accelerators
Parsons, W.M.
1992-12-29
Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.
Optically isolated signal coupler with linear response
Kronberg, James W. (Aiken, SC)
1994-01-01
An optocoupler for isolating electrical signals that translates an electrical input signal linearly to an electrical output signal. The optocoupler comprises a light emitter, a light receiver, and a light transmitting medium. The light emitter, preferably a blue, silicon carbide LED, is of the type that provides linear, electro-optical conversion of electrical signals within a narrow wavelength range. Correspondingly, the light receiver, which converts light signals to electrical signals and is preferably a cadmium sulfide photoconductor, is linearly responsive to light signals within substantially the same wavelength range as the blue LED.
FPGA-based Klystron linearization implementations in scope of ILC
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Omet, M.; Michizono, S.; Matsumoto, T.; Miura, T.; Qiu, F.; Chase, B.; Varghese, P.; Schlarb, H.; Branlard, J.; Cichalewski, W.
2015-01-23
We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successfulmore » implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.« less
FPGA-based Klystron linearization implementations in scope of ILC
Omet, M.; Michizono, S.; Varghese, P.; Schlarb, H.; Branlard, J.; Cichalewski, W.
2015-01-23
We report the development and implementation of four FPGA-based predistortion-type klystron linearization algorithms. Klystron linearization is essential for the realization of ILC, since it is required to operate the klystrons 7% in power below their saturation. The work presented was performed in international collaborations at the Fermi National Accelerator Laboratory (FNAL), USA and the Deutsches Elektronen Synchrotron (DESY), Germany. With the newly developed algorithms, the generation of correction factors on the FPGA was improved compared to past algorithms, avoiding quantization and decreasing memory requirements. At FNAL, three algorithms were tested at the Advanced Superconducting Test Accelerator (ASTA), demonstrating a successful implementation for one algorithm and a proof of principle for two algorithms. Furthermore, the functionality of the algorithm implemented at DESY was demonstrated successfully in a simulation.
Dual-range linearized transimpedance amplifier system
Wessendorf, Kurt O. (Albuquerque, NM)
2010-11-02
A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).
Linear transformer driver for pulse generation
Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A
2015-04-07
A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond
2015-10-06
We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate the density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.
Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print Thursday, 17 December 2009 13:47 Schematic representation of linear dichroism observed in KL x-ray emission. Coupling between the spin-orbit interaction and the molecular field, oriented along the chemical bond, leads to different spin-orbit ratios as a function of the angle between the incoming
Linear and angular retroreflecting interferometric alignment target
Maxey, L. Curtis
2001-01-01
The present invention provides a method and apparatus for measuring both the linear displacement and angular displacement of an object using a linear interferometer system and an optical target comprising a lens, a reflective surface and a retroreflector. The lens, reflecting surface and retroreflector are specifically aligned and fixed in optical connection with one another, creating a single optical target which moves as a unit that provides multi-axis displacement information for the object with which it is associated. This displacement information is useful in many applications including machine tool control systems and laser tracker systems, among others.
Beamstrahlung spectra in next generation linear colliders
Barklow, T.; Chen, P. ); Kozanecki, W. )
1992-04-01
For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.
Linear Transformation Method for Multinuclide Decay Calculation
Ding Yuan
2010-12-29
A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.
Linearity of Climate Response to Increases in Black Carbon Aerosols
Mahajan, Salil; Evans, Katherine J.; Hack, James J.; Truesdale, John
2013-04-19
The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $ W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $ W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $W^{-1}m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $ PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.
IR OPTICS MEASUREMENT WITH LINEAR COUPLING'S ACTION-ANGLE PARAMETERIZATION.
LUO, Y.; BAI, M.; PILAT, R.; SATOGATA, T.; TRBOJEVIC, D.
2005-05-16
A parameterization of linear coupling in action-angle coordinates is convenient for analytical calculations and interpretation of turn-by-turn (TBT) beam position monitor (BPM) data. We demonstrate how to use this parameterization to extract the twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of the long IR drift region. The example of TBT BPM analysis was acquired at the Relativistic Heavy Ion Collider (RHIC), using an AC dipole to excite a single eigenmode. Besides the full treatment, a fast estimate of beta*, the beta function at the interaction point (IP), is provided, along with the phase advance between these BPMs. We also calculate and measure the waist of the beta function and the local optics.
Finite Element Interface to Linear Solvers
Energy Science and Technology Software Center (OSTI)
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on themoreproblem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.less
A microcomputer-controlled linear heater
Schuck, V.; Rahimi, S. )
1991-10-01
In this note the circuits and principles of operation of a relatively simple and inexpensive linear temperature ramp generator are described. The upper-temperature limit and the heating rate are controlled by an Apple II microcomputer. The temperature versus time is displayed on the screen and may be plotted by an {ital x}-{ital y} plotter.
Notes on beam dynamics in linear accelerators
Gluckstern, R.L.
1980-09-01
A collection of notes, on various aspects of beam dynamics in linear accelerators, which were produced by the author during five years (1975 to 1980) of consultation for the LASL Accelerator Technology (AT) Division and Medium-Energy Physics (MP) Division is presented.
Producing Linear Alpha Olefins From Biomass - Energy Innovation...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Producing Linear Alpha Olefins From Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Linear alpha olefins (LAOs) are...
A Linear Theory of Microwave Instability in Electron Storage...
Office of Scientific and Technical Information (OSTI)
Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron...
2010 Annual Planning Summary for Stanford Linear Accelerator...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly...
Cascaded emission of linearly polarized single photons from positioned...
Office of Scientific and Technical Information (OSTI)
Cascaded emission of linearly polarized single photons from positioned InPGaInP quantum dots Citation Details In-Document Search Title: Cascaded emission of linearly polarized ...
MHK Technologies/Ocean Current Linear Turbine | Open Energy Informatio...
Current Linear Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Current Linear Turbine.jpg Technology Profile Primary...
Updates to the International Linear Collider Damping Rings Baseline...
Office of Scientific and Technical Information (OSTI)
Updates to the International Linear Collider Damping Rings Baseline Design Citation Details In-Document Search Title: Updates to the International Linear Collider Damping Rings...
Toward portable programming of numerical linear algebra on manycore...
Office of Scientific and Technical Information (OSTI)
Toward portable programming of numerical linear algebra on manycore nodes. Citation Details In-Document Search Title: Toward portable programming of numerical linear algebra on ...
Top quark anomalous couplings at the International Linear Collider...
Office of Scientific and Technical Information (OSTI)
Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider ...
Ubiquity of linear resistivity at intermediate temperature in...
Office of Scientific and Technical Information (OSTI)
Ubiquity of linear resistivity at intermediate temperature in bad metals Prev Next Title: Ubiquity of linear resistivity at intermediate temperature in bad metals Authors: ...
Ubiquity of linear resistivity at intermediate temperature in...
Office of Scientific and Technical Information (OSTI)
Ubiquity of linear resistivity at intermediate temperature in bad metals Citation Details In-Document Search Title: Ubiquity of linear resistivity at intermediate temperature in ...
High Impact Technology HQ - Results - LED Troffer, Cove (linear...
HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory High Impact Technology HQ - Results - LED Troffer, Cove (linear) and Downlight ...
Broader source: Energy.gov [DOE]
Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011
Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.
2015-10-09
A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.
Enhanced dielectric-wall linear accelerator
Sampayan, Stephen E.; Caporaso, George J.; Kirbie, Hugh C.
1998-01-01
A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface.
Noise in phase-preserving linear amplifiers
Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.
2014-12-04
The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state ? for the ancillary mode; ? determines the properties of the added noise.
Enhanced dielectric-wall linear accelerator
Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.
1998-09-22
A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.
Simple Limits on Achieving A Quasi-Linear Magnetic Compression for an FEL Driver
Sun, Yipeng; /SLAC
2012-02-16
Free electron lasers (FEL) need a very bright electron beam in three dimensions and a high peak charge density. In order to compress an initially longer electron bunch generated from the photoinjector, magnetic bunch compression systems are widely employed. In this paper, first harmonic RF linearization and its associated requirements are reviewed. Meanwhile it is also briefly discussed what is the relation between a proper initial bunch length and main RF frequency, when a harmonic RF linearization is included. Then given a reasonable bunch compression ratio, a proper initial bunch length as a function of the main RF frequency and RF phase is estimated analytically by several approaches, assuming that no harmonic RF section is needed to linearize the energy modulation introduced during main RF acceleration, and at the same time still linearly compress the bunch length. Next the upper limit of the bunch compression ratio in a single stage is evaluated analytically. The analytical relations derived on choosing a proper initial bunch length as a function of main RF frequency are confirmed by numerical simulation. These simple limit provide rough estimations and may be beneficial for choosing bunch compression ratios in different stages of an FEL driver, especially in a first stage bunch compression where there is usually a harmonic RF linearization applied. It may also be useful in evaluating the possibility of low charge operation mode without any harmonic RF linearization, where a shorter initial bunch length can be achieved from the photoinjector.
The Next Linear Collider: NLC2001
D. Burke et al.
2002-01-14
Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.
Radio frequency quadrupole resonator for linear accelerator
Moretti, Alfred
1985-01-01
An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.
High gradient accelerators for linear light sources
Barletta, W.A.
1988-09-26
Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs.
Communications circuit including a linear quadratic estimator
Ferguson, Dennis D.
2015-07-07
A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
None
2011-10-06
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN?s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Ordinary Isotropic Peridynamic Models Position Aware Linear...
Office of Scientific and Technical Information (OSTI)
Department of Energy's National Nuclear Security Administration under contract ... Scalar force state obtained from elastic energy density functional 1 2 a, N W -kB2 + - ...
Application of GIS in siting of linear facilities
Gallagher, G.A. III; Heatwole, D.W.; Schmidt, J.A. )
1993-01-01
Geographic information systems (GIS) are powerful tools in the analysis and selection of environmentally acceptable corridors for linear facilities, such as roads and utility lines. GIS can serve several functions in corridor siting, including managing and manipulating extensive environmental databases, weighting and compositing data layers to enable spatial analysis for a path of least resistance,'' summarizing statistics for a comparison of alternative corridors, preparing color graphics for presentations and reports, and providing a record of alternative analysis for permitting reviews and legal challenges. In this paper, the authors examine the benefits and limitations of using GIS to site linear facilities, based mainly on their experience in siting a 600-mile natural gas pipeline in Florida. They implemented a phased analytical approach to define acceptable corridors several miles in width and then selected viable routes within the corridors using a magnified scale. This approach resulted in a dynamic siting process which required numerous iterations of analysis. Consequently, their experience has instilled the benefits derived by expending preliminary effort to create macros of the GIS analytical process so that subsequent effort is minimized during numerous iterations of corridor and route refinement.
Microfabricated linear Paul-Straubel ion trap
Mangan, Michael A. (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Tigges, Chris P. (Albuquerque, NM); Linker, Kevin L. (Albuquerque, NM)
2011-04-19
An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.
Damping of linear waves via ionization and recombination in homogeneous plasmas
Dodin, I. Y.; Fisch, N. J.
2010-11-15
An oscillation-center model is proposed that analytically describes transformation of an arbitrary homogeneous linear wave at gradual ionization and recombination in homogeneous plasma. For the case when either of the processes dominates, general adiabatic invariants are found, from which the wave energy is derived as a function of the frequency.
NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.
2012-01-31
The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm^{-1 }gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.
Terahertz-driven linear electron acceleration
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton acceleratorsmore » with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less
Linear nozzle with tailored gas plumes
Kozarek, Robert L. (Apollo, PA); Straub, William D. (Pittsburgh, PA); Fischer, Joern E. (Bremen, DE); Leon, David D. (Murrysville, PA)
2003-01-01
There is claimed a method for depositing fluid material from a linear nozzle in a substantially uniform manner across and along a surface. The method includes directing gaseous medium through said nozzle to provide a gaseous stream at the nozzle exit that entrains fluid material supplied to the nozzle, said gaseous stream being provided with a velocity profile across the nozzle width that compensates for the gaseous medium's tendency to assume an axisymmetric configuration after leaving the nozzle and before reaching the surface. There is also claimed a nozzle divided into respective side-by-side zones, or preferably chambers, through which a gaseous stream can be delivered in various velocity profiles across the width of said nozzle to compensate for the tendency of this gaseous medium to assume an axisymmetric configuration.
Radio frequency focused interdigital linear accelerator
Swenson, Donald A.; Starling, W. Joel
2006-08-29
An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.
Faraday rotation assisted by linearly polarized light
Choi, Jai Min; Kim, Jang Myun; Cho, D.
2007-11-15
We demonstrate a type of chiral effect of an atomic medium. Polarization rotation of a probe beam is observed only when both a magnetic field and a linearly polarized coupling beam are present. We compare it with other chiral effects like optical activity, the Faraday effect, and the optically induced Faraday effect from the viewpoint of spatial inversion and time reversal transformations. As a theoretical model we consider a five-level configuration involving the cesium D2 transition. We use spin-polarized cold cesium atoms trapped in a magneto-optical trap to measure the polarization rotation versus probe detuning. The result shows reasonable agreement with a calculation from the master equation of the five-level configuration.
2d PDE Linear Symmetric Matrix Solver
Energy Science and Technology Software Center (OSTI)
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
International linear collider reference design report
Aarons, G.
2007-06-22
The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.
CALiPER Application Summary Report 19. LED Linear Pendants
none,
2012-10-01
Report 19 reviews the independently tested performance of nine LED linear pendants and also evaluates a collection of 11 linear pendant products available in both an LED and fluorescent version.
Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps
Broader source: Energy.gov [DOE]
Below is the text-alternative version of the "LED Replacements for Linear Fluorescent Lamps" webcast, held June 20, 2011.
NSTec Environmental Restoration
2012-02-21
This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.
Governance of the International Linear Collider Project
Foster, B.; Barish, B.; Delahaye, J.P.; Dosselli, U.; Elsen, E.; Harrison, M.; Mnich, J.; Paterson, J.M.; Richard, F.; Stapnes, S.; Suzuki, A.; Wormser, G.; Yamada, S.; /KEK, Tsukuba
2012-05-31
Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency, clearly apportioned at both a national and global level, is essential if the project is to be realised. Finally, models for running costs and decommissioning at the conclusion of the ILC project are proposed. This document represents an interim report of the bodies and individuals studying these questions inside the structure set up and supervised by the International Committee for Future Accelerators (ICFA). It represents a request for comment to the international community in all relevant disciplines, scientific, technical and most importantly, political. Many areas require further study and some, in particular the site selection process, have not yet progressed sufficiently to be addressed in detail in this document. Discussion raised by this document will be vital in framing the final proposals due to be published in 2012 in the Technical Design Report being prepared by the Global Design Effort of the ILC.
LED Linear Lamps and Troffer Lighting | Department of Energy
Linear Lamps and Troffer Lighting LED Linear Lamps and Troffer Lighting View the video about CALiPER Series 21 on LED Linear Lamps and Troffer Lighting. The CALiPER program performed a series of investigations on linear LED lamps. Each report in the series covers the performance of up to 31 linear LED lamps, which were purchased in late 2012 or 2013. The first report focuses on bare lamp performance of LED T8 replacement lamps and subsequent reports examine performance in various troffers, as
Liquid cooled, linear focus solar cell receiver
Kirpich, Aaron S. (Broomall, PA)
1985-01-01
Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.
Liquid cooled, linear focus solar cell receiver
Kirpich, A.S.
1983-12-08
Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.
Precision envelope detector and linear rectifier circuitry
Davis, Thomas J. (Richland, WA)
1980-01-01
Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.
VINETA II: A linear magnetic reconnection experiment
Bohlin, H. Von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.; Ernst-Moritz-Arndt University, Domstr. 11, 17489 Greifswald
2014-02-15
A linear experiment dedicated to the study of driven magnetic reconnection is presented. The new device (VINETA II) is suitable for investigating both collisional and near collisionless reconnection. Reconnection is achieved by externally driving magnetic field lines towards an X-point, inducing a current in the background plasma which consequently modifies the magnetic field topology. Owing to the open field line configuration of the experiment, the current is limited by the axial sheath boundary conditions. A plasma gun is used as an additional electron source in order to counterbalance the charge separation effects and supply the required current. Two drive methods are used in the device. First, an oscillating current through two parallel conductors drive the reconnection. Second, a stationary X-point topology is formed by the parallel conductors, and the drive is achieved by an oscillating current through a third conductor. In the first setup, the magnetic field of the axial plasma current dominates the field topology near the X-point throughout most of the drive. The second setup allows for the amplitude of the plasma current as well as the motion of the flux to be set independently of the X-point topology of the parallel conductors.
Linear air-fuel sensor development
Garzon, F.; Miller, C.
1996-12-14
The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.
High-gradient compact linear accelerator
Carder, B.M.
1998-05-26
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.
2d PDE Linear Asymmetric Matrix Solver
Energy Science and Technology Software Center (OSTI)
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Retired supercomputers enable student research
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Briefs - 2012 About Los Alamos National Laboratory Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national...
Electronic Non-Contacting Linear Position Measuring System
Post, Richard F. (Walnut Creek, CA)
2005-06-14
A non-contacting linear position location system employs a special transmission line to encode and transmit magnetic signals to a receiver on the object whose position is to be measured. The invention is useful as a non-contact linear locator of moving objects, e.g., to determine the location of a magnetic-levitation train for the operation of the linear-synchronous motor drive system.
International Linear Collider-A Technical Progress Report (Technical
Office of Scientific and Technical Information (OSTI)
Report) | SciTech Connect Technical Report: International Linear Collider-A Technical Progress Report Citation Details In-Document Search Title: International Linear Collider-A Technical Progress Report The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of
Achieving large linear elasticity and high strength in bulk nanocompsite
Office of Scientific and Technical Information (OSTI)
via synergistic effect (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect Title: Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be
A Fast Monte Carlo Simulation for the International Linear Collider
Office of Scientific and Technical Information (OSTI)
Detector (Technical Report) | SciTech Connect A Fast Monte Carlo Simulation for the International Linear Collider Detector Citation Details In-Document Search Title: A Fast Monte Carlo Simulation for the International Linear Collider Detector The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included
The Linear Engine Pathway of Transformation | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
The Linear Engine Pathway of Transformation The Linear Engine Pathway of Transformation This poster highlights the major milestones in the history of the linear engine in terms of technological advances, novel designs, and economic/social impact. PDF icon p-06_covington.pdf More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Modeling the
LED Replacements for Linear Fluorescent Lamps Webcast | Department of
Energy Replacements for Linear Fluorescent Lamps Webcast LED Replacements for Linear Fluorescent Lamps Webcast In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting Facts-listed products as well as products evaluated in the latest CALiPER reports. Eric Richman, also of PNNL, reported on a recently completed GATEWAY demonstration project, in which LED and
High Impact Technology HQ - Results - LED Troffer, Cove (linear) and
Downlight Retrofit Kits: Princeton Icahn Laboratory | Department of Energy HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory High Impact Technology HQ - Results - LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory PDF icon LED Troffer, Cove (linear) and Downlight Retrofit Kits: Princeton Icahn Laboratory More Documents & Publications DOE Booth Presentations From Grainger Show 2015 Downloads Exterior LED
DOE - Office of Legacy Management -- Stanford Linear Accelerator Center -
Office of Legacy Management (LM)
005 Stanford Linear Accelerator Center - 005 FUSRAP Considered Sites Site: Stanford Linear Accelerator Center (005) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to
Quasi-linear heating and acceleration in bi-Maxwellian plasmas
Hellinger, Petr; Trvn?ek, Pavel M.
2013-12-15
Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvn and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.
Linear electric field time-of-flight ion mass spectrometer
Funsten, Herbert O. (Los Alamos, NM); Feldman, William C. (Los Alamos, NM)
2008-06-10
A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.
The Klynac: An Integrated Klystron and Linear Accelerator
Potter, J. M., Schwellenbach, D., Meidinger, A.
2012-08-07
The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system
Linear Concentrator System Basics for Concentrating Solar Power...
Office of Environmental Management (EM)
Linear concentrating solar power (CSP) collectors capture the sun's energy with large mirrors that reflect and ... In the future, troughs may be integrated with existing or new ...
Simultaneous linear optics and coupling correction for storage...
Office of Scientific and Technical Information (OSTI)
Journal Article: Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data Citation Details In-Document Search Title:...
Discrimination of new physics models with the International Linear...
Office of Scientific and Technical Information (OSTI)
Discrimination of new physics models with the International Linear Collider Citation Details In-Document Search Title: Discrimination of new physics models with the International ...
Knot Undulator to Generate Linearly Polarized Photons with Low...
Office of Scientific and Technical Information (OSTI)
Technical Information Service, Springfield, VA at www.ntis.gov. Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third...
Linearly Polarized Thermal Emitter for More Efficient Thermophotovolta...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices...
Neutrino mass, dark energy, and the linear growth factor (Journal...
Office of Scientific and Technical Information (OSTI)
SciTech Connect Search Results Journal Article: Neutrino mass, dark energy, and the linear ... OSTI Identifier: 21249781 Resource Type: Journal Article Resource Relation: Journal Name: ...
Physics Case for the International Linear Collider (Technical...
Office of Scientific and Technical Information (OSTI)
Collider We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected...
Resource-Efficient Generataion of Linear Cluster States by Linear Optics with postselection
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Uskov, Dmitry B; Alsing, Paul; Fanto, Michael; Kaplan, Lev; Kim, R; Szep, Atilla; Smith IV, Amos M
2015-01-01
We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detectionmore » of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2^n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4^m-1.« less
Resource-Efficient Generataion of Linear Cluster States by Linear Optics with postselection
Uskov, Dmitry B; Alsing, Paul; Fanto, Michael; Kaplan, Lev; Kim, R; Szep, Atilla; Smith IV, Amos M
2015-01-01
We report on theoretical research in photonic cluster-state computing. Finding optimal schemes of generating non-classical photonic states is of critical importance for this field as physically implementable photon-photon entangling operations are currently limited to measurement-assisted stochastic transformations. A critical parameter for assessing the efficiency of such transformations is the success probability of a desired measurement outcome. At present there are several experimental groups that are capable of generating multi-photon cluster states carrying more than eight qubits. Separate photonic qubits or small clusters can be fused into a single cluster state by a probabilistic optical CZ gate conditioned on simultaneous detection of all photons with 1/9 success probability for each gate. This design mechanically follows the original theoretical scheme of cluster state generation proposed more than a decade ago by Raussendorf, Browne, and Briegel. The optimality of the destructive CZ gate in application to linear optical cluster state generation has not been analyzed previously. Our results reveal that this method is far from the optimal one. Employing numerical optimization we have identified that the maximal success probability of fusing n unentangled dual-rail optical qubits into a linear cluster state is equal to 1/2^n-1; an m-tuple of photonic Bell pair states, commonly generated via spontaneous parametric down-conversion, can be fused into a single cluster with the maximal success probability of 1/4^m-1.
Linear optics measurements and corrections using an AC dipole in RHIC
Wang, G.; Bai, M.; Yang, L.
2010-05-23
We report recent experimental results on linear optics measurements and corrections using ac dipole. In RHIC 2009 run, the concept of the SVD correction algorithm is tested at injection energy for both identifying the artificial gradient errors and correcting it using the trim quadrupoles. The measured phase beatings were reduced by 30% and 40% respectively for two dedicated experiments. In RHIC 2010 run, ac dipole is used to measure {beta}* and chromatic {beta} function. For the 0.65m {beta}* lattice, we observed a factor of 3 discrepancy between model and measured chromatic {beta} function in the yellow ring.
Exclusive soft function for Drell-Yan at next-to-next-to-leading...
Office of Scientific and Technical Information (OSTI)
NUCLEONS; TRANSVERSE MOMENTUM; WILSON LOOP BARYONS; ELEMENTARY PARTICLES; FERMIONS; FUNCTIONS; HADRONS; LINEAR MOMENTUM; SCALE DIMENSION Word Cloud More Like This Full Text...
Yock, Adam D. Kudchadker, Rajat J.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Court, Laurence E.
2014-05-15
Purpose: The purpose of this work was to develop and evaluate the accuracy of several predictive models of variation in tumor volume throughout the course of radiation therapy. Methods: Nineteen patients with oropharyngeal cancers were imaged daily with CT-on-rails for image-guided alignment per an institutional protocol. The daily volumes of 35 tumors in these 19 patients were determined and used to generate (1) a linear model in which tumor volume changed at a constant rate, (2) a general linear model that utilized the power fit relationship between the daily and initial tumor volumes, and (3) a functional general linear model that identified and exploited the primary modes of variation between time series describing the changing tumor volumes. Primary and nodal tumor volumes were examined separately. The accuracy of these models in predicting daily tumor volumes were compared with those of static and linear reference models using leave-one-out cross-validation. Results: In predicting the daily volume of primary tumors, the general linear model and the functional general linear model were more accurate than the static reference model by 9.9% (range: ?11.6%23.8%) and 14.6% (range: ?7.3%27.5%), respectively, and were more accurate than the linear reference model by 14.2% (range: ?6.8%40.3%) and 13.1% (range: ?1.5%52.5%), respectively. In predicting the daily volume of nodal tumors, only the 14.4% (range: ?11.1%20.5%) improvement in accuracy of the functional general linear model compared to the static reference model was statistically significant. Conclusions: A general linear model and a functional general linear model trained on data from a small population of patients can predict the primary tumor volume throughout the course of radiation therapy with greater accuracy than standard reference models. These more accurate models may increase the prognostic value of information about the tumor garnered from pretreatment computed tomography images and facilitate improved treatment management.
Energy Science and Technology Software Center (OSTI)
1986-05-01
The ALTERNATIVE LIBRARY is a library of elementary functions prepared for use with the standard FORTRAN compiler under 4.2 BSD UNIX as an alternative to the standard system library. The library offers improved accuracy as well as additional capabilities. It includes routines ASIN, ACOS, COSH, EXP, LOG, LOG10, POW, SIN, COS, SINH, TAN, and TANH. These alternative routines have slightly modified domains and slightly different responses to invalid arguments. Four routines, not part of themorestandard library, are provided: ADX(X,N), a double-precision function that returns the double-precision argument X scaled by 2 raised to the Nth power; INTXP(X), an integer function that returns as a signed integer the exponent of the double-precision argument X; SETXP(X,N), a double-precision function that returns the double-precision argument X with its exponent replaced by N; and DCOTAN(X), a double-precision function that returns the cotangent of the double-precision argument X, where X is given in radians.less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.
2015-10-09
A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less
Drift tube suspension for high intensity linear accelerators
Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.
1980-03-11
The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.
Drift tube suspension for high intensity linear accelerators
Liska, Donald J. (Los Alamos, NM); Schamaun, Roger G. (Los Alamos, NM); Clark, Donald C. (Los Alamos, NM); Potter, R. Christopher (Los Alamos, NM); Frank, Joseph A. (Los Alamos, NM)
1982-01-01
The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.
Variable-energy drift-tube linear accelerator
Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM); Potter, James M. (Los Alamos, NM); Stovall, James E. (Los Alamos, NM)
1984-01-01
A linear accelerator system includes a plurality of post-coupled drift-tubes wherein each post coupler is bistably positionable to either of two positions which result in different field distributions. With binary control over a plurality of post couplers, a significant accumlative effect in the resulting field distribution is achieved yielding a variable-energy drift-tube linear accelerator.
Differentially pumped dual linear quadrupole ion trap mass spectrometer
Owen, Benjamin C.; Kenttamaa, Hilkka I.
2015-10-20
The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.
Comparison of open-source linear programming solvers.
Gearhart, Jared Lee; Adair, Kristin Lynn; Durfee, Justin D.; Jones, Katherine A.; Martin, Nathaniel; Detry, Richard Joseph
2013-10-01
When developing linear programming models, issues such as budget limitations, customer requirements, or licensing may preclude the use of commercial linear programming solvers. In such cases, one option is to use an open-source linear programming solver. A survey of linear programming tools was conducted to identify potential open-source solvers. From this survey, four open-source solvers were tested using a collection of linear programming test problems and the results were compared to IBM ILOG CPLEX Optimizer (CPLEX) [1], an industry standard. The solvers considered were: COIN-OR Linear Programming (CLP) [2], [3], GNU Linear Programming Kit (GLPK) [4], lp_solve [5] and Modular In-core Nonlinear Optimization System (MINOS) [6]. As no open-source solver outperforms CPLEX, this study demonstrates the power of commercial linear programming software. CLP was found to be the top performing open-source solver considered in terms of capability and speed. GLPK also performed well but cannot match the speed of CLP or CPLEX. lp_solve and MINOS were considerably slower and encountered issues when solving several test problems.
Nonlinear vs. linear biasing in Trp-cage folding simulations
Spiwok, Vojt?ch Oborsk, Pavel; Krlov, Blanka; Pazrikov, Jana
2015-03-21
Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200?ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.
Non-linear Seismic Soil Structure Interaction Method for Developing Nonlinear Seismic SSI
Office of Environmental Management (EM)
Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011 E102003020BDS Presentation Outline Purpose of Presentation Linear versus Non-Linear Seismic SSI Non-Linear seismic Soil Structure Interaction (NLSSI) Studies The NLSSI Introduction Non-Linearity in Seismic SSI Analysis Commercial Software Elements Commercial Software Non-Linear Constitutive Models Non-Linear
Non-linear stochastic growth rates and redshift space distortions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmore » ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less
Asynchronous parallel generating set search for linearly-constrained optimization.
Lewis, Robert Michael; Griffin, Joshua D.; Kolda, Tamara Gibson
2006-08-01
Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the APPSPACK software framework and we present results from an extensive numerical study using CUTEr test problems. We discuss the results, both positive and negative, and conclude that GSS is a reliable method for solving small-to-medium sized linearly-constrained optimization problems without derivatives.
Fourth order resonance of a high intensity linear accelerator* (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Fourth order resonance of a high intensity linear accelerator* Citation Details In-Document Search Title: Fourth order resonance of a high intensity linear accelerator* For a high intensity beam, the 4\nu=1 resonance of a linear accelerator is manifested through the octupolar term of space charge potential when the depressed phase advance \sigma is close to and below 90 but no resonance effect is observed when \sigma just above 90 . To verify that this is a
Thermodynamics of a lattice gas with linear attractive potential (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Thermodynamics of a lattice gas with linear attractive potential Citation Details In-Document Search Title: Thermodynamics of a lattice gas with linear attractive potential We study the equilibrium thermodynamics of a one-dimensional lattice gas with interaction V(|i-j|)=-1/(μn) (ξ-1/n |i-j|) given by the superposition of a universal attractive interaction with strength -1/(μn) ξ<0, and a linear attractive potential 1/(μn{sup 2}) |i-j|. The interaction is
Top Quark Anomalous Couplings at the International Linear Collider (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider We present a study of the experimental determination of the forward-backward asymmetry in the process e{sup +}e{sup -} {yields} t{bar t} and in the subsequent t {yields} Wb decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
mFUSE: Function Sequencer for MATLAB Help Manual LANL/UCSD Engineering Institute LA-CC-10-033 LA-UR 10-01264 c Copyright 2010, Los Alamos National Security, LLC All rights reserved. July 29, 2010 LA-CC-10-033 LA-UR 10-01264 Contents I What is mFUSE? 4 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Version Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 About This Manual . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Author Information . . . . .
Explicit expressions for three-dimensional boundary integrals in linear elasticity
Nintcheu Fata, Sylvain
2011-01-01
On employing isoparametric, piecewise linear shape functions over a flat triangle, exact formulae are derived for all surface potentials involved in the numerical treatment of three-dimensional singular and hyper-singular boundary integral equations in linear elasticity. These formulae are valid for an arbitrary source point in space and are represented as analytical expressions along the edges of the integration triangle. They can be employed to solve integral equations defined on triangulated surfaces via a collocation method or may be utilized as analytical expressions for the inner integrals in a Galerkin technique. A numerical example involving a unit triangle and a source point located at various distances above it, as well as sample problems solved by a collocation boundary element method for the Lame equation are included to validate the proposed formulae.
Spin relaxation and linear-in-electric-field frequency shift...
Office of Scientific and Technical Information (OSTI)
Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an ... It is found that the rectangular cell geometry admits of a general result for Tsub 1, ...
Linear Scaling Electronic Structure Methods with Periodic Boundary Conditions
Gustavo E. Scuseria
2008-02-08
The methodological development and computational implementation of linear scaling quantum chemistry methods for the accurate calculation of electronic structure and properties of periodic systems (solids, surfaces, and polymers) and their application to chemical problems of DOE relevance.
Linear Scaling of the Exciton Binding Energy versus the Band...
Office of Scientific and Technical Information (OSTI)
Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials This content will become publicly available on August 6, 2016 Prev Next Title:...
A Linear Theory of Microwave Instability in Electron Storage...
Office of Scientific and Technical Information (OSTI)
Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known ... in an analysis of this stability that are associated with the potential-well distortion. ...
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Free piston variable-stroke linear-alternator generator
Haaland, C.M.
1998-12-15
A free-piston variable stroke linear-alternator AC power generator for a combustion engine is described. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod. 8 figs.
Ordinary Isotropic Peridynamic Models; Position Aware Linear Solid (PALS).
Office of Scientific and Technical Information (OSTI)
(Conference) | SciTech Connect Ordinary Isotropic Peridynamic Models; Position Aware Linear Solid (PALS). Citation Details In-Document Search Title: Ordinary Isotropic Peridynamic Models; Position Aware Linear Solid (PALS). Abstract not provided. Authors: Mitchell, John Anthony Publication Date: 2015-02-01 OSTI Identifier: 1239086 Report Number(s): SAND2015-1012PE 566979 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at
International Linear Collider Technical Design Report - Volume 2: Physics
Office of Scientific and Technical Information (OSTI)
(Technical Report) | SciTech Connect International Linear Collider Technical Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics Authors: Baer, Howard ; Barklow, Tim ; Fujii, Keisuke ; Gao, Yuanning ; Hoang, Andre ; Kanemura, Shinya ; List, Jenny ; Logan, Heather E. ; Nomerotski, Andrei ; Perelstein, Maxim ; Peskin, Michael E. ; Poschl, Roman ; Reuter, Jurgen ; Riemann, Sabine ; Savoy-Navarro,
Linear theory of microwave instability in electron storage rings (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Linear theory of microwave instability in electron storage rings Citation Details In-Document Search Title: Linear theory of microwave instability in electron storage rings Authors: Cai, Yunhai Publication Date: 2011-06-14 OSTI Identifier: 1099585 Type: Published Article Journal Name: Physical Review Special Topics - Accelerators and Beams Additional Journal Information: Journal Volume: 14; Journal Issue: 6; Journal ID: ISSN 1098-4402 Publisher: American Physical
Ubiquity of linear resistivity at intermediate temperature in bad metals
Office of Scientific and Technical Information (OSTI)
(Journal Article) | DOE PAGES Ubiquity of linear resistivity at intermediate temperature in bad metals Title: Ubiquity of linear resistivity at intermediate temperature in bad metals Authors: Boyd, G. R. ; Zlatić, V. ; Freericks, J. K. Publication Date: 2015-02-20 OSTI Identifier: 1181226 Grant/Contract Number: SC0007091; FG02-08ER46542 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal Information: Journal Volume: 91; Journal Issue: 7; Journal ID: ISSN
Discrimination of new physics models with the International Linear Collider
Office of Scientific and Technical Information (OSTI)
(Journal Article) | SciTech Connect Discrimination of new physics models with the International Linear Collider Citation Details In-Document Search Title: Discrimination of new physics models with the International Linear Collider Authors: Asano, Masaki ; Saito, Tomoyuki ; Suehara, Taikan ; Fujii, Keisuke ; Hundi, R. S. ; Itoh, Hideo ; Matsumoto, Shigeki ; Okada, Nobuchika ; Takubo, Yosuke ; Yamamoto, Hitoshi Publication Date: 2011-12-02 OSTI Identifier: 1098342 Type: Publisher's Accepted
A posteriori error analysis of parameterized linear systems using spectral
Office of Scientific and Technical Information (OSTI)
methods. (Journal Article) | SciTech Connect Journal Article: A posteriori error analysis of parameterized linear systems using spectral methods. Citation Details In-Document Search Title: A posteriori error analysis of parameterized linear systems using spectral methods. Abstract not provided. Authors: Constantine, Paul ; Butler, Troy Publication Date: 2011-07-01 OSTI Identifier: 1106467 Report Number(s): SAND2011-4711J 463817 DOE Contract Number: AC04-94AL85000 Resource Type: Journal
Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons
Boer, Daniel; /Groningen, KVI; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Mulders, Piet J.; /Brussels U., IIHE; Pisano, Cristian; /Cagliari U. /INFN, Cagliari
2011-02-07
We show that the unmeasured distribution of linearly polarized gluons inside unpolarized hadrons can be directly probed in jet or heavy quark pair production both in electron-hadron and hadron-hadron collisions. We present expressions for the simplest cos 2{phi} asymmetries and estimate their maximal value in the particular case of electron-hadron collisions. Measurements of the linearly polarized gluon distribution in the proton should be feasible in future EIC or LHeC experiments.
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Wednesday, 29 August 2007 00:00 Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic
International Linear Collider Technical Design Report - Volume 2: Physics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(Technical Report) | SciTech Connect International Linear Collider Technical Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical Design Report - Volume 2: Physics Authors: Baer, Howard ; Barklow, Tim ; Fujii, Keisuke ; Gao, Yuanning ; Hoang, Andre ; Kanemura, Shinya ; List, Jenny ; Logan, Heather E. ; Nomerotski, Andrei ; Perelstein, Maxim ; Peskin, Michael E. ; Poschl, Roman ; Reuter, Jurgen ; Riemann, Sabine ; Savoy-Navarro,
JLab Supports International Linear Collider Cavity Development Work |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Jefferson Lab Supports International Linear Collider Cavity Development Work NEWPORT NEWS, Va. Feb. 12, 2008 - It's not often that major-league baseball and nuclear physics get to share the limelight, but that's what's happening at the Department of Energy's Jefferson Lab. The baseball connection involves a nine-cell niobium cavity developed by KEK accelerator scientists in Japan as one of several designs being tested for development for the proposed International Linear Collider. JLab is
Free piston variable-stroke linear-alternator generator
Haaland, Carsten M. (Dadeville, AL)
1998-01-01
A free-piston variable stroke linear-alternator AC power generator for a combustion engine. An alternator mechanism and oscillator system generates AC current. The oscillation system includes two oscillation devices each having a combustion cylinder and a flying turnbuckle. The flying turnbuckle moves in accordance with the oscillation device. The alternator system is a linear alternator coupled between the two oscillation devices by a slotted connecting rod.
Top Quark Anomalous Couplings at the International Linear Collider (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Top Quark Anomalous Couplings at the International Linear Collider Citation Details In-Document Search Title: Top Quark Anomalous Couplings at the International Linear Collider × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and
Top quark anomalous couplings at the International Linear Collider (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Top quark anomalous couplings at the International Linear Collider Citation Details In-Document Search Title: Top quark anomalous couplings at the International Linear Collider Authors: Devetak, Erik ; Nomerotski, Andrei ; Peskin, Michael Publication Date: 2011-08-17 OSTI Identifier: 1100572 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 84; Journal Issue: 3; Journal ID: ISSN 1550-7998
Toward portable programming of numerical linear algebra on manycore nodes.
Office of Scientific and Technical Information (OSTI)
(Conference) | SciTech Connect Toward portable programming of numerical linear algebra on manycore nodes. Citation Details In-Document Search Title: Toward portable programming of numerical linear algebra on manycore nodes. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-05-01 OSTI Identifier: 1109301 Report Number(s): SAND2011-3556C 471555 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Toward petaflop numerical
Linear Concentrator System Basics for Concentrating Solar Power |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic
2010 Annual Planning Summary for Stanford Linear Accelerator Center Site
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Office (SLAC) | Department of Energy Stanford Linear Accelerator Center Site Office (SLAC) 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24 months, and the planned cost and schedule for each NEPA review identified. PDF icon 2010 Annual Planning Summary for
Shang, Yu; Yu, Guoqiang
2014-09-29
Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.
Method for linearizing deflection of a MEMS device using binary electrodes and voltage modulation
Horenstein, Mark N. [West Roxbury, MA
2008-06-10
A micromechanical device comprising one or more electronically movable structure sets comprising for each set a first electrode supported on a substrate and a second electrode supported substantially parallel from said first electrode. Said second electrode is movable with respect to said first electrode whereby an electric potential applied between said first and second electrodes causing said second electrode to move relative to said first electrode a distance X, (X), where X is a nonlinear function of said potential, (V). Means are provided for linearizing the relationship between V and X.
Parametric instability of plasmas produced by linearly polarized microwave pulsed fields
Shokri, B.; Ghorbanalilu, M.
2005-04-15
After analyzing the interaction of an intense linearly polarized microwave, field weaker than atomic field, with a dilute gas, the production of a plasma is studied. It is shown that the electron distribution function obtained is nonequilibrium and anisotropic. By considering the interaction of the high-frequency electric field with the produced plasma the dispersion relation of oscillations in the produced plasma is obtained. The parametric instability is studied for the produced plasma when instability frequency is higher than ion plasma frequency. Calculations show that the harmonic generation takes place in the produced plasma.
Higher-degree linear approximations of nonlinear systems
Karahan, S.
1989-01-01
In this dissertation, the author develops a new method for obtaining higher degree linear approximations of nonlinear control systems. The standard approach in the analysis and synthesis of nonlinear systems is a first order approximation by a linear model. This is usually performed by obtaining a series expansion of the system at some nominal operating point and retaining only the first degree terms in the series. The accuracy of this approximation depends on how far the system moves away from the normal point, and on the relative magnitudes of the higher degree terms in the series expansion. The approximation is achieved by finding an appropriate nonlinear coordinate transformation-feedback pair to perform the higher degree linearization. With the proposed method, one can improve the accuracy of the approximation up to arbitrarily higher degrees, provided certain solvability conditions are satisfied. The Hunt-Su linearizability theorem makes these conditions precise. This approach is similar to Poincare's Normal Form Theorem in formulation, but different in its solution method. After some mathematical background the author derives a set of equations (called the Homological Equations). A solution to this system of linear equations is equivalent to the solution to the problem of approximate linearization. However, it is generally not possible to solve the system of equations exactly. He outlines a method for systematically finding approximate solutions to these equations using singular value decomposition, while minimizing an error with respect to some defined norm.
Modeling patterns in data using linear and related models
Engelhardt, M.E.
1996-06-01
This report considers the use of linear models for analyzing data related to reliability and safety issues of the type usually associated with nuclear power plants. The report discusses some of the general results of linear regression analysis, such as the model assumptions and properties of the estimators of the parameters. The results are motivated with examples of operational data. Results about the important case of a linear regression model with one covariate are covered in detail. This case includes analysis of time trends. The analysis is applied with two different sets of time trend data. Diagnostic procedures and tests for the adequacy of the model are discussed. Some related methods such as weighted regression and nonlinear models are also considered. A discussion of the general linear model is also included. Appendix A gives some basic SAS programs and outputs for some of the analyses discussed in the body of the report. Appendix B is a review of some of the matrix theoretic results which are useful in the development of linear models.
Lewis, Robert Michael (College of William and Mary, Williamsburg, VA); Torczon, Virginia Joanne (College of William and Mary, Williamsburg, VA); Kolda, Tamara Gibson
2006-08-01
We consider the solution of nonlinear programs in the case where derivatives of the objective function and nonlinear constraints are unavailable. To solve such problems, we propose an adaptation of a method due to Conn, Gould, Sartenaer, and Toint that proceeds by approximately minimizing a succession of linearly constrained augmented Lagrangians. Our modification is to use a derivative-free generating set direct search algorithm to solve the linearly constrained subproblems. The stopping criterion proposed by Conn, Gould, Sartenaer and Toint for the approximate solution of the subproblems requires explicit knowledge of derivatives. Such information is presumed absent in the generating set search method we employ. Instead, we show that stationarity results for linearly constrained generating set search methods provide a derivative-free stopping criterion, based on a step-length control parameter, that is sufficient to preserve the convergence properties of the original augmented Lagrangian algorithm.
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, Howard T. (Darien, IL)
1993-01-01
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.
Klystron switching power supplies for the Internation Linear Collider
Fraioli, Andrea; /Cassino U. /INFN, Pisa
2009-12-01
The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.
Beamstrahlung spectra in next generation linear colliders. Revision
Barklow, T.; Chen, P.; Kozanecki, W.
1992-04-01
For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.
Cascaded emission of linearly polarized single photons from positioned
Office of Scientific and Technical Information (OSTI)
InP/GaInP quantum dots (Journal Article) | SciTech Connect Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots Citation Details In-Document Search Title: Cascaded emission of linearly polarized single photons from positioned InP/GaInP quantum dots We report on the optical characterization of site-controlled InP/GaInP quantum dots (QDs). Spatially resolved low temperature cathodoluminescence proves the long-range ordering of the buried emitters,
Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
Coffey, H.T.
1993-10-19
A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.
Search for Linear Polarization of the Cosmic Background Radiation
DOE R&D Accomplishments [OSTI]
Lubin, P. M.; Smoot, G. F.
1978-10-01
We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination
Scalable Library for the Parallel Solution of Sparse Linear Systems
Energy Science and Technology Software Center (OSTI)
1993-07-14
BlockSolve is a scalable parallel software library for the solution of large sparse, symmetric systems of linear equations. It runs on a variety of parallel architectures and can easily be ported to others. BlockSovle is primarily intended for the solution of sparse linear systems that arise from physical problems having multiple degrees of freedom at each node point. For example, when the finite element method is used to solve practical problems in structural engineering, eachmore » node will typically have anywhere from 3-6 degrees of freedom associated with it. BlockSolve is written to take advantage of problems of this nature; however, it is still reasonably efficient for problems that have only one degree of freedom associated with each node, such as the three-dimensional Poisson problem. It does not require that the matrices have any particular structure other than being sparse and symmetric. BlockSolve is intended to be used within real application codes. It is designed to work best in the context of our experience which indicated that most application codes solve the same linear systems with several different right-hand sides and/or linear systems with the same structure, but different matrix values multiple times.« less
SIMULTANEOUS LINEAR AND CIRCULAR OPTICAL POLARIMETRY OF ASTEROID (4) VESTA
Wiktorowicz, Sloane J.; Nofi, Larissa A.
2015-02-10
From a single 3.8 hr observation of the asteroid (4) Vesta at 13.7 phase angle with the POlarimeter at Lick for Inclination Studies of Hot jupiters 2 (POLISH2) at the Lick Observatory Shane 3 m telescope, we confirm rotational modulation of linear polarization in the B and V bands. We measure the peak-to-peak modulation in the degree of linear polarization to be ?P = (294 35) 10{sup ?6} (ppm) and time-averaged ?P/P = 0.0575 0.0069. After rotating the plane of linear polarization to the scattering plane, asteroidal rotational modulation is detected with 12? confidence and observed solely in Stokes Q/I. POLISH2 simultaneously measures Stokes I, Q, U (linear polarization), and V (circular polarization), but we detect no significant circular polarization with a 1? upper limit of 78 ppm in the B band. Circular polarization is expected to arise from multiple scattering of sunlight by rough surfaces, and it has previously been detected in nearly all other classes of solar system bodies except for asteroids. Subsequent observations may be compared with surface albedo maps from the Dawn Mission, which may allow the identification of compositional variation across the asteroidal surface. These results demonstrate the high accuracy achieved by POLISH2 at the Lick 3 m telescope, which is designed to directly detect scattered light from spatially unresolvable exoplanets.
Position sensor for linear synchronous motors employing halbach arrays
Post, Richard Freeman
2014-12-23
A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.
Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Devices - Energy Innovation Portal Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed fabrication methods for
Linear-scaling implementation of the direct random-phase approximation
Kllay, Mihly
2015-05-28
We report the linear-scaling implementation of the direct random-phase approximation (dRPA) for closed-shell molecular systems. As a bonus, linear-scaling algorithms are also presented for the second-order screened exchange extension of dRPA as well as for the second-order MllerPlesset (MP2) method and its spin-scaled variants. Our approach is based on an incremental scheme which is an extension of our previous local correlation method [Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The approach extensively uses local natural orbitals to reduce the size of the molecular orbital basis of local correlation domains. In addition, we also demonstrate that using natural auxiliary functions [M. Kllay, J. Chem. Phys. 141, 244113 (2014)], the size of the auxiliary basis of the domains and thus that of the three-center Coulomb integral lists can be reduced by an order of magnitude, which results in significant savings in computation time. The new approach is validated by extensive test calculations for energies and energy differences. Our benchmark calculations also demonstrate that the new method enables dRPA calculations for molecules with more than 1000 atoms and 10?000 basis functions on a single processor.
Energy level alignment of self-assembled linear chains of benzenediami...
Office of Scientific and Technical Information (OSTI)
Publisher's Accepted Manuscript: Energy level alignment of self-assembled linear chains of ... on March 24, 2017 Prev Next Title: Energy level alignment of self-assembled linear ...
Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop
Dunn, M.E.
2006-02-27
The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program-specific measurements. As a result, ORELA has not received base funding to support major upgrades and significant maintenance operations that are essential to keep the facility in a state of readiness over the long term. As a result, ORELA has operated on a ''sub-bare-minimum'' budget for the past 10 to 15 years, and the facility has not been maintained at a level for continued reliable operation for the long term. During the Workshop, Jerry McKamy (NNSA/NA-117) used a hospital patient metaphor that accurately depicts the facility status. ORELA is currently in the intensive care unit (ICU) on life support, and refurbishment efforts are needed to get the ''patient'' off life support and out to an ordinary hospital room. McKamy further noted that the DOE NCSP is planning to fund immediate refurbishment tasks ($1.5 M over three years) to help reestablish reliable ORELA operation (i.e., move ORELA from ICU to an ordinary hospital room). Furthermore, the NCSP will work to identify and carry out the actions needed to discharge ORELA from the ''hospital'' over the next five to seven years. In accordance with the Workshop objectives, the technical community publicly endorsed the need for a reliable ORELA facility that can meet current and future nuclear data needs. These Workshop proceedings provide the formal documentation of the technical community endorsement for ORELA. Furthermore, the proceedings highlight the past and current contributions that ORELA has made to the nuclear industry. The Workshop further emphasized the operational and funding problems that currently plague the facility, thereby limiting ORELA's operational reliability. Despite the recent operational problems, ORELA is a uniquely capable measurement facility that must be part of the overall U.S. nuclear data measurement portfolio in order to support current and emerging nuclear applications. The Workshop proceedings further emphasize that ORNL, the technical community, and programmatic sponsors are eager to see ORELA reestablish reliable measurement operation and be readily available to address nuclear data challe
Scalar mesons in three-flavor linear sigma models
Deirdre Black; Amir H. Fariborz; Sherif Moussa; Salah Nasri; Joseph Schrechter
2001-09-01
The three flavor linear sigma model is studied in order to understand the role of possible light scalar mesons in the pi-pi, pi-K and pi-eta elastic scattering channels. The K-matrix prescription is used to unitarize tree-level amplitudes and, with a sufficiently general model, we obtain reasonable ts to the experimental data. The effect of unitarization is very important and leads to the emergence of a nonet of light scalars, with masses below 1 GeV. We compare with a scattering treatment using a more general non-linear sigma model approach and also comment upon how our results t in with the scalar meson puzzle. The latter involves a preliminary investigation of possible mixing between scalar nonets.
Linear corotation torques in non-barotropic disks
Tsang, David
2014-02-20
A fully analytic expression for the linear corotation torque to first order in eccentricity for planets in non-barotropic protoplanetary disks is derived, taking into account the effect of disk entropy gradients. This torque formula is applicable to both the co-orbital, corotation torques and the non-co-orbital, corotation torques—for planets in orbits with non-zero eccentricity—in disks where the thermal diffusivity and viscosity are sufficient to maintain the linearity of these interactions. While the co-orbital, corotation torque is important for migration of planets in Type I migration, the non-co-orbital, corotation torque plays an important role in the eccentricity evolution of giant planets that have opened gaps in the disk. The presence of an entropy gradient in the disk can significantly modify the corotation torque in both these cases.
Finite element analyses of a linear-accelerator electron gun
Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.
2014-02-15
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
Power Saving Optimization for Linear Collider Interaction Region Parameters
Seryi, Andrei; /SLAC
2009-10-30
Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.
Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA).
Leick, Michael T.; Moses, Ronald W.
2015-03-01
This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.
When linear stability does not exclude nonlinear instability
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.
2015-05-29
We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less
Planning under uncertainty solving large-scale stochastic linear programs
Infanger, G. . Dept. of Operations Research Technische Univ., Vienna . Inst. fuer Energiewirtschaft)
1992-12-01
For many practical problems, solutions obtained from deterministic models are unsatisfactory because they fail to hedge against certain contingencies that may occur in the future. Stochastic models address this shortcoming, but up to recently seemed to be intractable due to their size. Recent advances both in solution algorithms and in computer technology now allow us to solve important and general classes of practical stochastic problems. We show how large-scale stochastic linear programs can be efficiently solved by combining classical decomposition and Monte Carlo (importance) sampling techniques. We discuss the methodology for solving two-stage stochastic linear programs with recourse, present numerical results of large problems with numerous stochastic parameters, show how to efficiently implement the methodology on a parallel multi-computer and derive the theory for solving a general class of multi-stage problems with dependency of the stochastic parameters within a stage and between different stages.
SAR processing with non-linear FM chirp waveforms.
Doerry, Armin Walter
2006-12-01
Nonlinear FM (NLFM) waveforms offer a radar matched filter output with inherently low range sidelobes. This yields a 1-2 dB advantage in Signal-to-Noise Ratio over the output of a Linear FM (LFM) waveform with equivalent sidelobe filtering. This report presents details of processing NLFM waveforms in both range and Doppler dimensions, with special emphasis on compensating intra-pulse Doppler, often cited as a weakness of NLFM waveforms.
Linear plasmoid instability of thin current sheets with shear flow
Ni Lei; Germaschewski, Kai; Huang Yimin; Sullivan, Brian P.; Yang Hongang; Bhattacharjee, Amitava
2010-05-15
This paper presents linear analytical and numerical studies of plasmoid instabilities in the presence of shear flow in high-Lundquist-number plasmas. Analysis demonstrates that the stability problem becomes essentially two dimensional as the stabilizing effects of shear flow become more prominent. Scaling results are presented for the two-dimensional instabilities. An approximate criterion is given for the critical aspect ratio of thin current sheets at which the plasmoid instability is triggered.
LINEAR SCANNING METHOD BASED ON THE SAFT COARRAY
Martin, C. J.; Martinez-Graullera, O.; Romero, D.; Ullate, L. G.; Higuti, R. T.
2010-02-22
This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples.
Linear induction accelerator and pulse forming networks therefor
Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)
1989-01-01
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.
Linear Fresnel Technology added to System Advisor Model's Capabilities -
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
News Releases | NREL Linear Fresnel Technology added to System Advisor Model's Capabilities Now utilities can get detailed information on siting, performance and finances February 8, 2012 A promising Concentrating Solar Power (CSP) technology that uses a stationary receiver tube and an array of mirrors mounted near the ground can now be accessed within the System Advisor Model (SAM), which predicts annual energy production, hourly performance and return on investment. The U.S. Department of
Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Devices - Energy Innovation Portal Solar Thermal Solar Thermal Advanced Materials Advanced Materials Find More Like This Return to Search Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Iowa State University and Ames Laboratory researchers have developed fabrication methods for a polarized thermal emitter than can be used to create more efficient thermophotovoltaic devices for
Linear response of tripartite entanglement to infinitesimal noise
Zhang, Fu-Lin; Chen, Jing-Ling
2014-10-15
Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise can serve as a signature of the robustness of entangled states. A crucial problem of this topic in multipartite systems is to compute the degree of entanglement in a mixed state. We find a family of global noise in three-qubit systems, which is composed of four W states. Under its influence, the linear response of the tripartite entanglement of a symmetrical three-qubit pure state is studied. A lower bound of the linear response is found to depend completely on the initial tripartite and bipartite entanglement. This result shows that the decay of tripartite entanglement is hastened by the bipartite one. - Highlights: We study a set of W-type noise and its linear effect on symmetric pure states. Its effect on two-qubit entanglement depends only on the initial concurrence. A lower bound of the effect on 3-tangle is found in terms of initial entanglements. We obtain the time of three-tangle sudden death for two families of typical states. These reveal that the bipartite entanglement speeds up the decay of the tripartite one.
Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher
2013-11-05
In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.
Cosmic bubble and domain wall instabilities I: parametric amplification of linear fluctuations
Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura
2015-03-03
This is the first paper in a series where we study collisions of nucleated bubbles taking into account the effects of small initial (quantum) fluctuations in a fully 3+1-dimensional setting. In this paper, we consider the evolution of linear fluctuations around highly symmetric though inhomogeneous backgrounds. In particular, we demonstrate that a large degree of asymmetry develops over time from tiny initial fluctuations superposed upon planar and SO(2,1) symmetric backgrounds. These fluctuations are inevitable consequences of zero-point vacuum oscillations, so excluding them by enforcing a high degree of spatial symmetry is inconsistent in a quantum treatment. To simplify the analysis we consider the limit of two colliding planar walls, with mode functions for the fluctuations characterized by the wavenumber transverse to the collision direction and a longitudinal shape along the collision direction x, which we solve for. In the linear regime, the fluctuations obey a linear wave equation with a time- and space-dependent mass m{sub eff}(x,t). In situations where the walls collide multiple times, m{sub eff} oscillates in time. We use Floquet theory to study the evolution of the fluctuations and generalize the calculations familiar from the preheating literature to the case with many coupled degrees of freedom. The inhomogeneous case has bands of unstable transverse wavenumbers k{sub ⊥} whose corresponding mode functions grow exponentially. By examining the detailed spatial structure of the mode functions in x, we identify both broad and narrow parametric resonance generalizations of the homogeneous m{sub eff}(t) case of preheating. The unstable k{sub ⊥} modes are longitudinally localized, yet can be described as quasiparticles in the Bogoliubov sense. We define an effective occupation number and show they are created in bursts for the case of well-defined collisions in the background. The transverse-longitudinal coupling accompanying nonlinearity radically breaks this localized particle description, with nonseparable 3D modes arising that will be studied in subsequent papers.
PERVASIVE LINEAR POLARIZATION SIGNALS IN THE QUIET SUN
Bellot Rubio, L. R.; Orozco Suarez, D.
2012-09-20
This paper investigates the distribution of linear polarization signals in the quiet-Sun internetwork using ultra-deep spectropolarimetric data. We reduce the noise of the observations as much as is feasible by adding single-slit measurements of the Zeeman-sensitive Fe I 630 nm lines taken by the Hinode spectropolarimeter. The integrated Stokes spectra are employed to determine the fraction of the field of view covered by linear polarization signals. We find that up to 69% of the quiet solar surface at disk center shows Stokes Q or U profiles with amplitudes larger than 0.032% (4.5 times the noise level of 7 Multiplication-Sign 10{sup -5} reached by the longer integrations). The mere presence of linear polarization in most of the quiet Sun implies that the weak internetwork fields must be highly inclined, but we quantify this by inverting those pixels with Stokes Q or U signals well above the noise. This allows for a precise determination of the field inclination, field strength, and field azimuth because the information carried by all four Stokes spectra is used simultaneously. The inversion is performed for 53% of the observed field of view at a noise level of 1.3 Multiplication-Sign 10{sup -4} I{sub c}. The derived magnetic distributions are thus representative of more than half of the quiet-Sun internetwork. Our results confirm the conclusions drawn from previous analyses using mainly Stokes I and V: internetwork fields are very inclined, but except in azimuth they do not seem to be isotropically distributed.
A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN
Seryi, Andrei
2003-05-27
The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given.
A superconducting focusing solenoid for the neutrino factory linear accelerator
M.A. Green; V. Lebedev; B.R. Strauss
2002-03-01
The proposed superconducting linear accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can have large stray fields. This paper describes the 201.25-MHz acceleration system for the neutrino factory. This paper also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity.
Beam Dynamics Design and Simulation in Ion Linear Accelerators (
Energy Science and Technology Software Center (OSTI)
2006-08-01
Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less
Physics at the e⁺e⁻ linear collider
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Moortgat-Picka, G.; Kronfeld, A. S.
2015-08-14
A comprehensive review of physics at an e⁺e⁻ linear collider in the energy range of √s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
Physics at the e?e? linear collider
Moortgat-Picka, G.; Kronfeld, A. S.
2015-08-14
A comprehensive review of physics at an e?e? linear collider in the energy range of ?s = 92 GeV3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.
Entropy-based separation of linear chain molecules by exploiting
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
differences in the saturation capacities in cage-type zeolites | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Entropy-based separation of linear chain molecules by exploiting differences in the saturation capacities in cage-type zeolites Previous Next List Rajamani Krishna, Jasper M. van Baten, Sep. Purif. Technol., 76, 325-330 (2011) DOI: 10.1016/j.seppur.2010.10.023 Full-size image (26 K) Abstract: For zeolites such as CHA, LTA, DDR, ERI, AFX, and TSC
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
Pokol, G. I.; Kmr, A.; Budai, A.; Stahl, A.; Flp, T.
2014-10-15
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 1001000??s time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.
State of the art in electromagnetic modeling for the Compact Linear Collider
Candel, Arno; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Schussman, Greg; Ko, Kwok; /SLAC
2009-07-10
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefield damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.
Investigations of non-linear polymers as high performance lubricant additives
Robinson, Joshua W.; Bhattacharya, Priyanka; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia
2015-03-22
Off-the-shelf available engine oils contain an assortment of additives that increase the performance of base oils and maximize the overall efficiency of the machine. With ever increasing requirements for fuel efficiency, the demand for novel materials that outperform older generations is also on the rise. One approach towards increasing overall efficiency is to reduce internal friction and wear in an engine. From an additive approach, this is typically achieved by altering the bulk oil’s viscosity at high temperatures via polymers. In general, the hydrodynamic volume of polymers increase (expand) at elevated temperatures and decrease (contract/deflate) with declining temperatures and this effect is enhanced be carefully designing specific structures and architectures. The natural thinning tendency of base oil with increasing temperatures is in part mitigated by the expansion of the macromolecules added, and the overall effect is decreasing the viscosity losses at high temperatures. Traditional polymer architectures vary from linear to dendritic, where linear polymers of the same chemical composition and molecular weight to its dendritic counterpart will undergo a more significant free volume change in solution with regards to temperature changes. This advantage has been exploited in the literature towards the production of viscosity modifiers. However, one major disadvantage of linear polymers is degradation due to mechanical shear forces and high temperatures causing a shorter additive lifetime. Dendrimers on the other hand are known to demonstrate superior robustness to shear degradation when compared to their respective linear counterparts. An additional advantage of the dendritic architecture is the ability to tailor the peripheral end-groups towards influencing polymer-solvent and/or polymer-surface interactions. Comb-burst hyperbranched polymers are a hybrid of the aforementioned architectures and provide several compromises between the traditional structures including the tailoring of peripheral functional groups, conformational flexibility via lipophilic long chain linkers, and a readily available synthesis amenable to scale-up. In the following communication, the synthesis of an aryl comb-burst hyperbranched polymer will be described. Some of the challenges we had to overcome are being highlighted, such as efforts towards increasing lipophilicity of the molecule via changes in saturated carbon content, controlling polymerization conditions to control average molecular weight and degree of branching. In addition, trends in viscosity modification of the bulk oil and wear/friction studies will be discussed.
Mechanical features of the ATS RFQ linear accelerator
Wilson, N.G.; Hayward, T.D.; Lind, G.W.
1983-01-01
A radio-frequency quadrupole (RFQ) linear accelerator has been constructed and placed in operation on the Los Alamos National Laboratory accelerator test stand (ATS). This accelerator uses an evacuated rf manifold to distribute rf excitation from the 425-MHz rf power supply to the slot-coupled, RFQ vane-cavity, resonator assembly. The RFQ vanes are supported on commercially available copper-plated, linear, resilient C-seals to provide a high-conductivity rf contact that permits aligning and positioning the vanes during tuning, and demounting the vanes for evaluation and modification as necessary. All rf structures are fabricated from stress-relieved, bright-acid copper-plated carbon steel. Measurements made on the accelerator as assembled have demonstrated >8000 vane-cavity Q at the quadrupole's approx. 423.400-MHz accelerating-mode frequency. Operating manifold vacuum of 3 to 6 x 10/sup -8/ torr has been observed after rf conditioning; conditioning required 150 h for stable high-power rf operation. Experience to date has indicated the desirability of modifying the vane rf-contact seat configuration to improve assembly and alignment procedures, improving vane-machining processes to increase vane straightness, installing periodic vane-shorting rings to minimize the effect of dipole modes in the quadrupole accelerating structure,and modifying the waveguide-coupling slot in the manifold to improve forward rf power flow.
Hernndez S, A. E-mail: meduardo2001@hotmail.com; Cano, M. E. E-mail: meduardo2001@hotmail.com; Torres-Arenas, J.
2014-11-07
Currently the absorption of electromagnetic radiation by magnetic nanoparticles is studied for biomedical applications of cancer thermotherapy. Several experiments are conduced following the framework of the Rosensweig model, in order to estimate their specific absorption rate. Nevertheless, this linear approximation involves strong simplifications which constrain their accuracy and validity range. The main aim of this work is to incorporate the deviation of the sphericity assumption in particles shapes, to improve the determination of their specific absorption rate. The correction to the effective particles volume is computed as a measure of the apparent amount of magnetic material, interacting with the external AC magnetic field. Preliminary results using the physical properties of Fe3O4 nanoparticles, exhibit an important correction in their estimated specific absorption rate, as a function of the apparent mean particles radius. Indeed, we have observed using a small deviation (6% of the apparent radius), up to 40% of the predicted specific absorption rate by the Rosensweig linear approximation.
Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal
2014-05-12
Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.
Automated control of linear constricted plasma source array
Anders, Andre (Albany, CA); Maschwitz, Peter A. (Martinsville, VA)
2000-01-01
An apparatus and method for controlling an array of constricted glow discharge chambers are disclosed. More particularly a linear array of constricted glow plasma sources whose polarity and geometry are set so that the contamination and energy of the ions discharged from the sources are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The quality of film along deposition "tracks" opposite the plasma sources can be measured and compared to desired absolute or relative values by optical and/or electrical sensors. Plasma quality can then be adjusted by adjusting the power current values, gas feed pressure/flow, gas mixtures or a combination of some or all of these to improve the match between the measured values and the desired values.
Beam dynamics in a long-pulse linear induction accelerator
Ekdahl, Carl; Abeyta, Epifanio O; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A; Garnett, Robert; Harrison, James F; Johnson, Jeffrey B; Jacquez, Edward B; Mc Cuistian, Brian T; Montoya, Nicholas A; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rose, Chris R; Sanchez, Manolito; Schauer, Martin M; Seitz, Gerald; Schulze, Martin; Bender, Howard A; Broste, William B; Carlson, Carl A; Frayer, Daniel K; Johnson, Douglas E; Tom, C Y; Trainham, C; Williams, John; Scarpetti, Raymond; Genoni, Thomas; Hughes, Thomas; Toma, Carsten
2010-01-01
The second axis of the Dual Axis Radiography of Hydrodynamic Testing (DARHT) facility produces up to four radiographs within an interval of 1.6 microseconds. It accomplishes this by slicing four micro-pulses out of a long 1.8-kA, 16.5-MeV electron beam pulse and focusing them onto a bremsstrahlung converter target. The long beam pulse is created by a dispenser cathode diode and accelerated by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for radiography. High frequency motion, such as from beam breakup instability, would blur the individual spots. Low frequency motion, such as produced by pulsed power variation, would produce spot to spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it.
Generalized space and linear momentum operators in quantum mechanics
Costa, Bruno G. da
2014-06-15
We propose a modification of a recently introduced generalized translation operator, by including a q-exponential factor, which implies in the definition of a Hermitian deformed linear momentum operator p{sup ^}{sub q}, and its canonically conjugate deformed position operator x{sup ^}{sub q}. A canonical transformation leads the Hamiltonian of a position-dependent mass particle to another Hamiltonian of a particle with constant mass in a conservative force field of a deformed phase space. The equation of motion for the classical phase space may be expressed in terms of the generalized dual q-derivative. A position-dependent mass confined in an infinite square potential well is shown as an instance. Uncertainty and correspondence principles are analyzed.
RECENT PROGRESS TOWARD A MUON RECIRCULATING LINEAR ACCELERATOR
Slawomir Bogacz, Vasiliy Morozov, Yves Roblin, Kevin Beard
2012-07-01
Both Neutrino Factories (NF) and Muon Colliders (MC) require very rapid acceleration due to the short lifetime of muons. After a capture and bunching section, a linac raises the energy to about 900 MeV, and is followed by one or more Recirculating Linear Accelerators (RLA), possibly followed by a Rapid Cycling Synchnotron (RCS) or Fixed-Field Alternating Gradient (FFAG) ring. A RLA reuses the expensive RF linac section for a number of passes at the price of having to deal with different energies within the same linac. Various techniques including pulsed focusing quadruopoles, beta frequency beating, and multipass arcs have been investigated via simulations to improve the performance and reduce the cost of such RLAs.
Microgrid Reliability Modeling and Battery Scheduling Using Stochastic Linear Programming
Cardoso, Goncalo; Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; DeForest, Nicholas; Barbosa-Povoa, Ana; Ferrao, Paulo
2013-05-23
This paper describes the introduction of stochastic linear programming into Operations DER-CAM, a tool used to obtain optimal operating schedules for a given microgrid under local economic and environmental conditions. This application follows previous work on optimal scheduling of a lithium-iron-phosphate battery given the output uncertainty of a 1 MW molten carbonate fuel cell. Both are in the Santa Rita Jail microgrid, located in Dublin, California. This fuel cell has proven unreliable, partially justifying the consideration of storage options. Several stochastic DER-CAM runs are executed to compare different scenarios to values obtained by a deterministic approach. Results indicate that using a stochastic approach provides a conservative yet more lucrative battery schedule. Lower expected energy bills result, given fuel cell outages, in potential savings exceeding 6percent.
Intersecting nonextreme p-branes and linear dilaton background
Chen, C.-M.; Gal'tsov, Dmitri V.; Ohta, Nobuyoshi
2005-08-15
We construct the general static solution to the supergravity action containing gravity, the dilaton and a set of antisymmetric forms describing the intersecting branes delocalized in the relative transverse dimensions. The solution is obtained by reducing the system to a set of separate Liouville equations (the intersection rules implying the separability); it contains the maximal number of free parameters corresponding to the rank of the differential equations. Imposing the requirement of the absence of naked singularities, we show that the general configurations are restricted to two and only two classes: the usual asymptotically flat intersecting branes, and the intersecting branes some of which are asymptotically flat and some approach the linear dilaton background at infinity. In both cases the configurations are black. These are supposed to be relevant for the description of the thermal phase of the QFT's in the corresponding Domain-Wall/QFT duality.
Non-linear optical crystal vibration sensing device
Kalibjian, R.
1994-08-09
A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.
Separated-orbit bisected energy-recovered linear accelerator
Douglas, David R.
2015-09-01
A separated-orbit bisected energy-recovered linear accelerator apparatus and method. The accelerator includes a first linac, a second linac, and a plurality of arcs of differing path lengths, including a plurality of up arcs, a plurality of downgoing arcs, and a full energy arc providing a path independent of the up arcs and downgoing arcs. The up arcs have a path length that is substantially a multiple of the RF wavelength and the full energy arc includes a path length that is substantially an odd half-integer multiple of the RF wavelength. Operation of the accelerator includes accelerating the beam utilizing the linacs and up arcs until the beam is at full energy, at full energy executing a full recirculation to the second linac using a path length that is substantially an odd half-integer of the RF wavelength, and then decelerating the beam using the linacs and downgoing arcs.
Detection of linear impermeable barriers by transient pressure analysis
Martinez-Romero, N.; Cinco-Ley, H.
1983-05-01
This work presents a new simple method to detect a linear impermeable barrier by analysis of transient pressure data. This technique is based on the desuperposition method (negative superposition) discussed by some authors and considers the calculation the pressure change caused by the presence of the barrier. The pressure change is analyzed to estimate the distance between the well and the barrier by using the type curve matching technique. Type curves are provided for both drawdown and build tests. The advantage of the technique presented in this work is that pressure data can be analyzed even if the second semilog straight line, whose slope is twice the slope of the first semilog straight line, is not reached. Examples of application are discussed for illustration.
Phase and Radial Motion in Ion Linear Accelerators
Energy Science and Technology Software Center (OSTI)
2007-03-29
Parmila is an ion-linac particle-dynamics code. The name comes from the phrase, "Phase and Radial Motion in Ion Linear Accelerators." The code generates DTL, CCDTL, and CCL accelerating cells and, using a "drift-kick" method, transforms the beam, represented by a collection of particles, through the linac. The code includes a 2-D and 3-D space-charge calculations. Parmila uses data generated by the Poisson Superfish postprocessor SEC. This version of Parmila was written by Harunori Takeda andmore » was supported through Feb. 2006 by James H. Billen. Setup installs executable programs Parmila.EXE, Lingraf.EXE, and ReadPMI.EXE in the LANL directory. The directory LANL\\Examples\\Parmila contains several subdirectories with sample files for Parmila.« less
ANALYZING SURFACE ROUGHNESS DEPENDENCE OF LINEAR RF LOSSES
Reece, Charles E.; Kelley, Michael J.; Xu, Chen
2012-09-01
Topographic structure on Superconductivity Radio Frequency (SRF) surfaces can contribute additional cavity RF losses describable in terms of surface RF reflectivity and absorption indices of wave scattering theory. At isotropic homogeneous extent, Power Spectrum Density (PSD) of roughness is introduced and quantifies the random surface topographic structure. PSD obtained from different surface treatments of niobium, such Buffered Chemical Polishing (BCP), Electropolishing (EP), Nano-Mechanical Polishing (NMP) and Barrel Centrifugal Polishing (CBP) are compared. A perturbation model is utilized to calculate the additional rough surface RF losses based on PSD statistical analysis. This model will not consider that superconductor becomes normal conducting at fields higher than transition field. One can calculate the RF power dissipation ratio between rough surface and ideal smooth surface within this field range from linear loss mechanisms.
Physics and technology of the next linear collider
1996-06-01
The authors present the prospects for the next generation of high-energy physics experiments with electron-positron colliding beams. This report summarizes the current status of the design and technological basis of a linear collider of center-of-mass energy 0.5--1.5 TeV, and the opportunities for high-energy physics experiments that this machine is expected to open. The physics goals discussed here are: Standard Model processes and simulation; top quark physics; Higgs boson searches and properties; supersymmetry; anomalous gauge boson couplings; strong WW scattering; new gauge bosons and exotic particles; e{sup {minus}}e{sup {minus}}, e{sup {minus}}{gamma}, and {gamma}{gamma} interactions; and precision tests of QCD.
Light-operated proximity detector with linear output
Simpson, M.L.; McNeilly, D.R.
1984-01-01
A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phtotransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.
Light-operated proximity detector with linear output
Simpson, Marc L. (Harriman, TN); McNeilly, David R. (Maryville, TN)
1985-01-01
A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phototransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.
Extreme hydrogen plasma densities achieved in a linear plasma generator
Rooij, G. J. van; Veremiyenko, V. P.; Goedheer, W. J.; de Groot, B.; Kleyn, A. W.; Smeets, P. H. M.; Versloot, T. W.; Whyte, D. G.; Engeln, R.; Schram, D. C.; Cardozo, N. J. Lopes
2007-03-19
A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5x10{sup 20} m{sup -3} electron density, {approx}2 eV electron and ion temperatures, and 3.5 km/s axial plasma velocity. This gives a 2.6x10{sup 24} H{sup +} m{sup -2} s{sup -1} peak ion flux density, which is unprecedented in linear plasma generators. The high efficiency of the source is obtained by the combined action of the magnetic field and an optimized nozzle geometry. This is interpreted as a cross-field return current that leads to power dissipation in the beam just outside the source.
Acoustic methods to monitor sliver linear density and yarn strength
Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)
1997-01-01
Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.
Non-linear optical crystal vibration sensing device
Kalibjian, Ralph (Livermore, CA)
1994-01-11
A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).
Extracting the Eliashberg Function
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Extracting the Eliashberg Function Extracting the Eliashberg Function Print Wednesday, 23 February 2005 00:00 A multitude of important chemical, physical, and biological phenomena...
A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory...
Office of Scientific and Technical Information (OSTI)
A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Citation Details In-Document Search Title: A Beam Driven Plasma-Wakefield Linear Collider: From...
Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps...
Information Resources Videos Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer Lighting Text-Alternative Version: CALiPER Series 21 on LED Linear ...
Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print...
Transportation Organization and Functions
Broader source: Energy.gov [DOE]
Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.
Webb-Robertson, Bobbie-Jo M.; Bunn, Amoret L.; Bailey, Vanessa L.
2011-01-01
Phospholipid fatty acids (PLFA) have been widely used to characterize environmental microbial communities, generating community profiles that can distinguish phylogenetic or functional groups within the community. The poor specificity of organism groups with fatty acid biomarkers in the classic PLFA-microorganism associations is a confounding factor in many of the statistical classification/clustering approaches traditionally used to interpret PLFA profiles. In this paper we demonstrate that non-linear statistical learning methods, such as a support vector machine (SVM), can more accurately find patterns related to uranyl nitrate exposure in a freshwater periphyton community than linear methods, such as partial least squares discriminant analysis. In addition, probabilistic models of exposure can be derived from the identified lipid biomarkers to demonstrate the potential model-based approach that could be used in remediation. The SVM probability model separates dose groups at accuracies of ~87.0%, ~71.4%, ~87.5%, and 100% for the four groups; Control (non-amended system), low-dose (amended at 10 g U L-1), medium dose (amended at 100 g U L-1), and high dose (500 g U L-1). The SVM model achieved an overall cross-validated classification accuracy of ~87% in contrast to ~59% for the best linear classifier.
Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California
Not Available
1988-07-01
This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.
Towards reversible basic linear algebra subprograms: A performance study
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Perumalla, Kalyan S.; Yoginath, Srikanth B.
2014-12-06
Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less
Numerical simulation of linear fiction welding (LFW) processes
Fratini, L.; La Spisa, D. [University of Palermo-Dept. of Industrial engineering (Italy)
2011-05-04
Solid state welding processes are becoming increasingly important due to a large number of advantages related to joining ''unweldable'' materials and in particular light weight alloys. Linear friction welding (LFW) has been used successfully to bond non-axisymmetric components of a range of materials including titanium alloys, steels, aluminum alloys, nickel, copper, and also dissimilar material combinations. The technique is useful in the research of quality of the joints and in reducing costs of components and parts of the aeronautic and automotive industries.LFW involves parts to be welded through the relative reciprocating motion of two components under an axial force. In such process the heat source is given by the frictional forces work decaying into heat determining a local softening of the material and proper bonding conditions due to both the temperature increase and the local pressure of the two edges to be welded. This paper is a comparative test between the numerical model in two dimensions, i.e. in plane strain conditions, and in three dimensions of a LFW process of AISI1045 steel specimens. It must be observed that the 3D model assures a faithful simulation of the actual threedimensional material flow, even if the two-dimensional simulation computational times are very short, a few hours instead of several ones as the 3D model. The obtained results were compared with experimental values found out in the scientific literature.
Comparative study of medium damped and detuned linear accelerator structures
Jean-Francois Ostiguy et al.
2001-08-22
Long range wakefields are a serious concern for a future linear collider based on room temperature accelerating structures. They can be suppressed either by detuning and or local damping or with some combination of both strategies. Detuning relies on precisely phasing the contributions of the dipole modes excited by the passage of a single bunch. This is accomplished by controlling individual mode frequencies, a process which dictates individual cell dimensional tolerances. Each mode must be excited with the correct strength; this in turn, determines cell-to-cell alignment tolerances. In contrast, in a locally damped structure, the modes are attenuated at the cell level. Clearly, mode frequencies and relative excitation become less critical in that context; mechanical fabrication tolerances can be relaxed. While local damping is ideal from the stand-point of long range wakefield suppression, this comes at the cost of reducing the shunt impedance and possibly unacceptable localized heating. Recently, the Medium Damped Structure (MDS), a compromise between detuning and local damping, has generated some interest. In this paper, we compare a hypothetical MDS to the NLC Rounded Damped Detuned Structure (RDDS) and investigate possible advantages from the standpoint fabrication tolerances and their relation to beam stability and emittance preservation.
Systematic study of doping dependence on linear magnetoresistance in p-PbTe
Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.; Peres, M. L. Castro, S. de; Soares, D. A. W.; Wiedmann, S.; Zeitler, U.; Abramof, E.; Rappl, P. H. O.; Mengui, U. A.
2014-10-20
We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30?T. The linear magnetoresistance slope ?R/?B is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linear magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.
Liu, Jian; Guo, Pan; University of Chinese Academy of Sciences, Beijing 100049 ; Wang, Chunlei; Shi, Guosheng Fang, Haiping
2013-12-21
Using molecular dynamics simulations, we show a fine linear relationship between surface energies and microscopic Lennard-Jones parameters of super-hydrophilic surfaces. The linear slope of the super-hydrophilic surfaces is consistent with the linear slope of the super-hydrophobic, hydrophobic, and hydrophilic surfaces where stable water droplets can stand, indicating that there is a universal linear behavior of the surface energies with the water-surface van der Waals interaction that extends from the super-hydrophobic to super-hydrophilic surfaces. Moreover, we find that the linear relationship exists for various substrate types, and the linear slopes of these different types of substrates are dependent on the surface atom density, i.e., higher surface atom densities correspond to larger linear slopes. These results enrich our understanding of water behavior on solid surfaces, especially the water wetting behaviors on uncharged super-hydrophilic metal surfaces.
WIPP Mine Rescue Team Wins, Retires Trophy
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
third. Kevin Cummins of IMC-Kalium won first place in the benchman's competition. Joe Baca of the WIPP Blue Team won second place. Mine Rescue teams have been participating in...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Euclid workloads. Please email consult@nersc.gov if you have any questions. Euclid Migration Guide Workload Where to Run Simple Interactive Task (Including compiling) Carver...
After 5 Years, NERSC's Franklin Retires
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
capturing the sun's energy: photovoltaics, which turn the sunlight into electricity, or solar-thermal systems, which concentrate the sun's heat and use it to boil water to turn a...
DOE Phased Retirement Memo.pdf
Office of Environmental Management (EM)
NSTec Environmental Restoration
2010-11-22
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.
NSTec Environmental Restoration
2009-07-31
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.
Functionalized boron nitride nanotubes
Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K
2014-04-22
A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.
Optimal recovery of linear operators in non-Euclidean metrics
Osipenko, K Yu
2014-10-31
The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. Anumber of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, afamily of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.
Portable Special Function Routines
Energy Science and Technology Software Center (OSTI)
1992-02-27
SPECFUN is a collection of transportable FORTRAN subroutines and accompanying test drivers to evaluate certain special functions.
Performance Models for the Spike Banded Linear System Solver
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Manguoglu, Murat; Saied, Faisal; Sameh, Ahmed; Grama, Ananth
2011-01-01
With availability of large-scale parallel platforms comprised of tens-of-thousands of processors and beyond, there is significant impetus for the development of scalable parallel sparse linear system solvers and preconditioners. An integral part of this design process is the development of performance models capable of predicting performance and providing accurate cost models for the solvers and preconditioners. There has been some work in the past on characterizing performance of the iterative solvers themselves. In this paper, we investigate the problem of characterizing performance and scalability of banded preconditioners. Recent work has demonstrated the superior convergence properties and robustness of banded preconditioners,more » compared to state-of-the-art ILU family of preconditioners as well as algebraic multigrid preconditioners. Furthermore, when used in conjunction with efficient banded solvers, banded preconditioners are capable of significantly faster time-to-solution. Our banded solver, the Truncated Spike algorithm is specifically designed for parallel performance and tolerance to deep memory hierarchies. Its regular structure is also highly amenable to accurate performance characterization. Using these characteristics, we derive the following results in this paper: (i) we develop parallel formulations of the Truncated Spike solver, (ii) we develop a highly accurate pseudo-analytical parallel performance model for our solver, (iii) we show excellent predication capabilities of our model – based on which we argue the high scalability of our solver. Our pseudo-analytical performance model is based on analytical performance characterization of each phase of our solver. These analytical models are then parameterized using actual runtime information on target platforms. An important consequence of our performance models is that they reveal underlying performance bottlenecks in both serial and parallel formulations. All of our results are validated on diverse heterogeneous multiclusters – platforms for which performance prediction is particularly challenging. Finally, we provide predict the scalability of the Spike algorithm using up to 65,536 cores with our model. In this paper we extend the results presented in the Ninth International Symposium on Parallel and Distributed Computing.« less
Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar
Newsom, Rob K.; Calhoun, Ron; Ligon, David; Allwine, K Jerry
2008-04-01
Dual-Doppler lidar observations are used to investigate the structure and evolution of surface layer flow over a suburban area. The observations were made during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City in the summer of 2003. This study focuses specifically on a 10-hour sequence of scan data beginning shortly after noon local time on July 7, 2003. During this period two coherent Doppler lidars performed overlapping low elevation angle sector scans upwind and south of Oklahoma Citys central business district (CBD). Radial velocity data from the two lidars are processed to reveal the structure and evolution of the horizontal velocity field in the surface layer throughout the afternoon and evening transition periods. The retrieved velocity fields clearly show a tendency for turbulence structures to be elongated in the direction of the mean flow throughout the entire 10-hour study period. As the stratification changed from unstable to weakly stable the turbulence structures became increasingly more linearly organized, and the cross-stream separation between high- and low-speed regoins decreased. The spatially resolved velocity fields are used to estimate streamwise and cross-stream turbulence length scales as functions of stability.
Berg, J. S.
2015-05-03
Recirculating linear accelerators (RLAs) are a cost-effective method for the acceleration of muons for a muon collider in energy ranges from a couple GeV to a few 10s of GeV. Muon beams generally have longitudinal emittances that are large for the RF frequency that is used, and it is important to limit the growth of that longitudinal emittance. This has particular consequences for the arc design of the RLAs. I estimate the longitudinal emittance growth in an RLA arising from the RF nonlinearity. Given an emittance growth limitation and other design parameters, one can then compute the maximum momentum compaction in the arcs. I describe how to obtain an approximate arc design satisfying these requirements based on the deisgn in [1]. Longitudinal dynamics also determine the energy spread in the beam, and this has consequences on the transverse phase advance in the linac. This in turn has consequences for the arc design due to the need to match beta functions. I combine these considerations to discuss design parameters for the acceleration of muons for a collider in an RLA from 5 to 63 GeV.
Direct-Steam Linear Fresnel Performance Model for NREL's System Advisor Model
Wagner, M. J.; Zhu, G.
2012-09-01
This paper presents the technical formulation and demonstrated model performance results of a new direct-steam-generation (DSG) model in NREL's System Advisor Model (SAM). The model predicts the annual electricity production of a wide range of system configurations within the DSG Linear Fresnel technology by modeling hourly performance of the plant in detail. The quasi-steady-state formulation allows users to investigate energy and mass flows, operating temperatures, and pressure drops for geometries and solar field configurations of interest. The model includes tools for heat loss calculation using either empirical polynomial heat loss curves as a function of steam temperature, ambient temperature, and wind velocity, or a detailed evacuated tube receiver heat loss model. Thermal losses are evaluated using a computationally efficient nodal approach, where the solar field and headers are discretized into multiple nodes where heat losses, thermal inertia, steam conditions (including pressure, temperature, enthalpy, etc.) are individually evaluated during each time step of the simulation. This paper discusses the mathematical formulation for the solar field model and describes how the solar field is integrated with the other subsystem models, including the power cycle and optional auxiliary fossil system. Model results are also presented to demonstrate plant behavior in the various operating modes.
On the Bayesian Treed Multivariate Gaussian Process with Linear Model of Coregionalization
Konomi, Bledar A.; Karagiannis, Georgios; Lin, Guang
2015-02-01
The Bayesian treed Gaussian process (BTGP) has gained popularity in recent years because it provides a straightforward mechanism for modeling non-stationary data and can alleviate computational demands by fitting models to less data. The extension of BTGP to the multivariate setting requires us to model the cross-covariance and to propose efficient algorithms that can deal with trans-dimensional MCMC moves. In this paper we extend the cross-covariance of the Bayesian treed multivariate Gaussian process (BTMGP) to that of linear model of Coregionalization (LMC) cross-covariances. Different strategies have been developed to improve the MCMC mixing and invert smaller matrices in the Bayesian inference. Moreover, we compare the proposed BTMGP with existing multiple BTGP and BTMGP in test cases and multiphase flow computer experiment in a full scale regenerator of a carbon capture unit. The use of the BTMGP with LMC cross-covariance helped to predict the computer experiments relatively better than existing competitors. The proposed model has a wide variety of applications, such as computer experiments and environmental data. In the case of computer experiments we also develop an adaptive sampling strategy for the BTMGP with LMC cross-covariance function.
Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; Olguin, Marco; Allen, Joshua L.; Henderson, Wesley A.
2015-11-17
The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC)n(DMC)m–Li+ and (EC)n(DMC)m–LiPF6 solvates in the gas-phase and for an implicit solvent (as a function of the solvent dielectricmore » constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC4)–Li+ and (EC)3–LiPF6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF6 mixed solvent electrolyte was studied using the BOMD simulations.« less
Arterial endothelial function measurement method and apparatus
Maltz, Jonathan S; Budinger, Thomas F
2014-03-04
A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.
Linearization of scan velocity of resonant vibrating-mirror beam deflectors
Yeung, E.S.; Chen, S.L.
1991-01-15
A means and method for producing linearization of scan velocity of resonant vibrating-mirror beam deflectors in laser scanning system including presenting an elliptical convex surface to the scanning beam to reflect the scanning beam to the focal plane of the scanning line. The elliptical surface is shaped to produce linear velocity of the reflective scanning beam at the focal plane. Maximization of linearization is accomplished by considering sets of criteria for different scanning applications. 6 figures.
Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis
Office of Scientific and Technical Information (OSTI)
Power Density (Technical Report) | SciTech Connect Technical Report: Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density Citation Details In-Document Search Title: Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome
Depolarization due to beam-beam interaction in electron-positron linear
Office of Scientific and Technical Information (OSTI)
colliders (Conference) | SciTech Connect Conference: Depolarization due to beam-beam interaction in electron-positron linear colliders Citation Details In-Document Search Title: Depolarization due to beam-beam interaction in electron-positron linear colliders We investigate two major mechanisms which induce depolarization of electron beams during beam-beam interaction in linear colliders. These are the classical spin precession under the collective field of the oncoming beam, and the
Results from a Prototype Chicane-Based Energy Spectrometer for a Linear
Office of Scientific and Technical Information (OSTI)
Collider (Journal Article) | SciTech Connect Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider Citation Details In-Document Search Title: Results from a Prototype Chicane-Based Energy Spectrometer for a Linear Collider The International Linear Collider (ILC) and other proposed high energy e{sup +}e{sup -} machines aim to measure with unprecedented precision Standard Model quantities and new, not yet discovered phenomena. One of the main requirements for
Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer
Lighting | Department of Energy Information Resources » Videos » Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer Lighting Text-Alternative Version: CALiPER Series 21 on LED Linear Lamps and Troffer Lighting Following is a text version of a video about CALiPER Application Report Series 21 on LED Linear Lamps and Troffer Lighting. Tracy Beeson, Lighting Engineer, Pacific Northwest National Laboratory: Fluorescent troffers are widely used in office spaces, meeting
Type A Investigation of the Electrical Arc Injury at the Stanford Linear
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Accelerator Complex on October 11, 2004 | Department of Energy of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 November 15, 2004 On October 11, 2004, at approximately 11:15 am, a subcontractor electrician working at the Stanford Linear Accelerator Center (SLAC) received serious burn injuries requiring hospitalization due to an electrical
Photo of the Week: Lego Rendition of SLAC National Laboratory's Linear
Particle Accelerator | Department of Energy Lego Rendition of SLAC National Laboratory's Linear Particle Accelerator Photo of the Week: Lego Rendition of SLAC National Laboratory's Linear Particle Accelerator February 4, 2013 - 10:26am Addthis At two miles long, SLAC's linear particle accelerator is a monster of a machine. But now, thanks to an old collection of Legos and some creative work by SLAC graphic designer Greg Stewart, the two-mile accelerator has been drastically reduced in size.
Quantum chaos of an ion trapped in a linear ion trap (Journal Article) |
Office of Scientific and Technical Information (OSTI)
SciTech Connect Quantum chaos of an ion trapped in a linear ion trap Citation Details In-Document Search Title: Quantum chaos of an ion trapped in a linear ion trap We describe the transition to quantum chaos of an ion trapped in a linear ion trap and interacting with two laser fields. Under the conditions of adiabatic illumination of the upper level of the ion, and when the frequencies of the two laser beams are slightly different, the system is reduced to a quantum linear oscillator
Non-Linear Luminescent Coupling in Series-Connected Multijunction Solar Cells
Steiner, M. A.; Geisz, J. F.
2012-06-18
The assumption of superposition or linearity of photocurrent with solar flux is widespread for calculations and measurements of solar cells. The well-known effect of luminescent coupling in multijunction solar cells has also been assumed to be linear with excess current. Here we show significant non-linearities in luminescent coupling in III-V multijunction solar cells and propose a simple model based on competition between radiative and nonradiative processes in the luminescent junction to explain these non-linearities. We demonstrate a technique for accurately measuring the junction photocurrents under a specified reference spectrum, that accounts for and quantifies luminescent coupling effects.
2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)
Broader source: Energy.gov [DOE]
The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).
LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21
Beeson, Tracy; Miller, Naomi
2014-06-17
Video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory.
LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21
Beeson, Tracy; Miller, Naomi
2014-06-23
Video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory.
Linear Collider LHC Subpanel | U.S. DOE Office of Science (SC...
Office of Science (SC) Website
Subpanel on the Linear Collider and the Large Hadron Collider High Energy Physics Advisory Panel (HEPAP) HEPAP Home Meetings 2015 HEPAP Membership ChargesReports Charter .pdf file ...
Tuning the DARHT Axis-II linear induction accelerator focusing
Ekdahl, Carl A.
2012-04-24
Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an accelerator cell to replace a failed solenoid in March of 2012. We took advantage of this opportunity to improve the design of the focusing tune with better models of the remaining partially failed solenoids, better estimates of beam initial conditions, and better values for pulsed-power voltages. As with all previous tunes for Axis-II, this one incorporates measures to mitigate beam-breakup (BBU) instability, image displacement instability (IDI), corkscrew (sweep), and emittance growth. Section II covers the general approach to of design of focusing solenoid tunes for the DARHT Axis-2 LIA. Section III explains the specific requirements and simulations needed to design the tune for the injector, which includes the thermionic electron source, diode, and six induction cells. Section IV explains the requirements and simulations for tuning the main accelerator, which consists of 68 induction cells. Finally, Section V explores sensitivity of the tune to deviations of parameters from nominal, random variations, and uncertainties in values. Four appendices list solenoid settings for this new tune, discuss comparisons of different simulation codes, show halo formation in mismatched beams, and present a brief discussion of the beam envelope equation, which is the heart of the method used to design LIA solenoid tunes.
Smisc - A collection of miscellaneous functions
Energy Science and Technology Software Center (OSTI)
2015-08-31
A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set ofmore » linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAs d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less
PHYSICAL PROPERTIES OF MAIN-BELT COMET 176P/LINEAR
Hsieh, Henry H.; Ishiguro, Masateru; Lacerda, Pedro; Jewitt, David E-mail: p.lacerda@qub.ac.uk E-mail: jewitt@ucla.edu
2011-07-15
We present a physical characterization of comet 176P/LINEAR, the third discovered member of the new class of main-belt comets, which exhibit cometary activity but are dynamically indistinguishable from main-belt asteroids. Observations show the object exhibiting a fan-shaped tail for at least one month in late 2005, but then becoming inactive in early 2006. During this active period, we measure broadband colors of B - V = 0.63 {+-} 0.02, V - R = 0.35 {+-} 0.02, and R - I = 0.31 {+-} 0.04. Using data from when the object was observed to be inactive, we derive best-fit IAU phase function parameters of H = 15.10 {+-} 0.05 mag and G = 0.15 {+-} 0.10, and best-fit linear phase function parameters of m(1, 1, 0) = 15.35 {+-} 0.05 mag and {beta} = 0.038 {+-} 0.005 mag deg{sup -1}. From this baseline phase function, we find that 176P exhibits a mean photometric excess of {approx}30% during its active period, implying an approximate total coma dust mass of M{sub d} {approx} (7.2 {+-} 3.6) x 10{sup 4} kg. From inactive data obtained in early 2007, we find a rotation period of P{sub rot} = 22.23 {+-} 0.01 hr and a peak-to-trough photometric range of {Delta}m {approx} 0.7 mag. Phasing our photometric data from 176P's 2005 active period to this rotation period, we find that the nucleus exhibits a significantly smaller photometric range than in 2007 that cannot be accounted for by coma damping effects, and as such, are attributed by us to viewing geometry effects. A detailed analysis of these geometric effects showed that 176P is likely to be a highly elongated object with an axis ratio of 1.8 < b/a < 2.1, an orbital obliquity of {epsilon} {approx} 60{sup 0}, and a solstice position at a true anomaly of {nu}{sub o} = 20{sup 0} {+-} 20{sup 0}. Numerical modeling of 176P's dust emission found that its activity can only be reproduced by asymmetric dust emission, such as a cometary jet. We find plausible fits to our observations using models assuming {approx}10 {mu}m dust particles continuously emitted over the period during which 176P was observed to be active, and a jet direction of 180{sup 0} {approx}< {alpha}{sub jet} {approx}< 120{sup 0} and {delta}{sub jet} {approx} -60{sup 0}. We do not find good fits to our observations using models of impulsive dust emission, i.e., what would be expected if 176P's activity was an ejecta cloud resulting from an impact into non-volatile asteroid regolith. Since for a rotating body, the time-averaged direction of a non-equatorial jet is equivalent to the direction of the nearest rotation pole, we find an equivalent orbital obliquity of 50{sup 0} {approx}< {epsilon} {approx}< 75{sup 0}, consistent with the results of our light curve analysis. Furthermore, the results of both our light curve analysis and dust modeling analysis are consistent with the seasonal heating hypothesis used to explain the modulation of 176P's activity. Additional observations are highly encouraged to further characterize 176P's active behavior as the object approaches perihelion on 2011 July 1.
Optimal linear reconstruction of dark matter from halo catalogues
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.
2011-04-01
The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less
Optimal linear reconstruction of dark matter from halo catalogues
Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.
2011-04-01
The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple fact that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15 noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.
DOE Publishes CALiPER Report on Linear (T8) LED Lamps in Recessed Troffers
Broader source: Energy.gov [DOE]
The U.S. Department of Energy's CALiPER program has released Report 21.2, which is part of a series of investigations on linear LED lamps. Report 21.2 focuses on the performance of three linear (T8...
Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept
Broader source: Energy.gov [DOE]
SkyFuel, under the CSP R&D FOA, is developing a commercial linear-Fresnel-based advanced CSP system called Linear Power Tower (LPT). The company aims to make significant improvements in the cost and viability of utility-scale dispatchable solar power.
System and method for linearly amplifying optical analog signals by backward Raman scattering
Lin, Cheng-Heui (Goleta, CA)
1988-01-01
A system for linearly amplifying an optical analog signal by backward stimulated Raman scattering comprises a laser source for generating a pump pulse; and an optic fiber having two opposed apertures, a first aperture for receiving the pump pulse and a second aperture for receiving the optical analog signal, wherein the optical analog signal is linearly amplified to an amplified optical analog signal.
Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint
Wagner, M. J.
2012-04-01
This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.
Functionalized expanded porphyrins
Sessler, Jonathan L; Pantos, Patricia J
2013-11-12
Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.
Reynolds, Jacob G.
2013-01-11
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH{sub 4}H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results detennined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.
Joubert-Doriol, Loc; Ryabinkin, Ilya G.; Izmaylov, Artur F.; Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6
2013-12-21
In molecular systems containing conical intersections (CIs), a nontrivial geometric phase (GP) appears in the nuclear and electronic wave functions in the adiabatic representation. We study GP effects in nuclear dynamics of an N-dimensional linear vibronic coupling (LVC) model. The main impact of GP on low-energy nuclear dynamics is reduction of population transfer between the local minima of the LVC lower energy surface. For the LVC model, we proposed an isometric coordinate transformation that confines non-adiabatic effects within a two-dimensional subsystem interacting with an N ? 2 dimensional environment. Since environmental modes do not couple electronic states, all GP effects originate from nuclear dynamics within the subsystem. We explored when the GP affects nuclear dynamics of the isolated subsystem, and how the subsystem-environment interaction can interfere with GP effects. Comparing quantum dynamics with and without GP allowed us to devise simple rules to determine significance of the GP for nuclear dynamics in this model.
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Feng, G.; Deriy, B.; Wang, J.; Accelerator Systems Division
2008-01-01
The APS booster ring uses ramping power supplies to power the sextupole, quadrupole, and dipole magnets as the beam energy ramps up linearly to 7 GeV. Due to the circuit topology used, those supplies are unable to follow the linear ramp to the desired accuracy. The best regulation achieved is 0.25% while 0.1% is desired. In addition to the unsatisfying regulation, those supplies are sensitive to AC line perturbation and are not able to reject AC line noises of more than a few tens of hertz. To improve the performance, a linear MOSFET regulation system using paralleled MOSFET devices in series with the power supply is proposed. The system uses a realtime current feedback loop to force the MOSFETs to work in the linear operation mode. By using this linear MOSFET regulator, the voltage drop on MOSFETs, and hence the voltage imposed on magnets, can be regulated very quickly. As a result, the regulation of the magnet current can be improved significantly. So far the simulation results show that with the linear regulator, the current regulation can be improved to better than 0.1%. Because of the high bandwidth of the linear regulator, it can reduce the harmonic content in the output current as well as reject the AC line disturbance. This paper discusses the circuit topology, the regulation method, and the simulation results.
McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM); Ackermann, Mark R. (Albuquerque, NM)
2012-01-24
Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.
Extracting the Eliashberg Function
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Extracting the Eliashberg Function Extracting the Eliashberg Function Print Wednesday, 23 February 2005 00:00 A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these
Center for Functional Nanomaterials
BNL
2009-09-01
Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.
LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21 |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Videos » LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21 LED Linear Lamps and Troffer Lighting: CALiPER Report Series 21 View the video about CALiPER Report Series 21 on LED Linear Lamps and Troffer Lighting, featuring interviews with Tracy Beeson and Naomi Miller of Pacific Northwest National Laboratory. View the text-alternative version. Solid-State Lighting Home About the Solid-State Lighting Program Research & Development SSL Basics Using LEDs
How to Solve Schroedinger Problems by Approximating the Potential Function
Ledoux, Veerle; Van Daele, Marnix
2010-09-30
We give a survey over the efforts in the direction of solving the Schroedinger equation by using piecewise approximations of the potential function. Two types of approximating potentials have been considered in the literature, that is piecewise constant and piecewise linear functions. For polynomials of higher degree the approximating problem is not so easy to integrate analytically. This obstacle can be circumvented by using a perturbative approach to construct the solution of the approximating problem, leading to the so-called piecewise perturbation methods (PPM). We discuss the construction of a PPM in its most convenient form for applications and show that different PPM versions (CPM,LPM) are in fact equivalent.
13th International Conference on Magnetically Levitated Systems and Linear Drives
Not Available
1993-09-01
This report contains short papers on research being conducted throughout the world on magnetically levitated systems, mainly consisting of trains, and magnetic linear drives. These papers have been index separately elsewhere on the data base.
A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory...
Office of Scientific and Technical Information (OSTI)
A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Summarized for CSS2013 E. Adli, J.P.Delahaye, S.J.Gessner, M.J. Hogan, T. Raubenheimer (SLAC) W.An,...
The Effective Combination of Mesh Adaptation and Non-linearThermo...
Office of Scientific and Technical Information (OSTI)
The Effective Combination of Mesh Adaptation and Non-linear Thermo-mechanical Solution Components for the Modeling of Weld Failures. Citation Details In-Document Search Title: The...
Near equilibrium distributions for beams with space charge in linear and
Office of Scientific and Technical Information (OSTI)
nonlinear periodic focusing systems (Journal Article) | SciTech Connect Near equilibrium distributions for beams with space charge in linear and nonlinear periodic focusing systems Citation Details In-Document Search This content will become publicly available on April 29, 2016 Title: Near equilibrium distributions for beams with space charge in linear and nonlinear periodic focusing systems Authors: Sonnad, Kiran G. [1] ; Cary, John R. [1] + Show Author Affiliations Center for Integrated
Measuring anomalous couplings in H→WW* decays at the International Linear
Office of Scientific and Technical Information (OSTI)
Collider (Journal Article) | SciTech Connect Measuring anomalous couplings in H→WW* decays at the International Linear Collider Citation Details In-Document Search Title: Measuring anomalous couplings in H→WW* decays at the International Linear Collider Authors: Takubo, Yosuke ; Hodgkinson, Robert N. ; Ikematsu, Katsumasa ; Fujii, Keisuke ; Okada, Nobuchika ; Yamamoto, Hitoshi Publication Date: 2013-07-18 OSTI Identifier: 1103733 Type: Publisher's Accepted Manuscript Journal Name:
Renormalized linear kinetic theory as derived from quantum field theory: A
Office of Scientific and Technical Information (OSTI)
novel diagrammatic method for computing transport coefficients (Journal Article) | SciTech Connect Renormalized linear kinetic theory as derived from quantum field theory: A novel diagrammatic method for computing transport coefficients Citation Details In-Document Search Title: Renormalized linear kinetic theory as derived from quantum field theory: A novel diagrammatic method for computing transport coefficients We propose a novel diagrammatic method for computing transport coefficients in
A Linear Theory of Microwave Instability in Electron Storage Rings (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Journal Article: A Linear Theory of Microwave Instability in Electron Storage Rings Citation Details In-Document Search Title: A Linear Theory of Microwave Instability in Electron Storage Rings The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in electron storage rings below a threshold current. Yet, how to accurately determine this threshold, above which the Haissinski distribution becomes unstable, is not
Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet
Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC
2006-09-28
The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.
Probing the Linear Polarization of Gluons in Unpolarized Hadrons at EIC
Boer, Daniel; /Groningen, KVI; Brodsky, Stanley J.; /SLAC; Mulders, Piet J.; /Vrije U., Amsterdam; Pisano, Cristian; /Cagliari U. /INFN, Cagliari
2011-08-17
Gluons inside unpolarized hadrons can be linearly polarized provided they have a nonzero transverse momentum. The simplest and theoretically safest way to probe this TMD distribution of linearly polarized gluons is through cos 2{phi} asymmetries in heavy quark pair or dijet production in electron-hadron collisions. Future EIC or LHeC experiments are ideally suited for this purpose. Here we estimate the maximum asymmetries for EIC kinematics.
DYNAMICAL STABILITY AND QUANTUM CHAOS OF IONS IN A LINEAR TRAP (1999002ER).
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
(Technical Report) | SciTech Connect Technical Report: DYNAMICAL STABILITY AND QUANTUM CHAOS OF IONS IN A LINEAR TRAP (1999002ER). Citation Details In-Document Search Title: DYNAMICAL STABILITY AND QUANTUM CHAOS OF IONS IN A LINEAR TRAP (1999002ER). The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics
DOE - Office of Legacy Management -- Yale Heavy Ion Linear Accelerator - CT
Office of Legacy Management (LM)
05 Yale Heavy Ion Linear Accelerator - CT 05 FUSRAP Considered Sites Site: Yale Heavy Ion Linear Accelerator (CT.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Haven , Connecticut CT.05-1 Evaluation Year: 1987 CT.05-3 Site Operations: Research and development with solvents. CT.05-1 Site Disposition: Eliminated - Potential for contamination remote based on limited amount of materials handled CT.05-3 Radioactive Materials
Adaptive multiconfigurational wave functions
Evangelista, Francesco A.
2014-03-28
A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.
Amesos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear Systems
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bavier, Eric; Hoemmen, Mark; Rajamanickam, Sivasankaran; Thornquist, Heidi
2012-01-01
Solvers for large sparse linear systems come in two categories: direct and iterative. Amesos2, a package in the Trilinos software project, provides direct methods, and Belos, another Trilinos package, provides iterative methods. Amesos2 offers a common interface to many different sparse matrix factorization codes, and can handle any implementation of sparse matrices and vectors, via an easy-to-extend C++ traits interface. It can also factor matrices whose entries have arbitrary “Scalar” type, enabling extended-precision and mixed-precision algorithms. Belos includes many different iterative methods for solving large sparse linear systems and least-squares problems. Unlike competing iterative solver libraries, Belos completely decouples themore » algorithms from the implementations of the underlying linear algebra objects. This lets Belos exploit the latest hardware without changes to the code. Belos favors algorithms that solve higher-level problems, such as multiple simultaneous linear systems and sequences of related linear systems, faster than standard algorithms. The package also supports extended-precision and mixed-precision algorithms. Together, Amesos2 and Belos form a complete suite of sparse linear solvers.« less
Algal functional annotation tool
Energy Science and Technology Software Center (OSTI)
2012-07-12
Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion. CONCLUSIONS: The Algal Functional Annotation Tool aims to provide an integrated data-mining environment for algal genomics by combining data from multiple annotation databases into a centralized tool. This site is designed to expedite the process of functional annotation and the interpretation of gene lists, such as those derived from high-throughput RNA-seq experiments. The tool is publicly available at http://pathways.mcdb.ucla.edu.« less
GADRAS Detector Response Function.
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.
2014-11-01
The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.
Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.
2011-04-15
Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE{sub preplan} for our edema model indicated underdosage in the calculation volume with a clear dependence on seed and calculation point positions, and increased with increasing values of {Delta} and T. Values of RE{sub preplan} were generally larger near the ends of the virtual prostate in the RPC phantom compared with more central locations. For edema characteristics similar to the population average values previously measured at our center, i.e., {Delta}=0.2 and T=28 d, mean values of RE{sub preplan} in an axial plane located 1.5 cm from the center of the seed distribution were 8.3% for {sup 131}Cs seeds, 7.5% for {sup 103}Pd seeds, and 2.2% for {sup 125}I seeds. Maximum values of RE{sub preplan} in the same plane were about 1.5 times greater. Note that detailed results strictly apply only for loose seed implants where the seeds are fixed in tissue and move in synchrony with that tissue. Conclusions: A dose calculation method for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema was developed for which cumulative dose can be written in closed form. The method yields values for RE{sub preplan} that differ from those for spatially isotropic edema. The method is suitable for calculating pre- and postimplant dosimetry correction factors for clinical seed configurations when edema characteristics can be measured or estimated.
Process for functionalizing alkanes
Bergman, R.G.; Janowicz, A.H.; Periana, R.A.
1988-05-24
Process for functionalizing saturated hydrocarbons comprises: (a) reacting said saturated hydrocarbons of the formula: R[sub 1]H wherein H represents a hydrogen atom; and R[sub 1] represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R[sub 2])[sub 3
Viljoen, Nolan; Schuknecht, Nathan
2012-05-28
Included herein is SkyFuels detailed assessment of the potential for a direct molten salt linear Fresnel collector. Linear Fresnel architecture is of interest because it has features that are well suited for use with molten salt as a heat transfer fluid: the receiver is fixed (only the mirrors track), the receiver diameter is large (reducing risk of freeze events), and the total linear feet of receiver can be reduced due to the large aperture area. Using molten salt as a heat transfer fluid increases the allowable operating temperature of a collector field, and the cost of thermal storage is reduced in proportion to that increase in temperature. At the conclusion of this project, SkyFuel determined that the cost goals set forth in the contract could not be reasonably met. The performance of a Linear Fresnel collector is significantly less than that of a parabolic trough, in particular due to linear Fresnels large optical cosine losses. On an annual basis, the performance is 20 to 30% below that of a parabolic trough per unit area. The linear Fresnel collector and balance of system costs resulted in an LCOE of approximately 9.9/kWhr_{e}. Recent work by SkyFuel has resulted in a large aperture trough design (DSP Trough) with an LCOE value of 8.9 /kWhr_{e} calculated with comparative financial terms and balance of plant costs (White 2011). Thus, even though the optimized linear Fresnel collector of our design has a lower unit cost than our optimized trough, it cannot overcome the reduction in annual performance.
A non-linear dimension reduction methodology for generating data-driven stochastic input models
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-20
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<
Process for functionalizing alkanes
Bergman, R.G.; Janowicz, A.H.; Periana-Pillai, R.A.
1984-06-12
Process for functionalizing saturated hydrocarbons selectively in the terminal position comprises: (a) reacting said saturated hydrocarbons with a metal complex CpRhPMe/sub 3/H/sub 2/ in the presence of ultraviolet radiation at -60/sup 0/ to -17/sup 0/C to form a hydridoalkyl complex CpRhPMe/sub 3/RH; (b) reacting said hydridoalkyl complex with a haloform CHX/sub 3/ at -60/sup 0/ to -17/sup 0/C to form the corresponding haloalkyl complex of step (a) CpRhPMe/sub 3/RX; and (c) reacting said haloalkyl complex with halogen -60 to 25/sup 0/C to form a functional haloalkyl compound.
Office of Environmental Management (EM)
Working to Ensure the Safety and Security of Hazardous Material Shipments Organization and Functions Mission Unit EM-30 Deputy Assistant Secretary/ADAS Waste Management Director Office of Packaging and Transportation EM-33 Regulations & Standards Support * ANSI * ASME/ ASTM * DHS * DOD FEMA * FMCSA * FRA * IAEA * ICAO * IMO * NRC * Orders * PHMSA TSA * UN TDG SCOE Packaging Certification * CoCs for Type B/AF Packages * DOE Exemptions * DOT Special Permits & COCA * QA * RAMPAC * SCALE *
Extracting the Eliashberg Function
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Extracting the Eliashberg Function Print A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these violations. By means of high-resolution angle-resolved photoemission at
Extracting the Eliashberg Function
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Extracting the Eliashberg Function Print A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these violations. By means of high-resolution angle-resolved photoemission at
Extracting the Eliashberg Function
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Extracting the Eliashberg Function Print A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these violations. By means of high-resolution angle-resolved photoemission at
Extracting the Eliashberg Function
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Extracting the Eliashberg Function Print A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these violations. By means of high-resolution angle-resolved photoemission at
Extracting the Eliashberg Function
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Extracting the Eliashberg Function Print A multitude of important chemical, physical, and biological phenomena are driven by violations of the Born-Oppenheimer approximation (BOA), which decouples electronic from nuclear motion in quantum calculations of solids. Recent advances in experimental techniques combined with ever-growing theoretical capabilities now hold the promise of presenting an unprecedented picture of these violations. By means of high-resolution angle-resolved photoemission at
Functional Accountability | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Functional Accountability The Office of the Chief Human Capital Officer exercises functional accountability over human resources authorities and human capital programs. This ensures the ...
Spherically symmetric analysis on open FLRW solution in non-linear massive gravity
Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin E-mail: izumi@phys.ntu.edu.tw
2012-12-01
We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity from general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.
NON-BAROTROPIC LINEAR ROSSBY WAVE INSTABILITY IN THREE-DIMENSIONAL DISKS
Lin, Min-Kai
2013-03-10
Astrophysical disks with localized radial structure, such as protoplanetary disks containing dead zones or gaps due to disk-planet interaction, may be subject to the non-axisymmetric Rossby wave instability (RWI) that leads to vortex formation. The linear instability has recently been demonstrated in three-dimensional (3D) barotropic disks. It is the purpose of this study to generalize the 3D linear problem to include an energy equation, thereby accounting for baroclinity in three dimensions. Linear stability calculations are presented for radially structured, vertically stratified, geometrically thin disks with non-uniform entropy distribution in both directions. Polytropic equilibria are considered but adiabatic perturbations assumed. The unperturbed disk has a localized radial density bump, making it susceptible to the RWI. The linearized fluid equations are solved numerically as a partial differential equation eigenvalue problem. Emphasis on the ease of method implementation is given. It is found that when the polytropic index is fixed and adiabatic index increased, non-uniform entropy has negligible effect on the RWI growth rate, but pressure and density perturbation magnitudes near a pressure enhancement increase away from the midplane. The associated meridional flow is also qualitatively changed from homentropic calculations. Meridional vortical motion is identified in the nonhomentropic linear solution, as well as in a nonlinear global hydrodynamic simulation of the RWI in an initially isothermal disk evolved adiabatically. Numerical results suggest that buoyancy forces play an important role in the internal flow of Rossby vortices.
Weymann, Ireneusz
2015-05-07
We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition from the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.
Russell, Steven J.; Carlsten, Bruce E.
2012-06-26
We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.
Nonlinear and linear timescales near kinetic scales in solar wind turbulence
Matthaeus, W. H.; Wan, M.; Shay, M. A.; Oughton, S.; Osman, K. T.; Chapman, S. C.; Servidio, S.; Valentini, F.; Gary, S. P.; Roytershteyn, V.; Karimabadi, H.
2014-08-01
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local (in scale) nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to or faster than the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theorywhich assumes constant parameters to calculate the associated kinetic ratesmay be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior.
Large linear magnetoresistance in a GaAs/AlGaAs heterostructure
Aamir, Mohammed Ali, E-mail: aamir@physics.iisc.ernet.in; Goswami, Srijit, E-mail: aamir@physics.iisc.ernet.in; Ghosh, Arindam [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Baenninger, Matthias; Farrer, Ian; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Tripathi, Vikram [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Pepper, Michael [Department of Electrical and Electronic Engineering, University College, London WC1E 7JE (United Kingdom)
2013-12-04
We report non-saturating linear magnetoresistance (MR) in a two-dimensional electron system (2DES) at a GaAs/AlGaAs heterointerface in the strongly insulating regime. We achieve this by driving the gate voltage below the pinch-off point of the device and operating it in the non-equilibrium regime with high source-drain bias. Remarkably, the magnitude of MR is as large as 500% per Tesla with respect to resistance at zero magnetic field, thus dwarfing most non-magnetic materials which exhibit this linearity. Its primary advantage over most other materials is that both linearity and the enormous magnitude are retained over a broad temperature range (0.3 K to 10 K), thus making it an attractive candidate for cryogenic sensor applications.
Point spread function of the optical needle super-oscillatory lens
Roy, Tapashree; Rogers, Edward T. F.; Yuan, Guanghui; Zheludev, Nikolay I.
2014-06-09
Super-oscillatory optical lenses are known to achieve sub-wavelength focusing. In this paper, we analyse the imaging capabilities of a super-oscillatory lens by studying its point spread function. We experimentally demonstrate that a super-oscillatory lens can generate a point spread function 24% smaller than that dictated by the diffraction limit and has an effective numerical aperture of 1.31 in air. The object-image linear displacement property of these lenses is also investigated.
Complex-energy approach to sum rules within nuclear density functional
Office of Scientific and Technical Information (OSTI)
theory (Journal Article) | SciTech Connect Complex-energy approach to sum rules within nuclear density functional theory Citation Details In-Document Search This content will become publicly available on April 27, 2016 Title: Complex-energy approach to sum rules within nuclear density functional theory The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties
Quark mass functions and pion structure in Minkowski space
Biernat, Elmer P.; Gross, Franz L.; Pena, Maria Teresa; Stadler, Alfred
2014-03-01
We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.
Exact transition probabilities for a linear sweep through a Kramers-Kronig
Office of Scientific and Technical Information (OSTI)
resonance (Journal Article) | SciTech Connect for a linear sweep through a Kramers-Kronig resonance Citation Details In-Document Search This content will become publicly available on November 19, 2016 Title: Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance Authors: Sun, Chen ; Sinitsyn, N. A. Publication Date: 2015-11-20 OSTI Identifier: 1239010 Grant/Contract Number: AC52-06NA25396 Type: Publisher's Accepted Manuscript Journal Name: Journal of Physics A:
DYNAMICAL STABILITY AND QUANTUM CHAOS OF IONS IN A LINEAR TRAP (1999002ER).
Office of Scientific and Technical Information (OSTI)
(Technical Report) | SciTech Connect Technical Report: DYNAMICAL STABILITY AND QUANTUM CHAOS OF IONS IN A LINEAR TRAP (1999002ER). Citation Details In-Document Search Title: DYNAMICAL STABILITY AND QUANTUM CHAOS OF IONS IN A LINEAR TRAP (1999002ER). × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional
A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to
Office of Scientific and Technical Information (OSTI)
Multi-TeV (Conference) | SciTech Connect Conference: A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Citation Details In-Document Search Title: A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV Authors: Adli, E ; Delahaye, J.P. ; Gessner, S.J. ; Hogan, M.J. ; Raubenheimer, T. ; /SLAC ; An, W. ; Joshi, C. ; Mori, W. ; /UCLA, Los Angeles Publication Date: 2013-09-30 OSTI Identifier: 1074154 Report Number(s): SLAC-PUB-15426 DOE
Sixth-Order Resonance of High-Intensity Linear Accelerators (Journal
Office of Scientific and Technical Information (OSTI)
Article) | SciTech Connect Sixth-Order Resonance of High-Intensity Linear Accelerators Citation Details In-Document Search This content will become publicly available on May 5, 2016 Title: Sixth-Order Resonance of High-Intensity Linear Accelerators Authors: Jeon, Dong-O ; Hwang, Kyung Ryun ; Jang, Ji-Ho ; Jin, Hyunchang ; Jang, Hyojae Publication Date: 2015-05-06 OSTI Identifier: 1179719 Grant/Contract Number: FG02-12ER41800 Type: Publisher's Accepted Manuscript Journal Name: Physical Review
Spin relaxation and linear-in-electric-field frequency shift in an
Office of Scientific and Technical Information (OSTI)
arbitrary, time-independent magnetic field (Technical Report) | SciTech Connect Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field Citation Details In-Document Search Title: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field A method is presented to calculate the spin relaxation times T{sub 1}, T{sub 2} due to a nonuniform magnetic field, and the
Spin relaxation and linear-in-electric-field frequency shift in an
Office of Scientific and Technical Information (OSTI)
arbitrary, time-independent magnetic field (Technical Report) | SciTech Connect Technical Report: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field Citation Details In-Document Search Title: Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of
Process for functionalizing alkanes
Bergman, Robert G. (Kensington, CA); Janowicz, Andrew H. (Wilmington, DE); Periana-Pillai, Roy A. (Berkeley, CA)
1985-01-01
Process for functionalizing saturated hydrocarbons selectively in the terminal position comprising: (a) reacting said saturated hydrocarbons of the formula: RH where: H represents a hydrogen atom, and R represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRhPMe.sub.3 H.sub.2 where: Cp represents a pentamethylated cyclopentadienyl radical, Rh represents a rhodium atom, P represents a phosphorous atom, Me represents a methyl group, H represents a hydrogen atom, in the presence of ultraviolet radiation at a temperature maintained at about -60.degree. to -17.degree. C. to form a hydridoalkyl complex of the formula: CpRhPMe.sub.3 RH (b) reacting said hydridoalkyl complex with a haloform of the formula: CHX.sub.3 where: X represents a bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e. ambient) to form a functional haloalkyl compound.
Process for functionalizing alkanes
Bergman, Robert G. (Kensington, CA); Janowicz, Andrew H. (Wilmington, DE); Periana, Roy A. (Berkeley, CA)
1988-01-01
Process for functionalizing saturated hydrocarbons comprising: (a) reacting said saturated hydrocarbons of the formula: R.sub.1 H wherein H represents a hydrogen atom; and R.sub.1 represents a saturated hydrocarbon radical, with a metal complex of the formula: CpRh[P(R.sub.2).sub.3 ]H.sub.2 wherein Cp represents a cyclopentadienyl or alkylcyclopentadienyl radical; Rh represents a rhodium atom; P represents a phosphorus atom; R.sub.2 represents a hydrocarbon radical; H represents a hydrogen atom, in the presence of ultraviolet radiation to form a hydridoalkyl complex of the formula: CpRh[P(R.sub.2).sub.3 ](R.sub.1)H (b) reacting said hydridoalkyl complex with an organic halogenating agent such as a tetrahalomethane or a haloform of the formulas: CX'X''X'''X'''' or CHX'X''X''' wherein X', X'', X'", X"" represent halogens selected from bromine, iodine or chlorine atom, at a temperature in the range of about -60.degree. to -17.degree. C. to form the corresponding haloalkyl complex of step (a) having the formula: CpRhPMe.sub.3 RX; and, (c) reacting said haloalkyl complex formed in (b) with halogen (X.sub.2) at a temperature in the range of about -60.degree. to 25.degree. C. (i.e., ambient) to form a functional haloalkyl compound.
Minati, Ludovico E-mail: ludovico.minati@unitn.it
2015-03-15
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.
Water transport through functionalized nanotubes with tunable hydrophobicity
Moskowitz, Ian; Snyder, Mark A.; Mittal, Jeetain
2014-11-14
Molecular dynamics simulations are used to study the occupancy and flow of water through nanotubes comprised of hydrophobic and hydrophilic atoms, which are arranged on a honeycomb lattice to mimic functionalized carbon nanotubes (CNTs). We consider single-file motion of TIP3P water through narrow channels of (6,6) CNTs with varying fractions (f) of hydrophilic atoms. Various arrangements of hydrophilic atoms are used to create heterogeneous nanotubes with separate hydrophobic/hydrophilic domains along the tube as well as random mixtures of the two types of atoms. The water occupancy inside the nanotube channel is found to vary nonlinearly as a function of f, and a small fraction of hydrophilic atoms (f ? 0.4) are sufficient to induce spontaneous and continuous filling of the nanotube. Interestingly, the average number of water molecules inside the channel and water flux through the nanotube are less sensitive to the specific arrangement of hydrophilic atoms than to the fraction, f. Two different regimes are observed for the water flux dependence on f an approximately linear increase in flux as a function of f for f < 0.4, and almost no change in flux for higher f values, similar to the change in water occupancy. We are able to define an effective interaction strength between nanotube atoms and water's oxygen, based on a linear combination of interaction strengths between hydrophobic and hydrophilic nanotube atoms and water, that can quantitatively capture the observed behavior.
Linear motion device and method for inserting and withdrawing control rods
Smith, Jay E.
1984-01-01
A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.
DOE Publishes CALiPER Report on Cost-Effectiveness of Linear (T8) LED Lamps
Broader source: Energy.gov [DOE]
The U.S. Department of Energy's CALiPER program has released Report 21.3, which is part of a series of investigations on linear LED lamps. Report 21.3 details a set of life-cycle cost simulations...
The feasibility of using methylene blue sensitized polyvinylalcohol film as a linear polarizer
Jyothilakshmi, K.; Anju, K. S.; Arathy, K.; John, Beena Mary; Krishna, P. B.; Sruthi, C. T.; Chacko, Maria
2014-01-28
Linear light polarizing films selectively transmit radiations vibrating along an electromagnetic radiation vector and selectively absorb radiations vibrating along a second electromagnetic radiation vector. It happens according to the anisotropy of the film . In the present study the polarization effects of methylene blue sensitized polyvinyl alcohol is investigated. The polarization effects on the dye concentration, heating and stretching of film also are evaluated.
Photoelectron linear accelerator for producing a low emittance polarized electron beam
Yu, David U.; Clendenin, James E.; Kirby, Robert E.
2004-06-01
A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.
Higgs Coupling Measurements at a 1 TeV Linear Collider
Barklow, T
2003-12-18
Methods for extracting Higgs boson signals at a 1 TeV center-of-mass energy e{sup +}e{sup -} linear collider are described. In addition, estimates are given for the accuracy with which branching fractions can be measured for Higgs boson decays to b{bar b} WW, gg, and {gamma}{gamma}.
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
Dong, Kegong; Wu, Yuchi; Zhu, Bin; Zhang, Zhimeng; Zhao, Zongqing; Zhou, Weimin; Hong, Wei; Cao, Leifeng; Gu, Yuqiu
2014-12-15
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoid the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.
Bolzon, Benoit; Jeremie, Andrea; Bai, Sha; Bambade, Philip; White, Glen; /SLAC
2012-07-02
At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichmann, David R.
2015-08-10
We discuss the linear and two-photon spectroscopic selection rules for spin-singlet excitons in monolayer transition-metal dichalcogenides. Our microscopic formalism combines a fully k-dependent few-orbital band structure with a many-body Bethe-Salpeter equation treatment of the electron-hole interaction, using a model dielectric function. We show analytically and numerically that the single-particle, valley-dependent selection rules are preserved in the presence of excitonic effects. Furthermore, we definitively demonstrate that the bright (one-photon allowed) excitons have s-type azimuthal symmetry and that dark p-type excitons can be probed via two-photon spectroscopy. Thus, the screened Coulomb interaction in these materials substantially deviates from the 1/ε₀r form; thismore » breaks the “accidental” angular momentum degeneracy in the exciton spectrum, such that the 2p exciton has a lower energy than the 2s exciton by at least 50 meV. We compare our calculated two-photon absorption spectra to recent experimental measurements.« less
Algebraic special functions and SO(3,2)
Celeghini, E.; Olmo, M.A. del
2013-06-15
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.
DOE Publishes CALiPER Report on Linear (T8) LED Lamps in a 2x4 K12-Lensed
Troffer | Department of Energy Linear (T8) LED Lamps in a 2x4 K12-Lensed Troffer DOE Publishes CALiPER Report on Linear (T8) LED Lamps in a 2x4 K12-Lensed Troffer May 2, 2014 - 4:48pm Addthis The U.S. Department of Energy's CALiPER program has released Report 21.1, which is part of a series of investigations on linear LED lamps. Report 21.1 focuses on the performance of 31 types of linear LED lamps operated in a typical 2x4 troffer with a K12 prismatic lens. The lamps were intended as
Self-consistent field theory based molecular dynamics with linear system-size scaling
Richters, Dorothee; Khne, Thomas D.
2014-04-07
We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.
El-Taibany, W. F. E-mail: eltaibany@hotmail.com; Selim, M. M.; Al-Abbasy, O. M.; El-Bedwehy, N. A.
2014-07-15
The propagation of both linear and nonlinear dust acoustic waves (DAWs) in an inhomogeneous magnetized collisional and warm dusty plasma (DP) consisting of Boltzmann ions, nonextensive electrons, and inertial dust particles is investigated. The number density gradients of all DP components besides the inhomogeneities of electrostatic potential and the initial dust fluid velocity are taken into account. The linear dispersion relation and a nonlinear modified Zakharov-Kusnetsov (MZK) equation governing the propagation of the three-dimensional DAWs are derived. The analytical solution of the MZK reveals the creation of both compressive and rarefactive DAW solitons in the proposed model. It is found that the inhomogeneity dimension parameter and the electron nonextensive parameter affect significantly the nonlinear DAW's amplitude, width, and Mach number. The relations of our findings with some astrophysical situations have been given.
Solar receiver heliostat reflector having a linear drive and position information system
Horton, Richard H. (Schenectady, NY)
1980-01-01
A heliostat for a solar receiver system comprises an improved drive and control system for the heliostat reflector assembly. The heliostat reflector assembly is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e., heat receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The improved drive system includes linear stepping motors which comprise low weight, low cost, electronic pulse driven components. One embodiment comprises linear stepping motors controlled by a programmed, electronic microprocessor. Another embodiment comprises a tape driven system controlled by a position control magnetic tape.
Estimation of Heavy Ion Densities From Linearly Polarized EMIC Waves At Earth
Kim, Eun-Hwa; Johnson, Jay R.; Lee, Dong-Hun
2014-02-24
Linearly polarized EMIC waves are expected to concentrate at the location where their wave frequency satisfies the ion-ion hybrid (IIH) resonance condition as the result of a mode conversion process. In this letter, we evaluate absorption coefficients at the IIH resonance in the Earth geosynchronous orbit for variable concentrations of helium and azimuthal and field-aligned wave numbers in dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentration, it only occurs for a limited range of azimuthal and field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Our results suggest that, at L = 6.6, linearly polarized EMIC waves can be generated via mode conversion from the compressional waves near the crossover frequency. Consequently, the heavy ion concentration ratio can be estimated from observations of externally generated EMIC waves that have polarization.
Variational principle for linear stability of flowing plasmas in Hall magnetohydrodynamics
Hirota, M.; Yoshida, Z.; Hameiri, E.
2006-02-15
Linear stability of equilibrium states with flow is studied by means of the variational principle in Hall magnetohydrodynamics (MHD). The Lagrangian representation of the linearized Hall MHD equation is performed by considering special perturbations that preserves some constants of motion (the Casimir invariants). The resultant equation has a Hamiltonian structure which enables the variational principle. There is however some difficulties in showing the positive definiteness of the quadratic form in the presence of flow. The dynamically accessible variation is a more restricted class of perturbations which, by definition, preserves all the Casimir invariants. For such variations, the quadratic form (the second variation of Hamiltonian) can be positive definite. Some conditions for stability are derived by applying this variational principle to the double Beltrami equilibrium.
Reliable clock estimation using linear weighted fusion based on pairwise broadcast synchronization
Shi, Xin Zhao, Xiangmo Hui, Fei Ma, Junyan Yang, Lan
2014-10-06
Clock synchronization in wireless sensor networks (WSNs) has been studied extensively in recent years and many protocols are put forward based on the point of statistical signal processing, which is an effective way to optimize accuracy. However, the accuracy derived from the statistical data can be improved mainly by sufficient packets exchange, which will consume the limited power resources greatly. In this paper, a reliable clock estimation using linear weighted fusion based on pairwise broadcast synchronization is proposed to optimize sync accuracy without expending additional sync packets. As a contribution, a linear weighted fusion scheme for multiple clock deviations is constructed with the collaborative sensing of clock timestamp. And the fusion weight is defined by the covariance of sync errors for different clock deviations. Extensive simulation results show that the proposed approach can achieve better performance in terms of sync overhead and sync accuracy.
Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Narayanan, A.; Watson, M. D.; Blake, S. F.; Bruyant, N.; Drigo, L.; Chen, Y. L.; Prabhakaran, D.; Yan, B.; Felser, C.; Kong, T.; et al
2015-03-19
Cd3As2 is a candidate three-dimensional Dirac semimetal which has exceedingly high mobility and nonsaturating linear magnetoresistance that may be relevant for future practical applications. We report magnetotransport and tunnel diode oscillation measurements on Cd3As2, in magnetic fields up to 65 T and temperatures between 1.5 and 300 K. We find that the nonsaturating linear magnetoresistance persists up to 65 T and it is likely caused by disorder effects, as it scales with the high mobility rather than directly linked to Fermi surface changes even when approaching the quantum limit. As a result of the observed quantum oscillations, we determine themore » bulk three-dimensional Fermi surface having signatures of Dirac behavior with a nontrivial Berry phase shift, very light effective quasiparticle masses, and clear deviations from the band-structure predictions. In very high fields we also detect signatures of large Zeeman spin splitting (g~16).« less
Stanford Linear Accelerator Center, Order R2-2005-0022, May 18, 2005
Office of Environmental Management (EM)
CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN FRANCISCO BAY REGION ORDER No. R2-2005-0022 RESCISSION of: ORDER No. 85-88, WASTE DISCHARGE REQUIREMENTS and ADOPTION of: SITE CLEANUP REQUIREMENTS for: STANFORD UNIVERSITY and the UNITED STATES DEPARTMENT OF ENERGY for the property located at the: STANFORD LINEAR ACCELERATOR CENTER 2575 SAND HILL ROAD MENLO PARK, SAN MATEO COUNTY FINDINGS: The California Regional Water Quality Control Board, San Francisco Bay Region (Water Board) finds that:
Orbit correction in a linear nonscaling fixed field alternating gradient accelerator
Kelliher, D. J.; Machida, S.; Edmonds, C. S.; Kirkman, I. W.; Jones, J. K.; Muratori, B. D.; Garland, J. M.; Berg, J. S.
2014-11-01
In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. Orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.
Linear motion device and method for inserting and withdrawing control rods
Smith, J.E.
Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.
Evolution of the design of a silicon tracker for the Linear Collider
Cooper, W.E.
2005-10-01
A design for the silicon tracker for SiD was proposed at the Victoria Linear Collider Workshop [1]. This paper describes development of that design by the SiD group into a baseline model for simulation studies. The design has been modified to take into account detector fabrication and servicing requirements, features specific to the vertex chamber, and detector elements in the region surrounding the silicon tracker.
DOE Publishes CALiPER Report on Cost-Effectiveness of Linear (T8) LED Lamps
Broader source: Energy.gov [DOE]
The U.S. Department of Energy's CALiPER program has released Report 21.3, which is part of a series of investigations on linear LED lamps. Report 21.3 details a set of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38W total power draw) or fluorescent lamps (51W total power draw) over a 10-year study period.
A modified post damping ring bunch compressor beamline for the TESLA linear collider
Philippe R.-G. Piot; Winfried Decking
2004-03-23
We propose a modified bunch compressor beamline, downstream of the damping ring, for the TESLA linear collider. This modified beamline uses a third harmonic radio-frequency section based on the 3.9 GHz superconducting cavity under development at Fermilab. In our design the beam deceleration is about {approx}50 MeV instead of {approx}450 MeV in the original design proposed.
Brau, James E
2013-04-22
The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.
Orbit correction in a linear nonscaling fixed field alternating gradient accelerator
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kelliher, D. J.; Machida, S.; Edmonds, C. S.; Kirkman, I. W.; Jones, J. K.; Muratori, B. D.; Garland, J. M.; Berg, J. S.
2014-11-20
In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.
A Novel MagPipe Pipeline transportation system using linear motor drives
Fang, J.R.; Montgomery, D.B.; Roderick, L.
2009-11-15
A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.
Effective Yukawa couplings and flavor-changing Higgs boson decays at linear colliders
Gabrielli, E.; Mele, B.
2011-04-01
We analyze the advantages of a linear-collider program for testing a recent theoretical proposal where the Higgs boson Yukawa couplings are radiatively generated, keeping unchanged the standard-model mechanism for electroweak-gauge-symmetry breaking. Fermion masses arise at a large energy scale through an unknown mechanism, and the standard model at the electroweak scale is regarded as an effective field theory. In this scenario, Higgs boson decays into photons and electroweak gauge-boson pairs are considerably enhanced for a light Higgs boson, which makes a signal observation at the LHC straightforward. On the other hand, the clean environment of a linear collider is required to directly probe the radiative fermionic sector of the Higgs boson couplings. Also, we show that the flavor-changing Higgs boson decays are dramatically enhanced with respect to the standard model. In particular, we find a measurable branching ratio in the range (10{sup -4}-10{sup -3}) for the decay H{yields}bs for a Higgs boson lighter than 140 GeV, depending on the high-energy scale where Yukawa couplings vanish. We present a detailed analysis of the Higgs boson production cross sections at linear colliders for interesting decay signatures, as well as branching-ratio correlations for different flavor-conserving/nonconserving fermionic decays.
Subsurface failure in spherical bodies. A formation scenario for linear troughs on Vestas surface
Stickle, Angela M.; Schultz, P. H.; Crawford, D. A.
2014-10-13
Many asteroids in the Solar System exhibit unusual, linear features on their surface. The Dawn mission recently observed two sets of linear features on the surface of the asteroid 4 Vesta. Geologic observations indicate that these features are related to the two large impact basins at the south pole of Vesta, though no specific mechanism of origin has been determined. Furthermore, the orientation of the features is offset from the center of the basins. Experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target. We demonstrate that a set of shear planes develops in the subsurface of the body opposite to the point of first contact. Moreover, these subsurface failure zones then propagate to the surface under combined tensile-shear stress fields after the impact to create sets of approximately linear faults on the surface. Comparison between the orientation of damage structures in the laboratory and failure regions within Vesta can be used to constrain impact parameters (e.g., the approximate impact point and likely impact trajectory).
CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps
Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.
2014-05-27
Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.
CALiPER Report 21.3. Cost Effectiveness of Linear (T8) LED Lamps
2014-05-01
Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.
Subsurface failure in spherical bodies. A formation scenario for linear troughs on Vesta’s surface
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Stickle, Angela M.; Schultz, P. H.; Crawford, D. A.
2014-10-13
Many asteroids in the Solar System exhibit unusual, linear features on their surface. The Dawn mission recently observed two sets of linear features on the surface of the asteroid 4 Vesta. Geologic observations indicate that these features are related to the two large impact basins at the south pole of Vesta, though no specific mechanism of origin has been determined. Furthermore, the orientation of the features is offset from the center of the basins. Experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target. We demonstrate that a set ofmore » shear planes develops in the subsurface of the body opposite to the point of first contact. Moreover, these subsurface failure zones then propagate to the surface under combined tensile-shear stress fields after the impact to create sets of approximately linear faults on the surface. Comparison between the orientation of damage structures in the laboratory and failure regions within Vesta can be used to constrain impact parameters (e.g., the approximate impact point and likely impact trajectory).« less
Bit error rate tester using fast parallel generation of linear recurring sequences
Pierson, Lyndon G.; Witzke, Edward L.; Maestas, Joseph H.
2003-05-06
A fast method for generating linear recurring sequences by parallel linear recurring sequence generators (LRSGs) with a feedback circuit optimized to balance minimum propagation delay against maximal sequence period. Parallel generation of linear recurring sequences requires decimating the sequence (creating small contiguous sections of the sequence in each LRSG). A companion matrix form is selected depending on whether the LFSR is right-shifting or left-shifting. The companion matrix is completed by selecting a primitive irreducible polynomial with 1's most closely grouped in a corner of the companion matrix. A decimation matrix is created by raising the companion matrix to the (n*k).sup.th power, where k is the number of parallel LRSGs and n is the number of bits to be generated at a time by each LRSG. Companion matrices with 1's closely grouped in a corner will yield sparse decimation matrices. A feedback circuit comprised of XOR logic gates implements the decimation matrix in hardware. Sparse decimation matrices can be implemented with minimum number of XOR gates, and therefore a minimum propagation delay through the feedback circuit. The LRSG of the invention is particularly well suited to use as a bit error rate tester on high speed communication lines because it permits the receiver to synchronize to the transmitted pattern within 2n bits.
DOE Publishes CALiPER Report on Linear (T8) LED Lamps in a 2x4...
Linear (T8) LED Lamps in a 2x4 K12-Lensed Troffer DOE Publishes CALiPER Report on Linear (T8) LED Lamps in a 2x4 K12-Lensed Troffer May 2, 2014 - 4:48pm Addthis The U.S. Department ...
Methods of making functionalized nanorods
Gur, Ilan (San Francisco, CA); Milliron, Delia (Berkeley, CA); Alivisatos, A. Paul (Oakland, CA); Liu, Haitao (Berkeley, CA)
2012-01-10
A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.
Size reduction of high- and low-moisture corn stalks by linear knife grid system
Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.
2009-04-01
High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.
ANALYSIS OF QUIET-SUN INTERNETWORK MAGNETIC FIELDS BASED ON LINEAR POLARIZATION SIGNALS
Orozco Suarez, D.; Bellot Rubio, L. R.
2012-05-20
We present results from the analysis of Fe I 630 nm measurements of the quiet Sun taken with the spectropolarimeter of the Hinode satellite. Two data sets with noise levels of 1.2 Multiplication-Sign 10{sup -3} and 3 Multiplication-Sign 10{sup -4} are employed. We determine the distribution of field strengths and inclinations by inverting the two observations with a Milne-Eddington model atmosphere. The inversions show a predominance of weak, highly inclined fields. By means of several tests we conclude that these properties cannot be attributed to photon noise effects. To obtain the most accurate results, we focus on the 27.4% of the pixels in the second data set that have linear polarization amplitudes larger than 4.5 times the noise level. The vector magnetic field derived for these pixels is very precise because both circular and linear polarization signals are used simultaneously. The inferred field strength, inclination, and filling factor distributions agree with previous results, supporting the idea that internetwork (IN) fields are weak and very inclined, at least in about one quarter of the area occupied by the IN. These properties differ from those of network fields. The average magnetic flux density and the mean field strength derived from the 27.4% of the field of view with clear linear polarization signals are 16.3 Mx cm{sup -2} and 220 G, respectively. The ratio between the average horizontal and vertical components of the field is approximately 3.1. The IN fields do not follow an isotropic distribution of orientations.
LeClair, Robert J.; Boileau, Michel M.; Wang Yinkun [Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada) and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada)
2006-04-15
The goal of this work is to develop a technique to measure the x-ray diffraction signals of breast biopsy specimens. A biomedical x-ray diffraction technology capable of measuring such signals may prove to be of diagnostic use to the medical field. Energy dispersive x-ray diffraction measurements coupled with a semianalytical model were used to extract the differential linear scattering coefficients [{mu}{sub s}(x)] of breast tissues on absolute scales. The coefficients describe the probabilities of scatter events occurring per unit length of tissue per unit solid angle of detection. They are a function of the momentum transfer argument, x=sin({theta}/2)/{lambda}, where {theta}=scatter angle and {lambda}=incident wavelength. The technique was validated by using a 3 mm diameter 50 kV polychromatic x-ray beam incident on a 5 mm diameter 5 mm thick sample of water. Water was used because good x-ray diffraction data are available in the literature. The scatter profiles from 6 deg. to 15 deg. in increments of 1 deg. were measured with a 3 mmx3 mmx2 mm thick cadmium zinc telluride detector. A 2 mm diameter Pb aperture was placed on top of the detector. The target to detector distance was 29 cm and the duration of each measurement was 10 min. Ensemble averages of the results compare well with the gold standard data of A. H. Narten [''X-ray diffraction data on liquid water in the temperature range 4 deg. C-200 deg. C, ORNL Report No. 4578 (1970)]. An average 7.68% difference for which most of the discrepancies can be attributed to the background noise at low angles was obtained. The preliminary measurements of breast tissue are also encouraging.
Skyllberg,U.; Bloom, P.; Qian, J.; Lin, C.; Bleam, W.
2006-01-01
The chemical speciation of inorganic mercury (Hg) is to a great extent controlling biologically mediated processes, such as mercury methylation, in soils, sediments, and surface waters. Of utmost importance are complexation reactions with functional groups of natural organic matter (NOM), indirectly determining concentrations of bioavailable, inorganic Hg species. Two previous extended X-ray absorption fine structure (EXAFS) spectroscopic studies have revealed that reduced organic sulfur (S) and oxygen/nitrogen (O/N) groups are involved in the complexation of Hg(II) to humic substances extracted from organic soils. In this work, covering intact organic soils and extending to much lower concentrations of Hg than before, we show that Hg is complexed by two reduced organic S groups (likely thiols) at a distance of 2.33 Angstroms in a linear configuration. Furthermore, a third reduced S (likely an organic sulfide) was indicated to contribute with a weaker second shell attraction at a distance of 2.92-3.08 Angstroms. When all high-affinity S sites, corresponding to 20-30% of total reduced organic S, were saturated, a structure involving one carbonyl-O or amino-N at 2.07 Angstroms and one carboxyl-O at 2.84 Angstroms in the first shell, and two second shell C atoms at an average distance of 3.14 Angstroms, gave the best fit to data. Similar results were obtained for humic acid extracted from an organic wetland soil. We conclude that models that are in current use to describe the biogeochemistry of mercury and to calculate thermodynamic processes need to include a two-coordinated complexation of Hg(II) to reduced organic sulfur groups in NOM in soils and waters.
Reynolds, Jacob G.
2013-01-11
Partial molar properties are the changes occurring when the fraction of one component is varied while the fractions of all other component mole fractions change proportionally. They have many practical and theoretical applications in chemical thermodynamics. Partial molar properties of chemical mixtures are difficult to measure because the component mole fractions must sum to one, so a change in fraction of one component must be offset with a change in one or more other components. Given that more than one component fraction is changing at a time, it is difficult to assign a change in measured response to a change in a single component. In this study, the Component Slope Linear Model (CSLM), a model previously published in the statistics literature, is shown to have coefficients that correspond to the intensive partial molar properties. If a measured property is plotted against the mole fraction of a component while keeping the proportions of all other components constant, the slope at any given point on a graph of this curve is the partial molar property for that constituent. Actually plotting this graph has been used to determine partial molar properties for many years. The CSLM directly includes this slope in a model that predicts properties as a function of the component mole fractions. This model is demonstrated by applying it to the constant pressure heat capacity data from the NaOH-NaAl(OH){sub 4}-H{sub 2}O system, a system that simplifies Hanford nuclear waste. The partial molar properties of H{sub 2}O, NaOH, and NaAl(OH){sub 4} are determined. The equivalence of the CSLM and the graphical method is verified by comparing results determined by the two methods. The CSLM model has been previously used to predict the liquidus temperature of spinel crystals precipitated from Hanford waste glass. Those model coefficients are re-interpreted here as the partial molar spinel liquidus temperature of the glass components.
Nie Liming; Xing Da; Yang Diwu; Zeng Lvming; Zhou Quan
2007-04-23
Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreign objects.
A free-piston Stirling engine/linear alternator controls and load interaction test facility
Rauch, J.S.; Kankam, M.D.; Santiago, W.; Madi, F.J.
1992-08-01
A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.
Linear beam raster magnet driver based on H-bridge technique
Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William
2006-06-06
An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.
On linear groups of degree 2 over a finite commutative ring
Bashkirov, Evgenii L.; Eser, Hasan
2014-08-20
Let p > 3 be a prime number and F{sub p} be a field of p elements. Let K be a commutative and associative ring obtained by adjoining to F{sub p} an element ? such that ? satisfies a polynomial over F{sub p} and a polynomial of the least degree whose root is ? can be written as a product of distinct polynomials irreducible over F{sub p}. We prove that the special linear group SL{sub 2}(K) is generated by two elementary transvections ( (table) ), ( (table) )
Hhne, Jens
2014-01-29
In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.
Frequency Stabilization in Non-linear MEMS and NEMS Oscillators (IN-11-087)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
- Energy Innovation Portal Find More Like This Return to Search Frequency Stabilization in Non-linear MEMS and NEMS Oscillators (IN-11-087) A New Strategy for Engineering Low-Frequency Noise Oscillators Argonne National Laboratory Contact ANL About This Technology <p> SEM image of one resonator used in our studies (center) and Finite Element Simulations of the dynamic deformation characteristics of the coupled vibrational modes (left and right side).</p> SEM image of one
Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator
Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.
1999-09-20
We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of ^{233}U in the energy range from 0.36 eV to ~700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of ^{27}Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV.
An object oriented design for high performance linear algebra on distributed memory architectures
Dongarra, J.J. |; Walker, D.W.; Pozo, R.
1993-12-31
We describe the design of ScaLAPACK++, an object oriented C++ library for implementing linear algebra computations on distributed memory multicomputers. This package, when complete, will support distributed dense, banded, sparse matrix operations for symmetric, positive-definite, and non-symmetric cases. In ScaLAPACK++ we have employed object oriented design methods to enchance scalability, portability, flexibility, and ease-of-use. We illustrate some of these points by describing the implementation of a right-looking LU factorization for dense systems in ScaLAPACK++.
Electron acceleration by linearly polarized twisted laser pulse with narrow divergence
Vaziri, Mohammad Sohaily, Sozha; Golshani, Mojtaba; Bahrampour, Alireza
2015-03-15
We numerically investigate the vacuum electron acceleration by a high-intensity linearly polarized twisted laser pulse. It is shown that the inherent spiral structure of a Laguerre-Gaussian laser pulse leads to improvement in trapping and acceleration of an electron to energies of the order of GeV in the off-axis case. Also, it is demonstrated that by employing a proper choice of initial injection parameters, the high-energetic electrons with very small scattering angles can be produced.
Linear study of Rayleigh-Taylor instability in a diffusive quantum plasma
Momeni, Mahdi
2013-08-15
The linear Rayleigh-Taylor (RT) instability in an incompressible quantum plasma is investigated on the basis of quantum magnetohydrodynamic model. It is shown that the occurrence of RT instability depends on density-temperature inhomogeneity (characteristic lengths) on one hand, and the system layer size on the other. It is also observed that the combined effects of external magnetic field, diffusivity, and quantum pressure significantly modify the dispersion properties of system in both the parallel and perpendicular directions. For any case, the imaginary and real parts of dispersion relation are presented and the possibility and conditions for the instability growth rate are discussed.
EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES
Palaversa, Lovro; Eyer, Laurent; Rimoldini, Lorenzo; Ivezi?, eljko; Loebman, Sarah; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Becker, Andrew C.; Rudjak, Domagoj; Sudar, Davor; Boi?, Hrvoje; Galin, Mario; Kroflin, Andrea; Mesari?, Martina; Munk, Petra; Vrbanec, Dijana; Sesar, Branimir; Stuart, J. Scott; Srdo?, Gregor; and others
2013-10-01
We describe the construction of a highly reliable sample of ?7000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 deg{sup 2} of the northern sky. The majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle surveys; the photometric errors range from ?0.03 mag at r = 15 to ?0.20 mag at r = 18. Light curves include on average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric recalibration of the LINEAR data for about 25 million objects, we selected ?200,000 most probable candidate variables with r < 17 and visually confirmed and classified ?7000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700 eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve features and colors enables classification schemes much more powerful than when colors or light curves are each used separately. An interesting side result is a robust and precise quantitative description of a strong correlation between the light-curve period and color/spectral type for close and contact eclipsing binary stars (? Lyrae and W UMa): as the color-based spectral type varies from K4 to F5, the median period increases from 5.9 hr to 8.8 hr. These large samples of robustly classified variable stars will enable detailed statistical studies of the Galactic structure and physics of binary and other stars and we make these samples publicly available.
Petit, Andrew S.; Subotnik, Joseph E.
2014-07-07
In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces.
Multi-functional composite structures
Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.
2004-10-19
Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
Multi-functional composite structures
Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.
2010-04-27
Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.
Feng, G.; Deriy, B.; Wang, J.; Shang, H.; Xu, S.
2008-01-01
The APS booster ring uses ramping power supplies to power the sextupole, quadrupole, and dipole magnets as the beam energy ramps up linearly to 7 GeV. Due to the circuit topology used, those supplies are unable to follow the linear ramp to the desired accuracy. The best regulation achieved is 0.5% while 0.1 % is desired. In addition to the unsatisfying regulation, those supplies are sensitive to AC line perturbations and are not able to reject AC line noises higher than a few tens of Hertz. To improve the performance, a linear MOSFET regulation system using paralleled MOSFET devices in series with the power supply is proposed. The system uses a real-time current feedback loop to force the MOSFETs to work in the linear operation mode. By using this linear MOSFET regulator, the voltage drop on MOSFETs, and hence the voltage imposed on magnets, can be regulated very quickly. As a result, the regulation of the magnet current can be improved significantly. Experiments and simulation have been performed to verify the proposed method. Results show that, with the linear regulator, the current regulation can be improved to better than 0.1%. Because of the high bandwidth of the linear regulator, it can reduce the harmonic content in the output current as well as reject the AC line disturbance.
Pennacchio, Len A.; Baroukh, Nadine; Rubin, Edward M.
2003-05-15
Deciphering the genetic code embedded within the human genome remains a significant challenge despite the human genome consortium's recent success at defining its linear sequence (Lander et al. 2001; Venter et al. 2001). While useful strategies exist to identify a large percentage of protein encoding regions, efforts to accurately define functional sequences in the remaining {approx}97 percent of the genome lag. Our primary interest has been to utilize the evolutionary relationship and the universal nature of genomic sequence information in vertebrates to reveal functional elements in the human genome. This has been achieved through the combined use of vertebrate comparative genomics to pinpoint highly conserved sequences as candidates for biological activity and transgenic mouse studies to address the functionality of defined human DNA fragments. Accordingly, we describe strategies and insights into functional sequences in the human genome through the use of comparative genomics coupled wit h functional studies in the mouse.
Schleyer, F.; Cairns, Iver H.; Kim, E.-H.
2013-03-15
Linear mode conversion (LMC) is the linear transfer of energy from one wave mode to another in an inhomogeneous plasma. It is relevant to laboratory plasmas and multiple solar system radio emissions, such as continuum radiation from planetary magnetospheres and type II and III radio bursts from the solar corona and solar wind. This paper simulates LMC of waves defined by warm, magnetized fluid theory, specifically the conversion of Langmuir/z-mode waves to electromagnetic (EM) radiation. The primary focus is the calculation of the energy and power conversion efficiencies for LMC as functions of the angle of incidence {theta} of the Langmuir/z-mode wave, temperature {beta}=T{sub e}/m{sub e}c{sup 2}, adiabatic index {gamma}, and orientation angle {phi} between the ambient density gradient {nabla}N{sub 0} and ambient magnetic field B{sub 0} in a warm, unmagnetized plasma. The ratio of these efficiencies is found to agree well as a function of {theta}, {gamma}, and {beta} with an analytical relation that depends on the group speeds of the Langmuir/z and EM wave modes. The results demonstrate that the energy conversion efficiency {epsilon} is strongly dependent on {gamma}{beta}, {phi} and {theta}, with {epsilon}{proportional_to}({gamma}{beta}){sup 1/2} and {theta}{proportional_to}({gamma}{beta}){sup 1/2}. The power conversion efficiency {epsilon}{sub p}, on the other hand, is independent of {gamma}{beta} but does vary significantly with {theta} and {phi}. The efficiencies are shown to be maximum for approximately perpendicular density gradients ({phi} Almost-Equal-To 90 Degree-Sign ) and minimal for parallel orientation ({phi}=0 Degree-Sign ) and both the energy and power conversion efficiencies peak at the same {theta}.
CALiPER Report 21.1. Linear (T8) Lamps in a 2x4 K12-Lensed Troffer
2014-04-01
This report focuses on the performance of the same 31 linear LED lamps operated in a typical troffer with a K12 prismatic lens. In general, luminaire efficacy is strongly dictated by lamp efficacy, but the optical system of the luminaire substantially reduces the differences between the luminous intensity distributions of the lamps. While the distributions in the luminaire are similar, the differences remain large enough that workplane illuminance uniformity may be reduced if linear LED lamps with a narrow distribution are used. At the same time, linear LED lamps with a narrower distribution result in slightly higher luminaire efficiency.
Linear analysis on the growth of non-spherical perturbations in supersonic accretion flows
Takahashi, Kazuya; Yamada, Shoichi
2014-10-20
We analyzed the growth of non-spherical perturbations in supersonic accretion flows. We have in mind an application to the post-bounce phase of core-collapse supernovae (CCSNe). Such non-spherical perturbations have been suggested by a series of papers by Arnett, who has numerically investigated violent convections in the outer layers of pre-collapse stars. Moreover, Couch and Ott demonstrated in their numerical simulations that such perturbations may lead to a successful supernova even for a progenitor that fails to explode without fluctuations. This study investigated the linear growth of perturbations during the infall onto a stalled shock wave. The linearized equations are solved as an initial and boundary value problem with the use of a Laplace transform. The background is a Bondi accretion flow whose parameters are chosen to mimic the 15 M {sub ☉} progenitor model by Woosley and Heger, which is supposed to be a typical progenitor of CCSNe. We found that the perturbations that are given at a large radius grow as they flow down to the shock radius; the density perturbations can be amplified by a factor of 30, for example. We analytically show that the growth rate is proportional to l, the index of the spherical harmonics. We also found that the perturbations oscillate in time with frequencies that are similar to those of the standing accretion shock instability. This may have an implication for shock revival in CCSNe, which will be investigated in our forthcoming paper in more detail.
Benini, Marco Dappiaggi, Claudio; Murro, Simone
2014-08-01
We discuss the quantization of linearized gravity on globally hyperbolic, asymptotically flat, vacuum spacetimes, and the construction of distinguished states which are both of Hadamard form and invariant under the action of all bulk isometries. The procedure, we follow, consists of looking for a realization of the observables of the theory as a sub-algebra of an auxiliary, non-dynamical algebra constructed on future null infinity ??. The applicability of this scheme is tantamount to proving that a solution of the equations of motion for linearized gravity can be extended smoothly to ??. This has been claimed to be possible provided that a suitable gauge fixing condition, first written by Geroch and Xanthopoulos [Asymptotic simplicity is stable, J. Math. Phys. 19, 714 (1978)], is imposed. We review its definition critically, showing that there exists a previously unnoticed obstruction in its implementation leading us to introducing the concept of radiative observables. These constitute an algebra for which a Hadamard state induced from null infinity and invariant under the action of all spacetime isometries exists and it is explicitly constructed.
CONDUCTION IN LOW MACH NUMBER FLOWS. I. LINEAR AND WEAKLY NONLINEAR REGIMES
Lecoanet, Daniel; Brown, Benjamin P.; Zweibel, Ellen G.; Burns, Keaton J.; Oishi, Jeffrey S.; Vasil, Geoffrey M.
2014-12-20
Thermal conduction is an important energy transfer and damping mechanism in astrophysical flows. Fourier's law, in which the heat flux is proportional to the negative temperature gradient, leading to temperature diffusion, is a well-known empirical model of thermal conduction. However, entropy diffusion has emerged as an alternative thermal conduction model, despite not ensuring the monotonicity of entropy. This paper investigates the differences between temperature and entropy diffusion for both linear internal gravity waves and weakly nonlinear convection. In addition to simulating the two thermal conduction models with the fully compressible Navier-Stokes equations, we also study their effects in the reduced ''soundproof'' anelastic and pseudoincompressible (PI) equations. We find that in the linear and weakly nonlinear regime, temperature and entropy diffusion give quantitatively similar results, although there are some larger errors in the PI equations with temperature diffusion due to inaccuracies in the equation of state. Extrapolating our weakly nonlinear results, we speculate that differences between temperature and entropy diffusion might become more important for strongly turbulent convection.
Quantum chaos of an ion trapped in a linear ion trap
Berman, Gennady P. [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); James, Daniel F. V. [Theoretical Division T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kamenev, Dimitri I. [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Nizhny Novgorod State University, Nizhny Novgorod, 603600, Russia (Russian Federation)
2000-06-01
We describe the transition to quantum chaos of an ion trapped in a linear ion trap and interacting with two laser fields. Under the conditions of adiabatic illumination of the upper level of the ion, and when the frequencies of the two laser beams are slightly different, the system is reduced to a quantum linear oscillator interacting with a monochromatic wave. The property of localization over the quantum resonance cells is proposed to exploit in order to facilitate the process of measurement of the probability distribution of an ion on the vibrational levels. In the regime of strong chaos the time-averaged values of the energy and dispersion of energy are computed and compared with the corresponding classical quantities for different values of the perturbation amplitude. In the exact resonance case, the classical analog of the system possesses an infinite inhomogeneous stochastic web. We analyze the quantum dynamics inside the inhomogeneous web. It is shown that the quantum system mimics on average the dynamics of the corresponding classical system. Formation of the quantum resonance cells is illustrated in the case of a finite detuning from the exact resonance, and under increasing of the wave amplitude. The parameters of the model and the initial conditions are close to the real physical situation which can be realized in the system of cold trapped ion perturbed by two lasers fields with close frequencies. (c) 2000 American Institute of Physics.
Abrecht, David G.; Schwantes, Jon M.
2015-03-03
This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form lnΧ=-α (ΔG_rxn^° (T_C ))/(RT_C )+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG_rxn^° (T_C ). These models allowed an estimate of the upper bound for the reactor temperatures of T_C between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.