National Library of Energy BETA

Sample records for linear colliders lepton

  1. Lepton flavour violating processes at the International Linear Collider

    E-Print Network [OSTI]

    P. M. Ferreira; R. B. Guedes; R. Santos

    2007-02-13

    We study the effects of dimension six effective operators on the flavour violating production and decay of leptons at the International Linear Collider. Analytic expressions for the cross sections, decay widths and asymmetries of all flavour changing processes will be presented, as well as an analysis of the feasibility of their observation at the ILC.

  2. The SUSY seesaw model and lepton-flavor violation at a future electron-positron linear collider

    E-Print Network [OSTI]

    F. Deppisch; H. Päs; A. Redelbach; R. Rückl; Y. Shimizu

    2004-05-11

    We study lepton-flavor violating slepton production and decay at a future e^+e^- linear collider in context with the seesaw mechanism in mSUGRA post-LEP benchmark scenarios. The present knowledge in the neutrino sector as well as improved future measurements are taken into account. We calculate the signal cross-sections \\sigma(e^{+/-}e^- -> l_{\\beta}^{+/-} l_{\\alpha}^- \\tilde{\\chi}_b^0 \\tilde{\\chi}_a^0); l_{\\delta}=e, \\mu, \\tau; \\alpha =|= \\beta and estimate the main background processes. Furthermore, we investigate the correlations of these signals with the corresponding lepton-flavor violating rare decays l_{\\alpha} -> l_{\\beta} \\gamma. It is shown that these correlations are relatively weakly affected by uncertainties in the neutrino data, but very sensitive to the model parameters. Hence, they are particularly suited for probing the origin of lepton-flavor violation.

  3. The International Linear Collider

    E-Print Network [OSTI]

    Barish, Barry

    2013-01-01

    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Hig...

  4. The International Linear Collider

    E-Print Network [OSTI]

    Jim Brau; Paul Grannis; Mike Harrison; Michael Peskin; Marc Ross; Harry Weerts

    2013-04-09

    We present a brief summary of the International Linear Collider as documented in the 2013 Technical Design Report. The Technical Design Report has detailed descriptions of the accelerator baseline design for a 500 GeV e+e- linear collider, the R&D program that has demonstrated its feasibility, the physics goals and expected sensitivities, and the description of the ILD and SiD detectors and their capabilities.

  5. The International Linear Collider

    E-Print Network [OSTI]

    Marco Battaglia

    2007-05-28

    The International Linear Collider (ILC) is the next large scale project in accelerator particle physics. Colliding electrons with positrons at energies from 0.3 TeV up to about 1 TeV, the ILC is expected to provide the accuracy needed to complement the LHC data and extend the sensitivity to new phenomena at the high energy frontier and answer some of the fundamental questions in particle physics and in its relation to Cosmology. This paper reviews some highlights of the ILC physics program and some of the major challenges for the accelerator and detector design.

  6. International linear collider reference design report

    E-Print Network [OSTI]

    Aarons, G.

    2008-01-01

    A. Loew, et al. , “International Linear Collider Technologyfor the International Linear Collider”, in preparation [37]for the International Linear Collider,” in PAC05,http://

  7. The International Linear Collider

    E-Print Network [OSTI]

    Karsten Buesser

    2013-06-13

    The International Linear Collider (ILC) is a proposed electron-positron collider for the centre-of-mass energy range of 200 to 500 GeV and with upgrade options towards 1 TeV. The ILC would be the ideal tool to explore with high precision the properties of the new Higgs-like particle that has recently been discovered at the LHC with a mass of around 125 GeV. The ILC accelerator design is based on the mature superconducting technology that has been developed in the TESLA collaboration and that is currently being used for the European XFEL. The exploitation of the huge physics potential of the ILC is a challenge for the design of the ILC detectors.

  8. Positrons for linear colliders

    SciTech Connect (OSTI)

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  9. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: International Linear Collider Technical Design Report - Volume 2: Physics Citation Details In-Document Search Title: International Linear Collider Technical...

  10. Physics at International Linear Collider (ILC)

    E-Print Network [OSTI]

    Hitoshi Yamamoto

    2007-09-06

    International Linear Collider (ILC) is an electron-positron collider with the initial center-of-mass energy of 500 GeV which is upgradable to about 1 TeV later on. Its goal is to study the physics at TeV scale with unprecedented high sensitivities. The main topics include precision measurements of the Higgs particle properties, studies of supersymmtric particles and the underlying theoretical structure if supersymmetry turns out to be realized in nature, probing alternative possibilities for the origin of mass, and the cosmological connections thereof. In many channels, Higgs and leptonic sector in particular, ILC is substantially more sensitive than LHC, and is complementary to LHC overall. In this short article, we will have a quick look at the capabilities of ILC.

  11. Proceedings of the International Linear Collider Workshop

    E-Print Network [OSTI]

    Proceedings of the International Linear Collider Workshop LCWS 2007 ILC 2007 Volume 1 Edited by Ariane Frey Sabine Riemann #12;Impressum Proceedings of the International Linear Collider Workshop LCWS

  12. Multi-Stage Bunch Compressors for the International Linear Collider

    E-Print Network [OSTI]

    Tenenbaum, Peter G.; Raubenheimer, Tor O.; Wolski, Andrzej

    2005-01-01

    FOR THE INTERNATIONAL LINEAR COLLIDER ? P. Tenenbaum † ,goals, the International Linear Collider (ILC) requires acompressors for the International Linear Collider. Each of

  13. Exotic Leptons. Higgs, Flavor and Collider Phenomenology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Altmannshofer, Wolfgang; Bauer, Martin; Carena, Marcela

    2014-01-15

    We study extensions of the standard model by one generation of vector-like leptons with non-standard hypercharges, which allow for a sizable modification of the h ? ?? decay rate for new lepton masses in the 300 GeV-1 TeV range. We also analyze vacuum stability implications for different hypercharges. Effects in h ? Z? are typically much smaller than in h ? ??, but distinct among the considered hypercharge assignments. Non-standard hypercharges constrain or entirely forbid possible mixing operators with standard model leptons. As a consequence, the leading contributions to the experimentally strongly constrained electric dipole moments of standard model fermionsmore »are only generated at the two loop level by the new CP violating sources of the considered setups. Furthermore, we derive the bounds from dipole moments, electro-weak precision observables and lepton flavor violating processes, and discuss their implications. Finally, we examine the production and decay channels of the vector-like leptons at the LHC, and find that signatures with multiple light leptons or taus are already probing interesting regions of parameter space.« less

  14. Detecting Exotic Heavy Leptons at the Large Hadron Collider

    E-Print Network [OSTI]

    B. C. Allanach; C. M. Harris; M. A. Parker; P. Richardson; B. R. Webber

    2001-08-10

    New almost-degenerate charged and neutral heavy leptons are a feature of a number of theories of physics beyond the Standard Model. The prospects for detecting these at the Large Hadron Collider using a time-of-flight technique are considered, along with any cosmological or experimental constraints on their masses. Based on a discovery criterion of 10 detected exotic leptons we conclude that, with an integrated luminosity of 100 fb-1, it should be possible to detect such leptons provided their masses are less than 950 GeV. It should also be possible to use the angular distribution of the produced particles to distinguish these exotic leptons from supersymmetric scalar leptons, at a better than 90% confidence level, for masses up to 580 GeV.

  15. Future Possibilities for Lepton-Hadron Collider Physics and Detectors

    E-Print Network [OSTI]

    Fleming, G; Lammers, S; Magill, S

    2001-01-01

    We have considered the physics opportunities of future lepton-hadron colliders and how these opportunities might be realized in a possible polarized eRHIC facility and an e-p collider as part of a staged or final version VLHC. We evaluated the physics priorities based on experience at HERA and, using simulated data for e-p collisions with sqrt(s) > 1 TeV, showed how detector designs would be impacted by the physics.

  16. Future Possibilities for Lepton-Hadron Collider Physics and Detectors

    E-Print Network [OSTI]

    G. Fleming; E. Kinney; S. Lammers; S. Magill

    2002-01-29

    We have considered the physics opportunities of future lepton-hadron colliders and how these opportunities might be realized in a possible polarized eRHIC facility and an e-p collider as part of a staged or final version VLHC. We evaluated the physics priorities based on experience at HERA and, using simulated data for e-p collisions with sqrt(s) > 1 TeV, showed how detector designs would be impacted by the physics.

  17. International Workshop on Linear Colliders 2010

    ScienceCinema (OSTI)

    None

    2011-10-06

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options.Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  18. International Linear Collider Technical Design Report - Volume...

    Office of Scientific and Technical Information (OSTI)

    Linear Collider Technical Design Report - Volume 2: Physics Baer, Howard; Barklow, Tim; Fujii, Keisuke; Gao, Yuanning; Hoang, Andre; Kanemura, Shinya; List, Jenny; Logan, Heather...

  19. JLab Supports International Linear Collider Cavity Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supports International Linear Collider Cavity Development Work NEWPORT NEWS, Va. Feb. 12, 2008 - It's not often that major-league baseball and nuclear physics get to share the...

  20. Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders

    E-Print Network [OSTI]

    Keisuke Harigaya; Koji Ichikawa; Anirban Kundu; Shigeki Matsumoto; Satoshi Shirai

    2015-04-14

    Various types of electroweak-interacting particles, which have non-trivial charges under the $\\mathrm{SU}(2)_L \\times \\mathrm{U}(1)_Y$ gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100-1000 GeV is detectable by measuring di-fermion production cross sections with $O(0.1)$\\% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  1. TESLA*HERA as Lepton (Photon)-Hadron Collider

    E-Print Network [OSTI]

    O. Yavas; A. K. Ciftci; S. Sultansoy

    2000-04-11

    New facilities for particle and nuclear physics research, which will be available due to constructing the TESLA linear electron-positron collider tangentially to the HERA proton ring, are discussed.

  2. Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders

    E-Print Network [OSTI]

    Harigaya, Keisuke; Kundu, Anirban; Matsumoto, Shigeki; Shirai, Satoshi

    2015-01-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the $\\mathrm{SU}(2)_L \\times \\mathrm{U}(1)_Y$ gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100-1000 GeV is detectable by measuring di-fermion production cross sections with $O(0.1)$\\% accuracy...

  3. Grid Interface Challenges and Candidate Solutions for the Compact Linear Collider’s (CLIC) Klystron Modulators

    E-Print Network [OSTI]

    Aguglia, D; Watson, A; Clare, J; Wheeler, P

    2014-01-01

    The Compact Linear Collider (CLIC) is a linear electron-positron accelerator under study at CERN, in view of exploring a new leptons collision energy region (0.5TeV to 5TeV). This complex requires ~1600 klystrons fed by highly efficient and controllable power electronics for a convenient power connection to the utility grid. This paper presents the challenges and evaluates several possible structures for the power system. Discussion are provided regarding the candidate topologies according to the converters’ ratings / number and considering reliability, modularity, and redundancy.

  4. Updates to the International Linear Collider Damping Rings Baseline...

    Office of Scientific and Technical Information (OSTI)

    Updates to the International Linear Collider Damping Rings Baseline Design Citation Details In-Document Search Title: Updates to the International Linear Collider Damping Rings...

  5. Photon Linear Collider Gamma-Gamma Summary

    SciTech Connect (OSTI)

    Gronberg, J

    2012-02-27

    High energy photon - photon collisions can be achieved by adding high average power short-pulse lasers to the Linear Collider, enabling an expanded physics program for the facility. The technology required to realize a photon linear collider continues to mature. Compton back-scattering technology is being developed around the world for low energy light source applications and high average power lasers are being developed for Inertial Confinement Fusion.

  6. AN OPTIMIZED SUPERFERRIC WIGGLER DESIGN FOR THE INTERNATIONAL LINEAR COLLIDER

    E-Print Network [OSTI]

    AN OPTIMIZED SUPERFERRIC WIGGLER DESIGN FOR THE INTERNATIONAL LINEAR COLLIDER DAMPING RINGS Urban ALL RIGHTS RESERVED #12;AN OPTIMIZED SUPERFERRIC WIGGLER DESIGN FOR THE INTERNATIONAL LINEAR Linear Collider (ILC) damping rings. Results from optimizations of the parameters of this wiggler

  7. AN OPTIMIZED SUPERFERRIC WIGGLER DESIGN FOR THE INTERNATIONAL LINEAR COLLIDER

    E-Print Network [OSTI]

    AN OPTIMIZED SUPERFERRIC WIGGLER DESIGN FOR THE INTERNATIONAL LINEAR COLLIDER DAMPING RINGS Urban ALL RIGHTS RESERVED #12; AN OPTIMIZED SUPERFERRIC WIGGLER DESIGN FOR THE INTERNATIONAL LINEAR Linear Collider (ILC) damping rings. Results from optimizations of the parameters of this wiggler

  8. The Next Linear Collider: NLC2001

    SciTech Connect (OSTI)

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  9. Physics Case for the International Linear Collider

    E-Print Network [OSTI]

    Keisuke Fujii; Christophe Grojean; Michael E. Peskin; Tim Barklow; Yuanning Gao; Shinya Kanemura; Hyungdo Kim; Jenny List; Mihoko Nojiri; Maxim Perelstein; Roman Poeschl; Juergen Reuter; Frank Simon; Tomohiko Tanabe; Jaehoon Yu; James D. Wells; Hitoshi Murayama; Hitoshi Yamamoto

    2015-06-26

    We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.

  10. Physics Case for the International Linear Collider

    E-Print Network [OSTI]

    Fujii, Keisuke; Peskin, Michael E; Barklow, Tim; Gao, Yuanning; Kanemura, Shinya; Kim, Hyungdo; List, Jenny; Nojiri, Mihoko; Perelstein, Maxim; Poeschl, Roman; Reuter, Juergen; Simon, Frank; Tanabe, Tomohiko; Yu, Jaehoon; Wells, James D; Murayama, Hitoshi; Yamamoto, Hitoshi

    2015-01-01

    We summarize the physics case for the International Linear Collider (ILC). We review the key motivations for the ILC presented in the literature, updating the projected measurement uncertainties for the ILC experiments in accord with the expected schedule of operation of the accelerator and the results of the most recent simulation studies.

  11. Study of anomalous $WW??$ coupling sensitivity at the Compact Linear Collider

    E-Print Network [OSTI]

    M. Koksal

    2014-09-09

    The Compact Linear Collider (CLIC) is one of the most popular linear colliders, planned to realize $e^{-}e^{+}$ collisions in three energy stages of $0.5$, $1.5$, and $3$ TeV. It has an energy scale never reached by any existing lepton collider. In this study, we present the sensitivity studies of the $WW\\gamma\\gamma$ anomalous quartic gauge boson coupling (aQGC) in the three different processes $e^{+}e^{-}\\rightarrow W^{-} W^{+}\\gamma$, $e^{+}e^{-} \\rightarrow e^{+}\\gamma^{*} e^{-} \\rightarrow e^{+} W^{-} \\gamma \

  12. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema (OSTI)

    None

    2011-10-06

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN?s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  13. CLIC e+e- Linear Collider Studies

    E-Print Network [OSTI]

    Dominik Dannheim; Philippe Lebrun; Lucie Linssen; Daniel Schulte; Frank Simon; Steinar Stapnes; Nobukazu Toge; Harry Weerts; James Wells

    2012-08-07

    This document provides input from the CLIC e+e- linear collider studies to the update process of the European Strategy for Particle Physics. It is submitted on behalf of the CLIC/CTF3 collaboration and the CLIC physics and detector study. It describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technique. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a \\sim125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. Two example scenarios are presented for a CLIC accelerator built in three main stages of 500 GeV, 1.4 (1.5) TeV, and 3 TeV, together with the layout and performance of the experiments and accompanied by cost estimates. The resulting CLIC physics potential and measurement precisions are illustrated through detector simulations under realistic beam conditions.

  14. Linear Collider Physics Resource Book Snowmass 2001

    SciTech Connect (OSTI)

    Ronan (Editor), M.T.

    2001-06-01

    The American particle physics community can look forward to a well-conceived and vital program of experimentation for the next ten years, using both colliders and fixed target beams to study a wide variety of pressing questions. Beyond 2010, these programs will be reaching the end of their expected lives. The CERN LHC will provide an experimental program of the first importance. But beyond the LHC, the American community needs a coherent plan. The Snowmass 2001 Workshop and the deliberations of the HEPAP subpanel offer a rare opportunity to engage the full community in planning our future for the next decade or more. A major accelerator project requires a decade from the beginning of an engineering design to the receipt of the first data. So it is now time to decide whether to begin a new accelerator project that will operate in the years soon after 2010. We believe that the world high-energy physics community needs such a project. With the great promise of discovery in physics at the next energy scale, and with the opportunity for the uncovering of profound insights, we cannot allow our field to contract to a single experimental program at a single laboratory in the world. We believe that an e{sup +}e{sup -} linear collider is an excellent choice for the next major project in high-energy physics. Applying experimental techniques very different from those used at hadron colliders, an e{sup +}e{sup -} linear collider will allow us to build on the discoveries made at the Tevatron and the LHC, and to add a level of precision and clarity that will be necessary to understand the physics of the next energy scale. It is not necessary to anticipate specific results from the hadron collider programs to argue for constructing an e{sup +}e{sup -} linear collider; in any scenario that is now discussed, physics will benefit from the new information that e{sup +}e{sup -} experiments can provide. This last point merits further emphasis. If a new accelerator could be designed and built in a few years, it would make sense to wait for the results of each accelerator before planning the next one. Thus, we would wait for the results from the Tevatron before planning the LHC experiments, and wait for the LHC before planning any later stage. In reality accelerators require a long time to construct, and they require such specialized resources and human talent that delay can cripple what would be promising opportunities. In any event, we believe that the case for the linear collider is so compelling and robust that we can justify this facility on the basis of our current knowledge, even before the Tevatron and LHC experiments are done. The physics prospects for the linear collider have been studied intensively for more than a decade, and arguments for the importance of its experimental program have been developed from many different points of view. This book provides an introduction and a guide to this literature. We hope that it will allow physicists new to the consideration of linear collider physics to start from their own personal perspectives and develop their own assessments of the opportunities afforded by a linear collider.

  15. International linear collider reference design report

    SciTech Connect (OSTI)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  16. Druid, displaying root module used for linear collider detectors

    E-Print Network [OSTI]

    Ruan, M

    2015-01-01

    Based on the ROOT TEve/TGeo classes and the standard linear collider data structure, a dedicated linear collider event display has been developed. It supports the latest detector models for both International Linear Collider and Compact Linear Collider as well as the CALICE test beam prototypes. It can be used to visualise event information at the generation, simulation and reconstruction levels. Many options are provided in an intuitive interface. It has been heavily employed in a variety of analyses.

  17. Investigation into electron cloud effects in the International Linear Collider positron damping ring

    E-Print Network [OSTI]

    Crittenden, J.?A.

    2014-01-01

    cloud effects in the International Linear Collider positroninstability in the International Linear Collider positronin the proposed International Linear Collider (ILC) [3].

  18. Luminosity Measurement at the International Linear Collider

    E-Print Network [OSTI]

    Iftach Sadeh

    2010-10-28

    The International Linear Collider (ILC) is a proposed electron-positron collider with a center-of-mass energy of 500~GeV, and a peak luminosity of $2 \\cdot 10^{34}~\\mathrm{cm}^{-2}\\mathrm{s}^{-1}$. The ILC will complement the Large Hadron Collider, a proton-proton accelerator, and provide precision measurements, which may help in solving some of the fundamental questions at the frontier of scientific research, such as the origin of mass and the possible existence of new principles of nature. The linear collider community has set a goal to achieve a precision of $10^{-4}$ on the luminosity measurement at the ILC. This may be accomplished by constructing a finely granulated calorimeter, which will measure Bhabha scattering at small angles. The Bhabha cross-section is theoretically known to great precision, yet the rate of Bhabha scattering events, which would be measured by the luminosity detector, will be influenced by beam-beam effects, and by the inherent energy spread of the collider. The electroweak radiative effects can be calculated to high precision and partially checked with events with final state photon radiation by distinguishing between the observable energy deposits of electrons and of photons in the luminosity calorimeter, using a clustering algorithm. In order to achieve the design goal, the geometrical parameters of the calorimeter need to be reevaluated. This must be done in a generalized manner, so as to facilitate future modifications, the need for which is foreseen, due to expected changes in the detector concept. This work demonstrates that the clustering approach is viable, and that a luminosity calorimeter may be designed to match the precision requirements on the luminosity measurement.

  19. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    E-Print Network [OSTI]

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  20. Extra dimensions and Seesaw Neutrinos at the International Linear Collider

    E-Print Network [OSTI]

    Tomoyuki Saito; Masaki Asano; Keisuke Fujii; Naoyuki Haba; Shigeki Matsumoto; Takehiro Nabeshima; Yosuke Takubo; Hitoshi Yamamoto; Koichi Yoshioka

    2010-11-27

    We study the capability of the international linear collider (ILC) to probe extra dimensions via the seesaw mechanism. In the scenario we study, heavy Kaluza-Klein neutrinos generate tiny neutrino masses and, at the same time, have sizable couplings to the standard-model particles. Consequently, a Kaluza-Klein tower of heavy neutrinos (N) can be produced and studied at the ILC through the process: e+e- -> vN followed by N -> Wl decay. We show that the single lepton plus two-jets final states with large missing energy from this signal process will provide a good opportunity to measure the masses and cross sections of Kaluza-Klein neutrinos up to the third level. Furthermore, the neutrino oscillation parameters can be extracted from the flavor dependence of the lowest-mode signals, which give us information about the origin of low-energy neutrino masses.

  1. Luminosity Spectrum Reconstruction at Linear Colliders

    E-Print Network [OSTI]

    Stéphane Poss; André Sailer

    2014-04-11

    A good knowledge of the luminosity spectrum is mandatory for many measurements at future e+e- colliders. As the beam-parameters determining the luminosity spectrum cannot be measured precisely, the luminosity spectrum has to be measured through a gauge process with the detector. The measured distributions, used to reconstruct the spectrum, depend on Initial State Radiation, cross-section, and Final State Radiation. To extract the basic luminosity spectrum, a parametric model of the luminosity spectrum is created, in this case the spectrum at the 3 TeV Compact Linear Collider (CLIC). The model is used within a reweighting technique to extract the luminosity spectrum from measured Bhabha event observables, taking all relevant effects into account. The centre-of-mass energy spectrum is reconstructed within 5% over the full validity range of the model. The reconstructed spectrum does not result in a significant bias or systematic uncertainty in the exemplary physics benchmark process of smuon pair production.

  2. Physics at the $e^+ e^-$ Linear Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e+e? linear collider in the energy range of s?=92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focusses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  3. Physics at the International Linear Collider

    E-Print Network [OSTI]

    J. List

    2006-05-18

    The International Linear Collider (ILC) is the next large project in accelerator based particle physics. It is complementary to the LHC in many aspects. Measurements from both machines together will finally shed light onto the known deficiencies of the Standard Model of particle physics and allow to unveil a possible underlying more fundamental theory. Here, the possibilities of the ILC will be discussed with special emphasis on the Higgs sector and on topics with a strong connection to cosmological questions like extra dimensions or dark matter candidates.

  4. Positron Polarization at the International Linear Collider

    E-Print Network [OSTI]

    P. Osland; N. Paver

    2005-07-15

    We review some recent arguments supporting the upgrade of the International Linear Collider by a polarized positron beam, in addition to the polarized electron beam. The examples presented here mainly focus on the impact of positron polarization on items relevant to new physics searches, such as the identification of novel interactions in fermion-pair production and the formulation of new CP-sensitive observables. In particular, in addition to the benefits from positron and electron longitudinal polarizations, the advantages in this field of having transverse polarization of both beams are emphasized.

  5. Precision Polarimetry at the International Linear Collider

    E-Print Network [OSTI]

    C. Helebrant; D. Käfer; J. List

    2008-10-13

    The International Linear Collider (ILC) will collide polarised electrons and positrons at beam energies of 45.6 GeV to 250 GeV and optionally up to 500 GeV. To fully exploit the physics potential of this machine, not only the luminosity and beam energy have to be known precisely, but also the polarisation of the particles has to be measured with an unprecedented precision of dP/P ~ 0.25% for both beams. An overall concept of high precision polarisation measurements at high beam energies will be presented. The focus will be on the polarimeters (up- and downstream of the e+e- interaction point) embedded in the ILC beam delivery system. Some challenges concerning the design of the Compton spectrometers and the appropriate Cherenkov detectors for each polarimeter are discussed. Detailed studies of photodetectors and their readout electronics are presented focusing specifically on the linearity of the device, since this is expected to be the limiting factor on the precision of the polarisation measurement at the ILC.

  6. Another Detector for the International Linear Collider

    E-Print Network [OSTI]

    Nural Akchurin; Sehwook Lee; Richard Wigmans; Hanna Arnold; Aaron Bazal; Robert Basili; John Hauptman; Tim Overton; Andrew Priest; Bingzhe Zhao; Alexander Mikhailichenko; Michele Cascella; Franco Grancagnolo; Giovanni Tassielli; Franco Bedeschi; Fabrizio Scuri; Sung Keun Park; Fedor Ignatov; Gabriella Gaudio; Michele Livan

    2013-07-25

    We describe another detectora designed for the International Linear Collider based on several tested instrumentation innovations in order to achieve the necessary experi- mental goal of a detecter that is 2-to-10 times better than the already excellent SLC and LEP detectors, in particular, (1) dual-readout calorimeter system based on the RD52/DREAM measurements at CERN, (2) a cluster-counting drift chamber based on the successful kloe chamber at Frascati, and (3) a second solenoid to return the magnetic flux without iron. A high-performance pixel vertex chamber is presently undefined. We discuss particle identification, momentum and energy resolutions, and the machine-detector interface that together offer the possibility of a very high-performance detector for $e^+e^-$physics up to $\\sqrt{s} = 1$ TeV.

  7. Helmholtz Alliance Linear Collider Forum Proceedings of the Workshops

    E-Print Network [OSTI]

    Helmholtz Alliance Linear Collider Forum Proceedings of the Workshops Hamburg, Munich, Hamburg 2010 of the Helmholtz Alliance Linear Collider Forum 2010­2012, Hamburg, MØunchen, Hamburg, Germany Conference homepage, Internationales Congress Center, Dresden (at the 4th Annual Workshop of the Helmholtz Alliance `Physics

  8. The Next Linear Collider Klystron Development Program*

    E-Print Network [OSTI]

    E. Jongewaard; G. Caryotakis; C. Pearson; R. M. Phillips; D. Sprehn; A. Vlieks

    2000-08-19

    Klystrons capable of 75 MW output power at 11.4 GHz have been under development at SLAC for the last decade. The work has been part of the program to realize all the components necessary for the construction of the Next Linear Collider (NLC). The effort has produced a family of solenoid-focused 50 MW klystrons, which are currently powering a 0.5 GeV test accelerator at SLAC and several test stands, where high power components are evaluated and fundamental research is performed studying rf breakdown and dark current production. Continuing development has resulted in a Periodic Permanent Magnet (PPM) focused 50 MW klystron, tested at SLAC and subsequently contracted for manufacture by industry in England and Japan. A 75 MW version of that PPM klystron was built at SLAC and reached 75 MW, with 2.8 microsecond pulses. Based on this design, a prototype 75 MW klystron, designed for low-cost manufacture, is currently under development at SLAC, and will eventually be procured from industry in modest quantities for advanced NLC tests. Beyond these developments, the design of Multiple Beam Klystrons (MBKs) is under study at SLAC. MBKs offer the possibility of considerably lower modulator costs by producing comparable power to the klystrons now available, at much lower voltages. * This work supported by the Department of Energy under contract DE-AC03-76SF00515

  9. Klystron switching power supplies for the Internation Linear Collider

    SciTech Connect (OSTI)

    Fraioli, Andrea; /Cassino U. /INFN, Pisa

    2009-12-01

    The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

  10. News from CERN, LHC Status and Strategy for Linear Colliders

    E-Print Network [OSTI]

    Rolf-Dieter Heuer

    2012-02-27

    This paper presents the latest development at CERN, concentrating on the status of the LHC and the strategy for future linear colliders. The immediate plans include the exploitation of the LHC at its design luminosity and energy as well as upgrades to the LHC (luminosity and energy) and to its injectors. This may be complemented by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and by the International Linear Collider and/or by a high-energy electron-proton collider. This contribution describes the various future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  11. A 233 km tunnel for lepton and hadron colliders

    SciTech Connect (OSTI)

    Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T. [Dept. of Physics and Astronomy, University of Mississippi-Oxford, University, MS 38677 (United States)

    2012-12-21

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e{sup +}e{sup -}, pp-bar , and {mu}{sup +}{mu}{sup -} collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e{sup +}e{sup -} colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e{sup +}e{sup -} collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp-bar collider uses the high intensity Fermilab p-bar source, exploits high cross sections for pp-bar production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

  12. Lineshape of the Higgs boson in future lepton colliders

    E-Print Network [OSTI]

    Jadach, S

    2015-01-01

    The effect of the photon emission (bremsstrahlung) in the cross section of the process of direct production of the Higgs boson in the future high luminosity electron and muon colliders is calculated. It was found that cross section at the top of the Higgs boson resonance peak is reduced by factor 0.347 for the electron collider and 0.548 for the muon collider. Machine spread of the centre of the mass energy of 4.2MeV (equal to the Higgs width) would reduce peak cross section further, by factor 0.170 and 0.256 (QED and energy spread) for electron and muon beams respectively. Possible uncertainties in the resummed QED calculations are discussed. Numerical results for the lineshape cross section including QED and many values of the machine energy spread are provided.

  13. LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies

    E-Print Network [OSTI]

    Taikan Suehara; Tomohiko Tanabe

    2015-06-28

    We report on the progress in flavor identification tools developed for a future $e^+e^-$ linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  14. LCFIPlus: A Framework for Jet Analysis in Linear Collider Studies

    E-Print Network [OSTI]

    Suehara, Taikan

    2015-01-01

    We report on the progress in flavor identification tools developed for a future $e^+e^-$ linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.

  15. The Higgs Physics Programme at the International Linear Collider

    E-Print Network [OSTI]

    Felix Sefkow

    2014-10-13

    The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).

  16. The Higgs Physics Programme at the International Linear Collider

    E-Print Network [OSTI]

    Sefkow, Felix

    2014-01-01

    The talk summarises the case for Higgs physics in $e^+e^-$ collisions and explains how Higgs parameters can be extracted in a model-independent way at the International Linear Collider (ILC). The expected precision will be discussed in the context of projections for the experiments at the Large Hadron Collider (LHC).

  17. Physics studies at a future linear collider 

    E-Print Network [OSTI]

    Tabassam, Hajrah

    2012-06-22

    With the start of the Large Hadron Collider(LHC) at CERN, we will obtain a new understanding of the physics beyond our current limits. New discoveries will be made; but we will require a deeper understanding, which the ...

  18. Forschung fr den International Linear Collider Abbildung 55: Simuliertes Ereignis im Kalorimeter Prototypen fr den ILC. Drei Detektoren

    E-Print Network [OSTI]

    Forschung für den International Linear Collider Abbildung 55: Simuliertes Ereignis im Kalorimeter #12;Forschung für den International Linear Collider Forschung für den International Linear Collider Treffen der Maschinenexperten, eindrucks- voll demonstriert. Der Name ,,International Linear Collider

  19. The polarized electron beam for the SLAC Linear Collider

    E-Print Network [OSTI]

    M. Woods

    1996-11-09

    The SLAC Linear Collider has been colliding a polarized electron beam with an unpolarized positron beam at the Z^0 resonance for the SLD experiment since 1992. An electron beam polarization of close to 80% has been achieved for the experiment at luminosities up to 8x10^29 cm^-2 s^-1. This is the world's first and only linear collider, and is a successful prototype for the next generation of high energy electron linear colliders. This paper discusses polarized beam operation for the SLC, and includes aspects of the polarized source, spin transport and polarimetry. Presented at the 12th International Symposium on High Energy Spin Physics held at Amsterdam, The Netherlands September 10-14, 1996.

  20. Single-Bunch Instability Driven by the Electron Cloud Effect in the Positron Damping Ring of the International Linear Collider

    E-Print Network [OSTI]

    2005-01-01

    RING OF THE INTERNATIONAL LINEAR COLLIDER* M. Pivi # , T.DR) of the International Linear Collider (ILC), an electron

  1. Probing the fermionic Higgs portal at lepton colliders

    E-Print Network [OSTI]

    Fedderke, Michael A; Wang, Lian-Tao

    2015-01-01

    We study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator $H^\\dagger H \\bar \\chi \\chi$. Measurements of precision electroweak $S$ and $T$ parameters and the $e^+e^- \\to Zh$ cross section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables. We also provide full one-loop results for $S$ and $T$ in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.

  2. Probing the fermionic Higgs portal at lepton colliders

    E-Print Network [OSTI]

    Michael A. Fedderke; Tongyan Lin; Lian-Tao Wang

    2015-06-17

    We study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator $H^\\dagger H \\bar \\chi \\chi$. Measurements of precision electroweak $S$ and $T$ parameters and the $e^+e^- \\to Zh$ cross section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables. We also provide full one-loop results for $S$ and $T$ in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.

  3. International Linear Collider Abbildung 86: Photo des TPC Feldkafigs, unmittelbar nach der Fertigstellung, im geoffne-

    E-Print Network [OSTI]

    International Linear Collider Abbildung 86: Photo des TPC FeldkØafigs, unmittelbar nach der Fertigstellung, im geØoffne- ten Zustand. 138 #12;International Linear Collider International Linear Collider ILC #12;International Linear Collider Die Entwicklung von Beschleuniger und Experiment ist eng miteinander

  4. The Higgs boson and the International Linear Collider

    E-Print Network [OSTI]

    Borzumati, Francesca

    2014-01-01

    The Higgs boson will be subject of intense experimental searches in future high-energy experiments. In addition to the effort made at the Large Hadron Collider, where it was discovered, it will be the major subject of study at the International Linear Collider. We review here the reasons for that and some of the issues to be tackled at this future accelerator, in particular that of the precision of the Higgs-boson couplings.

  5. The Higgs boson and the International Linear Collider

    E-Print Network [OSTI]

    Francesca Borzumati; Eriko Kato

    2014-07-08

    The Higgs boson will be subject of intense experimental searches in future high-energy experiments. In addition to the effort made at the Large Hadron Collider, where it was discovered, it will be the major subject of study at the International Linear Collider. We review here the reasons for that and some of the issues to be tackled at this future accelerator, in particular that of the precision of the Higgs-boson couplings.

  6. The International Linear Collider as a Kaluza-Klein Factory

    E-Print Network [OSTI]

    Biplob Bhattacherjee; Anirban Kundu

    2005-09-02

    In the minimal Universal Extra Dimension model, single production of n = 2 gauge bosons provides a unique discriminating feature from supersymmetry. We discuss how the proposed International Linear Collider can act as a n = 2 factory, much in the same vein as LEP. We also touch upon the potential of the gamma-gamma mode of the collider to study the production and the decay of an intermediate mass Higgs boson and its KK excitations.

  7. Laser cooling of electron beams for linear colliders

    E-Print Network [OSTI]

    Valery Telnov

    2013-10-24

    A novel method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. With reasonable laser parameters (laser flash energy about 10 J) one can decrease transverse beam emittances by a factor about 10 per one stage. The ultimate transverse emittances are much below those achievable by other methods. Beam depolarization during cooling is about 5--15 % for one stage. This method is especially useful for photon colliders and opens new possibilities for e+e- colliders.

  8. Testing Higgs portal dark matter via $Z$ fusion at a linear collider

    E-Print Network [OSTI]

    Shinya Kanemura; Shigeki Matsumoto; Takehiro Nabeshima; Hiroyuki Taniguchi

    2011-02-25

    We investigate the possibility of detecting dark matter at TeV scale linear colliders in the scenario where the dark matter is a massive particle weakly interacting only with the Higgs boson $h$ in the low energy effective theory (the Higgs portal dark matter scenario). The dark matter in this scenario would be difficult to be tested at the CERN Large Hadron Collider when the decay of the Higgs boson into a dark matter pair is not kinematically allowed. We study whether even in such a case the dark matter $D$ can be explored or not via the $Z$ boson fusion process at the International Linear Collider and also at a multi TeV lepton collider. It is found that for the collision energy $\\sqrt{S}>1$ TeV with the integrated luminosity 1 ab$^{-1}$, the signal ($e^{\\pm}e^-\\to e^{\\pm}e^-h^\\ast \\to e^{\\pm}e^-DD$) can be seen after appropriate kinematic cuts. In particular, when the dark matter is a fermion or a vector, which is supposed to be singlet under the standard gauge symmetry, the signal with the mass up to 100 GeV can be tested for the Higgs boson mass to be 120 GeV.

  9. Exploring new physics through contact interactions in lepton...

    Office of Scientific and Technical Information (OSTI)

    Conference: Exploring new physics through contact interactions in lepton pair production at a linear collider Citation Details In-Document Search Title: Exploring new physics...

  10. Threat to UK participation in International Linear Collider 12th December 2007

    E-Print Network [OSTI]

    Crowther, Paul

    Threat to UK participation in International Linear Collider 12th December 2007 The UK's Linear of their intention to withdraw from the International Linear Collider (ILC) due to funding problems. The UK has been

  11. Power Saving Optimization for Linear Collider Interaction Region Parameters

    SciTech Connect (OSTI)

    Seryi, Andrei; /SLAC

    2009-10-30

    Optimization of Interaction Region parameters of a TeV energy scale linear collider has to take into account constraints defined by phenomena such as beam-beam focusing forces, beamstrahlung radiation, and hour-glass effect. With those constraints, achieving a desired luminosity of about 2E34 would require use of e{sup +}e{sup -} beams with about 10 MW average power. Application of the 'travelling focus' regime may allow the required beam power to be reduced by at least a factor of two, helping reduce the cost of the collider, while keeping the beamstrahlung energy loss reasonably low. The technique is illustrated for the 500 GeV CM parameters of the International Linear Collider. This technique may also in principle allow recycling the e{sup +}e{sup -} beams and/or recuperation of their energy.

  12. Laser cooling of electron beams at linear colliders

    E-Print Network [OSTI]

    Valery Telnov

    2000-01-12

    A method of electron beam cooling is considered which can be used for linear colliders. The electron beam is cooled during collision with focused powerful laser pulse. The ultimate transverse emittances are much below those achievable by other methods. This method is especially useful for high energy gamma-gamma colliders. In this paper we review and analyse limitations in this method, also discuss a new method of obtaining very high laser powers required for the laser cooling, radiation conditions and finaly present a possible scheme for the laser cooling of electron beams.

  13. Interaction region for gamma-gamma, gamma-electron collisions at linear colliders

    E-Print Network [OSTI]

    Valery Telnov

    2002-07-29

    Photon colliders (gamma-gamma, gamma-electron) are based on backward Compton scattering of laser light off the high energy electrons in linear colliders. All projects of linear colliders include this option. In this paper physics motivation, possible parameters and some interaction region aspects of photon colliders are discussed.

  14. Complementarity of the CERN Large Hadron Collider and the $e^+e^-$ International Linear Collider

    E-Print Network [OSTI]

    S. Y. Choi

    2008-09-10

    The next-generation high-energy facilities, the CERN Large Hadron Collider (LHC) and the prospective $e^+e^-$ International Linear Collider (ILC), are expected to unravel new structures of matter and forces from the electroweak scale to the TeV scale. In this report we review the complementary role of LHC and ILC in drawing a comprehensive and high-precision picture of the mechanism breaking the electroweak symmetries and generating mass, and the unification of forces in the frame of supersymmetry.

  15. Engagement by U.S. University Groups With International Linear Collider R&D Projects

    E-Print Network [OSTI]

    Gollin, George

    1 Engagement by U.S. University Groups With International Linear Collider R&D Projects A report's level of engagement with research leading towards the International Linear Collider. We did

  16. QCD Corrections to Pair Production of Type III Seesaw Leptons at Hadron Colliders

    E-Print Network [OSTI]

    Richard Ruiz

    2015-09-17

    If kinematically accessible, hadron collider experiments provide an ideal laboratory for the direct production of heavy lepton partners in Seesaw models. In the context of the Type III Seesaw Mechanism, the $\\mathcal{O}(\\alpha_s)$ rate and shape corrections are presented for the pair production of hypothetical, heavy $SU(2)_L$ triplet leptons in $pp$ collisions at $\\sqrt{s}=13,$ 14, and 100 TeV. The next-to-leading order (NLO) $K$-factors span, approximately, $K^{NLO}=1.1 - 1.4$ for both charged current and neutral current processes over a triplet mass range $m_T = 100~\\text{GeV}-2\\text{TeV}$. Total production cross sections exhibit a $^{+5\\%}_{-6\\%}$ scale dependence at 14 TeV and $\\pm1\\%$ at 100 TeV. The NLO differential $K$-factors for heavy lepton kinematics are largely flat, suggesting that na\\"ive scaling by the total $K^{NLO}$ is reasonably justified. The resummed transverse momentum distribution of the dilepton system is presented at leading logarithmic (LL) accuracy. The effects of resummation are large in TeV-scale dilepton systems. Discovery potential to heavy lepton pairs at 14 and 100 TeV is briefly explored: At the High-Luminosity LHC, we estimate a $4.8-6.3\\sigma$ discovery potential maximally for $m_T = 1.5-1.6~\\text{TeV}$ after 3000 fb$^{-1}$. With 300 (3000) fb$^{-1}$, there is $2\\sigma$ sensitivity up to $m_T = 1.3-1.4~\\text{TeV}~(1.7-1.8~\\text{TeV})$ in the individual channels. At 100 TeV and with 10 fb$^{-1}$, a $5\\sigma$ discovery can be achieved for $m_T=1.4-1.6~\\text{TeV}$.

  17. Searching for Lepton Flavor Violation at a Future High Energy Electron-Positron Collider

    E-Print Network [OSTI]

    Brandon Murakami; Tim M. P. Tait

    2014-10-06

    We consider theories where lepton flavor is violated, in particular concentrating on the four fermion operator consisting of three electrons and a tau. Strong constraints are available from existing searches for tau -> eee, requiring the scale of the contact interaction to be less than ~(9 TeV)^-2. We reexamine this type of physics, assuming that the particles responsible are heavy (with masses greater than ~TeV) such that a contact interaction description continues to be applicable at the energies for a future e+e- collider. We find that the process e+e- -> e tau can be a very sensitive probe of this kind of physics (even for very conservative assumptions about the detector performance), already improving upon the tau decay bounds to less than ~(11 TeV)^-2 at collider energy sqrt(s) 500 GeV, or reaching beyond ~(35 TeV)^-2 for sqrt(s) = 3 TeV. Even stronger bounds are possible at e-e- colliders in the same energy range.

  18. Probing Universal Extra Dimension at the International Linear Collider

    E-Print Network [OSTI]

    Gautam Bhattacharyya; Paramita Dey; Anirban Kundu; Amitava Raychaudhuri

    2005-09-02

    In the context of an universal extra-dimensional scenario, we consider production of the first Kaluza-Klein electron positron pair in an $e^+e^-$ collider as a case-study for the future International Linear Collider. The Kaluza-Klein electron decays into a nearly degenerate Kaluza-Klein photon and a standard electron, the former carrying away missing energy. The Kaluza-Klein electron and photon states are heavy with their masses around the inverse radius of compactification, and their splitting is controlled by radiative corrections originating from bulk and brane-localised interactions. We look for the signal event $e^+e^- +$ large missing energy for $\\sqrt s = 1$ TeV and observe that with a few hundred fb$^{-1}$ luminosity the signal will be readily detectable over the standard model background. We comment on how this signal may be distinguished from similar events from other new physics.

  19. Characterising WIMPs at a future $e^+e^-$ Linear Collider

    E-Print Network [OSTI]

    Christoph Bartels; Mikael Berggren; Jenny List

    2012-06-28

    We investigate the prospects for detecting and measuring the parameters of WIMP dark matter in a model independent way at the International Linear Collider. The signal under study is direct WIMP pair production with associated initial state radiation $e^+e^- \\rightarrow \\chi\\chi\\gamma$. The analysis accounts for the beam energy spectrum of the ILC and the dominant machine induced backgrounds. The influence of the detector parameters are incorporated by full simulation and event reconstruction within the framework of the ILD detector concept. We show that by using polarised beams, the detection potential is significantly increased by reduction of the dominant SM background of radiative neutrino production $e^+e^- \\rightarrow \

  20. Higgs portal dark matter at a linear collider

    E-Print Network [OSTI]

    Takehiro Nabeshima

    2012-02-23

    We investigate the possibility of detecting dark matter at TeV scale linear colliders in the scenario where the dark matter interacts with standard model particles only via the Higgs boson. In this scenario, the dark matter would be difficult to be tested at the LHC especially when the decay of the Higgs boson into a dark matter pair is not kinematically allowed. In this talk, we discuss whether even such a case can be explored or not at the ILC and CLIC via the Z boson fusion process. This talk is mainly based on Phys. Rev. D 82, 055026 (2010) and Phys. Lett. B 701, 591 (2011).

  1. Double vector meson production in the International Linear Collider

    E-Print Network [OSTI]

    F. Carvalho; V. P. Goncalves; B. D. Moreira; F. S. Navarra

    2015-04-17

    In this paper we study double vector meson production in $\\gamma \\gamma$ interactions at high energies and, using the color dipole picture, estimate the main observables which can be probed at the International Linear Collider (ILC). The total $\\gamma (Q_1^2) + \\gamma (Q_2^2) \\rightarrow V_1 + V_2$ cross-sections for $V_i = \\rho$, $\\phi$, $J/\\psi$ and $\\Upsilon$ are computed and the energy and virtuality dependencies are studied in detail. Our results demonstrate that the experimental analysis of this process is feasible at the ILC and it can be useful to constrain the QCD dynamics at high energies.

  2. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    SciTech Connect (OSTI)

    Seryi, Andrei

    2003-05-27

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given.

  3. The 4th Concept Detector for the International Linear Collider

    E-Print Network [OSTI]

    Sung Keun Park; Franco Grancagnolo; John Hauptman; Alexander Mikhailichenko; Nural Akchurin

    2007-08-06

    The 4th Concept detector presently being designed for the International Linear Collider introduces several innovations in order to achieve the necessary experimental goal of a detecter that is 2-to-10 times better than the already excellent SLC and LEP detectors. We introduce a dual-readout calorimeter system, a cluster counting drift chamber, and a second solenoid to return the magnetic flux without iron. We discuss particle identification, momentum and energy resolutions, and the machine-detector interface that together offer the possibility of a very high-performance detector for e^+e^-physics up to $\\sqrt{s} = 1$ TeV.

  4. Double vector meson production in the International Linear Collider

    E-Print Network [OSTI]

    Carvalho, F; Moreira, B D; Navarra, F S

    2015-01-01

    In this paper we study double vector meson production in $\\gamma \\gamma$ interactions at high energies and, using the color dipole picture, estimate the main observables which can be probed at the International Linear Collider (ILC). The total $\\gamma (Q_1^2) + \\gamma (Q_2^2) \\rightarrow V_1 + V_2$ cross-sections for $V_i = \\rho$, $\\phi$, $J/\\psi$ and $\\Upsilon$ are computed and the energy and virtuality dependencies are studied in detail. Our results demonstrate that the experimental analysis of this process is feasible at the ILC and it can be useful to constrain the QCD dynamics at high energies.

  5. Physics at the e?e? linear collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moortgat-Picka, G.; Kronfeld, A. S.

    2015-08-14

    A comprehensive review of physics at an e?e? linear collider in the energy range of ?s = 92 GeV–3 TeV is presented in view of recent and expected LHC results, experiments from low-energy as well as astroparticle physics. The report focuses in particular on Higgs-boson, top-quark and electroweak precision physics, but also discusses several models of beyond the standard model physics such as supersymmetry, little Higgs models and extra gauge bosons. The connection to cosmology has been analysed as well.

  6. Reconstruction of Inert Doublet Scalars at the International Linear Collider

    E-Print Network [OSTI]

    Mayumi Aoki; Shinya Kanemura; Hiroshi Yokoya

    2013-08-19

    We study collider signatures for extra scalar bosons in the inert doublet model at the international linear collider (ILC). The inert doublet model is a simple extension of the standard model by introducing an additional isospin-doublet scalar field which is odd under an unbroken Z_2 symmetry. The model predicts four kinds of Z_2-odd scalar bosons, and the lightest of them becomes stable and a candidate of the dark matter as long as it is electrically neutral. Taking into account the constraints from various theoretical and phenomenological conditions, we perform a simulation study for the distinctive signatures of the extra scalars over the standard-model background contributions at the ILC with the center-of-mass energy of sqrt{s} = 250 GeV and 500 GeV. We further discuss observables for determination of the mass of the scalars. We find that the parameter regions which cannot be detected at the large hadron collider can be probed at the ILC.

  7. The International Linear Collider Technical Design Report - Volume 2: Physics

    E-Print Network [OSTI]

    Howard Baer; Tim Barklow; Keisuke Fujii; Yuanning Gao; Andre Hoang; Shinya Kanemura; Jenny List; Heather E. Logan; Andrei Nomerotski; Maxim Perelstein; Michael E. Peskin; Roman Pöschl; Jürgen Reuter; Sabine Riemann; Aurore Savoy-Navarro; Geraldine Servant; Tim M. P. Tait; Jaehoon Yu

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  8. Recent progress for Linear Collider SM/BSM Higgs/Electroweak Symmetry Breaking Calculations

    E-Print Network [OSTI]

    Juergen Reuter

    2012-01-22

    In this paper I review the calculations (and partially simulations and theoretical studies) that have been made and published during the last two to three years focusing on the electroweak symmetry breaking sector and the Higgs boson(s) within the Standard Model and models beyond the Standard Model (BSM) at or relevant for either the International Linear Collider (ILC) or the Compact Linear Collider (CLIC), commonly abbreviated as Linear Collider (LC).

  9. Discrimination of New Physics Models with the International Linear Collider

    E-Print Network [OSTI]

    Masaki Asano; Tomoyuki Saito; Taikan Suehara; Keisuke Fujii; R. S. Hundi; Hideo Itoh; Shigeki Matsumoto; Nobuchika Okada; Yosuke Takubo; Hitoshi Yamamoto

    2011-09-28

    The large hadron collider (LHC) is anticipated to provide signals of new physics at the TeV scale, which are likely to involve production of a WIMP dark matter candidate. The international linear collider (ILC) is to sort out these signals and lead us to some viable model of the new physics at the TeV scale. In this article, we discuss how the ILC can discriminate new physics models, taking the following three examples: the inert Higgs model, the supersymmetric model, and the littlest Higgs model with T-parity. These models predict dark matter particles with different spins, 0, 1/2, and 1, respectively, and hence comprise representative scenarios. Specifically, we focus on the pair production process, e+e- -> chi+chi- -> chi0chi0W+W-, where chi0 and chi+- are the WIMP dark matter and a new charged particle predicted in each of these models. We then evaluate how accurately the properties of these new particles can be determined at the ILC and demonstrate that the ILC is capable of identifying the spin of the new charged particle and discriminating these models.

  10. Top quark anomalous couplings at the International Linear Collider

    E-Print Network [OSTI]

    Erik Devetak; Andrei Nomerotski; Michael Peskin

    2011-07-27

    We present a study of the experimental determination of the forward-backward asymmetry in the process $e^+e^-\\to t\\bar t$ and in the subsequent $t\\to Wb$ decay, studied in the context of the International Linear Collider. This process probes the elementary couplings of the top quark to the photon, the $Z$ and the $W$ bosons at a level of precision that is difficult to achieve at hadron colliders. Measurement of the forward-backward asymmetry requires excellent $b$ quark identification and determination of the quark charge. The study reported here is performed in the most challenging all-hadronic channel $e^+e^- \\to b\\bar b q\\bar q q\\bar q$. It includes realistic details of the experimental environment, a full Monte Carlo simulation of the detector, based on the Silicon Detector concept, and realistic event reconstruction. The forward-backward asymmetries are determined to a precision of approximately 1% for each of two choices of beam polarization. We analyze the implications for the determination of the $t\\bar t Z$ and $Wtb$ couplings.

  11. Beam Trajectory control of the future Compact LInear Collider beam

    E-Print Network [OSTI]

    Balik, G; Bolzon, B; Brunetti, L; Caron, B; Deleglise, G; Jeremie, A; Le Breton, R; Lottin, J; Pacquet, L

    2011-01-01

    The future Compact LInear Collider (CLIC) currently under design at CERN (European Organization for Nuclear Research) would create high-energy particle collisions between electrons and positrons, and provide a tool for scientists to address many of the most compelling questions about the fundamental nature of matter, energy, space and time. In accelerating structure, it is well-established that vibrations generated by the ground motion constitute the main limiting factors for reaching the luminosity of 10^34 cm-2s-1. Several methods have been proposed to counteract this phenomena and active vibration controls based on the integration of mechatronic systems into the machine structure is probably one of the most promising. This paper studies the strategy of the vibration suppression. Active vibration control methods, such as optimized parameter of a numerical compensator, adaptive algorithm with real time control are investigated and implemented in the simulation layout. The requirement couldn’t be achieved w...

  12. Investigation into electron cloud effects in the International Linear Collider positron damping ring

    E-Print Network [OSTI]

    Furman, Miguel

    Investigation into electron cloud effects in the International Linear Collider positron damping; published 17 March 2014) We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs

  13. Linear Collider Physics Resource Book for Snowmass 2001 - Part 1: Introduction

    E-Print Network [OSTI]

    T. Abe

    2001-06-13

    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 1 contains the table of contents and introduction and gives a summary of the case for a 500 GeV linear collider.

  14. Studies Pertaining to a Small Damping Ring for the International Linear Collider

    E-Print Network [OSTI]

    Gollin, George

    Studies Pertaining to a Small Damping Ring for the International Linear Collider Louis Emery, Kwang, IL 61801 September 28, 2004 FERMILAB-TM-2272-AD-TD Abstract The size of the International Linear Collider's damping rings is dictated in part by the performance of the injection/extraction kicker

  15. Physics Reach at Future Colliders

    SciTech Connect (OSTI)

    Krawczyk, Maria [Institute of Theoretical Physics, University of Warsaw, ul. Hoz-dota 69, 00-681 Warsaw (Poland); CERN, CH-1211 Geneva 23 (Switzerland)

    2007-11-27

    The physics reach at future colliders is discussed, with focus on the Higgs sector. First we present the Standard Model and some results obtained at the existing high-energy hadron collider, Tevatron, together with the corresponding expectations for the Large Hadron Collider (LHC), which starts operating in 2008. Then we discuss important low energy measurements: the anomalous magnetic moment for muon and the leptonic B-decay together with b{yields}s{gamma}. Finally the potential of the planned e{sup +}e{sup -} International Linear Collider (ILC) and its possible option Photon Linear Collider (PLC), e{gamma} and {gamma}{gamma}, is shortly presented.

  16. International Linear Collider Abbildung 66: Drei-dimensionale Zeichnung des LDC Large Detector Concept, das mit we-

    E-Print Network [OSTI]

    International Linear Collider Abbildung 66: Drei-dimensionale Zeichnung des LDC Large Detector weitere Kalorimeter (BeamCal und LumiCal). 134 #12;International Linear Collider International Linear Entwicklung fØur den e+e- International Linear Collider (ILC). Weltweit waren die AktivitØaten fØur den

  17. Prospects for Precision Higgs Physics at Linear Colliders

    E-Print Network [OSTI]

    Frank Simon

    2012-11-30

    A linear e+e- collider provides excellent possibilities for precision measurements of the properties of the Higgs boson. At energies close to the Z-Higgs threshold, the Higgs boson can be studied in recoil against a Z boson, to obtain not only a precision mass measurement but also direct measurements of the branching ratios for most decay modes, including possible decay to invisible species. At higher energies, the Higgs boson coupling to top quarks and the Higgs boson self-coupling can also be measured. At energies approaching 1 TeV and above, the rising cross section for Higgs production in WW fusion allows the measurement of very small branching ratios, including the branching ratio to muon pairs. These experiments make it possible to determine the complete profile of the Higgs boson in a model-independent way. The prospects for these measurements are summarized, based on the results of detailed simulation studies performed within the frameworks of the CLIC conceptual design report and the ILC technical design report.

  18. Effective Models for Dark Matter at the International Linear Collider

    E-Print Network [OSTI]

    Daniel Schmeier

    2013-08-20

    Weakly interacting massive particles (WIMPs) form a promising solution to the dark matter problem and many experiments are now searching for these particles. Using effective field theories to describe the interaction of the WIMP with the Standard Model has proven successful in providing an easy way to compare the different experimental results. In this work, we show how effective operators can be formally derived from a UV-complete underlying theory, and we analyse these operators in different experimental contexts. We put our main focus on the expected sensitivity of the International Linear Collider (ILC) in searching for WIMPs by looking at events with single photons in the final state. Furthermore, we show explicit evaluations of the relic density measurements from the Wilkinson Microwave Anisotropy Probe and the XENON Dark Matter Project direct detection measurements to compare to the expected ILC results. We find that the ILC serves as a unique tool to probe possible WIMP interactions with the Standard Model for dark matter masses below 10 GeV. This extends to masses up to 490 GeV in cases where the interaction is spin-dependent or leptophilic.

  19. Adjustable permanent quadrupoles for the next linear collider

    SciTech Connect (OSTI)

    James T. Volk et al.

    2001-06-22

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to {minus}20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype.

  20. A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    E-Print Network [OSTI]

    Pivi, M T F; Celata, C M; Cooper, F; Furman, M A; Kharakh, D; King, F K; Kirby, R E; Kuekan, B; Lipari, J J; Munro, M; Ng, J S T; Olszewski, J; Raubenheimer, T O; Seeman, J; Smith, B; Spencer, C M; Wang, L; Wittmer, W

    2008-01-01

    A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

  1. International Linear Collider Abbildung 61: Im Laufe des Jahres 2005 wurden die ersten Ebenen des hadronischen Ka-

    E-Print Network [OSTI]

    International Linear Collider Abbildung 61: Im Laufe des Jahres 2005 wurden die ersten Ebenen des Rande angepasst, um die Zahl der AuslesekanØale zu minimieren. 118 #12;International Linear Collider International Linear Collider ILC-Projektgruppe: Mitglieder und GØaste der Gruppen M und FH, darunter

  2. TESLA Linear-Collider Projekt Abbildung 134: Das hydrogeologische Profil entlang der TESLA-Trasse. Der TESLA-

    E-Print Network [OSTI]

    TESLA Linear-Collider Projekt Abbildung 134: Das hydrogeologische Profil entlang der TESLA-Trasse. Der TESLA- Tunnel liegt in wasserdurchlässigen und -undurchlässigen Schichten. Die wasserdurch gesättigt. 230 #12;TESLA Linear-Collider Projekt Voruntersuchungen zum TESLA Linear-Collider Projekt Ein

  3. Research and Development towards a Detector for a High Energy Electron-Positron Linear Collider

    E-Print Network [OSTI]

    Bruce A. Schumm

    2001-11-01

    This exposition provides a detailed picture of ongoing and planned activities towards the development of a detector for a high-energy Linear Collider. Cases for which research and development activity does not exist, or needs to be bolstered, are identified for the various subsystems. The case is made that the full exploitation of the potential of a high-energy Linear Collider will require the augmentation of existing detector technology and simulation capability, and that this program should become a major focus of the worldwide particle physics community should the construction of a Linear Collider become likely.

  4. Bunch Compressor for the TESLA Linear Collider W. Decking, G. Hoffstaetter, T. Limberg

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    Bunch Compressor for the TESLA Linear Collider W. Decking, G. Hoffstaetter, T. Limberg DESY, Notkestraße 85, 22603 Hamburg, Germany September 2000 Abstract TESLA-2000-40 (2000) We discuss different bunch compression systems for the TESLA collider. The best alternative is a wiggler type compressor, where we list

  5. Anomalous $WW?$ couplings with beam polarization at the Compact Linear Collider

    E-Print Network [OSTI]

    V. Ar?; A. A. Billur; S. C. ?nan; M. Köksal

    2015-06-30

    We study the anomalous $WW\\gamma$ couplings at the Compact Linear Collider through the processes $e^{+}e^{-}\\to W^+W^-$, $e^{-}e^{+} \\to e^{-} \\gamma^{*} e^{+} \\to e^{+} \

  6. Sensitivity to the Gravitino mass from single-photon spectrum at TESLA Linear Collider

    E-Print Network [OSTI]

    P. Checchia

    1999-11-02

    The spectrum of single-photon events detected in the forward and in the barrel region of a TESLA linear collider detector was studied in order to investigate the production of superlight Gravitino pairs associated with a photon.

  7. Of Linear Colliders, the GDE Workshop at Bangalore, Mughals, Camels, Elephants and Sundials

    SciTech Connect (OSTI)

    Loew, Greg

    2006-04-17

    In this colloquium, the speaker will give a summary of the recent International Linear Collider (ILC) Global Design Effort (GDE) Workshop at Bangalore and how the High Energy Physics community converged to this meeting after many years of electron-positron linear collider design and experimental work. Given that this workshop for the first time took place in India, the speaker will also show a few pictures and talk briefly about what he learned in that fascinating country.

  8. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect (OSTI)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  9. Design considerations for a laser-plasma linear collider

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01

    colliders limit the wall plug power to a few hundred MW. Inplug to beam) Total wall-plug power Example 1 10 17 cm ?3 1n ?1/2 and the total wall plug power scales as P wall ? n

  10. Evaluation of measurement accuracies of the Higgs boson branching fractions in the International Linear Collider

    E-Print Network [OSTI]

    H. Ono; A. Miyamoto

    2013-03-19

    Precise measurement of Higgs boson couplings is an important task for International Linear Collider (ILC) experiments and will facilitate the understanding of the particle mass generation mechanism. In this study, the measurement accuracies of the Higgs boson branching fractions to the $b$ and $c$ quarks and gluons, $\\Delta Br(H\\to b\\bar{b},\\sim c\\bar{c},\\sim gg)/Br$, were evaluated with the full International Large Detector model (\\texttt{ILD\\_00}) for the Higgs mass of 120 GeV at the center-of-mass (CM) energies of 250 and 350 GeV using neutrino, hadronic and leptonic channels and assuming an integrated luminosity of $250 {\\rm fb^{-1}}$, and an electron (positron) beam polarization of -80% (+30%). We obtained the following measurement accuracies of the Higgs cross section times branching fraction ($\\Delta (\\sigma \\cdot Br)/\\sigma \\cdot Br$) for decay of the Higgs into $b\\bar{b}$, $c\\bar{c}$, and $gg$; as 1.0%, 6.9%, and 8.5% at a CM energy of 250 GeV and 1.0%, 6.2%, and 7.3% at 350 GeV, respectively. After the measurement accuracy of the cross section ($\\Delta\\sigma/\\sigma$) was corrected using the results of studies at 250 GeV and their extrapolation to 350 GeV, the derived measurement accuracies of the branching fractions ($\\Delta Br/Br$) to $b\\bar{b}$, $c\\bar{c}$, and gg were 2.7%, 7.3%, and 8.9% at a CM energy of 250 GeV and 3.6%, 7.2%, and 8.1% at 350 GeV, respectively.

  11. Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.

  12. Indirect search for color octet electron at next generation linear colliders

    E-Print Network [OSTI]

    Akay, A N; Sahin, M; Sultansoy, S

    2010-01-01

    In this study we investigated indirect manifestations of color octet electron at the next generation linear colliders: International Linear Collider (ILC) and Compact Linear Collider (CLIC). Namely, production of two gluons via color octet electron exchange is considered. Signal and background analysis have been performed taking into account initial state radiation and beamstrahlung. We show that color octet electron (e_(8)) manifestation will be seen upto M(e_(8))=1.75 TeV and 1.70 TeV at ILC and CLIC with sqrt(s)=0.5 TeV, respectively. CLIC with sqrt(s)=3 TeV will be sensitive upto M(e_(8)=6.88 TeV.

  13. Indirect search for color octet electron at next generation linear colliders

    E-Print Network [OSTI]

    A. N. Akay; H. Karadeniz; M. Sahin; S. Sultansoy

    2011-04-06

    In this study we investigated indirect manifestations of color octet electron at the next generation linear colliders: International Linear Collider (ILC) and Compact Linear Collider (CLIC). Namely, production of two gluons via color octet electron exchange is considered. Signal and background analysis have been performed taking into account initial state radiation and beamstrahlung. We show that color octet electron (e_(8)) manifestation will be seen upto M(e_(8))=1.75 TeV and 1.70 TeV at ILC and CLIC with sqrt(s)=0.5 TeV, respectively. CLIC with sqrt(s)=3 TeV will be sensitive upto M(e_(8))=6.88 TeV.

  14. tan\\beta\\ determination from the Higgs boson decay at the International Linear Collider

    E-Print Network [OSTI]

    Yokoya, Hiroshi

    2014-01-01

    We study the methods and their accuracies for determining tan\\beta\\ in two Higgs doublet models at future lepton colliders. In addition to the previously proposed methods using direct production of additional Higgs bosons, we propose a method using the precision measurement of the decay branching ratio of the standard-model (SM)-like Higgs boson. The method is available if there is a deviation from the SM in the coupling constants of the Higgs boson with the weak gauge bosons. We find that, depending on the type of Yukawa interactions, this method can give the best sensitivity in a wide range of tan\\beta.

  15. Development of a Non-Magnetic Inertial Sensor for Vibration Stabilization in a Linear Collider

    SciTech Connect (OSTI)

    Frisch, Josef; Decker, Valentin; Doyle, Eric; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Seryi, Andrei; /SLAC; Chang, Allison; Partridge, Richard; /Brown U.

    2006-09-01

    One of the options for controlling vibration of the final focus magnets in a linear collider is to use active feedback based on accelerometers. While commercial geophysics sensors have noise performance that substantially exceeds the requirements for a linear collider, they are physically large, and cannot operate in the strong magnetic field of the detector. Conventional nonmagnetic sensors have excessive noise for this application. We report on the development of a non-magnetic inertial sensor, and on a novel commercial sensor both of which have demonstrated the required noise levels for this application.

  16. Experimentation and Physics at a Future Electron-Positron Linear Collider

    E-Print Network [OSTI]

    Martin Pohl

    2000-07-20

    I summarise the physics opportunities and experimental challenges at future Linear Colliders, using material from the recent ECFA/DESY workshop on the subject as well as contributions to the series of worldwide studies. For reasons of economy, the discussion is restricted to the European Tesla project and to its electron-positron mode only.

  17. Monte Carlo study of a luminosity detector for the International Linear Collider

    E-Print Network [OSTI]

    H. Abramowicz; R. Ingbir; S. Kananov; A. Levy

    2005-08-11

    This paper presents the status of Monte Carlo simulation of one of the luminosity detectors considered for the future e+e- International Linear Collider (ILC). The detector consists of a tungsten/silicon sandwich calorimeter with pad readout. The study was performed for Bhabha scattering events assuming a zero crossing angle for the beams.

  18. Measurement of Higgs Anomalous Coupling with H->WW* at International Linear Collider

    E-Print Network [OSTI]

    Yosuke Takubo; Katsumasa Ikematsu; Nobuchika Okada; Robert N. Hodgkinson; Keisuke Fujii

    2010-06-17

    The measurement of the Higgs coupling to W bosons is an important program at the international linear collider (ILC) to search for the anomaly in the coupling to the gauge bosons. We study the sensitivity of ILC to the Higgs anomalous coupling to W bosons by using ZH->vvWW* events. In this article, we report the status of the study.

  19. Collider Detector at Fermilab (CDF): Data from W, Z bosons and Drell Yan lepton pairs research of the CDF Electroweak Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Electroweak group studies production and properties of W, Z bosons and Drell Yan lepton pairs. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  20. Contact interaction probes at the Linear Collider with polarized electron and positron beams

    E-Print Network [OSTI]

    A. A. Babich; P. Osland; A. A. Pankov; N. Paver

    2000-03-26

    For contact-interaction searches at the Linear Collider, we discuss the advantages of polarizing both the electron and the positron beams as compared with polarizing only the electron beam. In particular, for the processes e^+e^-\\to \\mu^+\\mu^-, \\tau^+\\tau^-, b\\bar{b} and c\\bar{c} at a future e^+e^- collider with \\sqrt{s}=0.5 TeV we derive model-independent bounds on the four-fermion contact interaction parameters from studies of the helicity cross sections.

  1. Lepton number violating processes mediated by Majorana neutrinos at hadron colliders

    SciTech Connect (OSTI)

    Kovalenko, Sergey; Lu Zhun; Schmidt, Ivan [Departamento de Fisica, Universidad Tecnica Federico, Santa Maria, Casilla 110-V, Valparaiso (Chile) and Center of Subatomic Physics, Valparaiso (Chile)

    2009-10-01

    We study the lepton number violating like-sign dilepton processes h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}jjX and h{sub 1}h{sub 2}{yields}l{sup {+-}}l{sup '{+-}}W{sup {+-}}X, mediated by heavy GeV scale Majorana neutrinos. We focus on the resonantly enhanced contributions with a nearly on-mass-shell Majorana neutrino in the s channel. We study the constraints on like-sign dilepton production at the Tevatron and the LHC on the basis of the existing experimental limits on the masses of heavy neutrinos and their mixings U{sub {alpha}}{sub N} with {alpha}={nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}. Special attention is paid to the constraints from neutrinoless double beta decay. We note that searches for like-sign e{sup {+-}}e{sup {+-}} events at Tevatron and LHC may provide evidence of CP violation in the neutrino sector. We also discuss the conditions under which it is possible to extract individual constraints on the mixing matrix elements in a model independent way.

  2. Alighment and Vibration Issues in TeV Linear Collider Design

    SciTech Connect (OSTI)

    Fischer, G.E.; /SLAC

    2005-08-12

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of particle-beam-derived placement information are mentioned.

  3. Alignment and vibration issues in TeV linear collider design

    SciTech Connect (OSTI)

    Fischer, G.E.

    1989-07-01

    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of public-beam-derived placement information are mentioned. 40 refs., 4 figs., 1 tab.

  4. The role of polarized positrons and electrons in revealing fundamental interactions at the Linear Collider

    E-Print Network [OSTI]

    G. Moortgat-Pick; T. Abe; G. Alexander; B. Ananthanarayan; A. A. Babich; V. Bharadwaj; D. Barber; A. Bartl; A. Brachmann; S. Chen; J. Clarke; J. E. Clendenin; J. Dainton; K. Desch; M. Diehl; B. Dobos; T. Dorland; H. Eberl; J. Ellis; K. Flöttmann; H. Fraas; F. Franco-Sollova; F. Franke; A. Freitas; J. Goodson; J. Gray; A. Han; S. Heinemeyer; S. Hesselbach; T. Hirose; K. Hohenwarter-Sodek; J. Kalinowski; T. Kernreiter; O. Kittel; S. Kraml; W. Majerotto; A. Martinez; H. -U. Martyn; W. Menges; A. Mikhailichenko; K. Mönig; K. Moffeit; S. Moretti; O. Nachtmann; F. Nagel; T. Nakanishi; U. Nauenberg; T. Omori; P. Osland; A. A. Pankov; N. Paver; R. Pitthan; R. Pöschl; W. Porod; J. Proulx; P. Richardson; S. Riemann; S. D. Rindani; T. G. Rizzo; P. Schüler; C. Schwanenberger; D. Scott; J. Sheppard; R. K. Singh; H. Spiesberger; A. Stahl; H. Steiner; A. Wagner; G. Weiglein; G. W. Wilson; M. Woods; P. Zerwas; J. Zhang; F. Zomer

    2005-07-01

    The proposed International Linear Collider (ILC) is well-suited for discovering physics beyond the Standard Model and for precisely unraveling the structure of the underlying physics. The physics return can be maximized by the use of polarized beams. This report shows the paramount role of polarized beams and summarizes the benefits obtained from polarizing the positron beam, as well as the electron beam. The physics case for this option is illustrated explicitly by analyzing reference reactions in different physics scenarios. The results show that positron polarization, combined with the clean experimental environment provided by the linear collider, allows to improve strongly the potential of searches for new particles and the identification of their dynamics, which opens the road to resolve shortcomings of the Standard Model. The report also presents an overview of possible designs for polarizing both beams at the ILC, as well as for measuring their polarization.

  5. Advances in Normal Conducting Accelerator Technology from the X-Band Linear Collider Program

    E-Print Network [OSTI]

    Adolphsen, Chris

    2005-01-01

    In the early 1990's, groups at SLAC and KEK began dedicated development of X-band (11.4 GHz) rf technology for a next generation, TeV-scale linear collider. The choice of a relatively high frequency, four times that of the SLAC 50 GeV Linac, was motivated by the cost benefits of having lower rf energy per pulse (hence fewer rf components) and reasonable efficiencies at high gradients (hence shorter linacs). However, to realize such savings requires operation at gradients and peak powers much higher than that hitherto achieved. During the past 15 years, these challenges were met through innovations on several fronts, and resulted in a viable rf system design for a linear collider. This paper reviews these achievements, which include developments in the generation and transport of high power rf, and new insights into high gradient limitations.

  6. Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER

    SciTech Connect (OSTI)

    Brau, James E

    2013-04-22

    The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

  7. Evolution of the design of a silicon tracker for the Linear Collider

    SciTech Connect (OSTI)

    Cooper, W.E.

    2005-10-01

    A design for the silicon tracker for SiD was proposed at the Victoria Linear Collider Workshop [1]. This paper describes development of that design by the SiD group into a baseline model for simulation studies. The design has been modified to take into account detector fabrication and servicing requirements, features specific to the vertex chamber, and detector elements in the region surrounding the silicon tracker.

  8. A modified post damping ring bunch compressor beamline for the TESLA linear collider

    SciTech Connect (OSTI)

    Philippe R.-G. Piot; Winfried Decking

    2004-03-23

    We propose a modified bunch compressor beamline, downstream of the damping ring, for the TESLA linear collider. This modified beamline uses a third harmonic radio-frequency section based on the 3.9 GHz superconducting cavity under development at Fermilab. In our design the beam deceleration is about {approx}50 MeV instead of {approx}450 MeV in the original design proposed.

  9. Effective Yukawa couplings and flavor-changing Higgs boson decays at linear colliders

    SciTech Connect (OSTI)

    Gabrielli, E.; Mele, B.

    2011-04-01

    We analyze the advantages of a linear-collider program for testing a recent theoretical proposal where the Higgs boson Yukawa couplings are radiatively generated, keeping unchanged the standard-model mechanism for electroweak-gauge-symmetry breaking. Fermion masses arise at a large energy scale through an unknown mechanism, and the standard model at the electroweak scale is regarded as an effective field theory. In this scenario, Higgs boson decays into photons and electroweak gauge-boson pairs are considerably enhanced for a light Higgs boson, which makes a signal observation at the LHC straightforward. On the other hand, the clean environment of a linear collider is required to directly probe the radiative fermionic sector of the Higgs boson couplings. Also, we show that the flavor-changing Higgs boson decays are dramatically enhanced with respect to the standard model. In particular, we find a measurable branching ratio in the range (10{sup -4}-10{sup -3}) for the decay H{yields}bs for a Higgs boson lighter than 140 GeV, depending on the high-energy scale where Yukawa couplings vanish. We present a detailed analysis of the Higgs boson production cross sections at linear colliders for interesting decay signatures, as well as branching-ratio correlations for different flavor-conserving/nonconserving fermionic decays.

  10. Supersymmetric Dark Matter and the Energy of a Linear Electron-Positron Collider

    E-Print Network [OSTI]

    John Ellis; Gerardo Ganis; Keith A. Olive

    1999-12-13

    We suggest that supersymmetric dark matter be used to set the energy scale of a linear $e^+ e^-$ collider. Assuming that the lightest supersymmetric particle (LSP) is a stable neutralino $\\chi$, as in many incarnations of the MSSM with conserved R parity, previous calculations that include coannihilation effects have delineated the region of the $(m_{1/2}, m_0)$ plane where the LSP cosmological relic density lies in the preferred range $0.1 \\la \\Omega_{\\chi} h^2 \\la 0.3$. We evaluate here the total cross section for $e^+ e^- \\to$ visible pairs of supersymmetric particles, for different values of $m_{1/2}$ and $m_0$, and investigate how much of the dark matter region can be explored by $e^+ e^-$ colliders with different centre-of-mass energies $E_{CM}$. We find that a collider with $E_{CM} = 500$ GeV or 1 TeV can only explore part of the cosmological region, and that a collider with $E_{CM} = 1.5$ TeV with sufficient luminosity can explore all of the supersymmetric dark matter region.

  11. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    E-Print Network [OSTI]

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-01-01

    DAMPING RINGS OF THE NLC AND TESLA LINEAR COLLIDERS ? M.simulation results for the TESLA main damping rings,parameters for the NLC and TESLA positron damping rings.

  12. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect (OSTI)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Houck, T. L.; Westenskow, G. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1999-05-07

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  13. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect (OSTI)

    Lidia, S.M.; Anderson, D.E.; Eylon, S.; Henestroza, E.; Vanecek, D.L.; Yu, S.S. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Westenskow, G.A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1{percent} energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented. {copyright} {ital 1999 American Institute of Physics.}

  14. Relativistic-klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect (OSTI)

    Anderson, D E; Eylon, S; Henestroza, E; Houck, T L; Lidia, M; Vanecek, D L; Westenskow, G A; Yu, S S

    1998-10-05

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2&A, l-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-n-n. The prototype accelerator will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  15. Zeroth-order design report for the next linear collider. Volume 1

    SciTech Connect (OSTI)

    Raubenheimer, T.O. [ed.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.

  16. Zeroth-order design report for the next linear collider. Volume 2

    SciTech Connect (OSTI)

    Raubenheimer, T.O. [ed.

    1996-05-01

    This Zeroth-Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The ``design`` presented here is not fully engineered in any sense, but to be assured that the NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume II covers the following: collimation systems; IP switch and big bend; final focus; the interaction region; multiple bunch issues; control systems; instrumentation; machine protection systems; NLC reliability considerations; NLC conventional facilities. Also included are four appendices on the following topics: An RF power source upgrade to the NLC; a second interaction region for gamma-gamma, gamma-electron; ground motion: theory and measurement; and beam-based feedback: theory and implementation.

  17. An All-Solid State Central Tracker for the Proposed DESY Electron-Positron Linear Collider

    E-Print Network [OSTI]

    Bruce J. King

    1999-07-17

    This report describes an all-solid state central tracker which is intended for use in a detector at the proposed DESY 500 GeV electron-positron linear collider or a similar accelerator. The precise position measurements from position-sensitive silicon detectors give the tracker an outstanding momentum resolution for high momentum tracks: sigma_p/p^2 = 3.6 x 10^{-5} (GeV/c)^{-1} for tracks perpendicular to the beam-line. The report concludes with an example layout for a detector which uses this central tracker.

  18. Higgs Boson Search at e+e- and Photon Linear Colliders

    E-Print Network [OSTI]

    M. M. Muhlleitner

    2005-12-19

    The various search modes for the Higgs bosons of the Standard Model (SM) and its Minimal Supersymmetric Extension (MSSM) at the International Linear Collider (ILC) will be summarized briefly. In particular, as a unique discovery mode the production of heavy neutral MSSM Higgs bosons for medium values of $\\tan\\beta$ in photon collisions will be presented. Furthermore, $\\tau^+\\tau^-$ fusion into MSSM Higgs bosons in the photon mode will be shown to give access to the mixing parameter $\\tan\\beta$ with a precision of better than 10% for large values of this parameter.

  19. Exotic Higgs Decay h to 2a at the International Linear Collider: a Snowmass White Paper

    E-Print Network [OSTI]

    Tao Liu; C. T. Potter

    2013-08-30

    A Higgs factory like the International Linear Collider (ILC) can play a significant role in searching for exotic decays of Higgs bosons. As an illustration, we investigate the ILC sensitivity for the decay topology $h\\to a_1 a_1 \\to \\tau\\bar \\tau\\tau \\bar \\tau$ in the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM). Here $h$ can be either Standard-Model-like or non-standard, and $a_{1}$ is the lightest CP-odd Higgs boson. We also compare results to expectations for this channel at the LHC.

  20. Measuring Anomalous Couplings in H->WW* Decays at the International Linear Collider

    E-Print Network [OSTI]

    Yosuke Takubo; Robert N. Hodgkinson; Katsumasa Ikematsu; Keisuke Fujii; Nobuchika Okada; Hitoshi Yamamoto

    2013-05-17

    Measurement of the Higgs coupling to W-bosons is an important test of our understanding of the electroweak symmetry breaking mechanism. We study the sensitivity of the International Linear Collider (ILC) to the presence of anomalous HW+W- couplings using ZH -> nu nu WW* -> nu nu 4j events. Using an effective Lagrangian approach, we calculate the differential decay rates of the Higgs boson including the effects of new dimension-5 operators. We present a Monte Carlo simulation of events at the ILC, using a full detector simulation based on geant4 and a real event reconstruction chain. Expected constraints on the anomalous couplings are given.

  1. Design optimization of the International Linear Collider Final Focus System with a long L*

    E-Print Network [OSTI]

    Plassard, Fabien

    This Master's Thesis work has been done in the Aerospace Engineering master's programme framework and carried out at the European Organization for Nuclear Research (CERN). It was conducted under the 500 GeV e-e+ International Linear Collider (ILC) study and focused on the design and performance optimization of the Final Focus System (FFS). The purpose of the final focus system of the future linear colliders (ILC and CLIC) is to demagnify the beam to the required transverse size at the interaction point (IP). The FFS is designed for a flat-beam in a compact way based on a local chromaticity correction which corrects both horizontal and vertical chromaticities simultaneously. An alternative FFS configuration based on the traditional scheme with two dedicated chromatic correction sections for horizontal and vertical chromaticities and a long L * option has been developed. A longer free space between the last quadrupole and the IP allows to place the last quadrupole on a stable ground, with fewer engineering ...

  2. The International Linear Collider Technical Design Report - Volume 1: Executive Summary

    E-Print Network [OSTI]

    Ties Behnke; James E. Brau; Brian Foster; Juan Fuster; Mike Harrison; James McEwan Paterson; Michael Peskin; Marcel Stanitzki; Nicholas Walker; Hitoshi Yamamoto

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  3. Determination of Dark Matter Properties at High-Energy Colliders

    E-Print Network [OSTI]

    Baltz, Edward A.

    2009-01-01

    at the planned International Linear Collider (ILC) will makecollider, the International Linear Collider (ILC), which

  4. Proposal to negotiate a collaboration agreement for the design and supply of a full-power drive-beam klystron modulator prototype for the Compact Linear Collider (CLIC)

    E-Print Network [OSTI]

    2012-01-01

    Proposal to negotiate a collaboration agreement for the design and supply of a full-power drive-beam klystron modulator prototype for the Compact Linear Collider (CLIC)

  5. Investigation into electron cloud effects in the International Linear Collider positron damping ring

    SciTech Connect (OSTI)

    Crittenden, J.A.; Conway, J.; Dugan, G.F.; Palmer, M.A.; Rubin, D.L.; Shanks, J.; Sonnad, K.G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M.A.; Guiducci, S.; Pivi, M.T.F.; Wang, L.; Crittenden, J.A.; Conway, J.; Dugan, G.F.; Palmer, M.A.; Rubin, D.L.; Shanks, J.; Sonnad, K.G.; Boon, L.; Harkay, K.; Ishibashi, T.; Furman, M.A.; Guiducci, S.; Pivi, M.T.F.; Wang, L.

    2014-02-28

    We report modeling results for electron cloud buildup and instability in the International Linear Collider positron damping ring. Updated optics, wiggler magnets, and vacuum chamber designs have recently been developed for the 5 GeV, 3.2-km racetrack layout. An analysis of the synchrotron radiation profile around the ring has been performed, including the effects of diffuse and specular photon scattering on the interior surfaces of the vacuum chamber. The results provide input to the cloud buildup simulations for the various magnetic field regions of the ring. The modeled cloud densities thus obtained are used in the instability threshold calculations. We conclude that the mitigation techniques employed in this model will suffice to allow operation of the damping ring at the design operational specifications

  6. State of the art in electromagnetic modeling for the Compact Linear Collider

    SciTech Connect (OSTI)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Schussman, Greg; Ko, Kwok; /SLAC

    2009-07-10

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefield damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.

  7. Type-III Seesaw fermionic triplets at the International Linear Collider

    E-Print Network [OSTI]

    Goswami, Deepanjali

    2015-01-01

    The signature of heavy fermionic triplets belonging to Type III seesaw at the International Linear Collider (ILC) is probed. Presence of charged fermionic triplets upto a mass of about $ 750$ GeV could be established through single production at a 1 TeV ILC with moderate luminosity of 300 fb$^{-1}$, assuming a fermion triplet-electron mixing of about 0.05. Unlike the case of LHC, the production process is highly sensitive to the mixing, making the process interesting. The single production of neutral triplet is found to be somewhat harder, considering the large SM background present. Pair production of triplets of mass 500 GeV considered at 2 TeV centre of mass energy presents convenient ways to study different mixing scenarios. The production process is sensitive to $V_e$. The pair production along with information regarding single production would be able to identify the mixing scenarios.

  8. Type-III Seesaw fermionic triplets at the International Linear Collider

    E-Print Network [OSTI]

    Deepanjali Goswami; P. Poulose

    2015-07-15

    The signature of heavy fermionic triplets belonging to Type III seesaw at the International Linear Collider (ILC) is probed. Presence of charged fermionic triplets upto a mass of about $ 750$ GeV could be established through single production at a 1 TeV ILC with moderate luminosity of 300 fb$^{-1}$, assuming a fermion triplet-electron mixing of about 0.05. Unlike the case of LHC, the production process is highly sensitive to the mixing, making the process interesting. The single production of neutral triplet is found to be somewhat harder, considering the large SM background present. Pair production of triplets of mass 500 GeV considered at 2 TeV centre of mass energy presents convenient ways to study different mixing scenarios. The production process is sensitive to $V_e$. The pair production along with information regarding single production would be able to identify the mixing scenarios.

  9. Precision Measurements of Little Higgs Parameters at the International Linear Collider

    E-Print Network [OSTI]

    Eri Asakawa; Masaki Asano; Keisuke Fujii; Tomonori Kusano; Shigeki Matsumoto; Rei Sasaki; Yosuke Takubo; Hitoshi Yamamoto

    2009-03-25

    We investigate a possibility of precision measurements for parameters of the Littlest Higgs model with T-parity at the International Linear Collider (ILC). The model predicts new gauge bosons (AH, ZH, and WH), among which the heavy photon (AH) is a candidate for dark matter. The masses of these new gauge bosons strongly depend on the vacuum expectation value that breaks a global symmetry of the model. Through Monte Carlo simulations of the processes: e+ e- ->AH ZH and e+ e- -> WH+ WH-, we show how precisely the masses can be determined at the ILC for a representative parameter point of the model. We also discuss the determination of the Little Higgs parameters and its impact on the future measurement of the thermal abundance of the dark matter relics in our universe.

  10. Periodic permanent magnet development for linear collider X-band klystrons

    SciTech Connect (OSTI)

    Sprehn, D.; Caryotakis, G.; Jongewaard, E.; Phillips, R. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-07

    The Stanford Linear Accelerator Center (SLAC) klystron group is currently designing, fabricating and testing 11.424 GHz klystrons with peak output powers from 50 to 75 MW at 1 to 2 {mu}s rf pulsewidths as part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). In order to eliminate the projected operational-year energy bill for klystron solenoids, Periodic Permanent Magnet (PPM) focusing has been employed on our latest X-band klystron designs. A PPM beam tester has operated at the same repetition rate, voltage and average beam power required for a 75-MW NLC klystron. Prototype 50 and 75-MW PPM klystrons were built and tested during 1996 and 1997 which operate from 50 to 70 MW at efficiencies greater than 55%. Construction and testing of 75-MW research klystrons will continue while the design and reliability is perfected. This paper will discuss the design of these PPM klystrons and the results of testing to date along with future plans for the development of a low-cost Design for Manufacture (DFM) 75-MW klystron and invitation for industry participation.

  11. Periodic permanent magnet development for linear collider X-band klystrons

    SciTech Connect (OSTI)

    Sprehn, D.; Caryotakis, G.; Jongewaard, E.; Phillips, R. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-01

    The Stanford Linear Accelerator Center (SLAC) klystron group is currently designing, fabricating and testing 11.424 GHz klystrons with peak output powers from 50 to 75 MW at 1 to 2 {mu}s rf pulsewidths as part of an effort to realize components necessary for the construction of the Next Linear Collider (NLC). In order to eliminate the projected operational-year energy bill for klystron solenoids, Periodic Permanent Magnet (PPM) focusing has been employed on our latest X-band klystron designs. A PPM beam tester has operated at the same repetition rate, voltage and average beam power required for a 75-MW NLC klystron. Prototype 50 and 75-MW PPM klystrons were built and tested during 1996 and 1997 which operate from 50 to 70 MW at efficiencies greater than 55{percent}. Construction and testing of 75-MW research klystrons will continue while the design and reliability is perfected. This paper will discuss the design of these PPM klystrons and the results of testing to date along with future plans for the development of a low-cost Design for Manufacture (DFM) 75-MW klystron and invitation for industry participation. {copyright} {ital 1999 American Institute of Physics.}

  12. PHYSICAL REVIEW SPECIAL TOPICS -ACCELERATORS AND BEAMS, VOLUME 5, 011001 (2002) Energy doubler for a linear collider

    E-Print Network [OSTI]

    2002-01-01

    . Wang University of California, Los Angeles, Los Angeles, California 90095 R. Assmann, F. J. Decker, M sections several meters in length to double the energy of a linear collider just before the collision point of microbunches with the first driving a plasma wake that accelerates the second. The luminosity of the doubled

  13. LINEAR COLLIDER TEST FACILITY: TWISS PARAMETER ANALYSIS AT THE IP/POST-IP LOCATION OF THE ATF2 BEAM LINE *

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LINEAR COLLIDER TEST FACILITY: TWISS PARAMETER ANALYSIS AT THE IP/POST-IP LOCATION OF THE ATF2 BEAM through to the IP, the Twiss parameters need to be measured at the IP or PIP. Up to now, these parameters to extract the Twiss parameters and the emittance thanks to the three coefficients of the fit

  14. A Linear Collider Based on Nonlinear Plasma Wake-field Acceleration* J. Rosenzweig, N. Barov, E. Colby

    E-Print Network [OSTI]

    -field accelerator, all driven by a high average current, pulse compressed, rf photoinjector-fed linac. Issues this system is nonlinear from the point of view of the plasma response (all of the plasma electrons are driven394 A Linear Collider Based on Nonlinear Plasma Wake-field Acceleration* J. Rosenzweig, N. Barov, E

  15. Search for associated production of Higgs with Z boson in the noncommutative Standard Model at linear colliders

    E-Print Network [OSTI]

    J., Selvaganapathy; Konar, Partha

    2015-01-01

    We study the associated Higgs production with Z boson at future linear colliders in the framework of the minimal noncommutative standard model. Using the Seiberg-Witten map, we calculate the production cross-section considering all orders of the noncommutative parameter $\\Theta_{\\mu\

  16. Interim report on the Global Design Effort Global International Linear Collider (ILC) R&D

    SciTech Connect (OSTI)

    Harrison, M.

    2011-04-30

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  17. The two-loop soft function for heavy quark pair production at future linear colliders

    E-Print Network [OSTI]

    Andreas von Manteuffel; Robert M. Schabinger; Hua Xing Zhu

    2015-09-21

    We report on the calculation of the threshold soft function for heavy quark pair production in e+ e- annihilation at two-loop order. Our main result is a generalization of the familiar Drell-Yan threshold soft function to the case of non-zero primary quark mass. We set up a framework based on the method of differential equations which allows for the straightforward calculation of the bare soft function to arbitrarily high orders in the dimensional regularization parameter. Remarkably, we find that we can obtain the bare two-loop Drell-Yan soft function from the heavy quark soft function to the order in epsilon required for a two-loop calculation by making simple replacements. We expect that our results will be of use, both as an important input for precision physics calculations at linear colliders and, more formally, as a first step towards a better understanding of the connection between vacuum matrix elements of massive soft Wilson lines and vacuum matrix elements of massless soft Wilson lines.

  18. Measuring the Top Quark Yukawa Coupling at a Linear e^+e^- Collider

    E-Print Network [OSTI]

    Howard Baer; Sally Dawson; Laura Reina

    1999-06-17

    The cross section for the reaction $e^+e^- \\to t\\bar{t} H$ depends sensitively on the top quark Yukwawa coupling $\\lambda_t$. We calculate the rate for $t\\bar{t}H$ production, followed by the decay $H\\to b\\bar{b}$, for a Standard Model Higgs boson with 100 < m_H <130 GeV. We interface with ISAJET to generate QCD radiation, hadronization and particle decays. We also calculate the dominant $t\\bar{t}b\\bar{b}$ backgrounds from electroweak and QCD processes. We consider both semileptonic and fully hadronic decays of the $t\\bar{t}$ system. In our analysis, we attempt full reconstruction of the top quark and W boson masses in the generated events. The invariant mass of the remaining b-jets should show evidence of Higgs boson production. We estimate the accuracy with which $\\lambda_t$ can be measured at a linear e^+e^- collider. Our results, including statistical but not systematic errors, show that the top quark Yukawa coupling can be measured to 6-8 % accuracy with 1000 fb^{-1} at $E_{CM}=1 TeV$, assuming 100 % efficiency for b-jet tagging. The accuracy of the measurement drops to 17-22 % if only a 60 % efficiency for b-tagging is achieved.

  19. A new method for RF power generation for two-beam linear colliders

    SciTech Connect (OSTI)

    Braun, H.; Corsini, R.; D'Amico, T.; Delahaye, J. P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I.; Ruth, R. D. [CERN, Geneva (Switzerland); Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-07

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approx}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range.

  20. A new method for RF power generation for two-beam linear colliders

    SciTech Connect (OSTI)

    Braun, H.; Corsini, R.; DAmico, T.; Delahaye, J.P.; Guignard, G.; Johnson, C.; Millich, A.; Pearce, P.; Rinolfi, L.; Riche, A.; Schulte, D.; Thorndahl, L.; Valentini, M.; Wilson, I. [CERN, Geneva (Switzerland); Ruth, R.D. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States)

    1999-05-01

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency ({approximately}1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range. {copyright} {ital 1999 American Institute of Physics.}

  1. Current Status of the Next Linear Collider X-Band Klystron Development Program

    SciTech Connect (OSTI)

    Caryotakis, G.; Haase, A.A.; Jongewaard, E.N.; Pearson, C.; Sprehn, D.W.; /SLAC

    2005-05-09

    Klystrons capable of driving accelerator sections in the Next Linear Collider (NLC) have been developed at SLAC during the last decade. In addition to fourteen 50 MW solenoid-focused devices and a 50 MW Periodic Permanent Magnet focused (PPM) klystron, a 500 kV 75 MW PPM klystron was tested in 1999 to 80 MW with 3 {micro}s pulses, but very low duty. Subsequent 75 MW prototypes aimed for low-cost manufacture by employing reusable focusing structures external to the vacuum, similar to a solenoid electromagnet. During the PPM klystron development, several partners (CPI, EEV and Toshiba) have participated by constructing partial or complete PPM klystrons. After early failures during testing of the first two devices, SLAC has recently tested this design (XP3-3) to the full NLC specifications of 75 MW, 1.6 {micro}s pulse length, and 120 Hz. This 14.4 kW average power operation came with an efficiency of 50%. The XP3-3 average and peak output power, together with the focusing method, arguably makes it the most advanced high power klystron ever built anywhere in the world. Design considerations and test results for these latest prototypes will be presented.

  2. Attaining high luminosity in linear e sup + e sup minus colliders

    SciTech Connect (OSTI)

    Palmer, R.B.

    1990-11-01

    The attainment of high luminosity in linear colliders is a complex problem because of the interdependence of the critical parameters. For instance, changing the number of particles per bunch affects the damping ring design and thus the emittance; it affects the wakefields in the linac and thus the momentum spread; the momentum spread affects the final focus design and thus the final {beta}*; but the emittance change also affects the final focus design; and all these come together to determine the luminosity, disruption and beamstrahlung at the intersection. Changing the bunch length, or almost any other parameter, has a similar chain reaction. Dealing with this problem by simple scaling laws is very difficult because one does not know which parameter is going to be critical, and thus which should be held constant. One can only maximize the luminosity by a process of search and iteration. The process can be facilitated with the aid of a computer program. Examples can then be optimized for maximum luminosity, and compared to the optimized solutions with different approaches. This paper discusses these approaches.

  3. Complementarity in direct searches for additional Higgs bosons at the LHC and the International Linear Collider

    E-Print Network [OSTI]

    Kanemura, Shinya; Zheng, Ya-Juan

    2014-01-01

    We discuss complementarity of discovery reaches of heavier neutral Higgs bosons and charged Higgs bosons at the LHC and the International Linear Collider (ILC) in two Higgs doublet models (2HDMs). We perform a comprehensive analysis on their production and decay processes for all types of Yukawa interaction under the softly-broken discrete symmetry which is introduced to avoid flavour changing neutral currents, and we investigate parameter spaces of discovering additional Higgs bosons at the ILC beyond the LHC reach. We find that the 500 GeV run of the ILC with the integrated luminosity of 500 fb^{-1} shows an advantage for discovering the additional Higgs bosons in the region where the LHC cannot discover them with the integrated luminosity of 300 fb^{-1}. For the 1 TeV run of the ILC with the integrated luminosity of 1 ab^{-1}, production processes of an additional Higgs boson associated with the top quark can be useful as discovery channels in some parameter spaces where the LHC with the integrated luminos...

  4. Study of Higgs self couplings of a supersymmetric $E_6$ model at the International Linear Collider

    E-Print Network [OSTI]

    S. W. Ham; Kideok Han; Jungil Lee; S. K. Oh

    2009-11-30

    We study the Higgs self couplings of a supersymmetric $E_6$ model that has two Higgs doublets and two Higgs singlets. The lightest scalar Higgs boson in the model may be heavier than 112 GeV, at the one-loop level, where the negative results for the Higgs search at the LEP2 experiments are taken into account. The contributions from the top and scalar top quark loops are included in the radiative corrections to the one-loop mass of the lightest scalar Higgs boson, in the effective potential approximation. The effect of the Higgs self couplings may be observed in the production of the lightest scalar Higgs bosons in $e^+e^-$ collisions at the International Linear Collider (ILC) via double Higgs-strahlung process. For the center of mass energy of 500 GeV with the integrated luminosity of 500 fb$^{-1}$ and the efficiency of 20 %, we expect that at least 5 events of the lightest scalar Higgs boson may be produced at the ILC via double Higgs-strahlung process.

  5. Spin Transport and Polarimetry in the Beam Delivery System of the International Linear Collider

    E-Print Network [OSTI]

    Beckmann, Moritz; Vauth, Annika; Vormwald, Benedikt

    2014-01-01

    Polarised electron and positron beams are key ingredients to the physics programme of future linear colliders. Due to the chiral nature of weak interactions in the Standard Model - and possibly beyond - the knowledge of the luminosity-weighted average beam polarisation at the $e^+e^-$ interaction point is of similar importance as the knowledge of the luminosity and has to be controlled to permille-level precision in order to fully exploit the physics potential. The current concept to reach this challenging goal combines measurements from Laser-Compton polarimeters before and after the interaction point with measurements at the interaction point. A key element for this enterprise is the understanding of spin-transport effects between the polarimeters and the interaction point as well as collision effects. We show that without collisions, the polarimeters can be cross-calibrated to 0.1 %, and we discuss in detail the impact of collision effects and beam parameters on the polarisation value relevant for the inte...

  6. Complementarity in direct searches for additional Higgs bosons at the LHC and the International Linear Collider

    E-Print Network [OSTI]

    Shinya Kanemura; Hiroshi Yokoya; Ya-Juan Zheng

    2014-07-28

    We discuss complementarity of discovery reaches of heavier neutral Higgs bosons and charged Higgs bosons at the LHC and the International Linear Collider (ILC) in two Higgs doublet models (2HDMs). We perform a comprehensive analysis on their production and decay processes for all types of Yukawa interaction under the softly-broken discrete symmetry which is introduced to avoid flavour changing neutral currents, and we investigate parameter spaces of discovering additional Higgs bosons at the ILC beyond the LHC reach. We find that the 500 GeV run of the ILC with the integrated luminosity of 500 fb^{-1} shows an advantage for discovering the additional Higgs bosons in the region where the LHC cannot discover them with the integrated luminosity of 300 fb^{-1}. For the 1 TeV run of the ILC with the integrated luminosity of 1 ab^{-1}, production processes of an additional Higgs boson associated with the top quark can be useful as discovery channels in some parameter spaces where the LHC with the integrated luminosity of 3000 fb^{-1} cannot reach. It is emphasized that the complementary study at the LHC and the ILC is useful not only to survey additional Higgs bosons at the TeV scale, but also to discriminate types of Yukawa interaction in the 2HDM.

  7. The Silicon Detector (SiD) And Linear Collider Detector R&D in Asia And North America

    SciTech Connect (OSTI)

    Brau, J.E.; /Oregon U.; Breidenbach, M.; /SLAC; Fujii, Y.; /KEK, Tsukuba

    2005-08-11

    In Asia and North America research and development on a linear collider detector has followed complementary paths to that in Europe. Among the developments in the US has been the conception of a detector built around silicon tracking, which relies heavily on a pixel (CCD) vertex detector, and employs a silicon tungsten calorimeter. Since this detector is quite different from the TESLA detector, we describe it here, along with some of the sub-system specific R&D in these regions.

  8. Mass, Spin, and Physics Beyond the Standard Model at Colliders

    E-Print Network [OSTI]

    Klemm, William Lathrop

    2011-01-01

    Proceedings of 2005 International Linear Collider Workshop (of Supersymmetry,” International Linear Collider Workshop (proposed for the International Linear Collider (ILC), it was

  9. Plenary: Photon-Photon and Electron-Photon Colliders Mayda M. Velasco

    E-Print Network [OSTI]

    electron-positron colliders like the Interna- tional Linear Collider (ILC) and/or Compact LInear Collider

  10. Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.

  11. Precision calculations for the $T$-odd quark pair production at the CLIC $e^+e^-$ linear collider

    E-Print Network [OSTI]

    A. B. Mahfoudh; Guo Lei; Liu Wen; Ma Wen-Gan; Zhang Ren-You; Zhang Wen-Juan

    2014-07-16

    We perform the precision calculations for the \\eeqq ($q_-\\bar{q}_-=u_-\\bar u_-, ~c_-\\bar c_-,~ d_-\\bar d_-,~s_-\\bar s_-$) processes up to the QCD next-to-leading order (NLO) including full weak decays for the final $T$-odd mirror quarks in the littlest Higgs model with $T$-parity (LHT) at the Compact Linear Collider (CLIC). We show the dependence of the leading order (LO) and NLO QCD corrected cross sections on the colliding energy $\\sqrt{s}$, and provide the LO and QCD NLO kinematic distributions of final particles. The results show that the LO cross section can be enhanced by the NLO QCD correction and the $K$-factor increases obviously when the threshold of the on-shell $q_-\\bar{q}_-$-pair production approaches the colliding energy $\\sqrt{s}$. The $K$-factor value varies in the range of $1.04 \\sim 1.41$ in our chosen parameter space. We find that a simple approximation of multiplying the LO kinematic distribution with the integrated $K$-factor is not appropriate for precision study of the \\eeqq ($q_-\\bar{q}_-=u_-\\bar u_-,~c_-\\bar c_-,~d_-\\bar d_-,~s_-\\bar s_-$) processes, since the NLO QCD corrections are phase space dependent. It is necessary to calculate the differential cross sections including full NLO QCD corrections to get reliable results.

  12. A Highly Granular Silicon-Tungsten Electromagnetic Calorimeter and Top Quark Production at the International Linear Collider

    E-Print Network [OSTI]

    Rouėné, J

    2014-01-01

    This thesis deals with two aspects of the International Linear Collider (ILC) which is a project of a linear electron-positron collider of up to at least 500 GeV center of mass energy. The first aspect is the development of a silicon-tungsten electromagnetic calorimeter (SiW-ECAL) for one of the detectors of the ILC. The concept of this detector is driven by the ILC beam specifications and by the Particle Flow Algorithm (PFA). This requires highly granular calorimeter and very compact one with integrated electronics. To prove the capability of the SiW- ECAL a technological prototype has been built and tested in test beam at DESY. The results are presented here, and show, after the calibration procedure a signal over noise ratio of 10, even in the power pulsing mode. The second aspect is the study of one of the important physics channels of the ILC, the top anti-top quark pairs production. The main goal of this study is to determine the precision that we can expect at the ILC on the top coupling with the W bos...

  13. International Linear Collider Reference Design Report Volume 2: Physics at the ILC

    SciTech Connect (OSTI)

    Aarons, Gerald; Abe, Toshinori; Abernathy, Jason; Ablikim, Medina; Abramowicz, Halina; Adey, David; Adloff, Catherine; Adolphsen, Chris; Afanaciev, Konstantin; Agapov, Ilya; Ahn, Jung-Keun; Aihara, Hiroaki; Akemoto, Mitsuo; del Carmen Alabau, Maria; Albert, Justin; Albrecht, Hartwig; Albrecht, Michael; Alesini, David; Alexander, Gideon; Alexander, Jim; Allison, Wade; /SLAC /Tokyo U. /Victoria U. /Beijing, Inst. High Energy Phys. /Tel Aviv U. /Birmingham U. /Annecy, LAPP /Minsk, High Energy Phys. Ctr. /DESY /Royal Holloway, U. of London /CERN /Pusan Natl. U. /KEK, Tsukuba /Orsay, LAL /Notre Dame U. /Frascati /Cornell U., Phys. Dept. /Oxford U. /Hefei, CUST /Bangalore, Indian Inst. Sci. /Fermilab

    2011-11-14

    The triumph of 20th century particle physics was the development of the Standard Model and the confirmation of many of its aspects. Experiments determined the particle constituents of ordinary matter, and identified four forces that hold matter together and transform it from one form to another. Particle interactions were found to obey precise laws of relativity and quantum theory. Remarkable features of quantum physics were observed, including the real effects of 'virtual' particles on the visible world. Building on this success, particle physicists are now able to address questions that are even more fundamental, and explore some of the deepest mysteries in science. The scope of these questions is illustrated by this summary from the report Quantum Universe: (1) Are there undiscovered principles of nature; (2) How can we solve the mystery of dark energy; (3) Are there extra dimensions of space; (4) Do all the forces become one; (5) Why are there so many particles; (6) What is dark matter? How can we make it in the laboratory; (7) What are neutrinos telling us; (8) How did the universe begin; and (9) What happened to the antimatter? A worldwide program of particle physics investigations, using multiple approaches, is already underway to explore this compelling scientific landscape. As emphasized in many scientific studies, the International Linear Collider is expected to play a central role in what is likely to be an era of revolutionary advances. Discoveries from the ILC could have breakthrough impact on many of these fundamental questions. Many of the scientific opportunities for the ILC involve the Higgs particle and related new phenomena at Terascale energies. The Standard Model boldly hypothesizes a new form of Terascale energy, called the Higgs field, that permeates the entire universe. Elementary particles acquire mass by interacting with this field. The Higgs field also breaks a fundamental electroweak force into two forces, the electromagnetic and weak forces, which are observed by experiments in very different forms. So far, there is no direct experimental evidence for a Higgs field or the Higgs particle that should accompany it. Furthermore, quantum effects of the type already observed in experiments should destabilize the Higgs boson of the Standard Model, preventing its operation at Terascale energies. The proposed antidotes for this quantum instability mostly involve dramatic phenomena at the Terascale: new forces, a new principle of nature called supersymmetry, or even extra dimensions of space. Thus for particle physicists the Higgs boson is at the center of a much broader program of discovery, taking off from a long list of questions. Is there really a Higgs boson? If not, what are the mechanisms that give mass to particles and break the electroweak force? If there is a Higgs boson, does it differ from the hypothetical Higgs of the Standard Model? Is there more than one Higgs particle? What are the new phenomena that stabilize the Higgs boson at the Terascale? What properties of Higgs boson inform us about these new phenomena? Another major opportunity for the ILC is to shed light on the dark side of the universe. Astrophysical data shows that dark matter dominates over visible matter, and that almost all of this dark matter cannot be composed of known particles. This data, combined with the concordance model of Big Bang cosmology, suggests that dark matter is comprised of new particles that interact weakly with ordinary matter and have Terascale masses. It is truely remarkable that astrophysics and cosmology, completely independently of the particle physics considerations reviewed above, point to new phenomena at the Terascale. If Terascale dark matter exists, experiments at the ILC should be able to produce such particles in the laboratory and study their properties. Another list of questions will then beckon. Do these new particles really have the correct properties to be the dark matter? Do they account for all of the dark matter, or only part of it? What do their properties tell us about the evolut

  14. Experimental Implications for a Linear Collider of the SUSY Dark Matter Scenario

    E-Print Network [OSTI]

    P. Bambade; M. Berggren; F. Richard; Z. Zhang

    2004-06-01

    This paper presents the detection issues for the lightest slepton \\tilde{\\tau}_1 at a future e^+e^- TeV collider given the dark matter constraints set on the SUSY mass spectrum by the WMAP results. It intends to illustrate the importance of an optimal detection of energetic electrons in the very forward region for an efficient rejection of the \\gamma\\gamma background. The TESLA parameters have been used in the case of head-on collisions and in the case of a 10, mrad half crossing angle.

  15. Constraints on Lepton Asymmetry from Nucleosynthesis in a Linearly Coasting Cosmology

    E-Print Network [OSTI]

    Parminder Singh; Daksh Lohiya

    2015-05-30

    We study the effect of neutrino degeneracy on primordial nucleosynthesis in a universe in which the cosmological scale factor evolves linearly with time. The degeneracy parameter of electron type neutrinos ($\\xi_e$) determines the $n/p$ (neutron to proton) ratio, which in turn determines the abundance of $^4$He in a manner quite distinct from the Standard Scenario. The observed abundances of $^4$He, $\\mathrm{Y}_P$=0.254$\\pm$0.003, and the minimum metallicity that is essential for fragmentation and cooling processes in star forming prestellar gas clouds (Z = Z$_{cr}$ = 10$^{-6}$Z$_\\odot$), constrain the baryon to photon ratio, $\\eta_B$=(3.927$\\pm$0.292)10$^{-9}$, corresponding to a baryonic matter density, $\\Omega_B$=0.263$\\pm$ 0.026 and $\\xi_e$=-2.165$\\pm$0.171. This closes the dynamic mass estimates of matter in the universe by baryons alone. Useful byproducts are the threshold X(CNO) abundances required to trigger the CNO cycle in the observed low metallicity stars in the universe.

  16. Searches for additional Higgs bosons in multi-top-quarks events at the LHC and the International Linear Collider

    E-Print Network [OSTI]

    Shinya Kanemura; Hiroshi Yokoya; Ya-Juan Zheng

    2015-05-05

    We study direct searches of additional Higgs bosons in multi-top-quarks events at the LHC Run-II, its luminosity upgraded version with 3000 fb$^{-1}$, and the International Linear Collider (ILC) with the collision energy of 1 TeV. Additional Higgs bosons are predicted in all kinds of extended Higgs sectors, and their detection at collider experiments is a clear signature of the physics beyond the standard model. We consider two Higgs doublet models with the discrete symmetry as benchmark models. If these additional Higgs bosons are heavy enough, the decay modes including top quarks can be dominant, and the searches in multi-top-quarks events become an important probe of the Higgs sector. We evaluate the discovery reach in the parameter space of the model, and find that there are parameter regions where the searches at the LHC with 3000 fb$^{-1}$ cannot survey, but the searches at the ILC 1 TeV run can. The combination of direct searches at the LHC and the ILC is useful to explore extended Higgs sectors.

  17. Searches for additional Higgs bosons in multi-top-quarks events at the LHC and the International Linear Collider

    E-Print Network [OSTI]

    Kanemura, Shinya; Zheng, Ya-Juan

    2015-01-01

    We study direct searches of additional Higgs bosons in multi-top-quarks events at the LHC Run-II, its luminosity upgraded version with 3000 fb$^{-1}$, and the International Linear Collider (ILC) with the collision energy of 1 TeV. Additional Higgs bosons are predicted in all kinds of extended Higgs sectors, and their detection at collider experiments is a clear signature of the physics beyond the standard model. We consider two Higgs doublet models with the discrete symmetry as benchmark models. If these additional Higgs bosons are heavy enough, the decay modes including top quarks can be dominant, and the searches in multi-top-quarks events become an important probe of the Higgs sector. We evaluate the discovery reach in the parameter space of the model, and find that there are parameter regions where the searches at the LHC with 3000 fb$^{-1}$ cannot survey, but the searches at the ILC 1 TeV run can. The combination of direct searches at the LHC and the ILC is useful to explore extended Higgs sectors.

  18. Vertex Detection for a Charm Tag in e+e- -> W+W- at a High Energy Electron-Positron Linear Collider

    E-Print Network [OSTI]

    Wolfgang Walkowiak

    2001-10-18

    The study of the process $e^+e^- \\to W^+W^-$ at Linear Collider energies presents a good opportunity to investigate anomalous triple gauge boson couplings and $W^+_LW^-_L$ rescattering. The helicity analysis of the $e^+e^- \\to W^+_LW^-_L$ decays will benefit if the charm quark containing jet can be identified for events which contain one hadronic $W$ boson decay to a charm and another quark. A JAVA implementation of the SLD collaboration's topological vertex finding algorithm (ZVTOP) in the linear collider analysis framework has been used to extract charm tag efficiencies and purities based on vertex multiplicities.

  19. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    SciTech Connect (OSTI)

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-05-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  20. Rare Decay of the Top t->c l lbar and Single Top Production at International Linear Collider

    E-Print Network [OSTI]

    Mariana Frank; Ismail Turan

    2006-10-17

    We perform a complete and detailed analysis of the flavor changing neutral current rare top quark decays t-> cl+l- and t->c nu_i bar nu_i at one-loop level in the Standard Model, Two Higgs Doublet Models (I and II) and in MSSM. The branching ratios are very small in all models, O(10^-14), except for the case of the unconstrained MSSM, where they can reach O(10^-6) for e+e- and nu_i bar nu_i, and O(10^-5) for tau+ tau-. This branching ratio is comparable to the ones for t-> c V, cH. We also study the production rates of single top and the forward-backward asymmetry in e+e- -> t cbar and comment on the observability of such a signal at the International Linear Collider.

  1. Recent Electron-Cloud Simulation Results for the Main Damping Rings of the NLC and the TESLA Linear Colliders

    SciTech Connect (OSTI)

    Pivi, Mauro T F

    2003-05-19

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  2. A new method of RF power generation for two-beam linear colliders

    E-Print Network [OSTI]

    Braun, H; D'Amico, T E; Delahaye, J P; Guignard, Gilbert; Johnson, C; Millich, Antonio; Pearce, P; Rinolfi, Louis; Riche, A J; Schulte, Daniel; Thorndahl, L; Valentini, M; Wilson, Ian H; Ruth, Ronald D

    1998-01-01

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency (~1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulti ng power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive is very flexible and can be used to accelerate beams for lin ear colliders over the...

  3. Improving estimates of the number of fake leptons and other mis-reconstructed objects in hadron collider events: BoB's your UNCLE

    E-Print Network [OSTI]

    Gillam, Thomas P. S.; Lester, Christopher G.

    2014-11-06

    with missing transverse momentum and at least three b-jets using 20.1 fb?1 of pp collisions at ?s = 8 TeV with the ATLAS detector,ATLAS-CONF-2013-061, CERN, Geneva Switzerland (2013) [INSPIRE]. [2] ATLAS collaboration, Background studies for top-pair production... in lepton plus jets final states in ?s = 7 TeV ATLAS data, ATLAS-CONF-2010-087, CERN, Geneva Switzerland (2010) [INSPIRE]. [3] ATLAS collaboration, Search for supersymmetry using final states with one lepton, jets and missing transverse momentum...

  4. Design and Electronics Commissioning of the Physics Prototype of a Si-W Electromagnetic Calorimeter for the International Linear Collider

    E-Print Network [OSTI]

    Repond, J; Cass, S; Yu, J; Hawkes, C M; Mikami, Y; Miller, O; Watson, N K; Wilson, J A; Mavromanolakis, G; Thomson, M A; Ward, D R; Yan, W; Badaud, F; Boumediene, D; Crloganu, C; Cornat, R; Gay, P; Gris, P; Manen, S; Morisseau, F; Royer, L; Blazey, G C; Chakraborty, D; Dyshkant, A; Francis, K; Hedin, D; Lima, G; Zutshi, V; Hostachy, J Y; Morin, L; Garutti, E; Korbel, V; Sefkow, F; Groll, M; Kim, G; Kim, D W; Lee, K; Lee, S; Kawagoe, K; Bowerman, Y; Tamura, D A; Dauncey, P D; Magnan, A M; Noronha, C; Yilmaz, H; Zorba, O; Bartsch, V; Butterworth, J M; Postranecky, M; Warren, M; Wing, M; Faucci Giannelli, M; Green, M G; Salvatore, F; Wu, T; Bailey, D; Barlow, R J; Kelly, M; Snow, S; Thompson, R J; Danilov, M; Kochetkov, V; Cheremushkinskaya, B; Baranova, N; Ermolov, P; Karmanov, D; Korolev, M; Merkin, M; Lomonosov, A; Voronin, M V; Bouquet, B; Callier, S; Dulucq, F; Fleury, J; Li, H; Martin-Chassard, G; Richard, F; dela Taille, C; Pöschl, R; Raux, L; Ruan, M; Seguin-Moreau, N; Wicek, F; Zhang, Z; Anduze, M; Boudry, V; Brient, J C; Clerc, C; Gaycken, G; Jauffret, C; Karar, A; Mora de Freitas, P; Musat, G; Reinhard, M; Rougé, A; Sanchez, A L; Vanel, J C; Videau, H; Zįcek, J; Cvach, J; Gallus, P; Havranek, M; Janata, M; Marcisovsky, M; Polak, I; Popule, J; Tomasek, L; Tomasek, M; Ruzicka, P; Sķcho, P; Smolik, J; Vrba, V; Zaleisak, J; Arestov, Yu; Baird, A; Halsall, R N; Nam, S W; Park, I H; Yang, J

    2008-01-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the electromagnetic calorimeter, the current baseline choice is a high granularity sampling calorimeter with tungsten as absorber and silicon detectors as sensitive material. A ``physics prototype'' has been constructed, consisting of thirty sensitive layers. Each layer has an active area of 18x18 cm2 and a pad size of 1x1 cm2. The absorber thickness totals 24 radiation lengths. It has been exposed in 2006 and 2007 to electron and hadron beams at the DESY and CERN beam test facilities, using a wide range of beam energies and incidence angles. In this paper, the prototype and the data acquisition chain are described and a summary of the data taken in the 2006 beam tests is presented. The methods used to subtract the pedestals and calibrate the detector are detailed. The signal-over-noise ratio has been measured at 7.63 +/- 0.01. Some electronics f...

  5. Searching for Single Production of Charged Heavy Leptons via Anomalous Interactions at CLIC

    E-Print Network [OSTI]

    A. T. Tasci; A. Senol

    2013-01-07

    We consider the possible discovery potential for single production of charged heavy leptons via anomalous interactions at the envisaged Compact Linear Collider (CLIC) by taking into account initial state radiation (ISR) and beamstrahlung effects. We calculate the production cross sections and decay widths of charged heavy leptons in the context of anomalous interactions at center of mass energies $\\sqrt{s}=1$ and 3 TeV. The signal and corresponding backgrounds are studied in detail for the mass range 300-1900 GeV.

  6. Muon Colliders and Neutrino Factories

    SciTech Connect (OSTI)

    Geer, Steve; /Fermilab

    2009-11-01

    Over the past decade, there has been significant progress in developing the concepts and technologies needed to produce, capture, and accelerate {Omicron}(10{sup 21}) muons per year. These developments have paved the way for a new type of neutrino source (neutrino factory) and a new type of very high energy lepton-antilepton collider (muon collider). This article reviews the motivation, design, and research and development for future neutrino factories and muon colliders.

  7. Muon colliders and neutrino factories

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  8. Model-Independent Measurement of the e+e– --> HZ Cross Section at a Future e+e– Linear Collider using Hadronic Z Decays

    E-Print Network [OSTI]

    AUTHOR|(SzGeCERN)435733

    2015-01-01

    A future e+e collider, such as the ILC or CLIC, would allow the Higgs sector to be probed with a precision significantly beyond that achievable at the High-Luminosity LHC. A central part of the Higgs programme at an e+e collider is the model-independent determination of the absolute Higgs couplings to fermions and to gauge bosons. Here the measurement of the e+e --> HZ Higgsstrahlung cross sec- tion, using the recoil mass technique, sets the absolute scale for all Higgs coupling measurements. Previous studies have considered s (e+e --> HZ) with Z --> l+l-, where l = e, ?. In this paper it is shown for the first time that a near model- independent recoil mass technique can be extended to the hadronic decays of the Z boson. Because the branching ratio for Z --> qq is approximately ten times greater than for Z --> l+l-, this method is statistically more powerful than using the leptonic decays. For an integrated luminosity of 500 fb-1 at a centre-of-mass energy of ps = 350 GeV at CLIC, s (e+e --> HZ) can be meas...

  9. Model-Independent Measurement of the e+e- -> HZ Cross Section at a Future e+e- Linear Collider using Hadronic Z Decays

    E-Print Network [OSTI]

    Thomson, Mark

    2015-01-01

    A future e+e- collider, such as the ILC or CLIC, would allow the Higgs sector to be probed with a precision significantly beyond that achievable at the High-Luminosity LHC. A central part of the Higgs programme at an e+e- collider is the model-independent determination of the absolute Higgs couplings to fermions and to gauge bosons. Here the measurement of the e+e-->HZ Higgsstrahlung cross section, using the recoil mass technique, sets the absolute scale for all Higgs coupling measurements. Previous studies have considered e+e- ->ZH with Z->l+l-, where l = electron or muon. In this paper it is shown for the first time that a near model-independent recoil mass technique can be extended to the hadronic decays of the Z boson. Because the branching ratio for Z->qq is approximately ten times greater than for Z->l+l-, this method is statistically more powerful than using the leptonic decays. For an integrated luminosity of 500 fb-1 at a centre-of-mass energy of 350 GeV at CLIC, the e+e-->HZ cross section can be mea...

  10. A Direct Measurement of tan(beta): e+e- -> bb -> bbA at a Future e+e- Linear Collider

    E-Print Network [OSTI]

    M. Berggren; R. Keranen; A. Sopczak

    1999-11-13

    The experimental sensitivity of the reaction e+e- -> bb -> bbA has been studied with a full-statistics background simulation for sqrt(s) = 500 GeV and L = 500 fb-1. The simulation is based on a fast and realistic simulation of a TESLA detector. For the first time this reaction has been analysed for a future linear collider and we show that a signal could be observed. A significant signal over background is achieved by the application of an Iterative Discriminant Analysis (IDA). For a signal production cross section of only 2 fb, which is expected for a Higgs boson mass of 100 GeV and tan(beta) = 50, we achieve 100 signal over 100 background events, and obtain for a tan(beta) measurement: Delta(tan(beta)) / tan(beta) = 0.07. This measurement requires a high-luminosity future collider as proposed in the TESLA project.

  11. Search for the Standard Model Higgs boson produced in association with a W Boson in the isolated-track charged-lepton channel using the Collider Detector at Fermilab

    SciTech Connect (OSTI)

    Buzatu, Adrian; /McGill U.

    2011-08-01

    The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has not yet been observed experimentally. If it exists, it explains the spontaneous electroweak symmetry breaking and the origin of mass for gauge bosons and fermions. We test the validity of the SM by performing a search for the associated production of a Higgs boson and a W boson in the channel where the Higgs boson decays to a bottom-antibottom quark pair and the W boson decays to a charged lepton and a neutrino (the WH channel). We study a dataset of proton-antiproton collisions at a centre-of-mass energy {radical}s = 1.96 TeV provided by the Tevatron accelerator, corresponding to an integrated luminosity of 5.7 fb{sup -1}, and recorded using the Collider Detector at Fermilab (CDF).We select events consistent with the signature of exactly one charged lepton (electron or muon), missing transverse energy due to the undetected neutrino (MET) and two collimated streams of particles (jets), at least one of which is required to be identified as originating from a bottom quark. We improve the discrimination of Higgs signal from backgrounds through the use of an artificial neural network. Using a Bayesian statistical inference approach, we set for each hypothetical Higgs boson mass in the range 100-150 GeV/c{sup 2} with 5 GeV/c{sup 2} increments a 95% credibility level (CL) upper limit on the ratio between the Higgs production cross section times branching fraction and the SM prediction. Our main original contributions are the addition of a novel charged lepton reconstruction algorithm with looser requirements (ISOTRK) with respect the electron or muon tight criteria (TIGHT), as well as the introduction of a novel trigger-combination method that allows to maximize the event yield while avoiding trigger correlations and that is used for the ISOTRK category. The ISOTRK candidate is a high-transverse-momentum good-quality track isolated from other activity in the tracking system and not required to match a calorimeter cluster, as for a tight electron candidate, or an energy deposit in the muon detector, as for a tight muon candidate. The ISOTRK category recovers real charged leptons that otherwise would be lost in the non-instrumented regions of the detector. This allows the reconstruction of more W boson candidates, which in turn increases the number of reconstructed WH signal candidate events, and therefore improves the sensitivity of the WH search. For the TIGHT charged lepton categories, we employ charged-lepton-dedicated triggers to improve the rate of WH signal acceptance during data taking. Since there is no ISOTRK-dedicated trigger at CDF, for the ISOTRK charged lepton category we employ three MET-plus-jets-based triggers. For each trigger we first identify the jet selection where the trigger efficiency is flat with respect to jet information (transverse energy and direction of motion in the transverse plane for the two jets in the event) and then we parametrize the trigger efficiency as a function of trigger MET. On an event-by-event basis, for each trigger we compute a trigger efficiency as a function of trigger parametrization, trigger MET, jet information, trigger prescale and information about whether the trigger is defined or not. For the ISOTRK category we combine the three triggers using a novel method, which allows the combination of any number of triggers in order to maximize the event yield while avoiding trigger correlations. On an event-by-event basis, only the trigger with the largest efficiency is used. By avoiding a logical 'OR' between triggers, the loss in the yield of events accepted by the trigger combination is compensated by a smaller and easier-to-compute corresponding systematic uncertainty. The addition of the ISOTRK charged lepton category to the TIGHT category produces an increase of 33% in the WH signal yield and a decrease of 15.5% to 19.0% in the median expected 95% CL cross-section upper limits across the entire studied Higgs mass interval. The improvement in analysis sensitivity is smaller than the i

  12. Study of gamma gamma Background in e+e- -> W+W- nu nu -> H nu nu Events at the Tesla e+e- Linear Collider

    E-Print Network [OSTI]

    Marco Battaglia; Daniel Schulte

    2000-11-27

    The effect of the overlap of gamma gamma -> hadrons to H nu nu events has been studied for the case of the Tesla e+e- linear collider at 350 GeV. It was found that, due to the significant bunch length and the track extrapolation accuracy provided by the Vertex Tracker, the gamma gamma background to physics events can be substantially reduced, with moderate loss in reconstruction efficiency, by a combination of kinematical and vertex topology observables. The remaining background, being confined to very forward hadron production, does not significantly interfere with the event reconstruction.

  13. Crystal Ball: On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of ...

  14. Neutrinos and Collider Physics

    E-Print Network [OSTI]

    Deppisch, Frank F; Pilaftsis, Apostolos

    2015-01-01

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

  15. Neutrinos and Collider Physics

    E-Print Network [OSTI]

    Frank F. Deppisch; P. S. Bhupal Dev; Apostolos Pilaftsis

    2015-08-04

    We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setup as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.

  16. Prospects for Colliders and Collider Physics to the 1 PeV Energy Scale

    E-Print Network [OSTI]

    B. J. King

    2000-05-04

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC -- one each of e+e- and hadron colliders and three muon colliders -- and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory

  17. The leptophilic dark matter with $Z'$ interaction: from indirect searches to future $e^+ e^-$ collider searches

    E-Print Network [OSTI]

    Chen, Ning; Wang, Xiao-Ping

    2015-01-01

    We investigate the scenario where the dark matter only interacts with the charged leptons in the standard model via a neutral vector mediator $Z'$. Such a scenario with a 430 GeV dark matter can fit the recent positron fluxes observed by the AMS-02 Collaborations, with the reasonable boost factors. We study the possibility of searching such leptophilic $Z'$ via its lepton final states and invisible decay modes at the future electron-positron colliders, such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). We find that for the benchmark models with $Z'$ mass from $1.0\\,\\TeV$ to $1.5\\,\\TeV$, the searches for the invisible decays of $Z'\\to \\bar \\chi \\chi$ is easily achieved at the CLIC $1.5\\,\\TeV$ runs via the mono-photon process. However, lighter $Z'$ with mass from $0.5\\,\\TeV$ to $0.8\\,\\TeV$ are challenging to see. The di-lepton plus single photon channel can reveal the $Z'$ mass at the ILC and CLIC with moderate luminosities.

  18. The leptophilic dark matter with $Z'$ interaction: from indirect searches to future $e^+ e^-$ collider searches

    E-Print Network [OSTI]

    Ning Chen; Jian Wang; Xiao-Ping Wang

    2015-02-04

    We investigate the scenario where the dark matter only interacts with the charged leptons in the standard model via a neutral vector mediator $Z'$. Such a scenario with a 430 GeV dark matter can fit the recent positron fluxes observed by the AMS-02 Collaborations, with the reasonable boost factors. We study the possibility of searching such leptophilic $Z'$ via its lepton final states and invisible decay modes at the future electron-positron colliders, such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC). We find that for the benchmark models with $Z'$ mass from 1.0 TeV to 1.5 TeV, the searches for the invisible decays of $Z'\\to \\bar \\chi \\chi$ is easily achieved at the CLIC 1.5 TeV runs via the mono-photon process. However, lighter $Z'$ with mass from 0.5 TeV to 0.8 TeV are challenging to see. The di-lepton plus single photon channel can reveal the $Z'$ mass at the ILC and CLIC with moderate luminosities.

  19. Photoproduction of Prompt $J/\\psi$ in Association with a $c\\bar{c}$ Pair within the Framework of Non-relativistic QCD at the International Linear Collider

    E-Print Network [OSTI]

    Sun, Zhan; Zhang, Hong-Fei

    2015-01-01

    We present a systematical study on the photoproduction of prompt $J/\\psi$ in association with a $c\\bar{c}$ pair within the framework of non-relativistic QCD at the future high-energy $e^{+}e^{-}$ collider - International Linear Collider, including both direct and feed-down contributions. For direct $J/\\psi$ production, the states with color-octet $c\\bar{c}$-components, especially $|c\\bar{c}[^3P^{[8]}_J]g\\rangle$ and $|c\\bar{c}[^1S^{[8]}_0]g\\rangle$, provide dominant contribution to the production cross-section, which are about sixty times over that of the color-singlet state $|c\\bar{c}[^3S^{[1]}_1]\\rangle$. This is clearly shown by the transverse momentum ($p_t$) and rapidity distributions. The feed-down contribution from $\\psi'$ and $\\chi_{cJ}$ ($J=0,1,2$) is sizable, which is $\\sim 20\\%$ to the total prompt cross-section. Besides the yields, we also calculate the $J/\\psi$ polarization parameter $\\lambda$. In small $p_t$ region, the polarization of the prompt $J/\\psi$ is longitudinal due to $|c\\bar{c}[^3P^{[...

  20. QCD predictions for spin dependent photonic structure function $g_1^?(x,Q^2)$ in the low x region of future linear colliders

    E-Print Network [OSTI]

    J. Kwiecinski; B. Ziaja

    2000-11-21

    Spin dependent structure function $g_1^{\\gamma}(x,Q^2)$ of the polarised photon is analysed within the formalism based upon the unintegrated spin dependent parton distributions incorporating the LO Altarelli-Parisi evolution and the double $ln^2(1/x)$ resummation at low values of Bjorken parameter x. We analyse the effects of the double $ln^2(1/x)$ resummation on the behaviour of $g_1^{\\gamma}(x,Q^2)$ in the low x region which may be accessible in future linear $e^+e^-$ and $e\\gamma$ colliders. Sensitivity of the predictions on the possible nonperturbative gluon content of the polarised photons is analysed. Predictions for spin dependent gluon distribution $\\Delta g^{\\gamma} (x,Q^2)$ are also given.

  1. RECENT ELECTRON-CLOUD SIMULATION RESULTS FOR THE MAIN DAMPING RINGS OF THE NLC AND TESLA LINEAR COLLIDERS

    E-Print Network [OSTI]

    Furman, Miguel

    RECENT ELECTRON-CLOUD SIMULATION RESULTS FOR THE MAIN DAMPING RINGS OF THE NLC AND TESLA LINEAR for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately for the NLC and TESLA positron damping rings. Parameter Symbol NLC TESLA Beam energy E, GeV 1.98 5.0 Bunch

  2. Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP Location of the ATF2 Beam Line

    SciTech Connect (OSTI)

    Bolzon, Benoit; /Annecy, LAPP; Jeremie, Andrea; /Annecy, LAPP; Bai, Sha; /Beijing, Inst. High Energy Phys.; Bambade, Philip; /KEK, Tsukuba; White, Glen; /SLAC

    2012-07-02

    At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3 {micro}m at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used ({beta}{sub x} = 4cm and {beta}{sub y} = 1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that {beta} functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously {alpha}{sub x}, {alpha}{sub y} and the horizontal dispersion (D{sub x}). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the {alpha}{sub y} knob were successfully performed.

  3. One-loop Higgs boson production at the Linear Collider within the general two-Higgs-doublet model: e+e- versus gamma-gamma

    E-Print Network [OSTI]

    Joan Sola; David Lopez-Val

    2011-07-07

    We present an updated overview on the phenomenology of one-loop Higgs boson production at Linear Colliders within the general Two-Higgs-Doublet Model (2HDM). First we report on the Higgs boson pair production, and associated Higgs-Z boson production, at O(alpha^3_{ew}) from e+e- collisions. These channels furnish cross-sections in the range of 10-100 fb for Ecm=0.5 TeV and exhibit potentially large radiative corrections (of order 50%), whose origin can be traced back to the genuine enhancement capabilities of the triple Higgs boson self-interactions. Next we consider the loop-induced production of a single Higgs boson from direct gamma-gamma scattering. We single out sizable departures from the corresponding rates in the Standard Model, which are again correlated to trademark dynamical features of the 2HDM -- namely the balance of the non-standard Higgs/gauge, Higgs/fermion and Higgs self-interactions leading to sizable (destructive) interference effects. This pattern of quantum effects is unmatched in the MSSM, and could hence provide distinctive footprints of non-supersymmetric Higgs boson physics. Both calculations are revisited within a common, brought-to-date framework and include, in particular, the most stringent bounds from unitarity and flavor physics.

  4. Lepton-flavored dark matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kile, Jennifer; Kobach, Andrew; Soni, Amarjit

    2015-05-01

    In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. ? ? 3e, ? ? e??, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6? deviation of the muon g – 2 from the standard model can be explained by a new physics scale more »TeV). Here, we suggest that it may not be a coincidence that both the muon g – 2 and the relic density can be satisfied by a new-physics scale ?1 TeV. We consider the possibility of a gauged lepton-flavor interaction that couples at tree level only to ?- and ?-flavored leptons and the dark sector. Dark matter thus interacts appreciably only with particles of ? and ? flavor at tree level and has loop-suppressed couplings to quarks and electrons. Remarkably, if such a gauged flavor interaction exists at a scale O(100 GeV–1 TeV), it allows for a consistent phenomenological framework, compatible with the muon g – 2, the relic density, direct detection, indirect detection, charged-lepton decays, neutrino trident production, and results from hadron and e?e? colliders. We suggest experimental tests for these ideas at colliders and for low-energy observables. (author)« less

  5. Lepton-flavored dark matter

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kile, Jennifer; Kobach, Andrew; Soni, Amarjit

    2015-05-01

    In this work, we address two paradoxes. The first is that the measured dark-matter relic density can be satisfied with new physics at O(100 GeV–1 TeV), while the null results from direct-detection experiments place lower bounds of O(10 TeV) on a new-physics scale. The second puzzle is that the severe suppression of lepton-flavor-violating processes involving electrons, e.g. ? ? 3e, ? ? e??, etc., implies that generic new-physics contributions to lepton interactions cannot exist below O(10–100 TeV), whereas the 3.6? deviation of the muon g – 2 from the standard model can be explained by a new physics scale lepton-flavor interaction that couples at tree level only to ?- and ?-flavored leptons and the dark sector. Dark matter thus interacts appreciably only with particles of ? and ? flavor at tree level and has loop-suppressed couplings to quarks and electrons. Remarkably, if such a gauged flavor interaction exists at a scale O(100 GeV–1 TeV), it allows for a consistent phenomenological framework, compatible with the muon g – 2, the relic density, direct detection, indirect detection, charged-lepton decays, neutrino trident production, and results from hadron and e?e? colliders. We suggest experimental tests for these ideas at colliders and for low-energy observables. (author)

  6. Limits on tau lepton flavor violating decays in three charged leptons

    SciTech Connect (OSTI)

    Cervelli, Alberto

    2010-04-29

    A search for the neutrinoless, lepton-flavor violating decay of the {tau} lepton into three charged leptons has been performed using an integrated luminosity of 468 fb{sup -1} collected with the BABAR detector at the PEP-II collider. In all six decay modes considered, the numbers of events found in data are compatible with the background expectations. Upper limits on the branching fractions are set in the range (1.8-3.3) x 10{sup -8} at 90% confidence level.

  7. Search for lepton-flavor and lepton-number-violating ? ? ?hh' decay modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miyazaki, Y.; Hayasaka, K.; Adachi, I.; Aihara, H.; Asner, D.M.; Aulchenko, V.; Aushev, T.; Bakich, A.M.; Bay, A.; Bhardwaj, V.; et al

    2013-02-01

    We search for lepton-flavor and lepton-number-violating ? decays into a lepton (? = electron or muon) and two charged mesons (h,h'=?± or K±) using 854 fb?¹of data collected with the Belle detector at the KEKB asymmetric-energy e?e? collider. We obtain 90% confidence level upper limits on the ???hh' branching fractions in the range (2.0–8.4)×10??. These results improve upon our previously published upper limits by factors of about 1.8 on average.

  8. Fourth Lepton Family is Natural in Technicolor

    E-Print Network [OSTI]

    Mads T. Frandsen; Isabella Masina; Francesco Sannino

    2009-05-10

    Imagine to discover a new fourth family of leptons at the Large Hadron Collider (LHC) but no signs of an associated fourth family of quarks. What would that imply? An intriguing possibility is that the new fermions needed to compensate for the new leptons gauge anomalies simultaneously address the big hierarchy problem of the Standard Model. A natural way to accomplish such a scenario is to have the Higgs itself be composite of these new fermions. This is the setup we are going to investigate in this paper using as a template Minimal Walking Technicolor. We analyze a general heavy neutrino mass structure with and without mixing with the Standard Model families. We also analyze the LHC potential to observe the fourth lepton family in tandem with the new composite Higgs dynamics. We finally introduce a model uniting the fourth lepton family and the technifermion sector at higher energies.

  9. Photons and Exclusive Processes at Hadron Colliders

    E-Print Network [OSTI]

    Joakim Nystrand

    2010-01-26

    The theoretical and experimental aspects of particle production from the strong equivalent photon fluxes present at high energy hadron colliders are reviewed. The goal is to show how photons at hadron colliders can improve what we have learnt from experiments with lepton beams. Experiments during the last 5-10 years have shown the feasibility of studying photoproduction in proton-proton and heavy-ion collisions. The experimental and theoretical development has revealed new opportunities as well as challenges.

  10. Jets in Particle Colliders Andrew Wong!

    E-Print Network [OSTI]

    Budker, Dmitry

    Jets in Particle Colliders Andrew Wong! #12;Topics Ā· What are jets? Ā· How are they produced? Ā· What do we use to study jets? #12;What are jets? Ā· Bunch of different jets #12;Pretty picture! #12;What's in a jet? Ā· Hadrons Ā­ Kaons, Pions, Protons, Neutrons Ā· Leptons Ā­ Mainly electrons and muons Ā· These have

  11. Photon collider at TESLA

    E-Print Network [OSTI]

    Valery Telnov

    2001-03-06

    High energy photon colliders (gamma-gamma, gamma-electron) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case the gamma-gamma luminosity luminosity in the high energy part of spectrum can reach (1/3)L_{e+e-}. Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ``an optical storage ring (optical trap)'' with diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based at TESLA, its possible parameters and existing problems.

  12. Muon Collider

    SciTech Connect (OSTI)

    Palmer, R.

    2009-10-19

    Parameters are given of muon colliders with center of mass energies of 1.5 and 3 TeV. Pion production is from protons on a mercury target. Capture, decay, and phase rotation yields bunch trains of both muon signs. Six dimensional cooling reduces the emittances until the trains are merged into single bunches, one of each sign. Further cooling in 6 dimensions is then applied, followed by final transverse cooling in 50 T solenoids. After acceleration the muons enter the collider ring. Ongoing R&D is discussed.

  13. Lepton Number Violation and the Baryon Asymmetry of the Universe

    E-Print Network [OSTI]

    Harz, Julia; Päs, Heinrich

    2015-01-01

    Neutrinoless double beta decay, lepton number violating collider processes and the Baryon Asymmetry of the Universe (BAU) are intimately related. In particular lepton number violating processes at low energies in combination with sphaleron transitions will typically erase any pre-existing baryon asymmetry of the Universe. In this contribution we briefly review the tight connection between neutrinoless double beta decay, lepton number violating processes at the LHC and constraints from successful baryogenesis. We argue that far-reaching conclusions can be drawn unless the baryon asymmetry is stabilized via some newly introduced mechanism.

  14. New Paradigm for Baryon and Lepton Number Violation

    E-Print Network [OSTI]

    Pavel Fileviez Perez

    2015-08-17

    The possible discovery of proton decay, neutron-antineutron oscillation, neutrinoless beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generation mechanisms are discussed. The theories where the baryon and lepton numbers are defined as local gauge symmetries spontaneously broken at the low scale are discussed in detail. The simplest supersymmetric gauge theory which predicts the existence of lepton number violating processes at the low scale is investigated. The main goal of this review is to discuss the main implications of baryon and lepton number violation in physics beyond the Standard Model.

  15. Measurement of the top Yukawa Coupling at a 1 TeV International Linear Collider using the SiD detector

    E-Print Network [OSTI]

    Philipp Roloff; Jan Strube

    2013-07-29

    One of the detector benchmark processes investigated for the SiD Detailed Baseline Design (DBD) is given by: e+e- -> ttH, where H is the Standard Model Higgs boson of mass 125 GeV. The study is carried out at a centre-of-mass energy of 1 TeV and assuming an integrated luminosity of 1 ab-1. The physics aim is a direct measurement of the top Yukawa coupling at the ILC. Higgs boson decays to beauty quark-antiquark pairs are reconstructed. The investigated final states contain eight jets or six jets, one charged lepton and missing energy. Additionally, four of the jets in signal events are caused by beauty quark decays. The analysis is based on a full simulation of the SiD detector using GEANT4. Beam-related backgrounds from gammagamma -> hadrons interactions and incoherent e+e- pairs are considered. This study addresses various aspects of the detector performance: jet clustering in complex hadronic final states, flavour-tagging and the identification of high energy leptons.

  16. Muon Colliders and Neutrino Factories

    E-Print Network [OSTI]

    Daniel M. Kaplan; for the MAP; MICE Collaborations

    2014-12-10

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  17. Phenomenology of the SU(3){sub c}xSU(3){sub L}xU(1){sub X} model with exotic charged leptons

    SciTech Connect (OSTI)

    Salazar, Juan C.; Ponce, William A.; Gutierrez, Diego A.

    2007-04-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3){sub c}xSU(3){sub L}xU(1){sub X} with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.

  18. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  19. The Potential of the Linac-Ring Type Colliders for Particle and Nuclear Physics

    E-Print Network [OSTI]

    A. K. Ciftci; E. Recepoglu; S. Sultansoy; O. Yavas; M. Yilmaz

    2003-10-02

    Linac-ring type colliders will open new windows for both energy frontier and particle factories. Concerning the first direction, these machines seem to be a sole way to TeV scale in lepton-hadron collisison at constituent level. An essential advantage of the linac-ring type lepton-hadron colliders is the possibility of the construction of gamma-p, gamma-A and FELgamma-A colliders based on them. Today, eRHIC, THERA (TESLA on HERA)and Linac*LHC can be considered as realistic candidates for future lepton-hadron and photon hadron colliders. When it comes to factories, one can reach essentially higher luminosities comparing to standard ring-ring type machines. For example, L=10^34 cm^-2 s^-1 can be achieved for phi and charm-tau factories. In this presentation we briefly discuss the parameters and physics search potential of the linac-ring type machines.

  20. Conventional power sources for colliders

    SciTech Connect (OSTI)

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 ..mu..sec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 ..mu..sec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 ..mu..sec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths.

  1. Survey of lepton number violation via effective operators

    SciTech Connect (OSTI)

    Gouvea, Andre de; Jenkins, James [Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

    2008-01-01

    We survey 129 lepton number violating effective operators, consistent with the minimal standard model gauge group and particle content, of mass dimension up to and including 11. Upon requiring that each one radiatively generates the observed neutrino masses, we extract an associated characteristic cutoff energy scale which we use to calculate other observable manifestations of these operators for a number of current and future experimental probes, concentrating on lepton number violating phenomena. These include searches for neutrinoless double-beta decay and rare meson, lepton, and gauge boson decays. We also consider searches at hadron/lepton collider facilities in anticipation of the CERN LHC and the future ILC. We find that some operators are already disfavored by current data, while more are ripe to be probed by next-generation experiments. We also find that our current understanding of lepton mixing disfavors a subset of higher dimensional operators. While neutrinoless double-beta decay is the most promising signature of lepton number violation for the majority of operators, a handful is best probed by other means. We argue that a combination of constraints from various independent experimental sources will help to pinpoint the ''correct'' model of neutrino mass, or at least aid in narrowing down the set of possibilities.

  2. Lepton Number Violation within the Conformal Inverse Seesaw

    E-Print Network [OSTI]

    Humbert, Pascal; Patra, Sudhanwa; Smirnov, Juri

    2015-01-01

    We present a novel framework within the conformal inverse seesaw scheme allowing large lepton number violation while the neutrino mass formula is still governed by the low-scale inverse seesaw mechanism. This model includes new contributions to rare low-energy lepton number violating processes like neutrinoless double beta decay. We find that the lifetime for this rare process due to heavy sterile neutrinos can saturate current experimental limits. The characteristic collider signature of the present conformal inverse seesaw scheme includes, same-sign dilepton plus two jets and same-sign dilepton plus four jets. Finally, we comment on the testability of the model at the Large Hadron Collider since there are new scalars, new fermions and an extra neutral gauge boson with masses around few 100 GeV to few TeV.

  3. Study of top quark production and decays involving a tau lepton at CDF and limits on a charged Higgs boson contribution

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We present an analysis of top-antitop quark production and decay into a tau lepton, tau neutrino, and bottom quark using data from 9??fb[superscript ?1] of integrated luminosity at the Collider Detector at Fermilab. Dilepton ...

  4. Colliding Crystalline Beams

    E-Print Network [OSTI]

    Wei, J.

    2008-01-01

    6] J. Wei, et ai, Crystalline Beams and Related Issues,LABORATORY Colliding Crystalline Beams Jie Wei and A.M.CBP Note-262 Colliding Crystalline Beams* Jie Wei Brookhaven

  5. TESLA*HERA Based gamma-p and gamma-A Colliders

    E-Print Network [OSTI]

    A. K. Ciftci; S. Sultansoy; O. Yavas

    2000-07-05

    Main parameters and physics search potential of gamma-p and gamma-A colliders, which will be available due to constructing the TESLA linear electron-positron collider tangentially to the HERA proton ring, are discussed.

  6. International linear collider reference design report

    E-Print Network [OSTI]

    Aarons, G.

    2008-01-01

    one stainless steel centrifugal pump (with no standby), oneincludes a multi-stage centrifugal pump, brazed plate heat

  7. International linear collider reference design report

    E-Print Network [OSTI]

    Aarons, G.

    2008-01-01

    3.4 Klystrons . . . . . . . . . . . . . . . . 3.4.1Beam Klystron. . . . . . . . . . . . . . . . . . . . . . .3.4-2 3.4-2 Klystron requirements by

  8. International linear collider reference design report

    E-Print Network [OSTI]

    Aarons, G.

    2008-01-01

    complete with supports, anchor bolts, and other requiredpermanent support is provided by rock bolts. Production ratepermanent support can be pattern spaced rock bolts or

  9. Inclusive Higgs Boson Searches in Four-Lepton Final States at the LHC

    E-Print Network [OSTI]

    Evelyne Delmeire

    2007-05-15

    The inclusive search for the Standard Model Higgs boson in four-lepton final states with the ATLAS and CMS detectors at the LHC pp collider is presented. The discussion focusses on the H-> ZZ^(*)->4l+X decay mode for a Higgs boson in the mass range 120 ~Higgs boson properties is also given.

  10. Drell-Yan Lepton pair production at NNLO QCD with parton showers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoeche, Stefan; Li, Ye; Prestel, Stefan

    2015-04-13

    We present a simple approach to combine NNLO QCD calculations and parton showers, based on the UNLOPS technique. We apply the method to the computation of Drell-Yan lepton-pair production at the Large Hadron Collider. We comment on possible improvements and intrinsic uncertainties.

  11. Twistor Spinoffs for Collider Physics

    SciTech Connect (OSTI)

    Dixon, Lance

    2005-12-19

    Finding the adding up of Feynman diagrams tedious? Hidden symmetries found in the sums of diagrams suggest there is a better way to predict the results of particle collisions - in the past two years, spin-offs of a new theory, known as the Twistor String Theory, have led to the development of efficient alternatives to Feynman diagrams which can be useful for work at the Tevatron, the LHC and for future research at the International Linear Collider. Come see what this 'twistor' is all about!

  12. Distinguishing spins in supersymmetric and universal extra dimension models at the large hadron collider.

    E-Print Network [OSTI]

    Smillie, Jennifer M; Webber, Bryan R

    ar X iv :h ep -p h/ 05 07 17 0v 3 2 1 Fe b 20 07 Preprint typeset in JHEP style - PAPER VERSION Cavendish–HEP–05/11 Distinguishing Spins in Supersymmetric and Universal Extra Dimension Models at the Large Hadron Collider? Jennifer M. Smillie1... lepton mass distribution 8 4.6 Observable quark-lepton correlations 9 5. Production cross sections 11 6. Experimental observables 13 7. Conclusions 15 A. Quark + far lepton correlation 16 B. UED production cross sections 17 1. Introduction The search...

  13. Photon-Photon Colliders

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01

    diverse pairs of particles are produced. In photon-photon colliders. the intensity of the light is so strongunpolarized electrons or photons and fully polarized photons

  14. SPADs for Vertex Tracker detectors in Future Colliders

    E-Print Network [OSTI]

    Vilella, E; Vila, A; Dieguez, A

    2015-01-01

    Physics aims at the future linear colliders impose such stringent requirements on detector systems that exceed those met by any previous technology. Amongst other novel technologies, SPADs (Single Photon Avalanche Diodes) detectors are being developed to track high energy particles at ILC (International Linear Collider) and CLIC (Compact LInear Collider). These sensors offer outstanding qualities, such as an extraordinary high sensitivity, ultra-fast response time and virtually infinite gain, in addition to compatibility with standard CMOS technologies. As a result, SPAD detectors enable the direct conversion of a single particle event onto a CMOS digital signal in the sub-nanosecond time scale, which leads to the possibility of single BX (bunch crossing) resolution at some particle colliders. However, SPAD detectors suffer from two main problems, namely the noise pulses generated by the sensor and the low fill-factor. The noise pulses worsen the detector occupancy, while the low fill-factor reduces the detec...

  15. A Search for Neutrinoless Tau Decays to Three Leptons

    SciTech Connect (OSTI)

    Kolb, Jeffrey A.; /Oregon U. /SLAC; ,

    2008-09-24

    Using approximately 350 million {tau}{sup +}{tau}{sup -} pair events recorded with the BaBar detector at the Stanford Linear Accelerator Center between 1999 and 2006, a search has been made for neutrinoless, lepton-flavor violating tau decays to three lighter leptons. All six decay modes consistent with conservation of electric charge and energy have been considered. With signal selection efficiencies of 5-12%, we obtain 90% confidence level upper limits on the branching fraction {Beta}({tau} {yields} {ell}{ell}{ell}) in the range (4-8) x 10{sup -8}.

  16. Constraints on Majorana dark matter from a fourth lepton family

    SciTech Connect (OSTI)

    Hapola, Tuomas [Institute for Particle Physics Phenomenology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Järvinen, Matti [Crete Center for Theoretical Physics, University of Crete, 71003 Heraklion (Greece); Kouvaris, Chris; Panci, Paolo; Virkajärvi, Jussi, E-mail: t.a.hapola@durham.ac.uk, E-mail: mjarvine@physics.uoc.gr, E-mail: kouvaris@cp3.dias.sdu.dk, E-mail: panci@cp3-origins.net, E-mail: virkajarvi@cp3-origins.net [CP "3-Origins and DIAS, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark)

    2014-02-01

    We study the possibility of dark matter in the form of heavy neutrinos from a fourth lepton family with helicity suppressed couplings such that dark matter is produced thermally via annihilations in the early Universe. We present all possible constraints for this scenario coming from LHC and collider physics, underground direct detectors, neutrino telescopes, and indirect astrophysical searches. Although we embed the WIMP candidate within a model of composite dynamics, the majority of our results are model independent and applicable to all models where heavy neutrinos with suppressed couplings account for the dark matter abundance.

  17. Lepton-pair production in nuclear collisions - past, present, future

    E-Print Network [OSTI]

    H. J. Specht

    2007-10-29

    The key results on lepton-pair production in ultra-relativistic nuclear collisions are shortly reviewed, starting at the roots of pp collisions in the seventies, and ending at the perspectives of the colliders RHIC and LHC. The presence is dominated by the recent precision results from NA60 at the CERN SPS, culminating in the first measurement of the in-medium rho spectral function and the transverse flow of the associated thermal radiation. The seeming cut-off of the flow above the rho may well be the first direct hint for thermal radiation of partonic origin in nuclear collisions. The major milestones in the theoretical developments are also covered.

  18. Search for Lepton Flavour Violating Decays Tau -> l Ks with the BABAR Detector

    SciTech Connect (OSTI)

    Cenci, Riccardo; /SLAC

    2009-03-20

    We present the search for the lepton flavour violating decay {tau} {yields} lK{sup 0}{sub s} with the BaBar experiment data. This process and many other lepton flavour violating {tau} decays, like {tau} {yields} {mu}{gamma} and {tau} {yields} lll, are one of the most promising channel to search for evidence of new physics. According to the Standard Model and the neutrino mixing parameters, branching fractions are estimated well below 10{sup -14}, but many models of new physics allow for branching fractions values close to the present experimental sensitivity. This analysis is based on a data sample of 469fb{sup -1} collected by BABAR detector at the PEP-II storage ring from 1999 to 2007, equivalent to 431 millions of {tau} pairs. the BABAR experiment, initially designed for studying CP violation in B mesons, has demonstrated to be one of the most suitable environments for studying {tau} decays. The tracking system, the calorimeter and the particle identification of BABAR, together with the knowledge of the {tau} initial energy, allow an extremely powerful rejection of background events that, for this analysis, is better than 10{sup -9}. Being {tau} {yields} lK{sup 0}{sub s} a decay mode without neutrinos, the signal {tau} decay can be fully reconstructed. Kinematical constraints are used in a fit that provides a decay tree reconstruction with a high resolution. For this analysis MC simulated events play a decisive role for estimating the signal efficiency and study the residual background. High statistics MC sample are produced simulating detector conditions for different periods of data collection, in order to reduce any discrepancies with the data. When discrepancies can not be removed, we perform studies to compute a correction factor or an estimation of systematic errors that need to be included in the final measurement. A significant improvement of the current result can be reached only with a higher statistics and, therefore, with a new collider providing a luminosity from 10 to 100 times more than PEP-II. A new detector, with improved performance and able to collect data in a high background environment, is also requested to fully exploit the capability of such amount of data. In fact, only keeping the efficiency and the background as similar as possible to present ones, we will be able to scale almost linearly the estimated upper limit according to the luminosity. The strong potential of improvement for the search of lepton flavour violation {tau} decays makes the building of such a machine highly desirable.

  19. Summary of Lepton Photon 2011

    SciTech Connect (OSTI)

    Peskin, Michael E.; /SLAC

    2012-03-14

    In this lecture, I summarize developments presented at the Lepton Photon 2011 conference and give my perspective on the current situation in high-energy physics. I am grateful to the organizers of Lepton Photon 2011 for providing us a very pleasant and simulating week in Mumbai. This year's Lepton Photon conference has covered the full range of subjects that fall within the scope of high-energy physics, including connections to cosmology, nuclear physics, and atomic physics. The experiments that were discussed detect particles ranging in energy from radio frequencies to EeV.

  20. Weak scale radiative lepton mass

    SciTech Connect (OSTI)

    Wong, G.; Hou, W. (Department of Physics, National Taiwan University, Taipei, Taiwan 10764 (Taiwan, Province of China))

    1994-09-01

    We construct a [ital Z][sub 8] model for leptons where all Yukawa couplings are of order unity, but known lepton masses are generated radiatively, [ital order] [ital by] [ital order]. The seed is provided by fourth generation leptons [ital E] and [ital N], and two additional Higgs doublets are introduced to give nearest-neighbor Yukawa couplings. Loop masses are generated when [ital Z][sub 8] is [ital softly] broken down to [ital Z][sub 2], while [ital m][sub [ital e

  1. Hadron-Pair Photoproduction in Longitudinally Polarized Lepton-Nucleon Collisions

    E-Print Network [OSTI]

    Hendlmeier, C; Schäfer, A

    2006-01-01

    We present a detailed phenomenological study of photoproduction of two hadrons, both with high transverse momentum, in longitudinally polarized lepton-nucleon collisions. We consistently include ``direct'' and ``resolved'' photon contributions and examine the sensitivity of the relevant spin asymmetries to the gluon polarization in the nucleon and to the completely unknown parton content of circularly polarized photons. Our results are relevant for the COMPASS and HERMES fixed-target experiments as well as for a possible future polarized lepton-proton collider like eRHIC at BNL. So far, all studies are limited to the lowest order approximation of QCD.

  2. Hadron-Pair Photoproduction in Longitudinally Polarized Lepton-Nucleon Collisions

    E-Print Network [OSTI]

    C. Hendlmeier; M. Stratmann; A. Schafer

    2006-06-08

    We present a detailed phenomenological study of photoproduction of two hadrons, both with high transverse momentum, in longitudinally polarized lepton-nucleon collisions. We consistently include ``direct'' and ``resolved'' photon contributions and examine the sensitivity of the relevant spin asymmetries to the gluon polarization in the nucleon and to the completely unknown parton content of circularly polarized photons. Our results are relevant for the COMPASS and HERMES fixed-target experiments as well as for a possible future polarized lepton-proton collider like eRHIC at BNL. So far, all studies are limited to the lowest order approximation of QCD.

  3. Discrimination of new physics models with the International Linear...

    Office of Scientific and Technical Information (OSTI)

    Discrimination of new physics models with the International Linear Collider Citation Details In-Document Search Title: Discrimination of new physics models with the International...

  4. R&D Towards a Muon Collider H. Guler (undergraduate student), C. Lu, K.T. McDonald,

    E-Print Network [OSTI]

    McDonald, Kirk

    ://www.cap.bnl.gov/mumu/mu home page.html Princeton muon collider page: http://www.hep.princeton.edu/ā?¯mcdonald/mumu 1 #12; Options (?). . Muon collider: # $1B for source/cooler + $100k/m for rings WellĀ­defined leptonic initial state. m Āµ /m; Targetry Issues . 1Ā­ns beam pulse # shock heating of target. -- Resulting pressure wave may disperse liquid

  5. R&D Towards a Muon Collider H. Guler (undergraduate student), C. Lu, K.T. McDonald,

    E-Print Network [OSTI]

    McDonald, Kirk

    ://www.cap.bnl.gov/mumu/mu home page.html Princeton muon collider page: http://www.hep.princeton.edu/~mcdonald/mumu 1 #12;Options collider: $1B for source/cooler + $100k/m for rings Well-defined leptonic initial state. m/me 200 Little of the muon bunch). 7 #12;Targetry Issues Ā· 1-ns beam pulse shock heating of target. Ā­ Resulting pressure

  6. Electroweak symmetry breaking by strong dynamics and the collider phenomenology

    SciTech Connect (OSTI)

    Timothy L. Barklow et al.

    2002-12-23

    We discuss the possible signatures in the electroweak symmetry breaking sector by new strong dynamics at future hadron colliders such as the Tevatron upgrade, the LHC and VLHC, and e{sup +}e{sup -} linear colliders. Examples include a heavy Higgs-like scalar resonance, a heavy Technicolor-like vector resonance and pseudo-Goldstone states, non-resonance signatures via enhanced gauge-boson scattering and fermion compositeness.

  7. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S

    2010-05-17

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  8. The Muon Collider

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-01-05

    We describe the scientific motivation for a new type of accelerator, the muon collider. This accelerator would permit an energy-frontier scientific program and yet would fit on the site of an existing laboratory. Such a device is quite challenging, and requires a substantial R&D program. After describing the ingredients of the facility, the ongoing R&D activities of the Muon Accelerator Program are discussed. A possible U.S. scenario that could lead to a muon collider at Fermilab is briefly mentioned.

  9. Lepton-flavor-violating decay {tau}{yields}{mu}{mu}{mu} at the CERN LHC

    SciTech Connect (OSTI)

    Giffels, M.; Stahl, A. [III. Physikalisches Institut, RWTH Aachen, 52056 Aachen (Germany); Kallarackal, J. [Institut fuer Theoretische Physik, RWTH Aachen, 52074 Aachen (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, 12489 Berlin (Germany); Kraemer, M.; O'Leary, B. [Institut fuer Theoretische Physik, RWTH Aachen, 52074 Aachen (Germany)

    2008-04-01

    Lepton-flavor-violating {tau} decays are predicted in many extensions of the standard model at a rate observable at future collider experiments. In this article we focus on the decay {tau}{yields}{mu}{mu}{mu}, which is a promising channel to observe lepton-flavor violation at the CERN Large Hadron Collider (LHC). We present analytic expressions for the differential decay width derived from a model-independent effective Lagrangian with general four-fermion operators, and estimate the experimental acceptance for detecting the decay {tau}{yields}{mu}{mu}{mu} at the LHC. Specific emphasis is given to decay angular distributions and how they can be used to discriminate new physics models. We provide specific predictions for various extensions of the standard model, including supersymmetric, little Higgs, and technicolor models.

  10. Stochastic Cooling in Muon Colliders

    E-Print Network [OSTI]

    Barletta, W.A.

    2008-01-01

    Research Division Stochastic Cooling in Muon Colliders W.A.AC03-76SFOOO98. STOCHASTIC COOLING IN MUON COLLIDERS Williamcan consider the stochastic cooling option as more than a

  11. Leptonic B Decays at BaBar

    SciTech Connect (OSTI)

    Monorchio, Diego; /INFN, Naples /Naples U.

    2011-09-13

    The authors will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)} {nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be payed in order to perform a model independent analysis. A B-Factory provides an unique environment where to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  12. Leptonic B Decays at BaBar

    SciTech Connect (OSTI)

    Baracchini, Elisabetta; /Rome U. /INFN, Rome

    2011-11-10

    We will present the most recent results on leptonic B decays B{sup {+-}(0)} {yields} K*{sup {+-}(0)}{nu}{bar {nu}} and B{sup {+-}} {yields} {mu}{sup {+-}}{nu}, based on the data collected by the BaBar detector at PEP-II, an asymmetric e{sup +}e{sup -} collider at the center of mass energy of the {Upsilon}(4S) resonance. Rare B decays have always been a standard probe for New Physics (NP) searches. The very low Standard Model (SM) rate of these decays often make them unaccessible with the present experimental datasets, unless NP effects enhance the rate up to the current experimental sensitivity. Moreover, as NP effects can modify the decay kinematic, particular attention must be paid in order to perform a model independent analysis. A B-Factory provides an unique environment to investigate these processes. The high number of B{bar B} pairs produced by a B-Factory often allows to approach the needed experimental sensitivity. Moreover, the clean environment and the closed kinematic of the initial state enable to obtaining a very pure sample where to look for these decays.

  13. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  14. Higgs Boson Searches at Hadron Colliders (1/4)

    SciTech Connect (OSTI)

    2010-06-21

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  15. Connection of $g-2_?$, electroweak, dark matter, and collider constraints on 331 models

    E-Print Network [OSTI]

    Chris Kelso; H. N. Long; R. Martinez; Farinaldo S. Queiroz

    2014-11-29

    In this work we compute all contributions to the muon magnetic moment stemming from several 3-3-1 models namely, minimal 331, 331 with right handed neutrinos, 331 with heavy neutral leptons, 331 with charged exotic leptons, 331 economical and 331 with two higgs triplets. Further, we exploit the complementarity among current electroweak, dark matter and collider constraints to outline the relevant parameter space of the models capable of explaining the anomaly. Lastly, assuming that the experimental anomaly has been otherwise resolved, we derive robust $1\\sigma$ bounds using the current and projected measurements.

  16. Search for neutrinoless decays of the ? lepton

    E-Print Network [OSTI]

    Baringer, Philip S.

    1990-02-01

    We have searched for neutrinoless ? decays into three charged particles. Evidence of such decays would demonstrate nonconservation of lepton flavor and, in some cases, lepton number. We see no signal for any such neutrinoless ? decays and set upper...

  17. Testing minimal lepton flavor violation with extra vector-like leptons at the LHC

    E-Print Network [OSTI]

    Eilam Gross; Daniel Grossman; Yosef Nir; Ofer Vitells

    2010-01-17

    Models of minimal lepton flavor violation where the seesaw scale is higher than the relevant flavor scale predict that all lepton flavor violation is proportional to the charged lepton Yukawa matrix. If extra vector-like leptons are within the reach of the LHC, it will be possible to test the resulting predictions in ATLAS/CMS.

  18. Discovering Higgs boson pair production through rare final states at a 100 TeV collider

    E-Print Network [OSTI]

    Papaefstathiou, Andreas

    2015-01-01

    We consider Higgs boson pair production at a future proton collider with centre-of-mass energy of 100 TeV, focusing on rare final states that include a bottom-anti-bottom quark pair and multiple isolated leptons: $hh \\rightarrow (b\\bar{b}) + n \\ell + X$, $n = \\{2,4\\}$, $X = \\{ E_T^\\mathrm{miss}, \\gamma, -\\}$. We construct experimental search strategies for observing the process through these channels and make suggestions on the desired requirements for the detector design of the future collider.

  19. Lepton asymmetry and the cosmic QCD transition

    E-Print Network [OSTI]

    Dominik J Schwarz; Maik Stuke

    2010-09-29

    We study the influence of lepton asymmetry on the evolution of the early Universe. The lepton asymmetry $l$ is poorly constrained by observations and might be orders of magnitude larger than the baryon asymmetry $b$, $|l|/b \\leq 2\\times 10^8$. We find that lepton asymmetries that are large compared to the tiny baryon asymmetry, can influence the dynamics of the QCD phase transition significantly. The cosmic trajectory in the $\\mu_B-T$ phase diagram of strongly interacting matter becomes a function of lepton (flavour) asymmetry. Large lepton asymmetry could lead to a cosmic QCD phase transition of first order.

  20. N/Z dependence of balance energy throughout the colliding geometries

    E-Print Network [OSTI]

    Sakshi Gautam; Rajeev K. Puri

    2011-07-28

    We study the N/Z dependence of balance energy throughout the mass range for colliding geometry varying from central to peripheral ones. Our results indicate that balance energy decreases linearly with increase in N/Z ratio for all the masses throughout the colliding geometry range. Also, the N/Z dependence of balance energy is sensitive to symmetry energy.

  1. Colliding Nuclei at High Energy

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08

    Physicist Peter Steinberg explains what happens when atomic nucleii travelling at close to the speed of light smash together in Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC).

  2. Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at \\( \\sqrt{s}=8 \\) TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-09-16

    In this study, a search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at \\( \\sqrt{s}=8 \\) TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb?¹. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances aremore »derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded.« less

  3. Lepton-mediated electroweak baryogenesis

    SciTech Connect (OSTI)

    Chung, Daniel J. H.; Garbrecht, Bjorn [University of Wisconsin, Madison, Wisconsin, 53706-1390 (United States); Ramsey-Musolf, Michael J. [University of Wisconsin, Madison, Wisconsin, 53706-1390 (United States); California Institute of Technology, Pasadena, California 91125 (United States); Tulin, Sean [California Institute of Technology, Pasadena, California 91125 (United States)

    2010-03-15

    We investigate the impact of the tau and bottom Yukawa couplings on the transport dynamics for electroweak baryogenesis in supersymmetric extensions of the standard model. Although it has generally been assumed in the literature that all Yukawa interactions except those involving the top quark are negligible, we find that the tau and bottom Yukawa interaction rates are too fast to be neglected. We identify an illustrative 'lepton-mediated electroweak baryogenesis' scenario in which the baryon asymmetry is induced mainly through the presence of a left-handed leptonic charge. We derive analytic formulas for the computation of the baryon asymmetry that, in light of these effects, are qualitatively different from those in the established literature. In this scenario, for fixed CP-violating phases, the baryon asymmetry has opposite sign compared to that calculated using established formulas.

  4. Natural fourth generation of leptons

    E-Print Network [OSTI]

    Oleg Antipin; Matti Heikinheimo; Kimmo Tuominen

    2009-09-14

    We consider implications of a fourth generation of leptons, allowing for the most general mass patterns for the fourth generation neutrino. We determine the constraints due to the precision electroweak measurements and outline the signatures to search for at the LHC experiments. As a concrete framework to apply these results we consider the minimal walking technicolor (MWTC) model where the matter content, regarding the electroweak quantum numbers, corresponds to a fourth generation.

  5. The Electron-Ion Collider

    E-Print Network [OSTI]

    V. Guzey

    2009-07-23

    The future Electron-Ion Collider (EIC) is a proposed new facility to collide high-energy electrons with beams of polarized protons/light nuclei and unpolarized nuclei. We overview the goals of the project and key measurements at the EIC. We also briefly comment on recent developments of the project.

  6. Single and multiple intrabeam scattering in hadron colliders

    SciTech Connect (OSTI)

    Lebedev, V.; /Fermilab

    2005-01-01

    Single and multiple intra-beam scattering are usually considered separately. Such separation works well for electron-positron colliders but usually yields only coarse description in the case of hadron colliders. Boltzmann type integro-differential equation is used to describe evolution of longitudinal distribution due to IBS. The finite size of the longitudinal potential well, its non-linearity and x-y coupling are taken into account. The model predictions for longitudinal and transverse distributions are compared to the experimental measurements.

  7. Beam Dump Experiment at Future Electron-Positron Colliders

    E-Print Network [OSTI]

    Kanemura, Shinya; Tanabe, Tomohiko

    2015-01-01

    We propose a new beam dump experiment at future colliders with electron ($e^-$) and positron ($e^+$) beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of $e^\\pm$ beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at $e^+e^-$ linear collider) significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  8. Beam Dump Experiment at Future Electron-Positron Colliders

    E-Print Network [OSTI]

    Shinya Kanemura; Takeo Moroi; Tomohiko Tanabe

    2015-07-10

    We propose a new beam dump experiment at future colliders with electron ($e^-$) and positron ($e^+$) beams, BDee, which will provide a new possibility to search for hidden particles, like hidden photon. If a particle detector is installed behind the beam dump, it can detect the signal of in-flight decay of the hidden particles produced by the scatterings of $e^\\pm$ beams off materials for dumping. We show that, compared to past experiments, BDee (in particular BDee at $e^+e^-$ linear collider) significantly enlarges the parameter region where the signal of the hidden particle can be discovered.

  9. High Energy Colliders as Tools to Understand the Early Universe

    SciTech Connect (OSTI)

    Tait, Tim (ANL) [ANL

    2008-08-16

    Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

  10. Lepton Photon Symposium 2005: Summary and Outlook

    E-Print Network [OSTI]

    Francis Halzen

    2005-11-02

    Lepton Photon 2005 told the saga of the Standard Model which is still exhilarating because it leaves all questions of consequence unanswered.

  11. Muon Cooling Progress and Prospects for an S-channel Muon Collider Higgs Factory

    E-Print Network [OSTI]

    Cummings, Mary Anne

    2015-01-01

    Muon-based accelerators have the potential to enable facilities at both the Intensity and the Energy Frontiers. Muon storage rings can serve as high precision neutrino sources, and a muon collider is an ideal technology for a TeV or multi-TeV collider. Progress in muon accelerator designs has advanced steadily in recent years. In regard to 6D muon cooling, detailed and realistic designs now exist that provide more than 5 order-of-magnitude emittance reduction. Furthermore, detector performance studies indicate that with suitable pixelation and timing resolution, backgrounds in the collider detectors can be significantly reduced thus enabling high quality physics results. Thanks to these and other advances in design and simulation of muon systems, technology development, and systems demonstrations, muon storage-ring-based neutrino sources and a muon collider appear more feasible than ever before. A muon collider is now arguably among the most compelling approaches to a multi-TeV lepton collider and an S-Channe...

  12. The standard model and colliders

    SciTech Connect (OSTI)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated. (LEW)

  13. Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear vs. Circular' (HF2012)

    E-Print Network [OSTI]

    Alain Blondel; Alex Chao; Weiren Chou; Jie Gao; Daniel Schulte; Kaoru Yokoya

    2013-02-15

    This paper is a summary report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear vs. Circular' (HF2012). It discusses four types of accelerators as possible candidates for a Higgs factory: linear e+e- colliders, circular e+e- colliders, muon collider and photon colliders. The comparison includes: physics reach, performance (energy and luminosity), upgrade potential, technology maturity and readiness, and technical challenges requiring further R&D.

  14. Photon collider at TESLA: parameters and interaction region issues

    E-Print Network [OSTI]

    Valery Telnov

    2001-01-04

    Photon colliders (gamma-gamma, gamma-e) are based on backward Compton scattering of laser light off the high energy electrons of linear colliders. Recent study has shown that the gamma-gamma luminosity in the high energy peak can reach 0.3--0.5 L (e+e-). Typical cross sections of interesting processes in gamma-gamma collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in gamma-gamma collisions will be more than that in e+e- collisions. In this paper possible parameters of a photon collider at TESLA and a laser scheme are briefly discussed.

  15. Search for the standard model Higgs boson in tau lepton pair final states

    E-Print Network [OSTI]

    D0 Collaboration

    2012-05-16

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb^{-1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.

  16. Search for the Higgs boson in lepton, tau and jets final states

    E-Print Network [OSTI]

    D0 Collaboration

    2013-01-28

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb^{-1} of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H -> tau tau decays or H -> WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively.

  17. Search for the Higgs boson in lepton, tau, and jets final states

    SciTech Connect (OSTI)

    Abazov, V. M.; et al.

    2013-09-01

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb?1 of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H ? ? ? decays or H ? WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively.

  18. Search for the standard model Higgs boson in tau lepton final states

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; et al.

    2012-08-01

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb{sup -1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.

  19. Symmetrical parametrizations of the lepton mixing matrix

    SciTech Connect (OSTI)

    Rodejohann, W. [Max-Planck-Institut fuer Kernphysik, Postfach 103980, 69029 Heidelberg (Germany); Valle, J. W. F. [AHEP Group, Institut de Fisica Corpuscular--C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain)

    2011-10-01

    Advantages of the original symmetrical form of the parametrization of the lepton mixing matrix are discussed. It provides a conceptually more transparent description of neutrino oscillations and lepton number violating processes like neutrinoless double beta decay, clarifying the significance of Dirac and Majorana phases. It is also ideal for parametrizing scenarios with light sterile neutrinos.

  20. Beam collimation at hadron colliders

    SciTech Connect (OSTI)

    Nikolai V. Mokhov

    2003-08-12

    Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.

  1. Jet production at hadron colliders

    E-Print Network [OSTI]

    Jouttenus, Teppo T. (Teppo Tapani)

    2012-01-01

    Hadronic jets feature in many final states of interest in modern collider experiments. They form a significant Standard Model background for many proposed new physics processes and also probe QCD interactions at several ...

  2. EIS-0138: Superconducting Super Collider

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the potential environmental impacts of constructing the Superconducting Super Collider, a large proton accelerator, at each of seven alternative locations.

  3. Universality of Quark-Lepton Mass Matrix

    E-Print Network [OSTI]

    Takeshi Fukuyama; Hiroyuki Nishiura

    2013-01-22

    The recently observed lepton mixing angle $\\theta_{13}$ of the MNS mixing matrix is well incorporated in a universal mixing hypothesis between quark and lepton sectors. This hypothesis asserts that, in the charged lepton diagonal base, all other mass matrices for up- and down-type quarks and light neutrinos are diagonalized by the same unitary matrix except for the phase elements. It is expressed as $V_{CKM}= U_{MNS}(\\delta^\\prime)^\\dagger P U_{MNS}(\\delta)$ for quark mixing matrix $V_{CKM}$ and lepton mixing matrix $U_{MNS}(\\delta)$ in the phenomenological level. Here $P$ is a diagonal phase mass matrix. $\\delta^\\prime$ is a slightly different phase parameter from the Dirac CP violating phase $\\delta=1.1\\pi$ (best fit) in the MNS lepton mixing matrix.

  4. Lepton Flavor Mixing and CP Symmetry

    E-Print Network [OSTI]

    Peng Chen; Cai-Chang Li; Gui-Jun Ding

    2014-12-29

    The strategy of constraining the lepton flavor mixing from remnant CP symmetry is investigated in a rather general way. The neutrino mass matrix generally admits four remnant CP transformations which can be derived from the measured lepton mixing matrix in the charged lepton diagonal basis. Conversely, the lepton mixing matrix can be reconstructed from the postulated remnant CP transformations. All mixing angles and CP violating phases can be completely determined by the full set of remnant CP transformations or three of them. When one or two remnant CP transformations are preserved, the resulting lepton mixing matrix would depend on three real parameters or one real parameter respectively in addition to the parameters characterizing the remnant CP, and the concrete form of the mixing matrix is presented. The phenomenological predictions for the mixing parameters are discussed. The conditions leading to vanishing or maximal Dirac CP violation are studied.

  5. Discovering Inelastic Thermal-Relic Dark Matter at Colliders

    E-Print Network [OSTI]

    Izaguirre, Eder; Shuve, Brian

    2015-01-01

    Dark Matter particles with inelastic interactions are ubiquitous in extensions of the Standard Model, yet remain challenging to fully probe with existing strategies. We propose a series of powerful searches at hadron and lepton colliders that are sensitive to inelastic dark matter dynamics. In representative models, we find that the LHC and BaBar could offer strong sensitivity to the thermal-relic dark matter parameter space for dark matter masses between ~100 MeV-100 GeV and fractional mass-splittings above the percent level; future searches at Belle II with a dedicated monophoton trigger could also offer sensitivity to thermal-relic scenarios with masses below a few GeV. Thermal scenarios with either larger masses or splittings are largely ruled out; lower masses remain viable yet may be accessible with other search strategies.

  6. Precise Predictions for Z + 4 Jets at Hadron Colliders

    SciTech Connect (OSTI)

    Ita, H.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Kosower, D.A.; Maitre, D.

    2011-12-09

    We present the cross section for production of a Z boson in association with four jets at the Large Hadron Collider, at next-to-leading order in the QCD coupling. When the Z decays to neutrinos, this process is a key irreducible background to many searches for new physics. Its computation has been made feasible through the development of the on-shell approach to perturbative quantum field theory. We present the total cross section for pp collisions at {radical}s = 7 TeV, after folding in the decay of the Z boson, or virtual photon, to a charged-lepton pair. We also provide distributions of the transverse momenta of the four jets, and we compare cross sections and distributions to the corresponding ones for the production of a W boson with accompanying jets.

  7. Reconstructing sleptons in cascade-decays at the linear collider

    E-Print Network [OSTI]

    Mikael Berggren

    2005-08-24

    A method to reconstruct sleptons in cascade-decays at the FLC is presented. It is shown that experimental mass-resolutions as low as 8.7 MeV/c^2 are attainable.

  8. 6 June 2003 M. Oreglia 1 Linear Collider prehistory

    E-Print Network [OSTI]

    2001: penultimate discussion of LC in HEP community ­ HEPAP roadmap endorses LC as next large the scientific roadmap, the scope and primary parameters for machine and detector. It is particularly important

  9. International Linear Collider Technical Design Report (Volumes 1 through 4)

    SciTech Connect (OSTI)

    Harrison M.

    2013-03-27

    The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.

  10. Improving reliability in the SLC (Stanford Linear Collider) control system

    SciTech Connect (OSTI)

    Heinen, N.; Spencer, N.; Tinsman, J.

    1989-10-01

    During the past year, considerable emphasis has been placed on improving the overall reliability of the SLC control system. The Errorlog Facility has proven a useful tool to diagnose hardware and software problems. By analyzing the various error messages and their correlations, one can usually determine the software component or hardware module causing faults. Daily summaries help to identify problems so that they can be remedied before they become catastrophic; thereby bringing about a considerable increase in performance. We discuss the various tools we use and our operational experience with them. 3 refs., 6 figs.

  11. Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders

    E-Print Network [OSTI]

    Schroeder, Carl

    2013-01-01

    1/2 ? ?2 n 1/2 Total AC power, P wall laser to the beam ? Lpn 3/4 n 1/2 Total AC power, P wall n ?1 n ?1/2 n ?1/4 Bunchbeam) [%] Total wall-plug power, P wall [GW] Energy, center-

  12. Vibration Model Validation for Linear Collider Detector Platforms

    SciTech Connect (OSTI)

    Bertsche, Kirk; Amann, J.W.; Markiewicz, T.W.; Oriunno, M.; Weidemann, A.; White, G.; /SLAC

    2012-05-16

    The ILC and CLIC reference designs incorporate reinforced-concrete platforms underneath the detectors so that the two detectors can each be moved onto and off of the beamline in a Push-Pull configuration. These platforms could potentially amplify ground vibrations, which would reduce luminosity. In this paper we compare vibration models to experimental data on reinforced concrete structures, estimate the impact on luminosity, and summarize implications for the design of a reinforced concrete platform for the ILC or CLIC detectors.

  13. Detectors for Linear Colliders: Tracking and Vertexing (2/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D; towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.

  14. Updates to the International Linear Collider Damping Rings Baseline...

    Office of Scientific and Technical Information (OSTI)

    High Energy Phys. ; Urakawa, Junji ; KEK, Tsukuba ; Pivi, Mauro Torino Francesko ; Sun, Yipeng ; SLAC Publication Date: 2014-08-07 OSTI Identifier: 1149340 Report Number(s):...

  15. The International Linear Collider - Volume 5: From Design to Reality

    E-Print Network [OSTI]

    Carwardine, John; Demarteau, Marcel; Foster, Brian; Harrison, Michael; Walker, Nicholas; Yamamoto, Kirk

    2013-01-01

    This brochure represents Volume 5 of the ILC’s Technical Design Report. It summarises the content of the four TDR volumes for a non-expert audience. For more information go to www.linearcollider.org

  16. SLAC-R-1004 International Linear Collider Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLEDSpeeding FINAL2-4260Earth784216 April 2013 A832R-1004

  17. International Linear Collider Technical Design Report - Volume 2: Physics

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in high-temperature applications.cells:(Technical

  18. International Linear Collider-A Technical Progress Report (Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in high-temperature

  19. International Linear Collider-A Technical Progress Report (Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in high-temperatureReport) | SciTech Connect

  20. Discrimination of new physics models with the International Linear Collider

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech Connect Discrimination of new physics models with the

  1. Physics Case for the International Linear Collider (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) |Article)WholeExperiment

  2. Physics Case for the International Linear Collider (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers' guide. V1.0.0.Report) |Article)WholeExperimentSciTech

  3. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decaysArticle)line integrated spectroscopyArticle) |

  4. Top Quark Anomalous Couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decaysArticle)line integrated spectroscopyArticle)

  5. Top quark anomalous couplings at the International Linear Collider (Journal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaon and Pion decaysArticle)line integratedArticle) | SciTechArticle)

  6. International Linear Collider Technical Design Report - Volume 2: Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIsProcessRegulation InternationalAlexander(Technical

  7. Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)

    ScienceCinema (OSTI)

    None

    2011-10-06

    In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.

  8. Linear psoriasis

    E-Print Network [OSTI]

    Jr, Peter Chien; Rosenman, Karla; Cheung, Wang; Wang, Nadia; Sanchez, Miguel

    2009-01-01

    type 1/type 2 mosaic of psoriasis? Dermatology 2006; 212:Magalhaes RF, et al. Linear psoriasis in Brazilian childrensuffering from linear psoriasis along lines of Blaschko. Br

  9. New textures for the lepton mass matrices

    E-Print Network [OSTI]

    P. M. Ferreira; L. Lavoura

    2014-12-02

    We study predictive textures for the lepton mass matrices in which the charged-lepton mass matrix has either four or five zero matrix elements while the neutrino Majorana mass matrix has, respectively, either four or three zero matrix elements. We find that all the viable textures of these two kinds share many predictions: the neutrino mass spectrum is inverted, the sum of the light-neutrino masses is close to 0.1 eV, the Dirac phase $\\delta$ in the lepton mixing matrix is close to either $0$ or $\\pi$, and the mass term responsible for neutrinoless double-beta decay lies in between 12 and 22 meV.

  10. New textures for the lepton mass matrices

    E-Print Network [OSTI]

    Ferreira, P M

    2014-01-01

    We study predictive textures for the lepton mass matrices in which the charged-lepton mass matrix has either four or five zero matrix elements while the neutrino Majorana mass matrix has, respectively, either four or three zero matrix elements. We find that all the viable textures of these two kinds share many predictions: the neutrino mass spectrum is inverted, the sum of the light-neutrino masses is close to 0.1 eV, the Dirac phase $\\delta$ in the lepton mixing matrix is close to either $0$ or $\\pi$, and the mass term responsible for neutrinoless double-beta decay lies in between 12 and 22 meV.

  11. Probing lepton asymmetry with 21 cm fluctuations

    SciTech Connect (OSTI)

    Kohri, Kazunori; Oyama, Yoshihiko [The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba 305-0801 (Japan); Sekiguchi, Toyokazu [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 (Japan); Takahashi, Tomo, E-mail: kohri@post.kek.jp, E-mail: oyamayo@post.kek.jp, E-mail: toyokazu.sekiguchi@helsinki.fi, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)

    2014-09-01

    We investigate the issue of how accurately we can constrain the lepton number asymmetry ?{sub ?}=?{sub ?}/T{sub ?} in the Universe by using future observations of 21 cm line fluctuations and cosmic microwave background (CMB). We find that combinations of the 21 cm line and the CMB observations can constrain the lepton asymmetry better than big-bang nucleosynthesis (BBN). Additionally, we also discuss constraints on ?{sub ?} in the presence of some extra radiation, and show that the 21 cm line observations can substantially improve the constraints obtained by CMB alone, and allow us to distinguish the effects of the lepton asymmetry from the ones of extra radiation.

  12. The Detector and Interaction Region for a Photon Collider at TESLA

    E-Print Network [OSTI]

    Rosca, A

    2004-01-01

    TESLA is designed as an electron-positron linear collider (LC) based on super-conducting technology. A second interaction region is forseen to be incorporated in the design allowing its possible operation as a photon collider. In this paper I describe the basic design of the $\\gamma \\gamma$ interaction region taking into account the beam-beam and laser related issuses and review some aspects of other accelerator components such as the feedback system and the beam dump which are critical to the operation of TESLA as a photon collider.

  13. The Detector and Interaction Region for a Photon Collider at TESLA

    E-Print Network [OSTI]

    Aura Rosca

    2003-10-03

    TESLA is designed as an electron-positron linear collider (LC) based on super-conducting technology. A second interaction region is forseen to be incorporated in the design allowing its possible operation as a photon collider. In this paper I describe the basic design of the $\\gamma \\gamma$ interaction region taking into account the beam-beam and laser related issuses and review some aspects of other accelerator components such as the feedback system and the beam dump which are critical to the operation of TESLA as a photon collider.

  14. Lepton Flavor Violating Decays - Review & Outlook

    E-Print Network [OSTI]

    Toshinori Mori

    2006-05-31

    Here I review the status and prospects of experimental investigations into lepton flavor violation (LFV) in charged leptons. Rare LFV processes are naturally expected to occur through loops of TeV scale particles predicted by supersymmetric theories or other models beyond the Standard Model. In contrast to physics of quark flavors that is dominated by the Cabibbo-Kobayashi-Maskawa matrix, LFV in charged leptons is a definitive signal of new physics. Currently active researches are rare tau decay searches at the B factories. The MEG experiment will soon start a sensitive search for the LFV muon decay, mu to e gamma. Prospects for searches at the LHC, a possibility of a fixed target LFV experiment with high energy muons, and a sensitivity of leptonic kaon decays to LFV are also briefly discussed.

  15. Exploring new physics through contact interactions in lepton pair

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) |production at a linear collider (Conference) | SciTech Connect

  16. BFKL dynamics at hadron colliders

    E-Print Network [OSTI]

    Carlo Ewerz; Lynne H. Orr; W. James Stirling; Bryan R. Webber

    1999-12-22

    Hadron colliders can provide important tests of BFKL `small-x' dynamics. We discuss two examples of such tests, the inclusive dijet jet cross section at large rapidity separation and the number of associated `mini-jets' in Higgs boson production.

  17. Colliding axisymmetric pp-waves

    E-Print Network [OSTI]

    B. V. Ivanov

    1997-10-21

    An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.

  18. Muon Colliders: The Next Frontier

    ScienceCinema (OSTI)

    Tourun, Yagmur [Illinois Institute of Technology, Chicago, Illinois, United States

    2010-01-08

    Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.

  19. Physics at high energy photon photon colliders

    SciTech Connect (OSTI)

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  20. Muon Muon Collider: Feasibility Study

    SciTech Connect (OSTI)

    Gallardo, J.C.; Palmer, R.B.; Tollestrup, A.V.; Sessler, A.M.; Skrinsky, A.N.; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. ,

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle reactions which are open to a muon collider and the physics of such reactions - what one learns and the necessary luminosity to see interesting events - are described in detail. Most of the physics accesible to an e{sup +} - e{sup -} collider could be studied in a muon collider. In addition the production of Higgs bosons in the s-channel will allow the measurement of Higgs masses and total widths to high precision; likewise, t{bar t} and W{sup +}W{sup -} threshold studies would yield m{sub t} and m{sub w} to great accuracy. These reactions are at low center of mass energy (if the MSSM is correct) and the luminosity and {Delta}p/p of the beams required for these measurements is detailed in the Physics Chapter. On the other hand, at 2 + 2 TeV, a luminosity of L {approx} 10{sup 35} cm{sup -2}s{sup -1} is desirable for studies such as, the scattering of longitudinal W bosons or the production of heavy scalar particles. Not explored in this work, but worth noting, are the opportunities for muon-proton and muon-heavy ion collisions as well as the enormous richness of such a facility for fixed target physics provided by the intense beams of neutrinos, muons, pions, kaons, antiprotons and spallation neutrons. To see all the interesting physics described herein requires a careful study of the operation of a detector in the very large background. Three sources of background have been identified. The first is from any halo accompanying the muon beams in the collider ring. Very carefully prepared beams will have to be injected and maintained. The second is due to the fact that on average 35% of the muon energy appears in its decay electron. The energy of the electron subsequently is converted into EM showers either from the synchrotron radiation they emit in the collider magnetic field or from direct collision with the surrounding material. The decays that occur as the beams traverse the low beta insert are of particular concern for detector backgrounds. A third source of background is e{sup +} - e{sup -} pair creation from {mu}{sup +} - {mu}{sup -} interaction. Studies of

  1. Photoproduction of single inclusive jets at future ep colliders in next-to-leading order QCD

    E-Print Network [OSTI]

    Jäger, B

    2008-01-01

    A next-to-leading order QCD calculation for single-inclusive jet photoproduction in unpolarized and longitudinally polarized lepton-hadron collisions is presented which consistently includes ``direct'' and ``resolved'' photon contributions. The computation is performed within the ``small-cone approximation'' in a largely analytical form. Phenomenological aspects of jet production at future ep colliders such as the CERN-LHeC and the polarized BNL-eRHIC are discussed, placing particular emphasis on the perturbative stability of the predictions and the possibility to constrain the parton content of the photon.

  2. Photoproduction of single inclusive jets at future ep colliders in next-to-leading order QCD

    E-Print Network [OSTI]

    B. Jager

    2008-07-01

    A next-to-leading order QCD calculation for single-inclusive jet photoproduction in unpolarized and longitudinally polarized lepton-hadron collisions is presented which consistently includes ``direct'' and ``resolved'' photon contributions. The computation is performed within the ``small-cone approximation'' in a largely analytical form. Phenomenological aspects of jet production at future ep colliders such as the CERN-LHeC and the polarized BNL-eRHIC are discussed, placing particular emphasis on the perturbative stability of the predictions and the possibility to constrain the parton content of the photon.

  3. Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism.

    E-Print Network [OSTI]

    Allanach, B. C.; Kom, C. H.; Pas, H.

    Fe b 2 00 9 CAVENDISH-HEP-2009-03, DAMTP-2009-15, DO-TH-09/01 Large Hadron Collider probe of supersymmetric neutrinoless double beta decay mechanism B. C. Allanach? DAMTP, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom C... to the Standard Model, a non-zero lepton number violating coupling ??111 predicts both neutrinoless double beta decay and resonant single slepton production at the LHC. We show that, in this case, if neutrinoless double beta decay is discovered in the next...

  4. Muon Collider Physics at Very High Energies

    E-Print Network [OSTI]

    M. S. Berger

    2000-01-03

    Muon colliders might greatly extend the energy frontier of collider physics. One can contemplate circular colliders with center-of-mass energies in excess of 10 TeV. Some physics issues that might be relevant at such a machine are discussed.

  5. Searching for Narrow Graviton Resonances with the ATLAS Detector at the Large Hadron Collider

    E-Print Network [OSTI]

    Allanach, Benjamin C; Parker, M A; Webber, Bryan R

    2000-01-01

    A spectrum of massive graviton states is present in several recent theoretical models that include extra space dimensions. In some such models the graviton states are well separated in mass, and can be detected as resonances in collider experiments. The ability of the ATLAS detector at the Large Hadron Collider to identify such states and measure their properties is considered, in the case that the resonances are narrow compared to the experimental resolution. The discovery limits for the detection of the decay mode G->e+e- are derived. The angular distribution of the lepton pair is used to determine the spin of the intermediate state. In one specific model, the resonance can be detected up to a graviton resonance mass of 2080 GeV, while the angular distribution favours a spin-2 hypothesis over a spin-1 hypothesis at 90% confidence for resonance masses up to 1720 GeV.

  6. The Effect of Lepton Mass on the Energy and Bond Length of the Hydrogen Molecule Ion Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    The Effect of Lepton Mass on the Energy and Bond Length of the Hydrogen Molecule Ion Frank Rioux geometry (bond length) and energy of the hydrogen molecule ion. The electron has several heavy weight). The molecular orbital for the hydrogen molecule ion is formed as a linear combination of scaled hydrogenic 1s

  7. Direct searches of extra Higgs boson at future colliders

    E-Print Network [OSTI]

    Yokoya, Hiroshi

    2015-01-01

    We study direct searches of additional Higgs bosons in multi-top-quarks events at the LHC with the collision energy of 14 TeV as well as the International Linear Collider (ILC) with the collision energy of 1 TeV. As a benchmark model, we consider two Higgs doublet models with a softly-broken discrete $Z_2$ symmetry, where the $t\\bar t$ decay mode of additional neutral Higgs bosons can be dominant if their masses are heavy enough. Thus, the multi-top-quarks events become an important probe of the extended Higgs sector at future colliders. We estimate the discovery reach at the LHC and the ILC, and find that the search at the ILC can survey the parameter regions where the LHC cannot cover.

  8. Linear Dependence and Linear Independence

    E-Print Network [OSTI]

    PRETEX (Halifax NS) #1 1054 1999 Mar 05 10:59:16

    2010-02-12

    Feb 16, 2007 ... Observe that the vector (1, 2) is already a linear combination of (1, 0) and (0, 1), and therefore it does not add any new vectors to the linear span ...

  9. The Relic Neutralino Surface at a 100 TeV collider

    E-Print Network [OSTI]

    Joseph Bramante; Patrick J. Fox; Adam Martin; Bryan Ostdiek; Tilman Plehn; Torben Schell; Michihisa Takeuchi

    2015-03-27

    We map the parameter space for MSSM neutralino dark matter which freezes out to the observed relic abundance, in the limit that all superpartners except the neutralinos and charginos are decoupled. In this space of relic neutralinos, we show the dominant dark matter annihilation modes, the mass splittings among the electroweakinos, direct detection rates, and collider cross-sections. The mass difference between the dark matter and the next-to-lightest neutral and charged states is typically much less than electroweak gauge boson masses. With these small mass differences, the relic neutralino surface is accessible to a future 100 TeV hadron collider, which can discover inter-neutralino mass splittings down to 1 GeV and thermal relic dark matter neutralino masses up to 1.5 TeV with a few inverse attobarns of luminosity. This coverage is a direct consequence of the increased collider energy: the Standard Model events with missing transverse momentum in the TeV range have mostly hard electroweak radiation, distinct from the soft radiation shed in compressed electroweakino decays. We exploit this kinematic feature in final states including photons and leptons, tailored to the 100 TeV collider environment.

  10. The Lepton Sector of a Fourth Generation

    E-Print Network [OSTI]

    Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

    2010-05-10

    In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  11. Lepton flavor violation in Higgs boson decays under the rare...

    Office of Scientific and Technical Information (OSTI)

    Lepton flavor violation in Higgs boson decays under the rare tau decay results Citation Details In-Document Search Title: Lepton flavor violation in Higgs boson decays under the...

  12. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  13. Measurement of the Inclusive Leptonic Asymmetry in Top-Quark Pairs that Decay to Two Charged Leptons at CDF

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We measure the inclusive forward–backward asymmetry of the charged-lepton pseudorapidities from top-quark pairs produced in proton–antiproton collisions and decaying to final states that contain two charged leptons (electrons ...

  14. Detector Background at Muon Colliders

    SciTech Connect (OSTI)

    Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2011-09-01

    Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. Results of the most recent realistic simulation studies are presented for a 1.5-TeV MC. It is shown that appropriately designed IR and MDI with sophisticated shielding in the detector have a potential to substantially suppress the background rates in the MC detector. The main characteristics of backgrounds are studied.

  15. Tevatron instrumentation: boosting collider performance

    SciTech Connect (OSTI)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  16. Tau Lepton Production in ep Collisions at HERA

    E-Print Network [OSTI]

    H1 Collaboration

    2006-04-11

    The production of tau leptons in ep collisions is investigated using data recorded by the H1 detector at HERA in the period 1994-2000. Tau leptons are identified by detecting their decay products, using leptonic and hadronic decay modes. The cross section for the production of tau lepton pairs is measured for the first time at HERA. Furthermore, a search for events with an energetic isolated tau lepton and with large missing transverse momentum is performed. The results are found to be in agreement with the Standard Model predictions.

  17. Recent SuperB Design Choices Improve Next-Generation e e___ B-Factory Collider

    SciTech Connect (OSTI)

    Wittmer, W.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; Bolzon, B.; Brunetti, L.; Jeremie, A.; Biagini, M.E.; Boni, R.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /Saclay

    2011-08-19

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the {Upsilon}(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}*{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  18. Electromagnetic Heavy Lepton Pair Production in Relativistic Heavy-Ion Collisions

    E-Print Network [OSTI]

    Sengul, M Y; Mercan, O; Karakus, N G

    2015-01-01

    We calculate the cross sections of electromagnetic productions of muon and tauon pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement [1] indicates that the neutrons are differently distributed from the protons therefore this affects the cross section of the heavy lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that Wood-Saxon distribution function is more sensitive to the parameter R compare to the parameter a.

  19. Precise measurement of the top-quark mass from lepton+jets events at D0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich [Dubna, JINR; Abbott, Braden Keim [Oklahoma U.; Acharya, Bannanje Sripath [Tata Inst.; Adams, Mark Raymond [Illinois U., Chicago; Adams, Todd [Florida State U.; Alexeev, Guennadi D [Dubna, JINR; Alkhazov, Georgiy D [St. Petersburg, INP; Alton, Andrew K [Michigan U.; Augustana Coll., Sioux Falls; Alverson, George O [Northeastern U.; Alves, Gilvan Augusto [Rio de Janeiro, CBPF; Ancu, Lucian Stefan [Nijmegen U.; Fermilab

    2011-08-09

    We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; ? tt? data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of ? + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, we measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.

  20. Precision measurement of the top-quark mass in lepton$+$jets final states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2015-06-04

    We measure the mass of the top quark in lepton ž jets final states using the full sample of ppÆ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at ffiffi s p ¼ 1.96 TeV, corresponding to 9.7 fb-1 of integrated luminosity. We also use a matrix element technique that calculates the probabilities for each event to result from tÆt production or background. Furthermore, the overall jet energy scale is constrained in situ by the mass of the W boson. We measure mt ¼ 174.98 0.76 GeV. This constitutes the most precise singlemore »measurement of the top-quark mass.« less

  1. PDF uncertainties on the W boson mass measurement from the lepton transverse momentum distribution

    E-Print Network [OSTI]

    Giuseppe Bozzi; Luca Citelli; Alessandro Vicini

    2015-05-22

    We study the charged current Drell-Yan process and we evaluate the proton parton densities uncertainties on the lepton transverse momentum distribution and their impact on the determination of the W-boson mass. We consider the global PDF sets CT10, MSTW2008CPdeut, NNPDF2.3, NNPDF3.0, MMHT2014, and apply the PDF4LHC recipe to combine the individual results, obtaining an uncertainty on MW that ranges between +-18 and +-24 MeV, depending on the final state, collider energy and kind. We discuss the dependence of the uncertainty on the acceptance cuts and the role of the individual parton densities in the final result. We remark that some PDF sets predict an uncertainty on MW of O(10 MeV); this encouraging result is spoiled, in the combined analysis of the different sets, by an important spread of the central values predicted by each group.

  2. PDF uncertainties on the W boson mass measurement from the lepton transverse momentum distribution

    E-Print Network [OSTI]

    Bozzi, Giuseppe; Vicini, Alessandro

    2015-01-01

    We study the charged current Drell-Yan process and we evaluate the proton parton densities uncertainties on the lepton transverse momentum distribution and their impact on the determination of the W-boson mass. We consider the global PDF sets CT10, MSTW2008CPdeut, NNPDF2.3, NNPDF3.0, MMHT2014, and apply the PDF4LHC recipe to combine the individual results, obtaining an uncertainty on MW that ranges between +-18 and +-24 MeV, depending on the final state, collider energy and kind. We discuss the dependence of the uncertainty on the acceptance cuts and the role of the individual parton densities in the final result. We remark that some PDF sets predict an uncertainty on MW of O(10 MeV); this encouraging result is spoiled, in the combined analysis of the different sets, by an important spread of the central values predicted by each group.

  3. Precise measurement of the top-quark mass from lepton+jets events at D0

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, Victor Mukhamedovich

    2011-08-09

    We report a measurement of the mass of the top quark in lepton+jets final states of pp&3772; ? tt? data corresponding to 2.6 fb-1 of integrated luminosity collected at the D0 experiment at the Fermilab Tevatron Collider. Using a matrix element method, we combine an in situ jet energy calibration with the standard jet energy scale derived in studies of ? + jet and dijet events and employ a novel flavor-dependent jet response correction to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with a previous result obtained on an independent data set, wemore »measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb-1.« less

  4. Event simulation for colliders - A basic overview

    E-Print Network [OSTI]

    Christian Reuschle

    2014-11-26

    In this article we will discuss the basic calculational concepts to simulate particle physics events at high energy colliders. We will mainly focus on the physics in hadron colliders and particularly on the simulation of the perturbative parts, where we will in turn focus on the next-to-leading order QCD corrections.

  5. Test of lepton universality and search for lepton flavor violation in Upsilon(1S,2S,3S) decays at CLEO

    E-Print Network [OSTI]

    Istvan Danko; for the CLEO Collaboration

    2006-01-18

    We present the analysis technique and preliminary results of two ongoing analyses at CLEO which put lepton universality and lepton flavor conservation to the test in Upsilon decays.

  6. Leptonic Decays of Charged Pseudoscalar Mesons - 2015

    E-Print Network [OSTI]

    Jonathan L. Rosner; Sheldon Stone; Ruth S. Van de Water

    2015-09-07

    We review the physics of purely leptonic decays of $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ pseudoscalar mesons. The measured decay rates are related to the product of the relevant weak-interaction-based CKM matrix element of the constituent quarks and a strong interaction parameter related to the overlap of the quark and antiquark wave-functions in the meson, called the decay constant $f_P$. The leptonic decay constants for $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ mesons can be obtained with controlled theoretical uncertainties and high precision from {\\it ab initio} lattice-QCD simulations. The combination of experimental leptonic decay-rate measurements and theoretical decay-constant calculations enables the determination of several elements of the CKM matrix within the standard model. These determinations are competitive with those obtained from semileptonic decays, and also complementary because they are sensitive to different quark flavor-changing currents. They can also be used to test the unitarity of the first and second rows of the CKM matrix. Conversely, taking the CKM elements predicted by unitarity, one can infer "experimental" values for $f_P$ that can be compared with theory. These provide tests of lattice-QCD methods, provided new-physics contributions to leptonic decays are negligible at the current level of precision. This review is the basis of the article in the Particle Data Group's 2016 edition, updating the versions in Refs. [1-3].

  7. Study of high pressure gas filled RF cavities for muon collider

    E-Print Network [OSTI]

    Yonehara, Katsuya

    2015-01-01

    Muon collider is a considerable candidate of the next-generation high-energy lepton collider machine. Operating an RF cavity in a multi-Tesla magnet is a critical requirement in a muon accelerator and a cooling channel. However, the maximum RF gradient in a vacuum RF cavity is strongly limited by an external magnetic field. Dense hydrogen gas filled RF cavity has been proposed since it is functional of generating a high RF accelerating gradient in a strong magnetic field and making an ionization cooling process at the same time. A critical issue of the cavity is a beam- induced plasma that consumes a considerable amount of RF power. The gas filled RF test cell was made and measured the RF loading due to a beam-induced plasma by using an intense proton beam at Fermilab. By doping an electronegative gas in dense hydrogen, the plasma loading effect is significantly mitigated. The result shows that the cavity is functional with a muon collider beam. Recent progress is shown in this presentation.

  8. Lepton sector of a fourth generation

    SciTech Connect (OSTI)

    Burdman, G. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Da Rold, L. [Centro Atomico Bariloche, Bariloche (Argentina); Matheus, R. D. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-09-01

    In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  9. Leptonic Decays of Charged Pseudoscalar Mesons - 2015

    E-Print Network [OSTI]

    Rosner, Jonathan L; Van de Water, Ruth S

    2015-01-01

    We review the physics of purely leptonic decays of $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ pseudoscalar mesons. The measured decay rates are related to the product of the relevant weak-interaction-based CKM matrix element of the constituent quarks and a strong interaction parameter related to the overlap of the quark and antiquark wave-functions in the meson, called the decay constant $f_P$. The leptonic decay constants for $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ mesons can be obtained with controlled theoretical uncertainties and high precision from {\\it ab initio} lattice-QCD simulations. The combination of experimental leptonic decay-rate measurements and theoretical decay-constant calculations enables the determination of several elements of the CKM matrix within the standard model. These determinations are competitive with those obtained from semileptonic decays, and also complementary because they are sensitive to different quark flavor-changing currents. They can also be use...

  10. Leptonic mixing, family symmetries, and neutrino phenomenology

    SciTech Connect (OSTI)

    Medeiros Varzielas, I. de [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Fakultaet fuer Physik, Technische Universitaet Dortmund D-44221 Dortmund (Germany); Gonzalez Felipe, R. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro, 1959-007 Lisboa (Portugal); Serodio, H. [Departamento de Fisica and Centro de Fisica Teorica de Particulas, Instituto Superior Tecnico, Avenida Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-02-01

    Tribimaximal leptonic mixing is a mass-independent mixing scheme consistent with the present solar and atmospheric neutrino data. By conveniently decomposing the effective neutrino mass matrix associated to it, we derive generic predictions in terms of the parameters governing the neutrino masses. We extend this phenomenological analysis to other mass-independent mixing schemes which are related to the tribimaximal form by a unitary transformation. We classify models that produce tribimaximal leptonic mixing through the group structure of their family symmetries in order to point out that there is often a direct connection between the group structure and the phenomenological analysis. The type of seesaw mechanism responsible for neutrino masses plays a role here, as it restricts the choices of family representations and affects the viability of leptogenesis. We also present a recipe to generalize a given tribimaximal model to an associated model with a different mass-independent mixing scheme, which preserves the connection between the group structure and phenomenology as in the original model. This procedure is explicitly illustrated by constructing toy models with the transpose tribimaximal, bimaximal, golden ratio, and hexagonal leptonic mixing patterns.

  11. A Direct Top-Quark Width Measurement from Lepton + Jets Events at CDF II

    SciTech Connect (OSTI)

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2010-08-01

    We present a measurement of the top-quark width using t{bar t} events produced in p{bar p} collisions at Fermilab's Tevatron collider and collected by the CDF II detector. In the mode where the top quark decays to a W boson and a bottom quark, we select events in which one W decays leptonically and the other hadronically (lepton + jets channel) . From a data sample corresponding to 4.3 fb{sup -1} of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of W boson that decays hadronically are reconstructed for each event and compared with templates of different top-quark widths ({Lambda}{sub t}) and deviations from nominal jet energy scale ({Delta}{sub JES}) to perform a simultaneous fit for both parameters, where {Delta}{sub JES} is used for the in situ calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95% confidence level (CL) of {Lambda}{sub t} < 7.6 GeV and a two-sided 68% CL interval of 0.3 GeV < {Lambda}{sub t} < 4.4 GeV for a top-quark mass of 172.5 GeV/c{sup 2}, which are consistant with the standard model prediction. This is the first direct measurement of {Lambda}{sub t} to set a lower limit with 68% CL.

  12. Lepton production at the LHC from singly- and doubly-charged bilepton

    SciTech Connect (OSTI)

    Sa Borges, J. [Instituto de Fisica, UERJ, Rio de Janeiro, RJ (Brazil); Coutinho, Y. A. [Instituto de Fisica, UFRJ, Rio de Janeiro, RJ (Brazil); Barreto, E. R. [C C N H, UFABC, Santo Andre, SP (Brazil)

    2013-03-25

    Some extensions of the standard model predict the existence of particles having two units of leptonic charge, known as bileptons. One of such models is based on the SU(3){sub c} Multiplication-Sign SU(3){sub L} Multiplication-Sign U(1){sub X} symmetry group (3-3-1). Our search uses the minimal version of this model, having exotic charges for the quarks and gauge bosons. It predicts the existence of bileptons as vector particles having one unit of electric charge (V{sup {+-}}) or two units of electric charge (Y{sup {+-}{+-}}). Our aim is to establish the signatures for the production of four fermions in pp collisions at the LHC for 7 TeV center of mass energy. We present the total cross section and we show the leptons invariant mass and transverse momentum distributions. We conclude that LHC collider can show a clear signature for a process induced by bileptons as a signal of new physics.

  13. Electron dynamics, gamma and electron-positron production by colliding laser pulses

    E-Print Network [OSTI]

    Jirka, M; Bulanov, S V; Esirkepov, T Zh; Gelfer, E; Bulanov, S S; Weber, S; Korn, G

    2015-01-01

    The dynamics of an electron bunch irradiated by two focused colliding super-intense laser pulses and the resulting gamma and electron-positron production are studied. Due to attractors of electron dynamics in a standing wave created by colliding pulses the photon emission and pair production, in general, are more efficient with linearly polarized pulses than with circularly polarized ones. The dependence of the key parameters on the laser intensity and wavelength allows to identify the conditions for the cascade development and gamma-electron-positron plasma creation.

  14. Leptophobic boson signals with leptons, jets and missing energy

    E-Print Network [OSTI]

    Dobrescu, Bogdan A

    2015-01-01

    Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions ("anomalons") required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show that they produce final states involving leptons at the LHC. Resonant production of a flavor-universal leptophobic $Z'$ boson leads to cascade decays via anomalons, whose signatures include a leptonically decaying $Z$, missing energy and several jets. A $Z'$ boson that couples to the right-handed quarks of the first and second generations undergoes cascade decays that violate lepton universality and include signals with two leptons and jets, or with a Higgs boson, a lepton, a $W$ and missing energy.

  15. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Shiltsev, Vladimir

    2015-01-01

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  16. On the Future High Energy Colliders

    E-Print Network [OSTI]

    Vladimir Shiltsev

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  17. Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in sqrt{s} = 7 TeV proton-proton collisions with the ATLAS detector

    E-Print Network [OSTI]

    The ATLAS Collaboration

    2011-03-31

    Results are presented of a search for supersymmetric particles decaying into final states with significant missing transverse momentum and exactly two identical flavour leptons (e or mu) of opposite charge in sqrt{s}=7 TeV collisions at the Large Hadron Collider. This channel is particularly sensitive to supersymmetric particle cascade decays producing flavour correlated lepton pairs. Flavour uncorrelated backgrounds are subtracted using a sample of opposite flavour lepton pair events. Observation of an excess beyond Standard Model expectations following this subtraction procedure would offer one of the best routes to measuring the masses of supersymmetric particles. In a data sample corresponding to an integrated luminosity of 35 pb-1 no such excess is observed. Model-independent limits are set on the contribution to these final states from new physics and are used to exclude regions of a phenomenological supersymmetric parameter space.

  18. Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in ?s = 7 TeV proton-proton collisions with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2011-07-09

    Results are presented of a search for supersymmetric particles decaying into final states with significant missing transverse momentum and exactly two identical flavour leptons (e, ?) of opposite charge in ?s = 7 TeV collisions at the Large Hadron Collider. This channel is particularly sensitive to supersymmetric particle cascade decays producing flavour correlated lepton pairs. Flavour uncorrelated backgrounds are subtracted using a sample of opposite flavour lepton pair events. Observation of an excess beyond Standard Model expectations following this subtraction procedure would offer one of the best routes to measuring the masses of supersymmetric particles. In a data sample correspondingmore »to an integrated luminosity of 35 pb?¹ no such excess is observed. Model-independent limits are set on the contribution to these final states from new physics and are used to exclude regions of a phenomenological supersymmetric parameter space.« less

  19. Future Colliders Beyond the Standard Model

    E-Print Network [OSTI]

    Murayama, Hitoshi

    17 Future Colliders Beyond the Standard Model By the early 1980s there were persuasive arguments the default future of international high energy physics. The LHC project calls for two multipurpose detectors

  20. Colliding cascades model for earthquake prediction

    E-Print Network [OSTI]

    2000-10-12

    on a direct cascade that would deliver energy from the largest size scales ... The general objective of the colliding cascades model has been to reproduce the ..... earthquake and critical phase transitions studied in statistical physics, where the

  1. Structure and Dynamics of Colliding Plasma Jets

    E-Print Network [OSTI]

    Ryutov, D.

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results ...

  2. Lepton universality violation and lepton flavor conservation in $B$-meson decays

    E-Print Network [OSTI]

    Rodrigo Alonso; Benjamķn Grinstein; Jorge Martin Camalich

    2015-05-19

    Anomalies in (semi)leptonic $B$-meson decays present interesting patterns that might be revealing the shape of the new physics to come. In order to understand the experimental data, we explore symmetry arguments that lead to the hypothesis of minimal flavor violation. In particular, under the assumption of negligible neutrino mass effects in charged lepton processes, the presence of lepton universality violation without lepton flavor violation naturally arises. This can account for a deficit of $B^+\\to K^+\\mu\\mu$ over $B^+\\to K^+ee$ decays with new physics coupled predominantly to muons and a new physics scale of a few TeV. A prediction of this scenario is the modification of processes involving the third generation. In particular, accounting for the above ratio implies a large enhancement, by a factor $\\sim10^3$ with respect to the standard model, of all the $b\\to s\\tau\\tau$ decay rates. Although these are still below current experimental limits, they should be easily at reach in future experiments at $B$-factories. Another important consequence is the prediction of sizable effects in charge-current $B$ tauonic decays which could also explain the enhancements that have been observed in the $B\\to D^{(*)}\\tau\\bar \

  3. Tera-Leptons Shadows over Sinister Universe

    E-Print Network [OSTI]

    D. Fargion; M. Khlopov

    2005-07-07

    The role of Sinister Heavy Fermions in recent Glashow's SU(3)*SU(2)*SU(2)'*U(1) model is to offer in a unique frame relic Helium-like products (an ingenious candidate to the dark matter puzzle), a solution to the See-Saw mechanism for light neutrino masses as well as to strong CP violation problem in QCD. The Sinister model requires a three additional families of leptons and quarks, but only the lightest of them Heavy U-quark and E-"electron" are stable. Final neutral Helium-like UUUEE state is an ideal evanescent dark-matter candidate. However it is reached by multi-body interactions along a tail of more manifest secondary frozen blocks. They should be now here polluting the surrounding matter. Moreover, in opposition to effective pair quark annihilations, there is no such an early or late tera-lepton pairs suppressions, because:a) electromagnetic interactions are "weaker" than nuclear ones and b) helium ion 4He++ is able to attract and capture, E-, fixing it into a hybrid tera helium "ion" trap. This leads to a pile up of relic (4HeE)+ traces, a lethal compound for any Sinister Universe. This capture leaves no Tera-Lepton frozen in Ep relic (otherwise an ideal catalyzer to achieve effective late E+E- annihilations possibly saving the model). The (4HeE)+ Coulomb screening is also avoiding the synthesis of the desired UUUEE hidden dark matter gas. The e(4HeE)+ behave chemically like an anomalous hydrogen isotope.Also tera-positronium (eE+) relics are over-abundant and they behave like an anomalous hydrogen atom: these gases do not fit by many orders of magnitude known severe bounds on hydrogen anomalous isotope, making grave shadows over a Sinister Universe. However a surprising and resolver role for Tera-Pions in UHECR astrophysics has been revealed.

  4. Linear Value Function Approximation Linear Models

    E-Print Network [OSTI]

    Parr, Ronald

    Linear Value Function Approximation and Linear Models Ronald Parr Duke University Joint work terminology Ā· Various forms of linear value function approximation Ā· Linear approximate model formulation #12;Outline Ā· Introduce terminology Ā· Various forms of linear value function approximation Ā· Linear

  5. Tensor mesons produced in tau lepton decays

    SciTech Connect (OSTI)

    Lopez Castro, G.; Munoz, J. H.

    2011-05-01

    Light tensor mesons (T=a{sub 2}, f{sub 2} and K{sub 2}*) can be produced in decays of {tau} leptons. In this paper we compute the branching ratios of {tau}{yields}T{pi}{nu} decays by assuming the dominance of intermediate virtual states to model the form factors involved in the relevant hadronic matrix elements. The exclusive f{sub 2}(1270){pi}{sup -} decay mode turns out to have the largest branching ratio, of O(10{sup -4}). Our results indicate that the contribution of tensor meson intermediate states to the three-pseudoscalar channels of {tau} decays are rather small.

  6. Search for pair production of scalar top quarks decaying to a tau lepton and a b quark in 1.96 TeV ppbar collisions

    SciTech Connect (OSTI)

    Khotilovich, Vadim, G.; /Texas A-M

    2008-05-01

    I present the results of a search for pair production of scalar top quarks ({tilde t}{sub 1}) in an R-parity violating supersymmetric scenario using 322 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV collected by the upgraded Collider Detector at Fermilab. I assume each {tilde t}{sub 1} decays into a {tau} lepton and a b quark, with branching ratio {beta}, and search for final states containing either an electron or a muon from a leptonic {tau} decay, a hadronically decaying {tau} lepton, and two or more jets. Two candidate events pass my final selection criteria, consistent with the expectation from standard model processes. I present upper limits on the cross section times branching ratio squared {sigma}({tilde t}{sub 1}{bar {tilde t}}{sub 1}) x {beta}{sup 2} as a function of the stop mass m({tilde t}{sub 1}). Assuming {beta} = 1, I set a 95% confidence level limit m({tilde t}{sub 1}) > 153 GeV=c{sup 2}. These limits are also fully applicable to the case of a pair produced third generation scalar leptoquark that decays into a {tau} lepton and a b quark.

  7. Search for squark production in events with jets, hadronically decaying tau leptons and missing transverse energy at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.

    2009-05-01

    A search for supersymmetric partners of quarks is performed in the topology of multijet events accompanied by at least one tau lepton decaying hadronically and large missing transverse energy. Approximately 1 fb-1 of ppbar collision data from the Fermilab Tevatron Collider at a center of mass energy of 1.96 TeV recorded by the D0 detector is analyzed. Results are combined with the previously published D0 inclusive search for squarks and gluinos. No evidence of physics beyond the standard model is found and lower limits on the squark mass up to 410 GeV are derived in the framework of minimal supergravity with tan(beta)=15, A{sub 0}=-2m{sub 0} and mu<0, in the region where decays to tau leptons dominate. Gaugino masses m{sub 1/2} are excluded up to 172 GeV.

  8. INCIDENT CONTAMINATION LEPTON DOSES MEASURED USING RADIOCHROMIC FILM IN

    E-Print Network [OSTI]

    Yu, Peter K.N.

    INCIDENT CONTAMINATION LEPTON DOSES MEASURED USING RADIOCHROMIC FILM IN RADIOTHERAPY MARTIN J) AbstractŠMeasurement of lepton contamination is achieved across a radiotherapy photon beam and peripheral in air to measure incident contamination without the eects of phantom scatter. Surface dose was measured

  9. First search for CP violation in tau lepton decay

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Darling, C.; Davis, Robin E. P.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan; Zhou, L.

    1998-11-01

    We have performed the first search for CP violation in tau lepton decay. CP violation in lepton decay does not occur in the minimal standard model but can occur in extensions such as the multi-Higgs doublet model. It appears as a characteristic...

  10. Radiative Transmission of Lepton Flavor Hierarchies

    E-Print Network [OSTI]

    Adisorn Adulpravitchai; Manfred Lindner; Alexander Merle; Rabindra N. Mohapatra

    2009-08-04

    We discuss a one loop model for neutrino masses which leads to a seesaw-like formula with the difference that the charged lepton masses replace the unknown Dirac mass matrix present in the usual seesaw case. This is a considerable reduction of parameters in the neutrino sector and predicts a strong hierarchical pattern in the right handed neutrino mass matrix that is easily derived from a $U(1)_H$ family symmetry. The model is based on the left-right gauge group with an additional $Z_4$ discrete symmetry which gives vanishing neutrino Dirac masses and finite Majorana masses arising at the one loop level. Furthermore, it is one of the few models that naturally allow for large (but not necessarily maximal) mixing angles in the lepton sector. A generalization of the model to the quark sector requires three iso-spin singlet vector-like down type quarks, as in $E_6$. The model predicts an inert doublet type scalar dark matter.

  11. Emittance-Imposed Alignment and Frequency Tolerances for the TESLA Collider

    SciTech Connect (OSTI)

    Baboi, N

    2004-09-02

    One option in building a future 500 GeV c.m. linear collider is to use superconducting 1.3 GHz 9-cell cavities. However, wakefields excited by the bunch train in the TESLA (TeV-Energy Super Conducting Linear Accelerator) collider can resonantly drive the beam into unstable operation such that a BBU (Beam Break Up) mode results or at the very least significant emittance dilution occurs. The largest kick factors (proportional to the transverse fields which kick the beam off axis) are found in the first three dipole bands and hence multi-bunch emittance growth is mainly determined from these bands. These higher order dipole modes are damped by carefully orientating special couplers placed at both ends of the cavities. We investigate the dilution in the emittance of a beam with a random misalignment of cavities down the complete main linac. The beneficial effects of frequency errors on ameliorating the beam dilution are discussed.

  12. A Quartz Cherenkov Detector for Compton-Polarimetry at Future e+e- Colliders

    E-Print Network [OSTI]

    List, Jenny; Vormwald, Benedikt

    2015-01-01

    Precision polarimetry is essential for future e+ e- colliders and requires Compton polarimeters designed for negligible statistical uncertainties. In this paper, we discuss the design and construction of a quartz Cherenkov detector for such Compton polarimeters. The detector concept has been developed with regard to the main systematic uncertainties of the polarisation measurements, namely the linearity of the detector response and detector alignment. Simulation studies presented here imply that the light yield reachable by using quartz as Cherenkov medium allows to resolve in the Cherenkov photon spectra individual peaks corresponding to different numbers of Compton electrons. The benefits of the application of a detector with such single-peak resolution to the polarisation measurement are shown for the example of the upstream polarimeters foreseen at the International Linear Collider. Results of a first testbeam campaign with a four-channel prototype confirming simulation predictions for single electrons ar...

  13. CP nonconservation in the leptonic sector

    E-Print Network [OSTI]

    Petre Dita

    2006-09-22

    In this paper we use an exact method to impose unitarity on moduli of the neutrino PMNS matrix recently determined, and show how one could obtain information on CP non-conservation from a limited experimental information. One suggests a novel type of global fit by expressing all the theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, New J.Phys. {\\bf 6} (2004) 122 is confirmed, it will imply a new physics in the leptonic sector.

  14. CP nonconservation in the leptonic sector

    E-Print Network [OSTI]

    Petre Dita

    2011-01-21

    In this paper we use an exact method to impose unitarity on moduli of neutrino PMNS matrix recently determined, and show how one could obtain information on CP nonconservation from a limited experimental information. One suggests a novel type of global fit by expressing all theoretical quantities in terms of convention independent parameters: the Jarlskog invariant $J$ and the moduli $|U_{\\alpha i}|$, able to resolve the positivity problem of $|U_{e 3}|$. In this way the fit will directly provide a value for $J$, and if it is different from zero it will prove the existence of CP violation in the available experimental data. If the best fit result, $|U_{e3}|^2<0$, from M. Maltoni {\\em et al}, [New J.Phys. {\\bf 6} (2004) 122] is confirmed, it will imply a new physics in the leptonic sector.

  15. Transverse momentum dependent gluon fragmentation functions from $J/\\psi\\ \\pi$ production at $e^+ e^-$ colliders

    E-Print Network [OSTI]

    Zhang, Guang-Peng

    2015-01-01

    The back-to-back $J/\\psi$ and $\\pi$ associated production at $e^+ e^-$ colliders is proposed to detect the gluon transverse momentum dependent(TMD) fragmentation functions. TMD factorization is assumed for this process. With spinless pion, unpolarized and linearly polarized gluon TMD fragmentation functions can be defined. It is found at parton level the hadronic tensor can be described by four structure functions. As a result, there are three independent angular distributions, of which a $\\cos{2\\phi}$ azimuthal asymmetry is sensitive to the linearly polarized gluon fragmentation function.

  16. Beam instrumentation for the Tevatron Collider

    SciTech Connect (OSTI)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  17. Tevatron Collider Program - Physics, Results, Future?

    E-Print Network [OSTI]

    Krzysztof Sliwa

    2012-01-03

    An overview of more than 25 years of the Tevatron Collider program at Fermi National Accelerator Laboratory in Batavia, near Chicago, Illinois, USA, is presented. The physics goals of the program itself, the Tevatron accelerator design characteristics and some of its achievements are described. A selected set of the past and ongoing physics analyses and measurements performed by CDF and D0 collaborations are summarized. Also, in view of the modified plans and schedule of the Large Hadron Collider (LHC) at CERN, the future of the Tevatron program is discussed.

  18. Top quark studies at hadron colliders

    SciTech Connect (OSTI)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  19. Light Leptonic New Physics at the Precision Frontier

    E-Print Network [OSTI]

    Matthias Le Dall

    2015-09-25

    Precision probes of new physics are often interpreted through their indirect sensitivity to short-distance scales. In this proceedings contribution, we focus on the question of which precision observables, at current sensitivity levels, allow for an interpretation via either short-distance new physics or consistent models of long-distance new physics, weakly coupled to the Standard Model. The electroweak scale is chosen to set the dividing line between these scenarios. In particular, we find that inverse see-saw models of neutrino mass allow for light new physics interpretations of most precision leptonic observables, such as lepton universality, lepton flavor violation, but not for the electron EDM.

  20. Measurements of heavy quark production via single leptons at PHENIX

    E-Print Network [OSTI]

    Donald Hornback; for the PHENIX Collaboration

    2008-04-30

    The measurement of single leptons from the semi-leptonic decay of heavy-flavor hadrons has long been a means for studying heavy-quark production. PHENIX has measured single muons in pp collisions at forward rapidity and single electrons in both pp and AuAu collisions at mid-rapidity at sqrt(s_NN)=200 GeV. The most recent PHENIX single lepton results are presented in the context of state-of-the-art pQCD calculations. An updated azimuthal anisotropy, v2(pT), measurement for heavy-flavor single electrons in AuAu collisions is also presented.

  1. Non-thermal high-energy emission from colliding winds of massive stars

    E-Print Network [OSTI]

    A. Reimer; M. Pohl; O. Reimer

    2005-10-25

    Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)

  2. Precision Measurements at a Muon Collider

    E-Print Network [OSTI]

    S. Dawson

    1995-12-08

    We discuss the potential for making precision measurements of $M_W$ and $M_T$ at a muon collider and the motivations for each measurement. A comparison is made with the precision measurements expected at other facilities. The measurement of the top quark decay width is also discussed.

  3. PHYSICS WITH AND PHYSICS OF COLLIDING ELECTRON BEAMS

    E-Print Network [OSTI]

    Pellegrini, Claudio

    2008-01-01

    contributed so much to the physics of colliding beams, theyto reap so little from the physics with colliding beams.Conference on High-Energy Physics, Vienna" September 1968 (

  4. Exploring Geometries of SRF Cavities for a Future Muon Collider

    E-Print Network [OSTI]

    Geng, Rong-Li

    application of super- conducting RF cavities in a future muon collider. Such RF cavities are expected to workExploring Geometries of SRF Cavities for a Future Muon Collider Rong-Li Geng LEPP, Cornell

  5. The Working Group M5 on Lepton-Hadron Colliders Conveners: Ilan Ben-Zvi and Georg H. Hoffstaetter

    E-Print Network [OSTI]

    Hoffstaetter, Georg

    ........................................................................... 28 3. eRHIC, Electron-Hadron Collisions with RHIC

  6. Electron-positron pair production by linearly polarized photon in the nuclear field

    E-Print Network [OSTI]

    Bakmaev, S; Peresunko, Yu P; Shapoval, I; Peresunko, Yu. P.

    2008-01-01

    Process of lepton pair production by polarized photon can be used to measure the degree of linear polarization of high energy photon. The differential cross section and the analyzing power are calculated with taking into account higher powers of expansion on $Z\\alpha$. Pure Coulomb and screened potential are considered.

  7. COLLIDING PULSE INJECTION CONTROL IN A LASER-PLASMA ACCELERATOR

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    COLLIDING PULSE INJECTION CONTROL IN A LASER-PLASMA ACCELERATOR C.G.R. Geddes , G.R. Plateau, M is presented using the beat between two 'collid- ing' laser pulses to kick electrons into the plasma wake laser pulses [12, 13, 14, 15]. In the colliding pulse technique, the ponderomotive force of the beat

  8. Detecting Fourth Generation Quarks at Hadron Colliders

    E-Print Network [OSTI]

    David Atwood; Sudhir Kumar Gupta; Amarjit Soni

    2011-07-13

    We consider the phenomenology of the fourth generation heavy quarks which would be pair produced at the LHC. We show that if such a quark with a mass in the phenomenologically interesting range of 400 GeV--600 GeV decays to a light quark and a W-boson, it will produce a signal in a number of channels which can be seen above the background from the three generation Standard Model processes. In particular, such quarks could be seen in channels where multiple jets are present with large missing momentum and either a single hard lepton, an opposite sign hard lepton pair or a same sign lepton pair. In the same sign dilepton channel there is little background and so an excess of such pairs at large invariant mass will indicate the presence of heavy down type quarks. More generally, in our study, the main tool we use to determine the mass of the heavy quark in each of the channels we consider is to use the kinematics of the decay of such quarks to resolve the momenta of the unobserved neutrinos. We show how this can be carried out, even in cases where the kinematics is under-determined by use of the approximation, which holds quite well, that the two heavy quarks are nearly at rest in the center of mass frame. Since it is very likely that at least the lightest heavy quark decays in the mode we consider, this means that it should be observed at the LHC. Indeed, it is expected that the mass splitting between the quarks is less than $m_W$ so that if the Cabbibo-Kobayshi-Maskawa (CKM) matrix element between the fourth and lower generations are not too small, both members of the fourth generation quark doublet will decay in this way. If this is so, the combined signal of these two quarks will make the signal for the fourth generation somewhat more prominent.

  9. The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect (OSTI)

    Edward Nissen, Todd Satogata, Yuhong Zhang

    2012-07-01

    In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.

  10. Collider signature of T-quarks

    SciTech Connect (OSTI)

    Carena, Marcela; Hubisz, Jay; /Fermilab; Perelstein, Maxim; /Cornell U., LEPP; Verdier, Patrice; /Lyon, IPN

    2006-10-01

    Little Higgs models with T Parity contain new vector-like fermions, the T-odd quarks or ''T-quarks'', which can be produced at hadron colliders with a QCD-strength cross section. Events with two acoplanar jets and large missing transverse energy provide a simple signature of T-quark production. We show that searches for this signature with the Tevatron Run II data can probe a significant part of the Little Higgs model parameter space not accessible to previous experiments, exploring T-quark masses up to about 400 GeV. This reach covers parts of the parameter space where the lightest T-odd particle can account for the observed dark matter relic abundance. We also comment on the prospects for this search at the Large Hadron Collider (LHC).

  11. Search for Lepton-Number Violating Processes in B+ to h- l+ l+ Decays

    SciTech Connect (OSTI)

    Lees, J.P.

    2012-05-17

    We have searched for the lepton-number violating processes B{sup +} {yields} h{sup -}{ell}{sup +}{ell}{sup +} with h{sup -} = K{sup -}/{pi}{sup -} and {ell}{sup +} = e{sup +}/{mu}{sup +}, using a sample of 471 {+-} 3 million B{bar B} events collected with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. We find no evidence for these decays and place 90% confidence level upper limits on their branching fractions B (B{sup +} {yields} {pi}{sup -}e{sup +}e{sup +}) < 2.3 x 10{sup -8}, {Beta}(B{sup +} {yields} K{sup -}e{sup +}e{sup +}) < 3.0 x 10{sup -8}, {Beta}(B{sup +} {yields} {pi}{sup -}{mu}{sup +}{mu}{sup +}) < 10.7 x 10{sup -8}, and {Beta}(B{sup +} {yields} K{sup -}{mu}{sup +}{mu}{sup +}) < 6.7 x 10{sup -8}.

  12. Search for Rare Multi-Pion Decays of the Tau Lepton Using the BABAR Detector

    SciTech Connect (OSTI)

    Ter-Antonyan, Ruben

    2007-09-18

    A search for the decay of the {tau} lepton to rare multi-pion final states is performed using the BABAR detector at the PEP-II asymmetric-energy e+e- collider. The analysis uses 232 fb-1 of data at center-of-mass energies on or near the {Upsilon}(4S) resonance. In the search for the {tau}- {yields} 3{pi}-2{pi}+2{pi}{sup 0}{nu}{sub {tau}} decay, we observe 10 events with an expected background of 6.5{sup +2.0}{sub -1.4} events. In the absence of a signal, we calculate the decay branching ratio upper limit {beta}({tau}- {yields} 3{pi}-2{pi}+2{pi}{sup 0}{nu}{sub {tau}}) < 3.4 x 10{sup -6} at the 90% confidence level. This is more than a factor of 30 improvement over the previously established limit. In addition, we search for the exclusive decay mode {tau}- {yields} 2{omega}{pi}-{nu}{sub {tau}} with the further decay of {omega} {yields} {pi}-{pi}+{pi}{sup 0}. We observe 1 event, expecting 0.4{sup +1.0}{sub -0.4} background events, and calculate the upper limit {beta}{tau}-{yields} 2{omega}{pi}-{nu}{sub {tau}} < 5.4 x 10{sup -7} at the 90% confidence level. This is the first upper limit for this mode.

  13. Discovery and Characterization of a Higgs boson using four-lepton events from the CMS experiment

    E-Print Network [OSTI]

    AUTHOR|(SzGeCERN)678846

    2015-01-01

    A new particle decaying to a pair of vector bosons was discovered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider. In the wake of this discovery a rush of measurements was made to characterize this particle. The four-lepton final state has been instrumental in both the discovery and characterization of this new particle. With only about 20 events seen in the resonance peak at 125GeV the CMS experiment has been able to make considerable progress in characterizing the Higgs-like boson using the wealth of information in this final state in concert with other decay modes. In addition to the search for this new boson we present three recent results in the study of the Higgs-like boson properties: studies of the production mode, total width, and spin-parity quantum numbers. First we present the search for this new resonance using the H to ZZ to 4l decay channel. Then we discuss the production mode measurement using this final state. Next, we present two results that provided breakthroughs in t...

  14. Light top squarks in $U(1)_{R}$-lepton number model with a right handed neutrino and the LHC

    E-Print Network [OSTI]

    Chakraborty, Sabyasachi; Huitu, Katri; Roy, Sourov; Waltari, Harri

    2015-01-01

    We investigate the phenomenology of top squarks at the Large Hadron Collider (LHC) in a supersymmetric model where lepton number is identified with an approximate $U(1)_R$ symmetry in such a way that one of the left chiral sneutrinos can acquire a large vacuum expectation value ($vev$) and can play the role of the down-type Higgs. This $R$-symmetry allows a subset of trilinear $R$-parity violating interactions, which determine the collider phenomenology of this model in a significant way. The gauginos are Dirac particles and gluinos are relatively heavy in this class of models. The model contains a right handed neutrino superfield, which gives a tree level mass to one of the active neutrinos. An order one neutrino Yukawa coupling also helps enhance the Higgs boson mass at the tree level and results in a very light bino-like neutralino ($\\widetilde \\chi_2^0$) with mass around a few hundred MeV, which is a carrier of missing (transverse) energy (\\met). The model can accommodate two rather light top squarks, com...

  15. COMMISSIONING OF THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect (OSTI)

    TRBOJEVIC,D.; AHRENS,L.; BLASKIEWICZ,M.; BRENNAN,M.; BAI,M.; CAMERON,P.; CARDONA,J.; CONNOLLY,R.; ET AL; TSOUPAS,N.; VAN ZEIJTS,J.

    2001-06-18

    This report describes in detail steps performed in bringing the Relativistic Heavy Ion Collider (RHIC) from the commissioning into the operational stage when collisions between 60 bunches of fully striped gold ions, were routinely provided. Corrections of the few power supplies connections by the beam measurements are described. Beam lifetime improvements at injection, along the acceleration are shown. The beam diagnostic results; like Schottky detector, beam profile monitor, beam position monitors, tune meter and others, are shown [1].

  16. The Dark Penguin Shines Light at Colliders

    E-Print Network [OSTI]

    Primulando, Reinard; Tsai, Yuhsin

    2015-01-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For several types of DM-Standard Model couplings, a meaningful interpretation of the results requires to go beyond effective field theory, considering simplified models with light mediators. This is especially important in the case of loop-mediated interactions. In this paper we perform the first simplified model study of the magnetic dipole interacting DM, by including the one-loop momentum-dependent form factors that mediate the coupling -- given by the Dark Penguin -- in collider processes. We compute bounds from the monojet, monophoton, and diphoton searches at the $8$ and $14$ TeV LHC, and compare the results to those of direct and indirect detection experiments. Future searches at the $100$ TeV hadron collider and at the ILC are also addressed. We find that the optimal search strategy requires loose cuts on the missing transverse energy, to capture the enhancement of the form factors near the threshold fo...

  17. Structure and Dynamics of Colliding Plasma Jets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; et al

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore »by the well-known ?Te ×?ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10?) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  18. Structure and Dynamics of Colliding Plasma Jets

    SciTech Connect (OSTI)

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; Rinderknecht, H.; Petrasso, R.; Amendt, P.; Park, H.; Remington, B.; Wilks, S.; Betti, R.; Froula, D.; Knauer, J.; Meyerhofer, D.; Drake, R.; Kuranz, C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ?Te ×?ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10?) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  19. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    E-Print Network [OSTI]

    J. L. Abelleira Fernandez; C. Adolphsen; A. N. Akay; H. Aksakal; J. L. Albacete; S. Alekhin; P. Allport; V. Andreev; R. B. Appleby; E. Arikan; N. Armesto; G. Azuelos; M. Bai; D. Barber; J. Bartels; O. Behnke; J. Behr; A. S. Belyaev; I. Ben-Zvi; N. Bernard; S. Bertolucci; S. Bettoni; S. Biswal; J. Blümlein; H. Böttcher; A. Bogacz; C. Bracco; G. Brandt; H. Braun; S. Brodsky; O. Brüning; E. Bulyak; A. Buniatyan; H. Burkhardt; I. T. Cakir; O. Cakir; R. Calaga; V. Cetinkaya; E. Ciapala; R. Ciftci; A. K. Ciftci; B. A. Cole; J. C. Collins; O. Dadoun; J. Dainton; A. De. Roeck; D. d'Enterria; A. Dudarev; A. Eide; R. Enberg; E. Eroglu; K. J. Eskola; L. Favart; M. Fitterer; S. Forte; A. Gaddi; P. Gambino; H. Garcķa Morales; T. Gehrmann; P. Gladkikh; C. Glasman; R. Godbole; B. Goddard; T. Greenshaw; A. Guffanti; V. Guzey; C. Gwenlan; T. Han; Y. Hao; F. Haug; W. Herr; A. Hervé; B. J. Holzer; M. Ishitsuka; M. Jacquet; B. Jeanneret; J. M. Jimenez; J. M. Jowett; H. Jung; H. Karadeniz; D. Kayran; A. Kilic; K. Kimura; M. Klein; U. Klein; T. Kluge; F. Kocak; M. Korostelev; A. Kosmicki; P. Kostka; H. Kowalski; G. Kramer; D. Kuchler; M. Kuze; T. Lappi; P. Laycock; E. Levichev; S. Levonian; V. N. Litvinenko; A. Lombardi; J. Maeda; C. Marquet; S. J. Maxfield; B. Mellado; K. H. Mess; A. Milanese; S. Moch; I. I. Morozov; Y. Muttoni; S. Myers; S. Nandi; Z. Nergiz; P. R. Newman; T. Omori; J. Osborne; E. Paoloni; Y. Papaphilippou; C. Pascaud; H. Paukkunen; E. Perez; T. Pieloni; E. Pilicer; B. Pire; R. Placakyte; A. Polini; V. Ptitsyn; Y. Pupkov; V. Radescu; S. Raychaudhuri; L. Rinolfi; R. Rohini; J. Rojo; S. Russenschuck; M. Sahin; C. A. Salgado; K. Sampei; R. Sassot; E. Sauvan; U. Schneekloth; T. Schörner-Sadenius; D. Schulte; A. Senol; A. Seryi; P. Sievers; A. N. Skrinsky; W. Smith; H. Spiesberger; A. M. Stasto; M. Strikman; M. Sullivan; S. Sultansoy; Y. P. Sun; B. Surrow; L. Szymanowski; P. Taels; I. Tapan; A. T. Tasci; E. Tassi; H. Ten. Kate; J. Terron; H. Thiesen; L. Thompson; K. Tokushuku; R. Tomįs Garcķa; D. Tommasini; D. Trbojevic; N. Tsoupas; J. Tuckmantel; S. Turkoz; T. N. Trinh; K. Tywoniuk; G. Unel; J. Urakawa; P. VanMechelen; A. Variola; R. Veness; A. Vivoli; P. Vobly; J. Wagner; R. Wallny; S. Wallon; G. Watt; C. Weiss; U. A. Wiedemann; U. Wienands; F. Willeke; B. -W. Xiao; V. Yakimenko; A. F. Zarnecki; Z. Zhang; F. Zimmermann; R. Zlebcik; F. Zomer

    2012-09-07

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ range extended by four orders of magnitude as compared to previous lepton-nucleus DIS experiments for novel investigations of neutron's and nuclear structure, the initial conditions of Quark-Gluon Plasma formation and further quantum chromodynamic phenomena. The LHeC may be realised either as a ring-ring or as a linac-ring collider. Optics and beam dynamics studies are presented for both versions, along with technical design considerations on the interaction region, magnets and further components, together with a design study for a high acceptance detector. Civil engineering and installation studies are presented for the accelerator and the detector. The LHeC can be built within a decade and thus be operated while the LHC runs in its high-luminosity phase. It thus represents a major opportunity for progress in particle physics exploiting the investment made in the LHC.

  20. THE STATUS OF HEAVY-LEPTON SEARCHES*+ Martin L. Per1 Stanford Linear Accelerator Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With LivermoreSustainableDEPARTMENT OF ENERGY Office ofPHYSICSSTATUS

  1. The Microscopic Linear Dynamics

    E-Print Network [OSTI]

    Penny, Will

    The Microscopic Brain Will Penny Linear Dynamics Exponentials Matrix Exponential Eigendecomposition References The Microscopic Brain Will Penny 7th April 2011 #12;The Microscopic Brain Will Penny Linear;The Microscopic Brain Will Penny Linear Dynamics Exponentials Matrix Exponential Eigendecomposition

  2. Search for Pair Production of Scalar Top Quarks Decaying to a tau Lepton and a b Quark in ppbar Collisions at sqrt{s}=1.96 TeV

    SciTech Connect (OSTI)

    Brigliadori, L.; Zheng, Y.; Zucchelli, S.; /Taiwan, Inst. Phys. /Bologna U. /Argonne /Barcelona, IFAE /Baylor U., Math. Dept. /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria U., Santander /Carnegie Mellon U.

    2008-02-01

    We present the results of a search for pair production of scalar top quarks ({tilde t}{sub 1}) in an R-parity violating supersymmetric scenario using 322 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV collected by the upgraded Collider Detector at Fermilab. We assume each {tilde t}{sub 1} decays into a {tau} lepton and a b quark with a branching ratio {beta}, and that the final state contains either an electron or a muon from a leptonic {tau} decay, a hadronically decaying {tau} lepton, and two or more jets. Two candidate events pass our final selection criteria, consistent with the expectation from standard model processes. We present upper limits on the cross section times branching ratio squared {sigma}({tilde t}{sub 1}{bar {tilde t}}{sub 1}) x {beta}{sup 2} as a function of the stop mass m({tilde t}{sub 1}). Assuming {beta} = 1, we set a 95% confidence level limit m({tilde t}{sub 1}) > 153 GeV=c{sup 2} obtained using a next-to-leading order cross section. These limits are also fully applicable to the case of a pair produced third generation scalar leptoquark decaying into a {tau} lepton and a b quark.

  3. Math 351: Linear Algebra

    E-Print Network [OSTI]

    Math 351: Linear Algebra. Text: Elementary Linear Algebra (by me). Instructor: Richard Penney. Office: 822 Mathematics Building Phone: 49--41968. E-mail: ...

  4. Search for doubly charged Higgs bosons with lepton-flavour-violating decays involving tau leptons

    SciTech Connect (OSTI)

    Aaltonen, T.

    2007-12-01

    The authors search for pair production of doubly charged Higgs particles (H{sup {+-}{+-}}) followed by decays into electron-tau (e{tau}) and muon-tau ({mu}{tau}) pairs using a data set corresponding to an integrated luminosity of 350 pb{sup -1} collected from {bar p}p collisions at {radical}s = 1.96 TeV by the CDF II experiment. They search separately for cases where three or four final-state leptons are detected, and then combine the results into limits for each exclusive flavor decay mode of the H{sup {+-}{+-}}. Assuming 100% branching ratios of the H{sup {+-}{+-}} to left-handed e{tau} ({mu}{tau}) pairs, they set an H{sup {+-}{+-}} lower mass limit of 114 (112) GeV/c{sup 2} at the 95% confidence level (C.L.).

  5. A new bridge between leptonic CP violation and leptogenesis

    E-Print Network [OSTI]

    G. C. Branco; R. Gonzalez Felipe; F. R. Joaquim

    2006-09-28

    Flavor effects due to lepton interactions in the early Universe may have played an important role in the generation of the cosmological baryon asymmetry through leptogenesis. If the only source of high-energy CP violation comes from the left-handed leptonic sector, then it is possible to establish a bridge between flavored leptogenesis and low-energy leptonic CP violation. We explore this connection taking into account our present knowledge about low-energy neutrino parameters and the matter-antimatter asymmetry observed in the Universe. In this framework, we find that leptogenesis favors a hierarchical light neutrino mass spectrum, while for quasi-degenerate and inverted hierarchical neutrino masses there is a very narrow allowed window. The absolute neutrino mass scale turns out to be m < 0.1 eV.

  6. Electric Dipole Moments of Charged Leptons with Sterile Fermions

    E-Print Network [OSTI]

    Abada, Asmaa

    2015-01-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also im...

  7. Nonzero $?_{13}$ in $SO(3) \\rightarrow A_4$ lepton models

    E-Print Network [OSTI]

    Yuval Grossman; Wee Hao Ng

    2015-03-25

    The simplest neutrino mass models based on $A_4$ symmetry predict $\\theta_{13} = 0$ at tree level, a value that contradicts recent data. We study models that arise from the spontaneous breaking of an $SO(3)$ symmetry to its $A_4$ subgroup, and find that such models can naturally accommodate a nonzero $\\theta_{13}$ at tree level. Standard Model charged leptons mix with additional heavy ones to generate a $\\theta_{13}$ that scales with the ratio of the $A_4$-breaking to $SO(3)$-breaking scales. A suitable choice of energy scales hence allows one to reproduce the correct lepton mixing angles. We also consider an alternative approach where we modify the alignment of flavons associated with the charged lepton masses, and find that the effects on $\\theta_{13}$ are enhanced by a factor that scales as $m_\\tau/m_\\mu$.

  8. Nuclear PDF for neutrino and charged lepton data

    E-Print Network [OSTI]

    K. Kovarik

    2010-12-13

    Neutrino Deep Inelastic Scattering on nuclei is an essential process to constrain the strange quark parton distribution functions in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions. Here we compare results from two analysis of NPDF both done at next-to-leading order in QCD. The first uses neutral current charged-lepton lA Deeply Inelastic Scattering and Drell-Yan data for several nuclear targets and the second uses neutrino-nucleon DIS data. We compare the nuclear corrections factors F_2^Fe/F_2^D for the charged-lepton data with other results from the literature. In particular, we compare and contrast fits based upon the charged-lepton DIS data with those using neutrino-nucleon DIS data.

  9. Leptonic Decays of the Charged B Meson

    SciTech Connect (OSTI)

    Corwin, Luke A.; /Ohio State U.; ,

    2010-06-11

    The authors present a search for the decay B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}} ({ell} = {tau}, {mu}, or e) in (458.9 {+-} 5.1) x 10{sup 6} {Upsilon}(4S) decays recorded with the BABAR detector at the SLAC PEP-II B-Factory. A sample of events with one reconstructed exclusive semi-leptonic B decay (B{sup -} {yields} D{sup 0}{ell}{sup -}{bar {nu}}X) is selected, and in the recoil a search for B{sup +} {yields} {ell}{sup +}{nu}{sub {ell}} signal is performed. The {tau} is identified in the following channels: {tau}{sup +} {yields} e{sup +}{nu}{sub e}{bar {nu}}{sub {tau}}, {tau}{sup +} {yields} {mu}{sup +}{nu}{sub {mu}}{bar {nu}}{sub {tau}}, {tau}{sup +} {yields} {pi}{sup +}{bar {nu}}{sub {tau}}, and {tau}{sup +} {yields} {pi}{sup +}{pi}{sup 0}{bar {nu}}{sub {tau}}. The analysis strategy and the statistical procedure is set up for branching fraction extraction or upper limit determination. They determine from the dataset a preliminary measurement of {Beta}(B{sup +} {yields} {tau}{sup +}{nu}{sub {tau}}) = (1.8 {+-} 0.8 {+-} 0.1) x 10{sup -4}, which excludes zero at 2.4{sigma}, and f{sub B} = 255 {+-} 58 MeV. Combination with the hadronically tagged measurement yields {Beta}(B{sup +} {yields} {tau}{sup +}{nu}{sub {tau}}) = (1.8 {+-} 0.6) x 10{sup -4}. They also set preliminary limits on the branching fractions at {Beta}(B{sup +} {yields} e{sup +}{nu}{sub e}) < 7.7 x 10{sup -6} (90% C.L.), {Beta}(B{sup +} {yields} {mu}{sup +}{nu}{sub {mu}}) < 11 x 10{sup -6} (90% C.L.), and {Beta}(B{sup +} {yields} {tau}{sup +}{nu}{sub {tau}}) < 3.2 x 10{sup -4} (90% C.L.).

  10. Lepton and Quark Mixing Patterns from Finite Flavor Symmetries

    E-Print Network [OSTI]

    Chang-Yuan Yao; Gui-Jun Ding

    2015-05-14

    We perform a systematical and analytical study of lepton mixing which can be derived from the subgroups of $SU(3)$ under the assumption that neutrinos are Dirac particles. We find that type D groups can predict lepton mixing patterns compatible with the experimental data at $3\\sigma$ level. The lepton mixing matrix turns out to be of the trimaximal form, and the Dirac CP violating phase is trivial. Moreover, we extend the flavor symmetry to the quark sector. The Cabibbo mixing between the first two generations of quarks can be generated by type D groups. Since all the finite subgroups of $U(3)$ which are not the subgroups of $SU(3)$ have not been classified, an exhaustive scan over all finite discrete groups up to order 2000 is performed with the help of the computer algebra system \\texttt{GAP}. We find that only 90 (10) groups for Dirac (Majorana) neutrinos can generate the lepton mixing angles in the experimentally preferred ranges. The lepton mixing matrix is still the trimaximal pattern and the Dirac CP phase remains trivial. The smallest groups which lead to viable mixing angles are $[162, 10]$, $[162, 12]$ and $[162, 14]$. For quark flavor mixing, the correct order of magnitude of the CKM matrix elements can not be generated. Only the Cabibbo mixing is allowed even if we impose very loose constraints $0.1\\leq|\\left(V_{CKM}\\right)_{12}|\\leq0.3$ and $|\\left(V_{CKM}\\right)_{13}|\\leq|\\left(V_{CKM}\\right)_{23}|right)_{12}|$. The group $\\Delta(6\\cdot7^2)$ can predict a Cabibbo angle $\\theta_q=\\pi/14$ in good agreement with the best fit value. The groups which can give rise to both phenomenologically viable lepton mixing angles and acceptable Cabibbo angle are discussed, and the groups $\\Delta(6\\cdot9^2)$, $[648, 259]$, $[648, 260]$, $[648, 266]$ and $\\Delta(6\\cdot14^2)$ are especially promising.

  11. Search for lepton-flavour-violating decays of the Higgs boson...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Search for lepton-flavour-violating decays of the Higgs boson Citation Details In-Document Search Title: Search for lepton-flavour-violating decays of the Higgs...

  12. Search for Low Mass Exotic leptonic or bosonic structures

    E-Print Network [OSTI]

    B. Tatischeff; E. Tomasi-Gustafsson

    2007-07-09

    Recently, several papers discussed the existence of a low mass leptonic structure. It was suggested that the $\\Sigma^{+}$ disintegration: $\\Sigma^{+}\\to$pP$^{0}$, P$^{0}\\to\\mu^{-}\\mu^{+}$ proceeds through an intermediate particle P$^{0}$ having a mass close to M$\\approx$~214.3 MeV. The present work intends to look at other available data, in order to observe the eventual existence of a small peak or shoulder, at a mass close to M=214.3 MeV, which can strengthen the existence of a state produced by two leptons of opposite electric charge.

  13. Leptons and Quarks from a Discrete Flavor Symmetry

    E-Print Network [OSTI]

    Y. H. Ahn

    2013-03-20

    We propose a new model of leptons and quarks based on the discrete flavor symmetry $T'$, the double covering of $A_4$, in which the hierarchies of charged fermion masses and the mildness of neutrino masses are responsible for Higgs scalars. After spontaneous breaking of flavor symmetry, with the constraint of renormalizability in the Lagrangian, the leptons have $m_{e}=0$ and the quarks have the Cabibbo-Kobayashi-Maskawa (CKM) mixing angles $\\theta^{q}_{12}=13^{\\circ}, \\theta^{q}_{23}=0^{\\circ}$ and $\\theta^{q}_{13}=0^{\\circ}$. Thus, certain effective dimension-5 operators are introduced, which induce $m_{e}\

  14. Neutrinoless Double Beta Decay and Lepton Flavor Violation

    E-Print Network [OSTI]

    V. Cirigliano; A. Kurylov; M. J. Ramsey-Musolf; P. Vogel

    2004-06-17

    We point out that extensions of the Standard Model with low scale (~TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with GUT scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of \\mu -> e \\gamma and \\mu -> e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments.

  15. Relating quarks and leptons with the T7 flavour group

    E-Print Network [OSTI]

    Bonilla, Cesar; Peinado, Eduardo; Valle, Jose W F

    2014-01-01

    In this letter we present a model for quarks and leptons based on T7 as flavour symmetry, predicting a canonical mass relation between charged leptons and down-type quarks proposed earlier. Neutrino masses are generated through a Type-I seesaw mechanism, with predicted correlations between the atmospheric mixing angle and neutrino masses. Compatibility with oscillation results lead to lower bounds for the lightest neutrino mass as well as for the neutrinoless double beta decay rates, even for normal neutrino mass hierarchy.

  16. The Polarized Electron Source for the International Collider (ILC) Project

    SciTech Connect (OSTI)

    Brachmann, A.; Clendenin, J.E.; Garwin, E.L.; Ioakeimidi, K.; Kirby, R.e.; Maruyama, T.; Prescott, C.Y.; Sheppard, J.; Turner, J.; Zhou, F.; /SLAC

    2006-12-01

    ILC project will be the next large high energy physics tool that will use polarized electrons (and positrons). For this machine spin physics will play an important role. The polarized electron source design is based on electron injectors built for the Stanford Linear Collider (polarized) and Tesla Test Facility (un-polarized). The ILC polarized electron source will provide a 5GeV spin polarized electron beam for injection into the ILC damping ring. Although most ILC machine parameters have been achieved by the SLC or TTF source, features of both must be integrated into one design. The bunch train structure presents unique challenges to the source laser drive system. A suitable laser system has not yet been demonstrated and is part of the ongoing R&D program for ILC at SLAC. Furthermore, ILC injector R&D incorporates photocathode development, increasing available polarization, and improving operational properties in gun vacuum systems. Another important area of research and development is advancing the design of DC and RF electron gun technology for polarized sources. This presentation presents the current status of the design and outlines aspects of the relevant R&D program carried out within the ILC community.

  17. B Physics Theory for Hadron Colliders

    E-Print Network [OSTI]

    G. Buchalla

    2008-09-03

    A short overview of theoretical methods for B physics at hadron colliders is presented. The main emphasis is on the theory of two-body hadronic B decays, which provide a rich field of investigation in particular for the Tevatron and the LHC. The subject holds both interesting theoretical challenges as well as many opportunities for flavor studies and new physics tests. A brief review of the current status and recent developments is given. A few additional topics in B physics are also mentioned.

  18. LHC - Large Hadon Collider Exhibition LEPFest 2000

    E-Print Network [OSTI]

    2000-01-01

    The Large Hadron Collider (LHC) will accelerate two proton beams to an energy corresponding to about 7,000 times their mass (7000 GeV). The collision of the two beams reproduces the conditions in the Universe when it was about 10 -1 2 sec old. Many innovative techniques - such as cooling with superfluid helium, the extensive use of high temperature superconducting cables, the two-in-one design for super-conducting dipole magnets, and new ultra-high vacuum technologies - had to be developed to make its construc-tion possible.

  19. HEP Collider HPC Use, Prospects and Wishes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowļ‚— WeUpdateScience DeadlinesHEP Collider HPC

  20. Bounds on R-parity violating supersymmetric couplings from leptonic and semileptonic meson decays

    SciTech Connect (OSTI)

    Dreiner, H. K.; Kraemer, M.; O'Leary, Ben [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Institut fuer Theoretische Physik E, RWTH Aachen, 52056 Aachen (Germany); S.U.P.A., School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom) and Institut fuer Theoretische Physik E, RWTH Aachen, 52056 Aachen (Germany)

    2007-06-01

    We present a comprehensive update of the bounds on R-parity violating supersymmetric couplings from lepton-flavor- and lepton-number-violating decay processes. We consider {tau} and {mu} decays as well as leptonic and semileptonic decays of mesons. We present several new bounds resulting from {tau}, {eta}, and kaon decays and correct some results in the literature concerning B meson decays.

  1. Michael Schmitt Physics at a -Collider 20-March-2001 1 Physics at a -Collider

    E-Print Network [OSTI]

    Schmitt, Michael

    . emphasizes diboson over difermion production { in contrast to e + e machines. #15; Pair-production of charged of speci#12;c CP #15; Since photons couple only to electric charge, production of neutral particles to be tied to the data { not unlike hadronic machines. #12; Michael Schmitt Physics at a -Collider 20-March

  2. A young person's view of the Superconducting Super Collider

    SciTech Connect (OSTI)

    Moya, A.

    1990-08-01

    This report gives a simple description of the Superconducting Super Collider, how it works, and what it is used for. (LSP)

  3. Far Future Colliders and Required R&D Program

    SciTech Connect (OSTI)

    Shiltsev, V.; /Fermilab

    2012-06-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the R&D toward near future colliders and make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  4. Search for High-Mass Resonances Decaying into Leptons of Different Flavor (e mu, e tau, mu tau) in p anti-p Collisions at sqrt(s) = 1.96 TeV

    SciTech Connect (OSTI)

    Tu, Yanjun; /Pennsylvania U.

    2008-10-01

    We present a search for high-mass resonances decaying into two leptons of different flavor: e{mu}, e{tau}, and {mu}{tau}. These resonances are predicted by several models beyond the standard model, such as the R-parity-violating MSSM. The search is based on 1 fb{sup -1} of data collected at the Collider Detector at Fermilab (CDF II) in proton anti-proton collisions. Our observations are consistent with the standard model expectations. The results are interpreted to set 95% C.L. upper limits on {sigma} x BR of {tilde {nu}}{sub {tau}} {yields} e{mu}, e{tau}, {mu}{tau}.

  5. Hidden-Sector Higgs Bosons at High-Energy Electron-Positron Colliders

    E-Print Network [OSTI]

    Jack H. Collins; James D. Wells

    2012-09-30

    The possibility of a scalar messenger that can couple the Standard Model (SM) to a hidden sector has been discussed in a variety of contexts in the literature in recent years. We consider the case that a new scalar singlet charged under an exotic spontaneously broken Abelian gauge symmetry mixes weakly with the SM Higgs resulting in two scalar mass states, one of which has heavily suppressed couplings to the SM particles. Previous phenomenological studies have focussed on potential signatures for such a model at the Large Hadron Collider (LHC). However, there are interesting regions of the parameter space in which the heavier Higgs state would be out of reach for LHC searches if its mass is greater than 1 TeV. We therefore investigate the discovery potential for such a particle at a 3 TeV electron-positron collider, which is motivated by the recent developments of the Compact Linear Collider (CLIC). We find that such an experiment could substantially extend our discovery reach for a heavy, weakly coupled Higgs boson, and we discuss three possible search channels.

  6. Flavour Changing at Colliders in the Effective Theory Approach

    E-Print Network [OSTI]

    Renato Batista Guedes

    2008-11-21

    In this thesis we discuss the combined effects of strong and electroweak FCNC effective operators in top quark physics at the CERN LHC and lepton flavour violation at the ILC with dimension six effective operators.

  7. Searches for non-SUSY New Physics at Colliders

    E-Print Network [OSTI]

    Kersevan, Borut Paul; The ATLAS collaboration

    2015-01-01

    The slides on the Exotics searches (Supersymmetry excluded) in Run 1 on behalf of the ATLAS and CMS collaborations . The talk is to be given at the Lepton Photon conference 2015 in August 2015 in Ljubljana, Slovenia.

  8. Leptonic Dirac CP Violation Predictions from Residual Discrete Symmetries

    E-Print Network [OSTI]

    Girardi, I; Stuart, Alexander J; Titov, A V

    2015-01-01

    Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton) flavour symmetry, corresponding to a non-Abelian discrete symmetry group $G_f$, and that $G_f$ is broken to specific residual symmetries $G_e$ and $G_\

  9. Leptonic Dirac CP Violation Predictions from Residual Discrete Symmetries

    E-Print Network [OSTI]

    I. Girardi; S. T. Petcov; Alexander J. Stuart; A. V. Titov

    2015-09-08

    Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton) flavour symmetry, corresponding to a non-Abelian discrete symmetry group $G_f$, and that $G_f$ is broken to specific residual symmetries $G_e$ and $G_\

  10. Hadronic decays of the tau lepton: Theoretical outlook

    E-Print Network [OSTI]

    J. Portoles

    2007-02-18

    The structure of the form factors stemmed from the hadronization of QCD currents in the energy region of the resonances can be explored through the analyses of exclusive hadronic decays of the tau lepton. I give a short review on the later theoretical progress achieved in the description of experimental data.

  11. Weak interactions of quarks and leptons: experimental status

    SciTech Connect (OSTI)

    Wojcicki, S.

    1984-09-01

    The present experimental status of weak interactions is discussed with emphasis on the problems and questions and on the possible lines of future investigations. Major topics include; (1) the quark mixing matrix, (2) CP violation, (3) rare decays, (4) the lepton sector, and (5) right handed currents. 118 references. (WHK)

  12. Tau decays into three charged leptons and two neutrinos

    E-Print Network [OSTI]

    Ammar, Raymond G.; Baringer, Philip S.; Bean, Alice; Besson, David Zeke; Coppage, Don; Copty, N.; Davis, Robin E. P.; Hancock, N.; Kotov, S.; Kravchenko, I.; Kwak, Nowhan

    1996-04-01

    We search for the radiative leptonic tau decays tau --> ee(+) e(-)nu(tau)nu(e) and tau --> mu e(+)e(-)nu(tau)nu(mu) using 3.60 fb(-1) of data collected by the CLEO-II experiment at the Cornell Electron Storage Ring. We present a first observation...

  13. Partial Quark-Lepton Universality and Neutrino CP Violation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liao, Jiajun; Marfatia, D.; Whisnant, K.

    2015-01-01

    We study a model with partial quark-lepton universality that can naturally arise in grand unified theories. We find that constraints on the model can be reduced to a single condition on the Dirac CP phase ? in the neutrino sector. Using our current knowledge of the CKM and PMNS mixing matrices, we predict - 32 . 4 ° ? ? ? 32 . 0 ° at 2 ? .

  14. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect (OSTI)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a full-energy injector, and, if needed, provide top

  15. Simultaneous Heavy Flavor Fractions and Top Cross Section Measurement at the Collider Detector at Fermilab

    SciTech Connect (OSTI)

    Mathis, Mark J.; /Johns Hopkins U.

    2010-04-01

    This dissertation describes the measurement of the top pair production cross section, using data from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV, with 2.7 {+-} 0.2 fb{sup -1} of data collected by the Collider Detector at Fermilab. Background contributions are measured concurrently with the top cross section in the b-tagged lepton-plus-jets sample using a kinematic fit, which simultaneously determines the cross sections and normalizations of t{bar t}, W + jets, QCD, and electroweak processes. This is the first application of a procedure of this kind. The top cross section is measured to be {sigma}{sub t{bar t}} = 7.64 {+-} 0.57(stat + syst) {+-} 0.45(lumi) pb and the Monte Carlo simulation scale factors K{sub Wb{bar b}} = 1.57 {+-} 0.25, K{sub Wc{bar c}} = 0.94 {+-} 0.79, K{sub Wc} = 1.9 {+-} 0.3, and K{sub Wq{bar q}} = 1.1 {+-} 0.3. These results are consistent with existing measurements using other procedures. More data will reduce the systematic uncertainties and will lead to the most precise of any single analysis to date.

  16. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control G. R. Plateau, , C. G. R acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy

  17. VEPP-2000 COLLIDER CONTROL SYSTEM* A.Senchenko1,#

    E-Print Network [OSTI]

    Kozak, Victor R.

    VEPP-2000 COLLIDER CONTROL SYSTEM* A.Senchenko1,# , D.Berkaev1,2 , O.Gorbatenko1 , A.Kasaev1 , I of interacting subsystems responding on different acceleration facility parts. Control system software is based presents architecture, implementation and functionality of hardware and software of the collider control

  18. The Neutrino Factory and Muon Collider Collaboration Considerations on

    E-Print Network [OSTI]

    McDonald, Kirk

    Plenary Meeting, KEK Jan 24, 2006 http://puhep1.princeton.edu/mumu/target/ (Presented by M. Zisman) Kirk T.) Kirk T. McDonald ISS Plenary Meeting, KEK, Jan 24, 2006 2 #12;The Neutrino Factory and Muon Collider". Kirk T. McDonald ISS Plenary Meeting, KEK, Jan 24, 2006 3 #12;The Neutrino Factory and Muon Collider

  19. CLIC Drive Beam and LHC Based Fel-Nucleus Collider

    E-Print Network [OSTI]

    H. Braun; R. Corsini; S. Sultansoy; O. Yavas

    2005-08-09

    The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the Nuclear Resonance Fluorescence method. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.

  20. CONTROL SYSTEM OF VEPP-2000 COLLIDER (SOFTWARE, HARDWARE)

    E-Print Network [OSTI]

    Kozak, Victor R.

    CONTROL SYSTEM OF VEPP-2000 COLLIDER (SOFTWARE, HARDWARE) D.E.Berkaev, P.B.Cheblakov, V, implementation and functionality of the software of the collider control system. The software according. Control system software is based on several TCP/IP connected PC platforms working under operating system

  1. Energy Content of Colliding Plane Waves using Approximate Noether Symmetries

    E-Print Network [OSTI]

    M. Sharif; Saira Waheed

    2011-09-19

    This paper is devoted to study the energy content of colliding plane waves using approximate Noether symmetries. For this purpose, we use approximate Lie symmetry method of Lagrangian for differential equations. We formulate the first-order perturbed Lagrangian for colliding plane electromagnetic and gravitational waves. It is shown that in both cases, there does not exist

  2. EIS-0138-S: Superconducting Super Collider, Supplemental, Waxahatchie, Texas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this supplementary statement to analyze the environmental impacts of design modifications to the Superconducting Super Collider that were made following the publication of the Record of Decision that selected Ellis County, Texas, as the location of the laboratory facility. This statement supplements DOE/EIS-0138, Superconducting Super Collider.

  3. PION PRODUCTION FOR NEUTRINO FACTORIES AND MUON COLLIDERS

    E-Print Network [OSTI]

    McDonald, Kirk

    PION PRODUCTION FOR NEUTRINO FACTORIES AND MUON COLLIDERS Workshop on Applications of High production for nufact/mu-collider - N.V. Mokhov Outline · Pion Production and Collection · Event Generators-independent analysis of HARP data 2 #12;AHIPA Workshop, Fermilab, October 19-21, 2009 Pion production for nufact

  4. Non-linear Higgs portal to Dark Matter

    E-Print Network [OSTI]

    I. Brivio; M. B. Gavela; L. Merlo; K. Mimasu; J. M. No; R. del Rey; V. Sanz

    2015-11-03

    The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the dominant interactions of gauge bosons and the physical Higgs particle $h$ to a scalar singlet dark matter candidate. Phenomenological consequences are also studied in detail, including the possibility of distinguishing this scenario from the standard Higgs portal in which the electroweak symmetry breaking is linearly realised. Two features of significant impact are: i) the connection between the electroweak scale $v$ and the Higgs particle departs from the $(v+h)$ functional dependence, as the Higgs field is not necessarily an exact electroweak doublet; ii) the presence of specific couplings that arise at different order in the non-linear and in the linear expansions. These facts deeply affect the dark matter relic abundance, as well as the expected signals in direct and indirect searches and collider phenomenology, where Dark Matter production rates are enhanced with respect to the standard portal.

  5. Fragmentation of colliding planetesimals with water content

    E-Print Network [OSTI]

    Maindl, Thomas I; Schäfer, Christoph; Speith, Roland

    2014-01-01

    We investigate the outcome of collisions of Ceres-sized planetesimals composed of a rocky core and a shell of water ice. These collisions are not only relevant for explaining the formation of planetary embryos in early planetary systems, but also provide insight into the formation of asteroid families and possible water transport via colliding small bodies. Earlier studies show characteristic collision velocities exceeding the bodies' mutual escape velocity which - along with the distribution of the impact angles - cover the collision outcome regimes 'partial accretion', 'erosion', and 'hit-and-run' leading to different expected fragmentation scenarios. Existing collision simulations use bodies composed of strengthless material; we study the distribution of fragments and their water contents considering the full elasto-plastic continuum mechanics equations also including brittle failure and fragmentation.

  6. Study of Scalar Top Quarks at a Future e+e- Linear Collider

    E-Print Network [OSTI]

    M. Berggren; R. Keranen; H. Nowak; A. Sopczak

    1999-11-13

    The scalar top discovery potential has been studied with a full-statistics background simulation for sqrt(s) = 500 GeV and L = 500 fb-1. The simulation is based on a fast and realistic simulation of a TESLA detector. The large simulated data sample allowed the application of an Iterative Discriminant Analysis (IDA) which led to a significantly higher sensitivity than in previous studies. The effects of beam polarization on signal efficiency and individual background channels are studied using separate optimization with the IDA for both polarization states. The beam polarization is very important to measure the scalar top mixing angle and to determine its mass. Simulating a 180 GeV scalar top at minimum production cross section, we obtain Delta(m) = 1 GeV and Delta(cos(theta)) = 0.009.

  7. International Linear Collider Reference Design Report Volume 2: PHYSICS AT THE ILC

    E-Print Network [OSTI]

    Abdelhak Djouadi; Joseph Lykken; Klaus Mönig; Yasuhiro Okada; Mark Oreglia; Satoru Yamashita

    2007-09-12

    This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described.

  8. 2005 ALCPG & ILC Workshops -Snowmass, U.S.A. The International Linear Collider beam dumps

    E-Print Network [OSTI]

    on such dumps was started at the SLC, albeit at much lower power, and continued as part of the TESLA project. There is also a need to dump the intense beamstrahlung photons generated during the beam-beam interaction there are no "show-stoppers". The water dump for the TESLA project was studied in detail at DESY [4], with input from

  9. Higgs pair production at a linear e{sup +}e{sup -} collider in...

    Office of Scientific and Technical Information (OSTI)

    essentially no standard model background, once produced, it will provide us with a very clean signature of physics beyond the standard model. Moreover, since the final-state...

  10. A Study of Magnetic Shielding Performance of a Fermilab International Linear Collider Superconducting RF Cavity Cryomodule

    E-Print Network [OSTI]

    Crawford, Anthony C

    2014-01-01

    This note presents measurements that support the conclusion that it is feasible to achieve magnetic field values at the level of 5 milliGauss for a cryomodule in a realistic and representative ambient magnetic field environment.

  11. Search for anomalous quartic $WWZ?$ couplings at the future linear $e^{+}e^{-}$ collider

    E-Print Network [OSTI]

    M. Köksal; A. Senol

    2015-07-03

    In this paper, the potentials of two different processes $e^{+}e^{-}\\rightarrow W^{-} W^{+}\\gamma$ and $e^{+}e^{-} \\rightarrow e^{+}\\gamma^{*} e^{-} \\rightarrow e^{+} W^{-} Z \

  12. Alignment tolerance of accelerating structures and corrections for future linear colliders

    SciTech Connect (OSTI)

    Kubo, K.; Adolphsen, C.; Bane, K.L.F.; Raubenheimer, T.O.; Thompson, K.A.

    1995-06-01

    The alignment tolerance of accelerating structures is estimated by tracking simulations. Both single-bunch and multi-bunch effects are taken into account. Correction schemes for controlling the single and multi-bunch emittance growth in the case of large misalignment are also tested by simulations.

  13. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby a contractor of the(TechnicalConnect 3Connect3RDodA

  14. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministrationTechnicalTechnicalScience.gov AppInformation 60th

  15. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scaleCoherent Light Source (Journalmitochondrial

  16. Linear Collider LHC Subpanel | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H2015Tray and|Projects

  17. H and A Discrimination using Linear Polarization of Photons at the PLC

    E-Print Network [OSTI]

    A. F. Zarnecki; P. Niezurawski; M. Krawczyk

    2007-10-20

    First realistic estimate of the usefulness of the Photon Linear Collider with linearly polarized photons as analyzer of the CP-parity of Higgs bosons is presented. MSSM Higgs bosons H and A with 300 GeV mass, for the model parameters corresponding to the so called "LHC wedge" region, are considered. When switching from circular to linear photon polarization a significant increase in heavy quark production background, which is no longer suppressed by helicity conservation, and decrease of the Higgs boson production cross sections by a factor of two is expected. Nevertheless, after three years of Photon Linear Collider running heavy scalar and pseudoscalar Higgs bosons in MSSM can be distinguished at a 4.5 sigma level.

  18. Collider Phenomenology with Split-UED

    SciTech Connect (OSTI)

    Kong, Kyoungchul; /SLAC; Park, Seong Chan; /Tokyo U., IPMU; Rizzo, Thomas G.; /SLAC

    2011-12-15

    We investigate the collider implications of Split Universal Extra Dimensions. The non-vanishing fermion mass in the bulk, which is consistent with the KK-parity, largely modifies the phenomenology of Minimal Universal Extra Dimensions. We scrutinize the behavior of couplings and study the discovery reach of the Tevatron and the LHC for level-2 Kaluza-Klein modes in the dilepton channel, which would indicates the presence of the extra dimensions. Observation of large event rates for dilepton resonances can result from a nontrivial fermion mass profile along the extra dimensions, which, in turn, may corroborate extra dimensional explanation for the observation of the positron excess in cosmic rays. The Minimal Universal Extra Dimensions scenario has received great attention. Recently non-vanishing bulk fermion masses have been introduced without spoiling the virtue of KK-parity. The fermion profiles are no longer simple sine/cosine functions and depend upon the specific values of bulk parameters. The profiles of fermions are split along the extra dimensions while the wave functions of the bosons remain the same as in UED. A simple introduction of a KK-parity conserving bulk fermion mass has significant influences on collider aspects as well as astrophysical implications of UED. For instance, the DM annihilation fraction into certain SM fermion pairs is either enhanced or reduced (compared to the MUED case) so that one can perhaps explain the PAMELA positron excess while suppressing the anti-proton flux. In this paper, we have concentrated on collider phenomenology of Split Universal Extra Dimensions. We have revisited the KK decomposition in detail and analyzed wave function overlaps to compute relevant couplings for collider studies. We have discussed general collider implication for level-1 KK modes and level-2 KK with non-zero bulk mass and have computed LHC reach for the EW level-2 KK bosons, {gamma}{sub 2} and Z{sub 2}, in the dilepton channel. The LHC should able to cover the large parameter space (up to M{sub V{sub 2}} {approx} 1.5 TeV for {mu}L {ge} 1) even with early data assuming {approx}100 pb{sup -1} or less. The existence of double resonances is one essential feature arising from extra dimensional models. Whether or not one can see double resonances depends both on how degenerate the two resonances are and on the mass resolution of the detector. The very high P{sub T} from the decay makes resolution in dimuon channel worse than in dielectron final state. This is because one can reconstruct electron from ECAL but muon momentum reconstruction relies on its track, which is barely curved in this case. Further indication for SUED might be the discovery of W'-like signature of mass close to Z{sub 2}. The MUED predicts a somewhat lower event rate due to 1-loop suppressed coupling of level-2 bosons to SM fermion pair, while it exists at tree level in SUED. Therefore in UED, one has to rely on indirect production of level-2 bosons, whose collider study requires complete knowledge of the model: the mass spectrum and all the couplings. On the other hand, in the large {mu} limit of SUED, the dependence on mass spectrum is diminished since level-2 KK bosons decay only into SM fermion pairs. This allows us to estimate the signal rate from their direct production, so that they can be discovered at the early phase of the LHC. The indirect production mechanism only increases production cross sections, improving our results. Once a discovery has been made, one should try to reconstruct events and do further measurements such as spin and coupling determination, with more accumulated data, which might discriminate KK resonances from other Z' models. The coupling measurement is directly related to the determination of the bulk masses. A challenging issue might be the existence of two resonances which are rather close to each other.

  19. Introduction to Linear Relaxations

    E-Print Network [OSTI]

    Introduction to Linear Relaxations by R. Baker Kearfott Department of Mathematics University relaxations; . discuss validation of linear relaxations. Intro. Linear Relaxations December, 2003 Taylor, . . . , m 2 , where # : R n # R and c i , g i : R n # R are guaranteed to be within one of the x # that has

  20. Linear Models Joint Likelihood

    E-Print Network [OSTI]

    Penny, Will

    Hierarchy Will Penny Linear Models Joint Likelihood First Layer Activity Predictive Coding Update Update Connectivity References Hierarchy Will Penny 24th March 2011 #12;Hierarchy Will Penny Linear x1 = W2x2 + e2 #12;Hierarchy Will Penny Linear Models Joint Likelihood First Layer Activity

  1. Measurement of the production rate of the charm jet recoiling against the W boson using the D0 detector at the Fermilab Tevatron Collider

    SciTech Connect (OSTI)

    Ahsan, Mahsana; /Kansas State U.

    2008-05-01

    This dissertation describes a measurement of the rate of associated production of the W boson with the charm jet in the proton and anti-proton collisions at the center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The measurement has direct sensitivity to the strange quark content inside the proton. A direct measurement of the momentum distribution of the strange quark inside the proton is essential for a reliable calculation of new physics signal as well as the background processes at the collider experiments. The identification of events containing a W boson and a charm jet is based on the leptonic decays of the W boson together with a tagging technique for the charm jet identification based on the semileptonic decay of the charm quark into the muon. The charm jet recoiling against the W boson must have a minimum transverse momentum of 20 GeV and an absolute value of pseudorapidity less than 2.5. This measurement utilizes the data collected by the D0 detector at the Fermilab Collider. The measured rate of the charm jet production in association with the W boson in the inclusive jet production with the W boson is 0.074 {+-} 0.023, which is in agreement with the theoretical predictions at the leading order in Quantum Chromodynamics.

  2. Search for production of WW / WZ resonances decaying to a lepton, neutrino and jets in pp collisions at ?s = 8 TeV with the ATLAS detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-05-12

    In this study, a search is presented for narrow diboson resonances decaying to WW or WZ in the final state where one W boson decays leptonically (to an electron or a muon plus a neutrino) and the other W/Z boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb–1 of pp collisions at ?s = 8 TeV collected by the ATLAS detector at the large hadron collider. No evidence for resonant diboson production is observed, and resonance masses below 700 and 1490 GeV are excluded at 95% confidence level for the spin-2 Randall–Sundrum bulk graviton G*more »with coupling constant of 1.0 and the extended gauge model W' boson respectively.« less

  3. Mirror World at the Large Hadron Collider

    E-Print Network [OSTI]

    Riccardo Barbieri; Thomas Gregoire; Lawrence J. Hall

    2005-09-22

    A mirror world can modify in a striking way the LHC signals of the Higgs sector. An exact or approximate Z_2 symmetry between the mirror world and our world allows large mixing between the Higgs bosons of these worlds, leading to production rates and branching ratios for these states that are markedly different from the standard model and are characteristic of a mirror world. The constraints on these Higgs boson masses from precision electroweak data differ from the standard model bound, so that the new physics that cancels the quadratic divergence induced by the top quark may appear at a larger scale, possibly beyond the reach of the LHC. However, the scale of new physics needed to cancel the quadratic divergence induced by the Higgs boson is not significantly changed. With small breakings of the Z_2 parity, the lightest mirror quarks (and possibly charged mirror leptons) could be the dark matter in the universe, forming galactic halos that are stable to cooling. A possible signal from the relic radiation density of the mirror world is also discussed.

  4. Lepton Mixing Predictions from (Generalised) CP and Discrete Flavour Symmetry

    E-Print Network [OSTI]

    Thomas Neder

    2015-03-31

    An important class of flavour groups, that are subgroups of $U(3)$ and that predict experimentally viable lepton mixing parameters including Majorana phases, is the $\\Delta(6n^2)$ series. The most well-known member is $\\Delta(24)=S_4$. I present results of several extensive studies of lepton mixing predictions obtained in models with a $\\Delta(6n^2)$ flavour group that preserve either the full residual $Z_2\\times Z_2$ or a $Z_2$ subgroup for neutrinos and can include a generalised CP symmetry. Predictions include mixing angles and Dirac CP phase generally; and if invariance under a generalised CP symmetry is included, also Majorana phases. For this, the interplay of flavour group and generalised CP symmetry has to be studied carefully.

  5. Search for Charged Lepton Violation in Narrow Upsilon Decays

    SciTech Connect (OSTI)

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /Bari U. /INFN, Bari; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /LBL, Berkeley /UC, Berkeley; Hawkes, C.M.; /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Columbus Supercond., Genova /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-19

    Charged lepton flavor violating processes are unobservable in the standard model, but they are predicted to be enhanced in several extensions to the standard model, including supersymmetry and models with leptoquarks or compositeness. We present a search for such processes in a sample of 99 x 10{sup 6} {Upsilon}(2S) decays and 117 x 10{sup 6} {Upsilon}(3S) decays collected with the BABAR detector. We place upper limits on the branching fractions {Beta}({Upsilon}(nS) {yields} e{sup {+-}}{tau}{sup {-+}}) and {Beta}({Upsilon}(nS) {yields} {mu}{sup {+-}}{tau}{sup {-+}}) (n = 2, 3) at the 10{sup -6} level and use these results to place lower limits of order 1 TeV on the mass scale of charged lepton flavor violating effective operators.

  6. U(2)? flavor symmetry and lepton universality violation in W?????

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Filipuzzi, Alberto; Portolés, Jorge; Gonzįlez-Alonso, Martķn

    2012-06-26

    The seeming violation of universality in the ? lepton coupling to the W boson suggested by LEP-II data is studied using an effective field theory (EFT) approach. Within this framework we explore how this feature fits into the current constraints from electroweak precision observables using different assumptions about the flavor structure of New Physics, namely [U(2)×U(1)]? and U(2)?. We show the importance of leptonic and semileptonic tau decay measurements, giving 3–4 TeV bounds on the New Physics effective scale at 90% C.L. We conclude under very general assumptions that it is not possible to accommodate this deviation from universality inmore »the EFT framework, and thus such a signal could only be explained by the introduction of light degrees of freedom or New Physics strongly coupled at the electroweak scale.« less

  7. Statistical Understanding of Quark and Lepton Masses in Gaussian Landscapes

    E-Print Network [OSTI]

    Lawrence J. Hall; Michael P. Salem; Taizan Watari

    2007-08-10

    The fundamental theory of nature may allow a large landscape of vacua. Even if the theory contains a unified gauge symmetry, the 22 flavor parameters of the Standard Model, including neutrino masses, may be largely determined by the statistics of this landscape, and not by any symmetry. Then the measured values of the flavor parameters do not lead to any fundamental symmetries, but are statistical accidents; their precise values do not provide any insights into the fundamental theory, rather the overall pattern of flavor reflects the underlying landscape. We investigate whether random selection from the statistics of a simple landscape can explain the broad patterns of quark, charged lepton, and neutrino masses and mixings. We propose Gaussian landscapes as simplified models of landscapes where Yukawa couplings result from overlap integrals of zero-mode wavefunctions in higher-dimensional supersymmetric gauge theories. In terms of just five free parameters, such landscapes can account for all gross features of flavor, including: the hierarchy of quark and charged lepton masses; small quark mixing angles, with 13 mixing less than 12 and 23 mixing; very light Majorana neutrino masses, with the solar to atmospheric neutrino mass ratio consistent with data; distributions for leptonic 12 and 23 mixings that are peaked at large values, while the distribution for 13 mixing is peaked at low values; and order unity CP violating phases in both the quark and lepton sectors. While the statistical distributions for flavor parameters are broad, the distributions are robust to changes in the geometry of the extra dimensions. Constraining the distributions by loose cuts about observed values leads to narrower distributions for neutrino measurements of 13 mixing, CP violation, and neutrinoless double beta decay.

  8. Electroweak Penguin and Leptonic Decays at BaBar

    SciTech Connect (OSTI)

    Bucci, F.; /Pisa U. /INFN, Pisa

    2005-08-26

    Recent BABAR results on electroweak penguin and leptonic decays are reviewed. In particular, the measurements of B {yields} K{sup (*)}l{sup +}l{sup -} and the preliminary results on B {yields} X{sub s}l{sup +}l{sup -} are presented. Also summarized are the preliminary limits on B{sup +} {yields} l{sup +}{nu} (l = e,{mu}) and B{sup +} {yields} K{sup +}{nu}{bar {nu}}.

  9. Clues for flavor from rare lepton and quark decays

    E-Print Network [OSTI]

    Ivo de Medeiros Varzielas; Gudrun Hiller

    2015-06-08

    Flavor symmetries successfully explain lepton and quark masses and mixings yet it is usually hard to distinguish different models that predict the same mixing angles. Further experimental input could be available, if the agents of flavor breaking are sufficiently low in mass and detectable or if new physics with non-trivial flavor charges is sufficiently low in mass and detectable. The recent hint for lepton-nonuniversality in the ratio of branching fractions $B \\to K \\mu \\mu$ over $B \\to K e e$, $R_K$, suggests the latter, at least for indirect detection via rare decays. We demonstrate the discriminating power of the rare decay data on flavor model building taking into account viable leptonic mixings and show how correlations with other observables exist in leptoquark models. We give expectations for branching ratios $B \\to K \\ell \\ell^\\prime, B_{(s)} \\to \\ell \\ell^\\prime$ and $\\ell \\to \\ell^\\prime \\gamma$, and Higgs decays $h \\to \\ell \\ell^\\prime$.

  10. TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS

    SciTech Connect (OSTI)

    Jabeen, Shabnam

    2013-10-20

    This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of ? s =1 . 96 TeV, and the Large Hadron Collider, a proton–proton collider at a center- of-mass energy of ? s = 7 TeV. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

  11. Fast linear algebra is stable

    E-Print Network [OSTI]

    Demmel, James; Holtz, Olga; Dumitriu, Ioana

    2007-01-01

    than other basic linear algebra subroutines. AcknowledgmentsApplied Numerical Linear Algebra. SIAM, 1997. [23] J.algorithms in numerical linear algebra. SIAM Review, 20:740–

  12. A large hadron electron collider at CERN

    SciTech Connect (OSTI)

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100)fb–1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

  13. New Methods of Particle Collimation in Colliders

    SciTech Connect (OSTI)

    Stancari, Giulio; /Fermilab

    2011-10-01

    The collimation system is an essential part of the design of any high-power accelerator. Its functions include protection of components from accidental and intentional energy deposition, reduction of backgrounds, and beam diagnostics. Conventional multi-stage systems based on scatterers and absorbers offer robust shielding and efficient collection of losses. Two complementary concepts have been proposed to address some of the limitations of conventional systems: channeling and volume reflection in bent crystals and collimation with hollow electron beams. The main focus of this paper is the hollow electron beam collimator, a novel concept based on the interaction of the circulating beam with a 5-keV, magnetically confined, pulsed hollow electron beam in a 2-m-long section of the ring. The electrons enclose the circulating beam, kicking halo particles transversely and leaving the beam core unperturbed. By acting as a tunable diffusion enhancer and not as a hard aperture limitation, the hollow electron beam collimator extends conventional collimation systems beyond the intensity limits imposed by tolerable losses. The concept was tested experimentally at the Fermilab Tevatron proton-antiproton collider. Results on the collimation of 980-GeV antiprotons are presented, together with prospects for the future.

  14. ERL BASED ELECTRON-ION COLLIDER ERHIC.

    SciTech Connect (OSTI)

    LITVINENKO,V.N.; BEN-ZVI,I.; ANDERSON,D.; ET AL.

    2005-05-16

    In this paper we describe eRHIC design based on the RHIC hadron rings and 10-to-20 GeV energy recovery electron linac. RHIC requires a very large tunability range for c.m. energies while maintaining very high luminosity up to 10{sup 34} cm{sup -2} s{sup -1} per nucleon. The designs of this future polarized electron-hadron collider, eRHIC, based on a high current super-conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV, have a number of specific requirements on the ERL optics. Two of the most attractive features of this scheme are full spin transparency of the ERL at all operational energies and the capability to support up to four interaction points. We present two main layouts of the eRHIC, the expected beam and luminosity parameter, and discuss the potential limitation of its performance. Two of the most attractive features of this scheme are full spin transparency of the ERL at all operational energies and the capability to support up to four interaction points. We present two main layouts of the eRHIC, the expected beam and luminosity parameter, and discuss the potential limitation of its performance.

  15. SSC 50 mm collider dipole cryostat design

    SciTech Connect (OSTI)

    Nicol, T.H.

    1992-04-01

    The cryostat of a Superconducting Super Collider (SSC) dipole magnet consists of all magnet components except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating life. This paper describes the design of the current SSC dipole magnet cryostat and includes discussions on the structural and thermal considerations involved in the development of each of the major systems.

  16. Cryostat design for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Nicol, T.H.

    1990-09-01

    The cryostat of an SSC dipole magnet consists of all magnet components except the cold mass assembly. It serves to support the cold mass accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation (MLI) system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their 25 year expected life. This paper describes the design of the current SSC collider dipole magnet cryostat and includes discussions on the thermal, structural, and dynamic considerations involved in the development of each of the major systems. 7 refs., 4 figs.

  17. Adaptive Finite Elements and Colliding Black Holes

    E-Print Network [OSTI]

    Douglas N. Arnold; Arup Mukherjee; Luc Pouly

    1997-09-15

    According to the theory of general relativity, the relative acceleration of masses generates gravitational radiation. Although gravitational radiation has not yet been detected, it is believed that extremely violent cosmic events, such as the collision of black holes, should generate gravity waves of sufficient amplitude to detect on earth. The massive Laser Interferometer Gravitational-wave Observatory, or LIGO, is now being constructed to detect gravity waves. Consequently there is great interest in the computer simulation of black hole collisions and similar events, based on the numerical solution of the Einstein field equations. In this note we introduce the scientific, mathematical, and computational problems and discuss the development of a computer code to solve the initial data problem for colliding black holes, a nonlinear elliptic boundary value problem posed in an unbounded three dimensional domain which is a key step in solving the full field equations. The code is based on finite elements, adaptive meshes, and a multigrid solution process. Here we will particularly emphasize the mathematical and algorithmic issues arising in the generation of adaptive tetrahedral meshes.

  18. Linear phase compressive filter

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  19. Fault tolerant linear actuator

    DOE Patents [OSTI]

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  20. MATH 511: Linear Algebra

    E-Print Network [OSTI]

    T. T. Moh

    2015-01-20

    Linear algebra is second only to calcu lus/differential equations in terms of mathematics of importance to engineering applications. The goal of this course is to ...

  1. Mass, Spin, and Physics Beyond the Standard Model at Colliders

    E-Print Network [OSTI]

    Klemm, William Lathrop

    2011-01-01

    E. Skillman, “New BBN limits on physics beyond the standardH. Simmons, “Multi - jet physics at hadron colliders,” Nucl.Group], “Review of particle physics,” Phys. Lett. B [108] J.

  2. Rhetorical strategies in the campaign for the Superconducting Super Collider 

    E-Print Network [OSTI]

    Taylor, Karen Michelle

    1996-01-01

    The campaign supporting the development and construction of the Superconducting Super Collider provides opportunities to further investigate the rhetoric of science as it borders on political rhetoric. Aristotelian rhetorical theory is used....

  3. The Cabibbo angle as a universal seed for quark and lepton mixings

    E-Print Network [OSTI]

    S. Roy; S. Morisi; N. N. Singh; J. W. F. Valle

    2014-10-14

    A model-independent ansatz to describe lepton and quark mixing in a unified way is suggested based upon the Cabibbo angle. In our framework neutrinos mix in a "Bi-Large" fashion, while the charged leptons mix as the "down-type" quarks do. In addition to the standard Wolfenstein parameters (lambda, A) two other free parameters are needed to specify the physical lepton mixing matrix. Through this simple assumption one makes specific predictions for the atmospheric angle as well as leptonic CP violation in good agreement with current observations.

  4. Using Linearity Web Copyright 2007

    E-Print Network [OSTI]

    Rodriguez, Carlos

    Using Linearity Web Rev. 2.0 May 2007 Copyright © 2007 #12;Using Linearity Web i Contents Introduction to Linearity Web.............................................................................1 Features, Benefits, and Value of Linearity Web..............................................1 Before You

  5. Ion polarization in the MEIC figure-8 ion collider ring

    SciTech Connect (OSTI)

    V.S. Morozov, Ya.S. Derbenev, Y. Zhang, P. Chevtsov, A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov

    2012-07-01

    The nuclear physics program envisaged at the Medium-energy Electron-Ion Collider (MEIC) currently being developed at the Jefferson Lab calls for collisions of 3-11 GeV/c longitudinally polarized electrons and 20-100 GeV/c, in equivalent proton momentum, longitudinally/ transversely polarized protons/ deuterons/ light ions. We present a scheme that provides the required ion polarization arrangement in the MEIC's ion collider ring.

  6. Search for the Standard Model Higgs Boson in the H -> WW -> lepton+neutrino+q'qbar Decay Channel

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; et al.

    2011-04-01

    We present a search for the standard model Higgs boson (H) in ppbar collisions at sqrt{s}=1.96 TeV in events containing a charged lepton (ell), missing transverse energy, and at least two jets, using 5.4 fb^-1 of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider. This analysis is sensitive primarily to Higgs bosons produced through the fusion of two gluons or two electroweak bosons, with subsequent decay H->WW->ell+nu+q'qbar, where ell is an electron or muon. The search is also sensitive to contributions from other production channels, such as WH->ell+nu+bbbar In the absence of signal, we set limits at the 95% C.L. on the cross section for H production sigma(ppbar->H+X) in these final states. For a mass of MH=160 GeV, the limit is a factor of 3.9 larger than the cross section in the standard model, and consistent with expectation.

  7. Development of the conventional facilities of the Superconducting Super Collider. Revision 1

    SciTech Connect (OSTI)

    Toohig, T.E.

    1994-02-01

    This report discusses an overview of the construction of facilities at the Superconducting Super Collider.

  8. Probing the Quark Sea and Gluons: the Electron-Ion Collider Projects

    SciTech Connect (OSTI)

    Rolf Ent

    2012-04-01

    EIC is the generic name for the nuclear science-driven Electron-Ion Collider presently considered in the US. Such an EIC would be the world’s first polarized electron-proton collider, and the world’s first e-A collider. Very little remains known about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons of Quantum Chromodynamics (QCD). A large community effort to sharpen a compelling nuclear science case for an EIC occurred during a ten-week program taking place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The critical capabilities of a stage-I EIC are a range in center-of-mass energies from 20 to 70 GeV and variable, full polarization of electrons and light ions (the latter both longitudinal and transverse), ion species up to A=200 or so, multiple interaction regions, and a high luminosity of about 10{sup 34} electron-nucleons per cm{sup 2} and per second. The physics program of such a stage-I EIC encompass inclusive measurements (ep/A{yields}e'+X), which require detection of the scattered lepon and/or the full scattered hadronic debris with high precision, semi-inclusive processes (ep/A{yields}e'+h+X), which require detection in coincidence with the scattered lepton of at least one (current or target region) hadron; and exclusive processes (ep/A{yields}e'+N'/A'+{gamma}/m), which require detection of all particles in the reaction. The main science themes of an EIC are to i) map the spin and spatial structure of quarks and gluons in nucleons, ii) discover the collective effects of gluons in atomic nuclei, and (iii) understand the emergence of hadronic matter from color charge. In addition, there are opportunities at an EIC for fundamental symmetry and nucleon structure measurements using the electroweak probe. To truly make headway to image the sea quarks and gluons in nucleons and nuclei, the EIC needs high luminosity over a range of energies as more exclusive scattering probabilities are small, and any integrated detector/interaction region design needs to provide uniform coverage to detect spectator and diffractive products. This is because e-p and even more e-A colliders have a large fraction of their science related to what happens to the nucleon or ion beams. As a result, the philosophy of integration of complex detectors into an extended interaction region faces challenging constraints. Designs feature crossing angles between the protons or heavy ions during collisions with electrons, to remove potential problems for the detector induced by synchrotron radiation. Designs allocate quite some detector space before the final-focus ion quads, at the cost of luminosity, given that uniform detection coverage is a must for deep exclusive and diffractive processes. The integrated EIC detector/interaction region design at JLab focused on establishing full acceptance for such processes over a wide range of proton energies (20-100 GeV) with well achievable interaction region magnets. The detector design at BNL uses the higher ion beam energies to achieve good detection efficiency for instance for protons following a DVCS reaction, for proton beam energies starting from 100 GeV. Following a recommendation of the 2007 US Nuclear Science Long-Range Planning effort, the DOE Office of Nuclear Physics (DOE/NP) has allocated accelerator R&D funds to lay the foundation for a polarized EIC. BNL, in association with JLab and DOE/NP, has also established a generic detector R&D program to address the scientific requirements for measurements at a future EIC.

  9. Super Linear Algebra

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache

    2008-07-18

    In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader. These new class of super linear algebras which can be thought of as a set of linear algebras, following a stipulated condition, will find applications in several fields using computers. The authors feel that such a paradigm shift is essential in this computerized world. Some other structures ought to replace linear algebras which are over a century old. Super linear algebras that use super matrices can store data not only in a block but in multiple blocks so it is certainly more powerful than the usual matrices. This book has 3 chapters. Chapter one introduces the notion of super vector spaces and enumerates a number of properties. Chapter two defines the notion of super linear algebra, super inner product spaces and super bilinear forms. Several interesting properties are derived. The main application of these new structures in Markov chains and Leontief economic models are also given in this chapter. The final chapter suggests 161 problems mainly to make the reader understand this new concept and apply them.

  10. Empirical Bayes Linear Models

    E-Print Network [OSTI]

    Penny, Will

    Empirical Bayes Will Penny Linear Models fMRI analysis Gradient Ascent Online learning Delta Rule Maximum Likelihood Augmented Form ReML Objective Function References Empirical Bayes Will Penny 3rd March 2011 #12;Empirical Bayes Will Penny Linear Models fMRI analysis Gradient Ascent Online learning Delta

  11. Searching for Top Squarks at the Large Hadron Collider 

    E-Print Network [OSTI]

    Wang, Kechen

    2014-08-01

    (“heavy slepton” case). The final states have at least 2 jets, 2 opposite-sign same flavor leptons and missing energy. The opposite-sign same flavor dilepton mass distribution after subtracting the opposite-sign different flavor distribution shows a clear...

  12. Searches for Leptonic B Decays at BaBar

    SciTech Connect (OSTI)

    Nelson, Silke; /SLAC

    2012-04-25

    Measurements of the branching fractions of purely leptonic decays of B-mesons translate into constraints in the plane of the charged Higgs mass versus tan {beta} which are relatively insensitive to the particular theoretical model. Using the full BABAR dataset of 450 million B-decays we search for these decays. No significant signal is found in the decays into electrons or muons and we set upper limits on the branching fractions of the order of a 10{sup -6} at 90% confidence level. We measure the branching fraction of B {yields} {tau}{mu} to be (1.7 {+-} 0.6) x 10{sup -4}.

  13. On the Potential of Leptonic Minimal Flavour Violation

    E-Print Network [OSTI]

    R. Alonso; M. B. Gavela; D. Hernįndez; L. Merlo

    2012-07-29

    Minimal Flavour Violation can be realized in several ways in the lepton sector due to the possibility of Majorana neutrino mass terms. We derive the scalar potential for the fields whose background values are the Yukawa couplings, for the simplest See-Saw model with just two right-handed neutrinos, and explore its minima. The Majorana character plays a distinctive role: the minimum of the potential allows for large mixing angles -in contrast to the simplest quark case- and predicts a maximal Majorana phase. This points in turn to a strong correlation between neutrino mass hierarchy and mixing pattern.

  14. Muon g-2 Anomaly and Dark Leptonic Gauge Boson

    SciTech Connect (OSTI)

    Lee, Hye-Sung [W& M

    2014-11-01

    One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.

  15. Inverse neutrinoless double beta decay revisited: Neutrinos, Higgs triplets, and a muon collider

    SciTech Connect (OSTI)

    Rodejohann, Werner [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2010-06-01

    We revisit the process of inverse neutrinoless double beta decay (e{sup -}e{sup -{yields}}W{sup -}W{sup -}) at future linear colliders. The cases of Majorana neutrino and Higgs triplet exchange are considered. We also discuss the processes e{sup -{mu}-{yields}}W{sup -}W{sup -} and {mu}{sup -{mu}-{yields}}W{sup -}W{sup -}, which are motivated by the possibility of muon colliders. For heavy neutrino exchange, we show that masses up to 10{sup 6} (10{sup 5}) GeV could be probed for ee and e{mu} machines, respectively. The stringent limits for mixing of heavy neutrinos with muons render {mu}{sup -{mu}-{yields}}W{sup -}W{sup -} less promising, even though this process is not constrained by limits from neutrinoless double beta decay. If Higgs triplets are responsible for inverse neutrinoless double beta decay, observable signals are only possible if a very narrow resonance is met. We also consider unitarity aspects of the process in case both Higgs triplets and neutrinos are exchanged. An exact seesaw relation connecting low energy data with heavy neutrino and triplet parameters is found.

  16. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    SciTech Connect (OSTI)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy ? rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit ? rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  17. Electron generation of leptons and hadrons with reciprocal -quantized lifetimes and masses

    E-Print Network [OSTI]

    1 Electron generation of leptons and hadrons with reciprocal -quantized lifetimes and masses generation occurs via an initial "-leap" from an electron pair to a "platform state" M, and then subsequent in the generation of hadron masses. In fact, the role of the electron in generating lepton masses has never been

  18. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  19. Linearly parameterized bandits

    E-Print Network [OSTI]

    Tsitsiklis, John N.

    We consider bandit problems involving a large (possibly infinite) collection of arms, in which the expected reward of each arm is a linear function of an r-dimensional random vector Z ? ?(superscript r), where r ? 2. The ...

  20. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect (OSTI)

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.